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Abstract

A discrete denoising algorithm estimates the input sequence to a discrete memoryless channel
(DMC) based on the observation of the entire output sequence. For the case in which the DMC is
known and the quality of the reconstruction is evaluated with a given single-letter fidelity criterion,
we propose a discrete denoising algorithm that does not assume knowledge of statistical properties
of the input sequence. Yet, the algorithm is universal in the sense of asymptotically performing as
well as the optimum denoiser that knows the input sequence distribution, which is only assumed to
be stationary and ergodic. Moreover, the algorithm is universal also in a semi-stochastic setting, in
which the input is an individual sequence, and the randomness is due solely to the channel noise.
The proposed denoising algorithm is practical, requiring a linear number of register-level operations
and sub-linear working storage size relative to the input data length.

Key words and phrases: Context models, Denoising, Discrete filtering, Discrete Memoryless Chan-

nels, Individual sequences, Noisy channels, Universal algorithms.

“If the source already has a certain redundancy and no attempt is made to eliminate it...

a sizable fraction of the letters can be received incorrectly and still reconstructed by the

context.” Claude Shannon, 1948

1 Introduction

Consider the problem of recovering a signal {Xt}t∈T from a noisy version {Zt}t∈T , which has been

corrupted by a memoryless channel. The recovery is assumed to start once the entire signal {Zt}t∈T

is available. This problem, for various types of index sets T , input-output alphabets, and channels,

arises naturally in a wide range of applications spanning fields such as statistics, engineering, computer

science, image processing, astronomy, biology, cryptography, and information theory.
∗Part of this work was performed while S. Verdú was a Hewlett-Packard/Mathematical Sciences Research Institute

(MSRI) visiting research professor; he is with the Department of Electrical Engineering, Princeton University, Princeton,
NJ 08544 USA (e-mail: verdu@princeton.edu). The other authors are with Hewlett-Packard Laboratories, Palo Alto, CA
94304 USA (e-mail: tsachyw@hpl.hp.com; eord@hpl.hp.com; seroussi@hpl.hp.com; marcelo@hpl.hp.com). T. Weissman
is also with the Department of Statistics, Stanford University, Stanford, CA 94305 USA (e-mail: tsachy@stanford.edu).
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The continuous case, where the input and output alphabets are the real line (or other Euclidean

spaces), has received significant attention for over half a century. From the linear filters of Wiener

[57, 3] and Kalman [27], to Donoho and Johnstone’s nonlinear denoisers [14, 15], the amount of work

and literature in between is far too extensive even to be given a representative sample of references. In

fact, the practice of denoising, as influenced by the theory, at least for the problem of one-dimensionally

indexed data corrupted by additive Gaussian white noise, is believed by some to have reached a point

where substantial improvement in performance is unlikely for most applications of interest [5].

Considerably less developed are the theory and practice of denoising for the case where the alphabet

of the noiseless, as well as that of the noise-corrupted signal, are finite. The problem arises in a variety

of situations ranging from typing and/or spelling correction [30, 10] to Hidden Markov Model (HMM)

state estimation (cf. [18] for the many applications); from DNA sequence analysis and processing

[45, 49, 48] to enhancement of facsimile and other binary images; from blind equalization problems to

joint source-channel decoding when a discrete source is sent unencoded through a noisy channel [8, 21].

Here, it is assumed that the goal of a denoising algorithm is to minimize the expected distortion of its

output with respect to the unobserved noiseless signal (measured by a single-letter loss function), as

evaluated under the posterior distribution of the noiseless signal given its noisy observation. When the

distribution of the noiseless signal and the channel are known, the joint distribution of the noiseless

and noisy signals can be obtained. The latter, in turn, gives rise to the posterior distribution of the

noiseless signal conditioned on the noisy observation signal, on which the optimal denoiser is based.

Thus, though it may not always be practical to explicitly obtain this posterior distribution, in principle

it is available.

Certain instances of the discrete denoising problem have been extensively studied, particularly in

the context of state estimation for hidden Markov processes (cf. [18] and the many references therein).

Indeed, for the case where the states evolve according to a known Markov process and the channel

(from state to observation) is known, the above optimum Bayesian scheme can be implemented with

reasonable complexity via forward-backward dynamic programming [8, 1]. It should be mentioned,

however, that even for the simplest among cases where the underlying signal has memory, namely the

case of a binary Markov chain observed through a Binary Symmetric Channel (BSC), the bit-error

rate of the optimal denoiser is not explicitly known for all values of the transition probability and the

channel error rate; only the asymptotic behavior of the bit error rate, as the transition probabilities

become small, [28, 46] and conditions for the optimality of “singlet decoding” (cf. [13]), are known.

The literature on the universal discrete denoising setting is even sparser. In this setting, there is

uncertainty regarding the distribution of the underlying noiseless signal and/or regarding the channel,

so that the posterior distribution on which the optimal denoiser is based is not available. One recent line

of attack to this problem is the compression-based approach, encompassing Natarajan’s “Occam filters”
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[32, 33, 34], Yu et al.’s “compresstimation” [7, 26], Donoho’s “Kolmogorov sampler” [16], and Tabus-

Rissanen-Astola’s “normalized maximum likelihood” models [48, 49, 38]. The intuition motivating the

compression-based approach is that the noise constitutes that part of the noisy signal which is hardest

to compress. Thus, by lossily compressing the noisy signal and appropriately tuning the fidelity level of

the compressor to match the noise level, it may be expected that the part of the noisy signal that will be

lost will mainly consist of the noise, so that the reconstructed signal will, in effect, be a denoised version

of the observation signal. Unfortunately, the compression-based approach to denoising, as formalized

and analyzed concretely in [16], appears to suffer from the following two drawbacks. The first one is

algorithmic: Its faithful implementation essentially boils down to the implementation of a universal

lossy compression scheme. Performing the latter optimally (in the rate distortion sense) and with

manageable complexity1 is one of the notoriously hard open problems in contemporary information

theory (cf. [2, Section VI]). The second drawback, perhaps more fundamental than the first one, is the

fact, established in [16], that optimal universal lossy compression of the noisy signal fails to achieve the

optimal distribution dependent denoising performance with stationary ergodic input signals, for the two

concrete settings of the BSC and the additive Gaussian white noise channel. The fact that compression-

based schemes for universal denoising fall short of the optimal distribution dependent performance was

consolidated from a somewhat different perspective by Dembo and Weissman [11, 52], who consider

universal rate distortion coding of noisy sources and characterize tradeoffs between the attainable

denoising performance and the rate constraint.

In principle, a denoising scheme that fails to attain the distribution-dependent optimum perfor-

mance for all possible stationary ergodic sources (such as the compression-based scheme of [16]), is

not necessarily suboptimal in the universal setting. Since in this setting the posterior distribution

cannot be obtained, it may seem plausible that universally attaining optimum distribution-dependent

performance is an unreachable goal. This supposition, in fact, seems to be implicit in the existent liter-

ature on universal denoising. In the recent [16], for example, the optimality of the proposed universal

“Kolmogorov sampler” was not ruled out. Therefore, the following basic questions arise:

1. Theoretical. How well can a distribution-independent denoiser perform? Can it attain, univer-

sally, the performance of the best distribution-dependent denoiser?

2. Algorithmic. If we can answer the previous question in the affirmative, is the universal denoiser

practical? What is its complexity?

To study these questions, we restrict attention to the case of finite alphabets and a known DMC
1Some of the mentioned compression-based schemes are implemented with practical, sub-optimal, lossy compression

schemes and have no performance guarantees, as the performance analysis of [16] applies to optimal compression (in the
rate-distortion sense) of the noisy signal.
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whose transition probability matrix has full rank.2 In this case, the distribution of the channel output

uniquely determines the distribution of the input.

As discussed above, no discrete denoiser available in the literature universally attains the distribution-

dependent optimum performance. The main contribution of this work is a discrete denoising algorithm

performing favorably from both the theoretical and the algorithmic viewpoints. Specifically, we shall

propose and analyze an algorithm that is:

1. Asymptotically optimal in

(a) The semi-stochastic setting. In this setting, we make no assumption on a probabilistic or any

other type of mechanism that may be generating the underlying noiseless signal and assume

it to be an “individual sequence” unknown to the denoiser. The randomness in this setting

is due solely to the channel noise. We show that our denoising algorithm is guaranteed to

attain the performance of the best finite-order sliding-window denoiser in an almost sure

sense, for every underlying individual sequence. Here, competing with finite-order sliding-

window denoisers is akin to the setting introduced in the universal lossless coding literature

by Ziv and Lempel [60].

(b) The stochastic setting. We show that our denoising algorithm asymptotically attains the

performance of the optimal distribution-dependent scheme, for any stationary ergodic source

that may be generating the underlying signal. This property follows easily from the result

in the semi-stochastic setting.

2. Practical. Implementation of the denoiser requires a linear number of register-level operations,

and working storage complexity which is sub-linear in the data size. Register-level operations are

arithmetic and logic operations, address computations, and memory references, on operands of

size O(log n) bits, where n is the input size. Working storage refers to the memory required by

the algorithm for its internal data structures, book-keeping, etc.

For concreteness and simplicity of the exposition, we assume one-dimensionally indexed data,

though all our results can be readily extended to the multi-dimensional case. In fact, Section 7 presents

experimental results for two-dimensional image denoising, and the multi-dimensional formalism is dis-

cussed in more detail in [35]. For the sake of clarity, most of the presentation is given for the case where

the channel input and output alphabets are identical. In Section 3-C it is indicated how our algorithm

and results carry over to the general case where this condition might not hold.

The proposed denoising algorithm makes two passes over the noisy observation sequence. For

a fixed k, counts of the occurrences of all the strings of length 2k + 1 appearing along the noisy
2Here and throughout, by “full rank” we mean “full row-rank”.
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observation sequence are accumulated in the first pass. The actual denoising is done in the second

pass where, at each location along the noisy sequence, an easily implementable metric computation is

carried out (based on the known channel matrix, the loss function, and the context statistics acquired

in the previous pass) to determine what the denoised value of the symbol at that location should be. A

judicious choice of k (as a function of the sequence length) yields a denoiser with the claimed properties.

We remark that in the statistics literature, the semi-stochastic setting dates nearly half a century

back to the so-called compound decision problem [25, 39, 40, 42, 43, 50], which can be viewed as the

particular case of our denoising setting in which the denoiser is constrained to be context-independent,

corresponding to k = 0 in the above discussion.

The remainder of the paper is organized as follows. Section 2 presents our notation and conventions.

In Section 3, we introduce the denoising algorithm, analyze its complexity, motivate its structure, and

detail its explicit form for a few special cases. Section 4 is devoted to assessing the performance of the

proposed algorithm in the semi-stochastic setting. The fully stochastic setting, where the underlying

noiseless sequence is assumed generated by a stationary ergodic source, is considered in Section 5. In

Section 6 we discuss some theoretical and practical aspects of the choice of context model size for the

denoiser. In Section 7, we report the results of a few experiments where our algorithm was employed

on simulated data, English text, and images. We also briefly discuss some additional practical aspects

of the implementation, as well as possible enhancements. Finally, Section 8 discusses some related

directions for future work.

2 Notation and Conventions

We present some definitions and notation that are used throughout the paper. Additional, “local”

notation is introduced where needed.

Throughout we assume that the components of the noiseless signal, as well as those of the noisy

observation sequence and the reconstruction sequence, take their values in a M -letter alphabet A =

{α1, α2, . . . , αM}. We will sometimes use elements of A as indices to M -vectors and M ×M matrices,

in which cases we identify a symbol with its index in the alphabet. The simplex of M -dimensional

column probability vectors will be denoted by M.

As stated in the introduction, we assume a given channel whose transition probability matrix,

Π = {Π(i, j)}i,j∈A is known to the denoiser. Here, Π(i, j) denotes the probability of an output

symbol j when the input is i. Moreover, we extend this notation to subsets J ⊆ A, by denoting

Π(i, J) =
∑

j∈J Π(i, j). We also assume a given loss function (fidelity criterion) Λ : A2 → [0,∞),

represented by the matrix Λ = {Λ(i, j)}i,j∈A, where Λ(i, j) denotes the loss incurred by estimating the

symbol i with the symbol j. The maximum single-letter loss will be denoted Λmax = maxi,j∈A Λ(i, j).
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We let πi denote the i-th column of Π, and λj denote the j-th column of Λ. Hence, we have,

Π = [π1 | · · · | πM ] , Λ = [λ1 | · · · | λM ] .

Note that the columns of the channel transition probability matrix need not be probability vectors

(though all the rows are).

For a vector or matrix Γ, ΓT will denote transposition and, for an invertible matrix, Γ−T will

denote the transpose of Γ−1. The i-th component of a vector u will be denoted by ui, or u[i] (the

latter notation used for indexing vector-valued expressions). For M -dimensional vectors u and v, u�v

will denote the vector obtained from componentwise multiplication, i.e., (u� v)[i] = u[i]v[i]. In terms

of order of operations, � will have the usual multiplicative precedence over addition and subtraction.

The Lp norm of any vector v will be denoted by ‖v‖p. Similarly, following standard conventions (cf.,

e.g., [22]), ‖A‖p will denote the Lp matrix norm of A defined by ‖A‖p = sup‖v‖p=1 ‖Av‖p, with v

denoting a column vector. The notation | · | will be used to denote both absolute value and cardinality,

according to whether the argument is real- or set-valued.

We let A∞ denote the set of one-sided infinite sequences with A-valued components, i.e., a ∈ A∞

is of the form a = (a1, a2, . . .), ai ∈ A, i ≥ 1. For a ∈ A∞ let an = (a1, . . . , an) and aj
i = (ai, . . . , aj).

More generally, we will allow the indices of vector components to be negative as well, so, for example,

uk
−k = (u−k, . . . , u0, . . . uk). For positive integers k1, k2 and strings si ∈ Aki , we let s1s2 denote the

string of length k1 + k2 formed by concatenation.

For 2k < n, a ∈ An, b ∈ Ak, c ∈ Ak let m(a,b, c) denote the M -dimensional column vector whose

β-th component, β ∈ A, is equal to

m(a,b, c)[β] =
∣∣∣{i : k + 1 ≤ i ≤ n− k, ai−1

i−k = b, ai = β, ai+k
i+1 = c

}∣∣∣
=

∑
i∈{k+1,...,n−k}:ai=β

1{ai−1
i−k=b}1{ai+k

i+1=c} (1)

where throughout 1{·} will denote the indicator function. The component m(a,b, c)[β] is the number

of appearances of the string bβc along the sequence a. For such an appearance, we say that β occurs

in left context b, right context c, and double-sided context (b, c). The normalized (unit sum) version

of the vector m(a,b, c) gives the empirical conditional distribution of a single letter given that the

double-sided context is (b, c). For a,b ∈ An, c ∈ A2k+1 let q(a,b, c) denote the M -dimensional

column vector whose α-th component, α ∈ A, is

q(a,b, c)[α] =
∣∣∣{i : k + 1 ≤ i ≤ n− k, ai+k

i−k = c, bi = α
}∣∣∣ = ∑

i∈{k+1,...,n−k}:bi=α

1{ai+k
i−k=c}, (2)

namely, the number of appearances of the string c along the sequence a when the letter in the sequence
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b corresponding to the center of c is α. Note that, for every d ∈ An,∑
α∈A

q(a,d,bβc)[α] = m(a,b, c)[β].

For P ∈M, let

U(P) = min
x̂∈A

∑
a∈A

Λ(a, x̂)P(a) = min
x̂∈A

λT
x̂ P (3)

denote the Bayes envelope (cf., e.g., [24, 41, 31]) associated with the distribution P and the loss measure

Λ. Following [24], it will be convenient to extend the definition of U(·) to cases in which the argument

is any M -vector v, not necessarily in the simplex M. We denote the minimizing symbol x̂ in (3),

namely the Bayes response to v, by x̂(v), i.e.,

x̂(v) = arg min
x̂∈A

λT
x̂ v, (4)

where throughout arg minx̂∈A (argmaxx̂∈A) denotes the minimizing (maximizing) argument, resolving

ties by taking the letter in the alphabet with the lowest index.

An n-block denoiser is a mapping X̂n : An → An. We let LX̂n(xn, zn) denote the normalized

cumulative loss, as measured by Λ, of the denoiser X̂n when the observed sequence is zn ∈ An and the

underlying noiseless one is xn ∈ An, i.e.,

LX̂n(xn, zn) =
1
n

n∑
i=1

Λ(xi, X̂
n(zn)[i]). (5)

3 The Discrete Universal DEnoiser (DUDE)

In this section we present our Discrete Universal DEnoiser (DUDE). We describe the algorithm and

assess its complexity in subsection 3-A before we proceed to motivate the form of this algorithm in

subsection 3-B. For the sake of clarity, we concentrate on the case of a square channel matrix Π

(equal channel input and output alphabets), which is invertible. The more general case, in which Π is

non-square, is treated in subsection 3-C, assuming the matrix rows are linearly independent. Then, in

subsection 3-D, we particularize the algorithm to several channels of interest.

3-A The Algorithm: Description and Implementation

For a given noisy sequence zn, the output of the algorithm at location i will be defined as a fixed function

of zi and of the counts m(zn, zi−1
i−k, zi+k

i+1 ), where the context length k may depend on n. Specifically,

for a sequence a ∈ An, a context length k, two contexts b ∈ Ak and c ∈ Ak, and a symbol α ∈ A, we

define the function

gk
a(b, α, c) = arg min

x̂∈A
mT (a,b, c)Π−1 [λx̂ � πα] . (6)
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For arbitrary n > 2k, let X̂n,k denote the n-block denoiser given by

X̂n,k(zn)[i] = gk
zn(zi−1

i−k, zi, z
i+k
i+1 ), k + 1 ≤ i ≤ n− k. (7)

The value of X̂n,k(zn)[i] for i ≤ k and i > n− k will be (asymptotically) inconsequential in subsequent

developments but, for concreteness, can be assumed to be identically given by an arbitrary fixed

symbol.3 Finally, for each n, our asymptotic analysis of the DUDE algorithm will focus on the n-block

denoiser X̂n
univ defined as

X̂n
univ = X̂n,kn , (8)

where, for asymptotic optimality, kn is any unboundedly increasing function of n such that4

knM2kn = o(n/ log n). (9)

A valid choice of kn is given, for example, by kn = dc logM ne with c < 1
2 . Notice that this freedom in

the choice of kn is akin to the situation arising in universal prediction of individual sequences, where any

growth rate for the order of a Markov predictor slower than some threshold guarantees universality [19].

The choice of a logarithmic growth rate (the fastest in the allowable range) would be similar to the

choice implicit in the LZ predictor. The trade-offs involved in this choice will become clearer in the

sequel.

A natural implementation of the DUDE algorithm for a given k makes two passes through the

observations zn. The empirical counts m(zn, u−1
−k, u

k
1)[u0], for the various strings uk

−k appearing along

the sequence zn, are accumulated and stored in the first pass while the actual application of gk
zn(·), as

determined by the accumulated empirical counts via (6), is performed in the second pass. We analyze

the computational complexity of the following embodiment of the algorithm:

• Preprocessing. Before the data is read, the inverse of the channel transition probability matrix

is computed in addition to [λx̂ � πα] for all (x̂, α) ∈ A2. This takes O(M3) arithmetic operations

and requires O(M3) storage.

• Computation of counts. The computation of the empirical counts can be organized efficiently

in various ways. One possibility is to regard the two-sided context (b, c) of an input symbol

zi as a state of a finite-state automaton with M2k states. As the denoiser transitions from

location i to location i + 1, the state following (b, c) can assume M2 possible values of the form

(b′zi, c′zi+k+1), where b′ and c′ are the suffixes of length k−1 of b and c, respectively. Associated

with each state (b, c) is an M -vector of counts, which, at time i, contains m(zi+k,b, c). Each
3In practice, a more judicious choice for the boundary symbols is the corresponding estimate obtained with the longest

possible context that fits within the data sequence.
4As will be discussed in Section 4, the condition (9) can be slightly relaxed depending on the type of universality that

is required.
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automaton transition requires a constant number of “register level” operations: incrementing one

of the components in one of the count vectors, and retrieving a pointer to the next state. Thus,

the number of operations required in the first pass of the DUDE is linear in n. The storage

requirements for this pass are, in the worst case, O(M2k+1). Using an alternative lexicon, the

finite automaton can also be described as a trellis with the same set of M2k states, with the input

sequence representing a path through the trellis. In many applications such as text correction,

only a small subset of states are actually visited, and the implementation can allocate their

storage dynamically as new states occur, resulting in significant storage savings. The number of

operations required to dynamically grow the data structure is O(M2k+2).

The described finite state automaton lends itself to a representation with the additional properties

of a tree data structure, akin to the tree model representations used in source coding (cf., e.g.,[51]).

This representation is convenient when the function gk
zn(·) is to be computed for multiple values

of k, since internal nodes of the tree correspond to different possible double-sided context lengths.

In this case, the information stored at the leaves is sufficient to infer the counts corresponding to

the internal nodes.

• Pre-computations for the second pass. The unnormalized input probability vectors

mT (zn,b, c)Π−1 are computed for each two-sided context (b, c) actually encountered in the

sequence. Since there are M2k two-sided contexts in the worst case, and each computation takes

O(M2) arithmetic operations, the computational complexity is O(M2k+2) and the space required

to store the computations is O(M2k+1). The algorithm then proceeds to pre-compute the values

of gk
zn(b, α, c) according to (6), for each state (b, c) and alphabet symbol α. There are at most

M2k+1 such combinations, each requiring O(M2) operations, for a total of O(M2k+3) operations

requiring O(M2k+1) storage.

• Denoising. The algorithm scans the sequence zn a second time. At each sequence location, the

context (b, c) and input symbol zi are observed, and used to address the table of pre-computed

values of gk
zn(·) from the previous step. The automaton transitions are followed as in the first

pass, yielding, again, running time linear in n.

Adding up the contributions of the various steps, the overall running time complexity of the algorithm,

measured in “register level” operations, is O(n+M2k+3). For k = kn satisfying the requirement (9), the

dominant term in the time complexity is O(n). The working storage complexity is O(M2k+1) = o(n).

This does not take into account memory that might be required to store the input sequence between

the two passes. In many practical applications, the sequence is stored in secondary memory (e.g.,

hard-disk), and read twice by the algorithm. Notice that the computation does not require more than
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2k + 1 symbols from the input sequence at any one time. In applications where there is no distinction

between fast working memory and secondary storage, the storage complexity becomes linear in n.

The linear time complexity of the DUDE implementation just described stems from the fact that

the data is scanned sequentially, and that in the transition from one symbol to the next, a constant

number of “new” symbols is introduced to the context. This will not be the case in multi-dimensional

implementations, however, where the number of new symbols introduced in a context transition will

generally be of the form O(Kη), where K is the total number of symbols in the context, and 0 < η ≤ 1.

Since the multi-dimensional case still requires K = Kn → ∞ with Kn = o(n) as n → ∞, the running

time of the denoiser will be super-linear, but no worse than O(n1+ε) for any ε > 0. This upper

bound holds for the DUDE also in the one-dimensional case under the more stringent computational

model where we count bit operations, rather than register-level ones. Notice also that the fact that a

sequential scanning is not essential for the DUDE’s function makes the algorithm highly parallelizable.

By partitioning the input data into ρ equally sized portions, and assigning each portion to a processor

(for both passes), ρ processors can run the DUDE in time O(τ/ρ+M2k log ρ), where τ is the sequential,

single-processor running time. The O(M2k log ρ) term stems from the need to merge the statistics

gathered by the ρ processors at the end of the first pass, and re-distributing the merged statistics for

use in the second pass. The inter-processor communication and joint memory access requirements of

the parallelized DUDE are fairly weak.

3-B Derivation of the Denoiser

To motivate the form of the DUDE, consider first the case in which we only have two jointly distributed

A-valued random variables X and Z, and that our goal is to estimate X based on Z, minimizing the

expected loss as measured by the loss function Λ. Letting PX|z denote the vector in M whose a-th

component is P (X = a|Z = z), optimum performance for this problem is readily seen to be given by

E
[
U(PX|Z)

]
, (10)

where the Bayes envelope U(·) is defined in (3) and the expectation is with respect to Z. The minimum

loss in (10) is attained by the estimator

X̂(z) = arg min
x̂∈A

λT
x̂ PX|z, (11)

namely the Bayes response to PX|z. Further suppose now that Z is the output of the channel Π whose

input is X. Letting PX ,PZ ∈M denote the respective distributions of X and Z, we have PZ = ΠTPX

so that, in terms of PZ , PX|z is given by

PX|z(a) =
P (X = a, Z = z)

PZ(z)
=

P (Z = z|X = a)PX(a)
PZ(z)

=
Π(a, z)[Π−TPZ ](a)

PZ(z)
,
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or, in vector notation,

PX|z =
1

PZ(z)
πz � [Π−TPZ ]. (12)

Consequently, the optimal estimator in (11) for this case assumes the form

X̂(z) = arg min
x̂∈A

PT
ZΠ−1 [λx̂ � πz] . (13)

Although, in general, an optimum estimate of X requires knowledge of its prior distribution, the

invertibility of the channel probability matrix has allowed us to express the optimal estimator solely

in terms of the channel output distribution PZ and the inverse channel matrix.

Let now X1, X2 be jointly distributedA-valued random variables and let Z1, Z2 denote the respective

outputs of the memoryless channel Π fed with X1, X2. Suppose that we would like to estimate X1

based on observing Z1, Z2. Letting PX1|z1,z2
denote the analogue of PX|z for the distribution of X1

conditioned on Z1 = z1, Z2 = z2, it is clear that the minimum-mean-loss estimator of X1 based on

Z1, Z2 is, similarly to (11), the Bayes response

X̂1(z1, z2) = arg min
x̂∈A

λT
x̂ PX1|z1,z2

. (14)

Note that the memorylessness of the channel implies

PZ1|z2
= ΠTPX1|z2

. (15)

Consequently, for x1 ∈ A, z1 ∈ A, z2 ∈ A,

PX1|z1,z2
(x1) =

P (X1 = x1, Z1 = z1, Z2 = z2)
P (Z1 = z1, Z2 = z2)

=
P (Z1 = z1|X1 = x1, Z2 = z2)P (X1 = x1|Z2 = z2)P (Z2 = z2)

P (Z1 = z1|Z2 = z2)P (Z2 = z2)

=
P (Z1 = z1|X1 = x1)P (X1 = x1|Z2 = z2)

P (Z1 = z1|Z2 = z2)
(16)

=
P (Z1 = z1|X1 = x1)

[
Π−TPZ1|z2

]
(x1)

P (Z1 = z1|Z2 = z2)
(17)

=
π(x1, z1)

[
Π−TPZ1|z2

]
(x1)

P (Z1 = z1|Z2 = z2)
, (18)

where (16) follows from the conditional independence of Z1 and Z2 given X1, and (17) follows from

(15). In vector notation, (18) assumes the form

PX1|z1,z2
=

1
PZ1|z2

(z1)
πz1 �

[
Π−TPZ1|z2

]
. (19)

Substituting (19) into (14), the optimal estimator for X1, based on Z1, Z2, becomes

X̂1(z1, z2) = arg min
x̂∈A

[
PZ1|z2

]T Π−1 [λx̂ � πz1 ] . (20)

Two key features of the estimator in (20) to be noted are:

11



1. It is given solely in terms of the conditional distribution PZ1|z2
associated with the channel output

random variables.

2. Though the inverse problem it solves is now two-dimensional (i.e., the size of the “data set” is 2),

its application involves inversion of the channel matrix Π corresponding to just one input-output

pair.

As can be expected, this strategy is not limited to a data set of size 2. Indeed, let now T be an

arbitrary index set and assume X(T ) = {Xt}t∈T to be any stochastic process (or random field) with

components taking values in A. Suppose that Z(T ) is the noisy version of X(T ) corrupted by the

memoryless channel Π. For t ∈ T , and e ∈ AT\t (where T \ t denotes the set T \ {t}), consider the

M -dimensional column probability vectors on A with components:

PXt|e(a) = P (Xt = a|Z(T \ t) = e),

PZt|e(a) = P (Zt = a|Z(T \ t) = e),

PZt,e(a) = P (Zt = a, Z(T \ t) = e). (21)

The analogue of (15) for this case, again, due to the memorylessness of the channel, is the following:

For any t ∈ T and z(T \ t) ∈ AT\t,

PZt|z(T\t) = ΠTPXt|z(T\t). (22)

By (22), a chain of equalities completely analogous to that leading to (18) yields, for xt ∈ A and

z(T ) ∈ AT ,

P (Xt = xt|Z(T ) = z(T )) =
π(xt, zt)

[
Π−TPZt|z(T\t)

]
(xt)

P (Zt = zt|Z(T \ t) = z(T \ t))
, (23)

which, in vector notation, assumes the form

PXt|z(T ) =
1

PZt|z(T\t)(zt)
πzt �

[
Π−TPZt|z(T\t)

]
. (24)

Consequently, proceeding as in (20), the optimal estimator X̂opt(·)[t] for the value of Xt based on

observing Z(T ), in the sense of minimizing the expected loss, is

X̂opt(z(T ))[t] = argmin
x̂∈A

λT
x̂

[
1

PZt|z(T\t)(zt)
πzt �

[
Π−TPZt|z(T\t)

]]
= argmin

x̂∈A

[
PZt|z(T\t)

]T Π−1 [λx̂ � πzt ] . (25)

Again, we see that the estimator is given solely in terms of the distribution of the channel output

process Z(T ), and involves the inversion of the channel matrix Π corresponding to one input-output

pair, regardless of the size of the index set T .

12



As it depends on the unknown input distributions, the vector PZt|z(T\t) is not available in the

universal setting. Our approach consists in estimating the empirical conditional output distributions

from the observed data and use them in (25) in lieu of PZt|z(T\t).

For simplicity, we demonstrate this approach in the case where T is the one-dimensional index

set {1, 2, . . . , n}. Specifically, let now X = {Xn}n≥1 be a stationary ergodic process taking values

in A∞ and let Z denote the output of the memoryless channel Π whose input is X. To estimate

PZt|z(T\t) = PZt|(zt−1
1 zn

t+1) from the data, consider the problem of estimating from the data the condi-

tional probability vector PZt|(zt−1
t−kzt+k

t+1 ), for some k ≥ 0. Two conflicting goals compete in the choice of

k to produce a good estimate of PZt|(zt−1
1 zn

t+1). On one hand, we would like to choose a large value of

k in order to approach the probabilities conditioned on the entire “punctured” sequence zt−1
1 zn

t+1. On

the other hand, k cannot be too large for otherwise our estimates would be based on sparse data. This

trade-off is customary in sequential prediction and compression problems. Let further gk
opt : A2k+1 → A

denote the minimum-mean-loss estimator for Xk+1 based on Z2k+1 which, by (25), is given by

gk
opt(z

2k+1) = arg min
x̂∈A

[
PZk+1,(zk

1 z2k+1
k+2 )

]T
Π−1

[
λx̂ � πzk+1

]
(26)

where we replaced PZk+1|(zk
1 z2k+1

k+2 ) by PZk+1,(zk
1 z2k+1

k+2 ) (see definition (21)) using the fact that the nor-

malization constant is independent of the optimization variable x̂ in (25). Note that for n > 2k, by

stationarity, gk
opt minimizes

E

[
n−k∑

i=k+1

Λ(Xi, g(Zi+k
i−k ))

]
(27)

over all g : A2k+1 → A.

The mapping gk
opt, as defined in (26), depends on the distribution of the 2k + 1-tuple Z2k+1. When

this distribution is not known, it can be estimated from the data. Indeed, the ergodicity of X, and

hence of Z, implies that for all k ≥ 0 and any string u2k+1
1 ∈ A2k+1,

1
n
m(Zn, uk

1, u
2k+1
k+2 )[uk+1]

n→∞−→ P (Z2k+1 = u2k+1
1 ) a.s., (28)

or, in vector notation, that

1
n
m(Zn, uk

1, u
2k+1
k+2 ) n→∞−→ PZk+1,(uk

1u2k+1
k+2 ) a.s. (29)

This relationship motivates using the left-hand side of (29) to estimate the right-hand side.

Note that while Π−TPZt|z(T\t) is the conditional input distribution, Π−Tm(zn, zi−1
i−k, zi+k

i+1 ) need not

be a distribution, as not only it is unnormalized but it may have negative valued components.

For fixed k ≥ 0 and u2k+1 ∈ A2k+1, comparing (6) with (26) and keeping (29) in mind, it may

be hoped that, for large n, gk
Zn(uk

1, uk+1, u
2k+1
k+2 ) ≈ gk

opt(u
2k+1) with high probability, or at least that

the performance of gk
Zn in the sense of (27) is close to that of gk

opt. This, as we show in Section 4,
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turns out to be the case in a remarkably strong sense, not only for stationary and ergodic X, but in

an individual-sequence setting as well.

3-C Non-Square Channel Transition Probability Matrix

It is easy to generalize the previous derivation of the DUDE to the case where the channel transition

probability matrix is non-square, as long as its rows are linearly independent. The input and output

alphabets are now denoted by A and B, respectively, with |A| = M and |B| = M ′. Note that the

channel transition probability matrix Π is M × M ′ where M ≤ M ′. The loss matrix is still M × M

since we assume the reconstruction alphabet to equal the noiseless source alphabet A.5 A common

channel encompassed by this generalization is the erasure channel.

In order to generalize the DUDE to this setting, it suffices to replace (6) by

gk
a(b, α, c) = arg min

x̂∈A
mT (a,b, c)ΠT

(
ΠΠT

)−1
[λx̂ � πα] . (30)

To motivate this form we follow all the steps in subsection 3-B verbatim, except that from (22) we now

write

PXt|z(T\t) = (ΠΠT )−1ΠΠTPXt|z(T\t)

= (ΠΠT )−1ΠPZt|z(T\t). (31)

Substituting the right-most side of (31) in lieu of
[
Π−TPZt|z(T\t)

]
in (23)-(24), we obtain

X̂opt(z(T ))[t] = argmin
x̂∈A

[
PZt|z(T\t)

]T ΠT (ΠΠT )−1 [λx̂ � πzt ] . (32)

The above derivation can be readily extended by replacing the Moore-Penrose generalized inverse (cf.,

e.g., [29]) ΠT (ΠΠT )−1 appearing in (30) and (32) with any other generalized inverse of the form

ΓT (ΠΓT )−1, where Γ is any M × M ′ matrix for which the generalized inverse exists. While any

generalized inverse of this form will give rise to an asymptotically optimal DUDE, some choices may

be more effective than others in terms of convergence rates. For expository convenience, subsequent

sections will assume B = A, though all the results we present can be seen to carry over to the case

|B| > |A| for full rank Π and the DUDE defined through (30).

3-D A Closer Look at Special Cases

To conclude this section, we derive the explicit form of the denoiser for a few cases of special interest.

Hamming loss is assumed (with equal loss for any errors in the non-binary case) in all the examples

below.
5The derivation extends to a general reconstruction alphabet in a straightforward way.
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• Binary Symmetric Channel : For a BSC with error probability δ, δ < 1/2,

Π =
(

1− δ δ
δ 1− δ

)
, Π−1 =

1
1− 2δ

(
1− δ −δ
−δ 1− δ

)
.

Substituting the value of Π−1 into (6) yields, following simple arithmetic,

gk
zn(u−1

−k, u0, u
k
1) =

 u0 if
m(zn,u−1

−k,uk
1)[u0]

m(zn,u−1
−k,uk

1)[u0]+m(zn,u−1
−k,uk

1)[ū0]
≥ 2δ(1− δ)

ū0 otherwise,
(33)

where ū0 denotes the binary complement of u0. In words, for each bit u0 in the noisy sequence,

the DUDE counts how many bits occurring within the same left and right k-contexts are equal

to u0 among the total number of occurrences of this double-sided context. If the fraction of such

occurrences is below 2δ(1− δ) then u0 is deemed to be an error introduced by the BSC.

To gain some intuition regarding the form that the DUDE assumes in this case, consider the

situation of an i.i.d. Bernoulli(θ) process corrupted by the BSC with crossover probability δ

(θ, δ < 1/2). It is easy to see that the optimal (distribution-dependent) scheme for this case

leaves the ones in the noisy signal untouched whenever δ ≤ θ, and flips all ones into zeros

otherwise. Since the noisy signal is Bernoulli(θ(1 − δ) + (1 − θ)δ), we can express the above

condition for leaving the signal untouched as θ(1 − δ) + (1 − θ)δ ≥ 2δ(1 − δ). Now, since the

frequency of appearances of ones in the noisy signal is an efficient estimate for θ(1− δ)+(1− θ)δ,

a scheme which compares the frequency of ones in the noisy signal to the threshold 2δ(1 − δ),

flipping the ones only if the threshold is exceeded, will be asymptotically optimal in this i.i.d.

example. Comparing this now with (33), it can be seen that this is precisely the kind of scheme

that the DUDE is independently employing within each of the double-sided k-contexts occurring.

Another point we mention in this context is that the DUDE, as well as the optimal distribution-

dependent scheme, may be making as few as zero flips (corresponding to the case, for the i.i.d.

example above, of δ < θ) and as many as ≈ 2δ(1 − δ)n flips (for θ ≈ δ). This is in contrast to

the (sub-optimal) compression-based scheme of [16] which, by definition, makes at most nδ flips.

• M -ary Symmetric Channel: Generalizing the previous example, we consider the channel

Π(i, j) =
{

1− δ if i = j
δ

M−1 otherwise,

for which the matrix is easily seen to be invertible for δ 6= (M − 1)/M , and the inverse takes the

form

[Π−1](i, j) =
{

α if i = j
β otherwise,

where β/α = −δ
M−1−δ , and α > 0 or α < 0 according to whether δ < (M−1)/M or δ > (M−1)/M .
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Substituting into (6) yields, for δ < (M − 1)/M ,

gk
zn(uk

−k) = arg min
x̂∈A

[
δξ(u−1

−k, u
k
1)− (M − 1)m(zn, u−1

−k, u
k
1)[x̂]

]
·
(
δ + [(1− δ)M − 1]1{x̂=u0}

)
(34)

where

ξ(u−1
−k, u

k
1) =

∑
a∈A

m(zn, u−1
−k, u

k
1)[a] . (35)

Letting

x∗ = arg max
x̂ 6=u0

m(zn, u−1
−k, u

k
1)[x̂] , (36)

the decision rule in (34) assumes the simpler form

gk
zn(uk

−k) =
{

u0 if ςm(zn, u−1
−k, u

k
1)[u0]− µm(zn, u−1

−k, u
k
1)[x

∗] ≥ ξ(u−1
−k, u

k
1)

x∗ otherwise,
(37)

where

ς =
(M − 1)2(1− δ)
δ[(1− δ)M − 1]

and

µ =
M − 1

(1− δ)M − 1
.

• The Z Channel: The channel probability matrix, and its inverse, for this case are given by

Π =
(

1− δ δ
0 1

)
, Π−1 =

(
1

1−δ
−δ
1−δ

0 1

)
.

Since only locations i where zi = 1 may need correction, we are only interested in the evaluation

of gk
zn at (u−1

−k, 1, uk
1). Equation (6) takes the form

gk
zn(u−1

−k, 1, uk
1) =

 0 if 1−δ
2δ <

m(zn,u−1
−k,uk

1)[0]

m(zn,u−1
−k,uk

1)[1]

1 otherwise.
(38)

• The Erasure Channel: Consider the case where {1, . . . ,M} is the alphabet of the noiseless signal,

which is corrupted by an erasure channel with erasure probability δ. Thus, the channel output

alphabet is {1, . . . ,M, e} and the M × (M + 1) channel matrix is of the form

Π =

(1− δ)IM

∣∣∣∣∣∣∣
δ
...
δ

 (39)

where IM denotes the M×M identity matrix. This setting falls within the purview of the DUDE

derived in subsection 3-C, equation (30) (or (32)), which we now explicitly obtain. We have

ΠΠT = (1− δ)2IM + δ2UM , (40)
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where UM denotes the M × M matrix all whose entries equal 1. The inverse of the matrix in

(40) is readily verified to be given by(
ΠΠT

)−1
= aIM + bUM , (41)

where a = 1/(1− δ)2 and b = −aδ2/((1− δ)2 + δ2M). Thus

ΠT
(
ΠΠT

)−1
=


(1− δ)[aIM + bUM ]

δ(Mb + a)[1 · · · 1]

 (42)

and, consequently,

1
δ
ΠT

(
ΠΠT

)−1
(λx̂ � πe) =



(1− δ)(M − 1)b
...
...
...

(1− δ)(M − 1)b
δ(M − 1)(bM + a)


−



0
...
0

(1− δ)a
0
...
0
0


+



1
1
...
...
...
1
0


(1− δ)a, (43)

where the non-zero term in the second vector on the right side of (43) is the x̂-th component.

Since the first and third vectors do not depend on x̂, we obtain

gk
zn(u−1

−keu
k
1) = arg min

x̂∈A
mT (zn, u−1

−k, u
k
1)Π

T
(
ΠΠT

)−1
(λx̂ � πe) = arg max

x̂∈A
m(zn, u−1

−k, u
k
1)(x̂)

(44)

and, of course, gk
zn(uk

−k) = u0 for u0 6= e, since only locations i for which zi = e need be corrected.

As one may have expected, we correct every erasure with the most frequent symbol for its context.

Note that this denoiser does not depend on the channel parameter δ.

4 Universal Optimality: The Semi-Stochastic Setting

In this section, we assess the strong asymptotic optimality of the denoiser introduced in Subsection 3-A.

To this end, we define a semi-stochastic setting, in which x is an individual sequence and its noise-

corrupted version, a random variable Z, is the output of the memoryless channel, Π, whose input is

x. This setting is assumed throughout this section. We shall use z to denote an individual sequence,

or a specific sample value of Z. Though we suppress this dependence in the notation for readability,

probabilities of events (as well as associated expectations) relate to the underlying individual sequence.
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Thus we shall write, for example, Pr(Zn = zn) to denote the probability that the channel output is zn,

when the input sequence was the individual sequence xn. Note that in this case we have the explicit

relation

Pr(Zn = zn) =
n∏

i=1

Π(xi, zi).

A setting involving a noise-corrupted individual sequence was first introduced into information

theory by Ziv in his work [59] on rate distortion coding of individual sequences. More recently, problems

of prediction [53, 56], as well as of limited-delay coding [54] of noise-corrupted individual sequences

were also considered. As mentioned in Section 1, the semi-stochastic setting is also related to the

classical compound decision problem [25, 39, 40, 42, 43, 50], which can be viewed as the particular case

of our denoising setting with k = 0.

4-A Statement of the Main Result

To state our results in the semi-stochastic setting, we define a class of n-block denoisers, characterized by

sliding windows of length 2k +1. Specifically, a k-th order sliding-window denoiser X̂n is characterized

by the property that for all zn ∈ An,

X̂n(zn)[i] = X̂n(zn)[j] whenever zi+k
i−k = zj+k

j−k .

Thus, for each sequence zn, the denoiser defines a mapping

fzn : A2k+1 → A

so that

X̂n(zn)[i] = fzn(zi+k
i−k) i = k + 1, · · · , n− k.

We let Sk denote the class of k-th order sliding-window denoisers. For an n-block denoiser X̂n, we now

extend the scope of the notation LX̂n by defining, for 1 ≤ l ≤ m ≤ n,

LX̂n(xm
l , zn) =

1
m− l + 1

m∑
i=l

Λ(xi, X̂
n(zn)[i]),

namely, the normalized cumulative loss incurred between (and including) locations l and m. Note that

for X̂n ∈ Sk with an associated collection of mappings {fzn} we have

(n− 2k)LX̂n(xn−k
k+1 , zn) =

n−k∑
i=k+1

Λ(xi, X̂
n(zn)[i])

=
n−k∑

i=k+1

Λ(xi, fzn(zi+k
i−k))
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=
∑

uk
−k∈A2k+1

∑
a∈A

q(zn, xn, uk
−k)[a]Λ(a, fzn(uk

−k))

=
∑

uk
−k∈A2k+1

λT
fzn (uk

−k)
q(zn, xn, uk

−k) (45)

where the statistics q are defined in (2). Note also that the DUDE, X̂n
univ, is a member of Skn , with the

mappings {fzn} given by gk
zn(zi−1

i−k, zi, z
i+k
i+1 ) for k = kn (see Equation (8)). Here, kn is any unboundedly

increasing function of n with certain limitations on the growth rate, which are required for universality

(recall (9)).

For an individual noiseless sequence x ∈ A∞, noisy observation sequence z ∈ A∞, and integers

k ≥ 0 and n > 2k, we define the k-th order minimum loss of (xn, zn) by

Dk(xn, zn)
4
= min

X̂n∈Sk

LX̂n(xn−k
k+1 , zn)

= min
f :A2k+1→A

[
1

n− 2k

n−k∑
i=k+1

Λ(xi, f(zi+k
i−k))

]
. (46)

The minimum loss Dk(xn, zn) is the benchmark against which we will assess the performance of de-

noisers in the class Sk (we ignore any loss contributed by the boundaries, as k = o(n) in the cases of

interest). The minimizing argument in (46) depends on both xn and zn. It follows, a fortiori, that

the definition of the class of k-th order sliding window denoisers could have been restricted to only

those denoisers for which the mapping fzn is the same for all sequences zn (“one-pass” denoisers). This

restricted class would still contain at least one denoiser achieving Dk(xn, zn). As noted, the DUDE is

a member of Skn , yet note that it does not belong to the restricted class of kn-th order sliding window

one-pass denoisers.

By (45), the k-th order minimum loss takes the form

Dk(xn, zn) =
1

n− 2k

∑
uk
−k∈A2k+1

min
x̂∈A

λT
x̂ q(zn, xn, uk

−k)

=
1

n− 2k

∑
uk
−k∈A2k+1

U(q(zn, xn, uk
−k)). (47)

Our main result, Theorem 1, states that for any input sequence x, the DUDE, as defined in (8),

performs essentially as well as the best sliding-window denoiser with the same window length.

Theorem 1 For all x ∈ A∞, the sequence of denoisers {X̂n
univ} defined in (8) with limn→∞ kn = ∞

satisfies

(a) limn→∞ [LX̂n
univ

(xn, Zn)−Dkn(xn, Zn)] = 0 a.s., provided that knM2kn = o(n/ log n).
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(b) E
[
LX̂n

univ
(xn, Zn)−Dkn(xn, Zn)

]
= O

(√
knM2kn

n

)
.

Remark: Part (b) of the theorem states convergence in expectation provided that knM2kn = o(n), a

condition slightly less stringent than the one required in Part (a). This convergence, however, may be

seen as less relevant to the semi-stochastic setting than the almost sure convergence of Part (a), since

an expectation criterion is more naturally targeted to situations in which repeated experiments can be

carried out. The result is, in any case, in line with the fully stochastic setting assumed in Section 5.

We include it here as it does not require a probabilistic assumption on x, and its proof uses similar

tools as that of Part (a).

The following theorem is the key result underlying the proof of Theorem 1. Throughout this section,

and in the statement of Theorem 2 below in particular, we assume the following conventions concerning

∞, as shorthand for more formal but straightforward limit and continuity arguments: For any c > 0,

c/0 = ∞, c/∞ = 0, c∞ = ∞, log(∞) = ∞, and e−∞ = 0. Furthermore, log(·) denotes the natural

logarithm throughout. To state Theorem 2, we further define the function

ϕ(p)
4
=

1
1− 2p

log
1− p

p
, 0 ≤ p < 1/2. (48)

We extend the definition (48), again by continuity, to ϕ(1/2) = 2.

Theorem 2 Let

FΠ
4
=
∑
a∈A

[
ϕ(max

A⊆A
min(Π(a,A),Π(a,Ac)))

]−1

, CΛ,Π
4
= Λmax

(
1 + ‖Π−1‖∞

)
,

and

VΠ
4
=

∑
a∈A

(∑
b∈A

√
Π(a, b)(1−Π(a, b))

)2
 1

2

.

Then, for any k ≥ 0, n > 2k, xn ∈ An, and ε > 0, the denoiser X̂n,k defined in (7) satisfies

Pr
(
LX̂n,k(xn−k

k+1 , Zn)−Dk(xn, Zn) > ε
)

≤ K1(k + 1)M2k+1 exp

(
− (n− 2k)ε2

4(k + 1)M2kFΠC2
Λ,Π

)
(49)

E
[
LX̂n,k(xn−k

k+1 , Zn)−Dk(xn, Zn)
]

≤
√

2
π

CΛ,ΠVΠMk

√
k + 1
n− 2k

+ CΛ,ΠM2k+2 k + 1
n− 2k

(50)

where K1 depends only on the channel.

In words: Regardless of the underlying noiseless individual sequence, the event that the normalized

cumulative loss of the denoiser X̂n,k will exceed that of the best k-th order sliding-window denoiser by

ε > 0 is exponentially unlikely in the sequence length. In addition, the expected excess loss vanishes

at a rate O(1/
√

n) for fixed k. The factor VΠ in the right-hand side of (50) tells us that the bound
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on the expected excess loss becomes smaller for “skewed” channels. For example, for the BSC, VΠ =√
8Var(Π), where Var(Π) denotes the variance of the channel conditional distributions. The factor FΠ,

which also tends to zero as the channel becomes less “noisy”, captures the analogous dependency on

Π in the exponent of (49). Notice that VΠ ≤
√

M(M − 1) by the Cauchy-Schwarz inequality, whereas

FΠ ≤ M/2. The factor CΛ,Π, on the other hand, tends to infinity as the channel matrix “approaches”

a non-full-rank matrix, reflecting the fact that universal denoising becomes increasingly difficult in this

regime. The proof of Theorem 2 is deferred to Subsection 4-C.

Proof of Theorem 1: Fix throughout the proof x ∈ A∞. To prove Part (a), choose ε > 0, and, for each

n, use (49) with k = kn. It is easy to see that for knM2kn = o(n/ log n), the right-hand side of (49) is

summable. Thus, by the Borel-Cantelli Lemma

LX̂n,kn (xn−kn
kn+1 , Zn)−Dkn(xn, Zn) ≤ ε eventually almost surely. (51)

Now, for any n-block denoiser X̂n and k ≥ 0,6

LX̂n(xn, Zn) =
1
n

n∑
i=1

Λ(xi, X̂
n(Zn)[i]) ≤ 2kΛmax

n
+ LX̂n(xn−k

k+1 , Zn) . (52)

In particular, (52) holds for the sequence of denoisers {X̂n
univ}. Taking limit suprema in (51), using (52)

with k = kn, and noticing that kn/n vanishes, we obtain, for any ε > 0,

lim sup
n→∞

[LX̂n
univ

(xn, Zn)−Dkn(xn, Zn)] ≤ ε a.s.

Since ε is arbitrary, the proof of Part (a) is complete by noticing that X̂n
univ ∈ Skn , and therefore, for

all pairs of sequences x, z and all n,

LX̂n
univ

(xn, zn)− n− 2kn

n
Dkn(xn, zn) ≥ 0,

implying, in turn,

lim inf
n→∞

[LX̂n
univ

(xn, zn)−Dkn(xn, zn)] ≥ 0.

Part (b) follows directly from using Equation (50) in Theorem 2 with k = kn, (52), and the fact

that for the allowable range of kn, kn/n = O((log n)/n). 2

It should be noticed that, in the semi-stochastic setting, it is possible to define a notion of “de-

noisability” of an individual sequence, analogous to the finite-state (FS) compressibility of [60], the

FS predictability of [19], and, in particular, the conditional FS predictability of [56]. To this end, we

define the sliding-window minimum loss of (x, z) by

D(x, z) = lim
k→∞

Dk(x, z) (53)

6Here and throughout, equalities or inequalities between random variables can be understood to hold, when not
explicitly mentioned, for all possible realizations.
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where

Dk(x, z) = lim sup
n→∞

Dk(xn, zn). (54)

Note that Dk(x, z) is non-increasing with k so that D(x, z) is well-defined. The corresponding random

variable D(x,Z) in principle depends on the realization of the channel noise. However, thanks to the

memorylessness of the channel, it is in fact degenerate:

Claim 1 For any x ∈ A∞, there exists a deterministic real number D(x) (dependent only on Π) such

that

D(x,Z) = D(x) a.s. (55)

Remark: We refer to D(x) as the denoisability of x. Intuitively, Equation (55) is to be regarded as

a law of large numbers, as Dk(x, z) depends on x and z only through the joint k-th order empirical

statistics of the two sequences, which for each given input k-tuple will converge to deterministic (channel

dependent) values. The technical proof is best handled by direct use of Kolmogorov’s 0-1 law (cf., e.g.,

[17]).

Proof of Claim 1: For fixed x ∈ A∞ and k, Dk(x, z) is, by definition, invariant to changes in a finite

number of coordinates of z. Thus, by Kolmogorov’s 0-1 law, there exists a deterministic constant Dk(x)

such that Dk(x,Z) = Dk(x) a.s. Letting D(x) = limk→∞ Dk(x) completes the proof. 2

The following result, which is a corollary to Theorem 1, establishes the asymptotic optimality of

the DUDE in the semi-stochastic setting.

Corollary 1 The sequence of denoisers {X̂n
univ} satisfies

lim sup
n→∞

LX̂n
univ

(xn, Zn) ≤ D(x) a.s. ∀x ∈ A∞ (56)

provided that limn→∞ kn = ∞ and knM2kn = o(n/ log n).

Proof: For fixed k and n large enough to guarantee kn ≥ k, we have

(n− 2kn)Dkn(xn, Zn) ≤ (n− 2k)Dk(xn, Zn).

It follows that

lim sup
n→∞

Dkn(xn, Zn) ≤ lim sup
n→∞

[
n− 2k

n− 2kn
Dk(xn, Zn)

]
= Dk(x,Z) (57)

implying, by the arbitrariness of k, that

lim sup
n→∞

Dkn(xn, Zn) ≤ D(x,Z). (58)

The proof is completed by combining Theorem 1, Part (a), with (58), and invoking Claim 1. 2
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4-B Intuition and Idea behind the Proof of Theorem 2

It may seem striking that a denoiser that was derived via heuristics from the fully stochastic setting

(Subsection 3-B) performs so well in the semi-stochastic setting. Our goal in this subsection is to provide

intuition as to why this is the case, while outlining the main idea behind the proof of Theorem 2 (which

is deferred to the next subsection).

First, observe that, for n > 2k, the function f attaining Dk(xn, zn) in (47) is given by the Bayes

response (cf. Section 2)

f(uk
−k) = arg min

x̂∈A
λT

x̂ q(zn, xn, uk
−k) = x̂(q(zn, xn, uk

−k)). (59)

Unfortunately, this mapping depends on xn and, hence, cannot be implemented by a denoiser observing

solely zn. Thus, if our goal is to construct a denoiser approximately attaining Dk(xn, zn), a plausible

approach would be a denoiser X̂n given, for k + 1 ≤ i ≤ n− k, by

X̂n(zn)[i] = x̂(q̂(zn, zi+k
i−k)) (60)

where, for uk
−k ∈ A2k+1, q̂(zn, uk

−k) would be some estimate, based on zn alone, for the unobserved

q(zn, xn, uk
−k). Indeed, comparing (60) with (59), it is natural to expect, by continuity arguments, that

the normalized loss of the denoiser in (60) be “close” to attaining Dk(xn, zn) whenever q̂(zn, uk
−k) is

“close” to q(zn, xn, uk
−k) for any uk

−k. This intuition will be made precise in Lemma 1 below. Note

that our denoiser in (7) is exactly of the form (60) if we choose

q̂(zn, uk
−k) = πu0 �

[
Π−Tm(zn, u−1

−k, u
k
1)
]
. (61)

It thus remains to be argued that, for the semi-stochastic setting, the right-hand side of (61) is an

efficient estimate of q(Zn, xn, uk
−k). To get a feel for why this should be the case, take two contexts

u−1
−k, u

k
1 ∈ Ak, a symbol a ∈ A, and consider the number of locations for which zi, k+1 ≤ i ≤ n−k, ap-

pears in left context u−1
−k, right context uk

1, and the noiseless symbol is a, i.e.,
∑

b∈A q(Zn, xn, u−1
−kbu

k
1)[a].

Furthermore, it seems plausible to expect that the fraction of locations for which the noise-corrupted

symbol is u0 be approximately Π(a, u0), i.e.,

Π(a, u0) ·

[∑
b∈A

q(Zn, xn, u−1
−kbu

k
1)[a]

]
≈ q(Zn, xn, uk

−k)[a], (62)

no matter what the individual sequence xn may be. This can indeed be shown to be the case (Lemma 3)

in the strong sense that, regardless of the underlying individual sequence, the normalized magnitude of

the difference between the two sides of (62) exceeds any ε > 0 with probability that decays exponentially

with n (for fixed k), and vanishes with n in expectation. Summing now (62) over a ∈ A gives∑
b∈A

πT
u0

q(Zn, xn, u−1
−kbu

k
1) ≈ m(Zn, u−1

−k, u
k
1)[u0], (63)
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or, in vector notation, iterating (63) over the possible u0 ∈ A,∑
b∈A

ΠTq(Zn, xn, u−1
−kbu

k
1) ≈ m(Zn, u−1

−k, u
k
1), (64)

implying, in turn, ∑
b∈A

q(Zn, xn, u−1
−kbu

k
1) ≈ Π−Tm(Zn, u−1

−k, u
k
1). (65)

Combining (65) with (62) (written in vector notation) leads to

πu0 �
[
Π−Tm(Zn, u−1

−k, u
k
1)
]
≈ q(Zn, xn, uk

−k), (66)

which is the desired conclusion (the precise statement of this conclusion is given in the proof of Theo-

rem 2).

4-C Proof of Theorem 2

To prove Theorem 2 we first present three lemmas. The first two lemmas establish inequalities that

are valid for any pair of sequences xn, zn, whereas the third one is probabilistic.

Lemma 1 Fix k ≥ 0, zn ∈ An, and some collection of M2k+1 M -vectors {v(uk
−k)} indexed by uk

−k ∈
A2k+1. Construct a k-th order sliding window denoiser X̂n with sliding-block function given by the

Bayes responses to {v(uk
−k)}:

f(uk
−k) = arg min

x̂∈A
λT

x̂ v(uk
−k) = x̂(v(uk

−k)), X̂n(zn)[i] = f(zi+k
i−k).

Then, for all xn, zn ∈ An,

0 ≤ LX̂n(xn−k
k+1 , zn)−Dk(xn, zn) ≤ Λmax

n− 2k

∑
uk
−k∈A2k+1

∥∥∥q(zn, xn, uk
−k)− v(uk

−k)
∥∥∥

1
. (67)

Proof: The left inequality in (67) follows trivially from the fact that X̂n is a k-th order sliding-window

denoiser. To derive the second inequality, notice that by (47), (45), and the definition of the denoiser

X̂n, we have

LX̂n(xn−k
k+1 , zn)−Dk(xn, zn) =

1
n− 2k

∑
uk
−k∈A2k+1

[λT
x̂(v) − λT

x̂(q)]q(zn, xn, uk
−k)

≤ 1
n− 2k

∑
uk
−k∈A2k+1

[λT
x̂(v) − λT

x̂(q)][q(zn, xn, uk
−k)− v(uk

−k)] (68)

≤ 1
n− 2k

∑
uk
−k∈A2k+1

∥∥λx̂(v) − λx̂(q)

∥∥
∞ ·
∥∥∥q(zn, xn, uk

−k)− v(uk
−k)
∥∥∥

1

≤ Λmax

n− 2k

∑
uk
−k∈A2k+1

∥∥∥q(zn, xn, uk
−k)− v(uk

−k)
∥∥∥

1
(69)
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where, for simplicity, we have dropped the arguments of v and q when used for indexing columns of

Λ, and (68) holds since, for any pair of M -vectors v and w, we have

[λx̂(v) − λx̂(w)]
Tv ≤ 0.

2

The continuity property established in Lemma 1 is, in fact, typical of finite matrix games [24,

Equation (14)]. In particular, the proposed denoiser is clearly of the form covered by the lemma, with

v(uk
−k) = πu0 �

[
Π−Tm(zn, u−1

−k, u
k
1)
]
. (70)

For this case, the upper bound (67) can be further upper-bounded as follows.

Lemma 2 For all xn, zn ∈ An, and u−1
−k, u

k
1 ∈ Ak,∑

u0∈A

∥∥∥q(zn, xn, uk
−k)− πu0 �

[
Π−Tm(zn, u−1

−k, u
k
1)
]∥∥∥

1
≤

(
1 + ‖Π−1‖∞

) ∑
u0∈A

∥∥∥q(zn, xn, uk
−k)− q′(zn, xn, uk

−k)
∥∥∥

1
(71)

where

q′(zn, xn, uk
−k)

4
= πu0 �

∑
b∈A

q(zn, xn, u−1
−kbu

k
1) . (72)

Lemma 2 is proved in Appendix A.

As is hinted by Lemmas 1 and 2, a key step in the proof of Theorem 2 will be to show that, with high

probability, the vector q′(Zn, xn, uk
−k) is a good estimate of q(Zn, xn, uk

−k). As discussed in Subsec-

tion 4-B, this step is indeed plausible (see (62), where the left-hand side is precisely q′(Zn, xn, uk
−k)[a]).

However, there are two apparent obstacles to making the intuition given in (62) precise. One is that

the number of symbols in zn which occurred with left and right contexts u−1
−k and uk

1, and such that the

corresponding noiseless symbol is a, is itself a random variable. The other is that these symbols are in

general dependent random variables, since their contexts might also consist of symbols with the same

property. In the technique that follows, we surmount these difficulties by first deinterleaving zn into

subsequences, and then conditioning the contribution of each subsequence to the right-hand side of (71)

on all symbols not in the subsequence. The symbols in each subsequence are just far enough apart for

the conditioning to determine each symbol’s context, thereby fixing the cardinality and positions of

those symbols in the subsequence which occurred with left and right contexts u−1
−k and uk

1, and such that

the corresponding noiseless symbol is a. Additionally, since the channel is memoryless, the symbols in

a subsequence are conditionally independent. Thus, the conditioning permits a conventional analysis,

and the final result is obtained by extracting the worst case conditional behavior. To implement this

analysis, we first break the statistics q(zn, xn, uk
−k) into partial counts, each corresponding to occur-

rences of u0 at time indices i such that i ≡ ` mod (k + 1), ` = 0, 1, · · · , k. There are thus k intervening

25



symbols between any two symbols contributing to a given partial count, which is the smallest gap that

induces fixed contexts after conditioning on all non-contributing symbols.

Specifically, for a,b ∈ An, c ∈ A2k+1, let q`(a,b, c)[a] denote the M -dimensional column vector

whose a-th component, a ∈ A, is

q`(a,b, c)[a] =
∣∣∣{i : i ∈ I`, a

i+k
i−k = c, bi = a

}∣∣∣ , (73)

where

I`
4
= {i : k + 1 ≤ i ≤ n− k, i ≡ ` mod (k + 1)} .

The cardinality n` of the index set I` is clearly b(n− `− k)/(k + 1)c. By definition,

q(a,b, c) =
k∑

`=0

q`(a,b, c) .

Similarly, we define, as in (72),

q′`(z
n, xn, uk

−k)
4
= πu0 �

∑
b∈A

q`(zn, xn, u−1
−kbu

k
1) .

In the sequel, for simplicity, our notation will occasionally omit the first two arguments of the vectors

q, q′, q`, and q′`, as these arguments will always be zn and xn, respectively. By the triangle inequality,

we can further upper-bound the bound in Lemma 2 to obtain

∑
u0∈A

∥∥∥q(uk
−k)− πu0 �

[
Π−Tm(zn, u−1

−k, u
k
1)
]∥∥∥

1
≤
(
1 + ‖Π−1‖∞

) k∑
`=0

∑
u0∈A

∥∥∥∆`(uk
−k)
∥∥∥

1
(74)

where

∆`(uk
−k)

4
= q`(uk

−k)− q′`(u
k
−k) .

We will bound each sum
∑

u0

∥∥∆`(uk
−k)
∥∥

1
in probability and expectation, conditioned on the col-

lection of random variables Z(`) given by

Z(`)
4
= {Zi : 1 ≤ i ≤ n, i 6∈ I`} .

We denote by z(`) ∈ An−n` a particular realization of Z(`). Now, for each `, let

n`(u−1
−k, u

k
1, a)

4
=
∑
b∈A

q`(u−1
−kbu

k
1)[a]

denote the number of times zi, i ∈ I`, occurs with left context u−1
−k and right context uk

1, when xi = a.

Notice that given xn and conditioned on Z(`) = z(`), n`(u−1
−k, u

k
1, a) is deterministic, as it depends only

on xn and z(`).
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Lemma 3 Let

FΠ,a
4
= ϕ

(
max
A⊆A

min(Π(a,A),Π(a,Ac))
)

where the function ϕ(·) is given in (48), and let

VΠ,a
4
=
∑
b∈A

√
Π(a, b)(1−Π(a, b)).

Then, for all xn ∈ An, z(`) ∈ An−n`, u−1
−k, u

k
1 ∈ Ak, a ∈ A, and ε > 0, we have

Pr

∑
u0∈A

∣∣∣∆`(uk
−k)[a]

∣∣∣ > n`(u−1
−k, u

k
1, a)ε

∣∣∣∣∣ Z(`) = z(`)

 ≤ (2M − 2)e−n`(u
−1
−k,uk

1 ,a)FΠ,aε2/4 (75)

and

E

∑
u0∈A

∣∣∣∆`(uk
−k)[a]

∣∣∣
∣∣∣∣∣∣Z(`) = z(`)

 ≤√ 2
π

VΠ,a

√
n`(u−1

−k, u
k
1, a) + M. (76)

Remark: Notice that Z`+k+1, Z`+2(k+1), . . . , Z`+n`(k+1), are the only random variables in the lemma

that have not been fixed.

We will obtain the bound (75) of Lemma 3 by applying the following result of [36], where

DB(p1‖p2) = p1 log(p1/p2) + (1− p1) log((1− p1)/(1− p2))

will denote the binary divergence, which we take to be ∞ if p1 > 1.

Proposition 1 Let P be a probability distribution on the set {1, . . . , d} and P = [P (1), . . . , P (d)]. Let

X1, X2, ..., Xm be i.i.d. random variables distributed according to P , and let P̂ denote the probability

vector corresponding to the empirical distribution, P̂ = (1/m)[
∑

i 1{Xi=1}, . . . ,
∑

i 1{Xi=d}]. Then, for

all ε > 0,

Pr(‖P− P̂‖1 ≥ ε) ≤ (2d − 2)e−mDB(p∗+ ε
2
‖ p∗) (77)

≤ (2d − 2)e−mϕ(p∗) ε2

4 , (78)

where

p∗ = max
A⊆{1,...,d}

min (P (A), P (Ac))

and the function ϕ(·) is given in (48).

Proof sketch: The event {‖P− P̂‖1 ≥ ε} is equivalent to the union of events {sT [P− P̂] ≥ ε} where s

ranges over the 2d−2 non-constant vectors in {−1, 1}d. Applying the union bound and then the Chernoff

bounding technique to each sub-event yields, after bounding by the worst case, the first inequality. For
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p ≤ 1/2, elementary calculus shows that inf0≤ε≤1−p DB(p + ε‖p)/ε2 = ϕ(p), yielding (78). See [36] for

the details. 2

Proof of Lemma 3: For all i such that xi = a, and for each u0 ∈ A, we have Pr(Zi = u0) = Π(a, u0).

Thus, by definition, conditioned on Z(`) = z(`), q`(Zn, xn, uk
−k)[a] is the sum of the n`(u−1

−k, u
k
1, a) i.i.d.

Bernoulli-Π(a, u0) random variables 1{Zi=u0}, where i belongs to the index set I`(u−1
−k, u

k
1, a)

4
= {i ∈

I` : zi−1
i−k = u−1

−k, z
i+k
i+1 = uk

1, xi = a}, which is completely determined by xn and z(`). Moreover, by (72),

q′`(Z
n, xn, uk

−k)[a] = Π(a, u0)n`(u−1
−k, u

k
1, a) .

Therefore, after normalization by n`(u−1
−k, u

k
1, a), the sum in the left-hand sides of (75) and (76) is

the L1-distance between the distribution Π(a, u0) on u0, and the corresponding empirical distribution

q`(uk
−k)[a]/n`(u−1

−k, u
k
1, a). The upper bound (75) then follows from Proposition 1 with P = Π(a, ·) and

m = n`(u−1
−k, u

k
1, a).

As for the bound on the expectation, notice that each term E
[∣∣∆`(uk

−k)[a]
∣∣ ∣∣Z(`) = z(`)

]
is the

expected magnitude of the difference between the number Sm,p of successes in m Bernoulli trials with

success probability p and its average mp, with p = min(Π(a, u0), (1−Π(a, u0))) and m = n`(u−1
−k, u

k
1, a).

In particular, for 0 ≤ p ≤ 1/2 [20, Chapter IX, Problem 35],

E|Sm,p −mp| = E|Sm,q −mq| = 2νq

(
m

ν

)
pνqm−ν (79)

where q = 1 − p and ν = bmpc + 1. For a given positive integer ν, it is easy to see that the value of

p that maximizes the right-hand side of (79) is p′ = ν/(m + 1). Thus, applying Stirling’s formula to(
m+1

ν

)
we obtain, after straightforward algebraic manipulations,

E|Sm,p −mp| ≤
√

2(m + 1)p′(1− p′)
π

.

Clearly, p′(1 − p′) ≤ p′′(1 − p′′), where p′′ = min((mp + 1)/(m + 1), 1/2). Moreover, p′′ ≥ p and

(m + 1)p′′ ≤ mp + 1, so that

E|Sm,p −mp| ≤
√

2(mp + 1)q
π

.

The proof is complete by observing that
√

mp + 1 ≤ √
mp + 1, applying the resulting upper bound to

each u0, and then summing over u0. 2

Discussion:

(a) It is shown in [36] that the exponent in (77) coincides with that given by Sanov’s Theorem and

hence is the best possible.7 A stronger version of Lemma 3, based on this optimal rate, could

have been derived. The integration of this rate into the proof of Theorem 2, however, appears to

require the weaker version (75).
7Moreover, note that the bound in (77) is preferable since it avoids the factor resulting from the use of the method of

types in Sanov’s Theorem, which is polynomial in m; cf., e.g., [9, Theorem 12.4.1].
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(b) The constant FΠ,a in the exponent of (75) is bounded from below by 2, and indeed replacing

FΠ,a by 2 coincides simply with the application of Pinsker’s inequality [9, Lemma 12.6.1] to

DB(p∗ + ε/2‖p∗) in (77). Such a bound, however, would not reflect the intuitively appealing fact

that less “noisy” channels result in larger exponents.

Proof of Theorem 2: Using Lemma 1 with {v(uk
−k)} given by (70), and (74), we obtain, for any ε > 0,

P
4
= Pr

(
LX̂n,k(xn−k

k+1 , Zn)−Dk(xn, Zn) > ε
)

≤ Pr

 k∑
`=0

∑
u∈A2k+1

∑
a∈A

|∆`(u)[a]| > (n− 2k)ε
CΛ,Π


≤

k∑
`=0

Pr

 ∑
u∈A2k+1

∑
a∈A

|∆`(u)[a]| > (n− 2k)γ`ε

CΛ,Π

 (80)

where {γ`} is a set of nonnegative constants (to be specified later) satisfying
∑k

`=0 γ` = 1, and the last

inequality follows from the union bound. To further upper-bound each probability in the right-most

side of (80) via Lemma 3, we condition the events on the random variables Z(`), to obtain

P ≤
k∑

`=0

∑
z(`)∈An−n`

Pr(Z(`) = z(`)) Pr

 ∑
u∈A2k+1

∑
a∈A

|∆`(u)[a]| > (n− 2k)γ`ε

CΛ,Π

∣∣∣∣∣∣Z(`) = z(`)

 . (81)

Letting P` denote the conditional probability in the right-hand side of (81), the union bound yields

P` ≤
∑

uL,uR∈Ak

∑
a∈A

Pr

∑
u0∈A

|∆`(uLu0uR)[a]| > (n− 2k)γ`βa,uε

CΛ,Π

∣∣∣∣∣∣Z(`) = z(`)


where, again, conditioned on Z(`), {βa,u}

4
= {βa,uL,uR} is a set of non-negative constants (to be specified

later) satisfying
∑

uL,uR,a βa,u = 1. We can now apply Equation (75) in Lemma 3, which yields

P` ≤ (2M − 2)
∑

uL,uR∈Ak

∑
a∈A

exp

(
−

FΠ,a(n− 2k)2γ2
` β2

a,u

4n`(uL,uR, a)
· ε2

C2
Λ,Π

)
. (82)

Now, choose

βa,u =

√
n`(uL,uR, a)/FΠ,a∑

uL,uR∈Ak

∑
a∈A

√
n`(uL,uR, a)/FΠ,a

so that

n`(uL,uR, a)
FΠ,aβ2

a,u

=

 ∑
uL,uR∈Ak

∑
a∈A

√
n`(uL,uR, a)/FΠ,a

2

≤ n`M
2k
∑
a∈A

F−1
Π,a = M2kn`FΠ

29



where we used the Cauchy-Schwarz inequality and the fact that
∑

uL,uR

∑
a n`(uL,uR, a) = n`. With

this choice, which equalizes the exponents in (82), equations (81) and (82) yield

P ≤ (2M − 2)M2k+1
k∑

`=0

exp

(
−

(n− 2k)2γ2
`

4M2kn`FΠ
· ε2

C2
Λ,Π

) ∑
z(`)∈An−n`

Pr(z(`)) .

We complete the proof of the bound (49) by choosing

γ` =
√

n`∑
j
√

nj

applying similarly the Cauchy-Schwarz inequality, and using the fact that
∑k

`=0 n` = n− 2k.

To prove the bound (50), we use again Lemma 1 with {v(uk
−k)} given by (70), and (74), to obtain

E
4
= E

[
(n− 2k)

(
LX̂n,k(xn−k

k+1 , Zn)−Dk(xn, Zn)
)]

≤ CΛ,Π

k∑
`=0

∑
u∈A2k+1

∑
a∈A

E [ |∆`(u)[a]| ]

= CΛ,Π

k∑
`=0

∑
uL,uR∈Ak

∑
a∈A

∑
z(`)∈An−n`

Pr(z(`)) E

∑
u0∈A

|∆`(uLu0uR)[a] |

∣∣∣∣∣∣Z(`) = z(`)

 .

By (76) in Lemma 3, we can further upper-bound the expectation to obtain

E ≤ CΛ,Π

k∑
`=0

∑
z(`)∈An−n`

Pr(z(`))
∑

uL,uR∈Ak

∑
a∈A

(√
2
π

VΠ,a

√
n`(uL,uR, a) + M

)

≤ CΛ,Π

k∑
`=0

∑
z(`)∈An−n`

Pr(z(`))

(√
2
π

√
M2kV 2

Πn` + M2k+2

)

= CΛ,Π

k∑
`=0

(√
2
π

VΠMk√n` + M2k+2

)

≤
√

2
π

CΛ,ΠVΠMk
√

(k + 1)(n− 2k) + CΛ,Π(k + 1)M2k+2

where the second and fourth lines follow from the Cauchy-Schwarz inequality, completing the proof

of (50). 2

5 Universal Optimality: The Stochastic Setting

Consider the fully stochastic analogue of the setting of Section 4 where the underlying noiseless signal

is a stochastic process rather than an individual sequence. Specifically, we assume that Z is the output

of the memoryless, invertible, channel Π whose input is the double-sided stationary ergodic X. Letting
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PXn ,PX denote, respectively, the distributions of Xn, X, and Dn denote the class of all n-block

denoisers, define

D(PXn ,Π) = min
X̂n∈Dn

E
[
LX̂n(Xn, Zn)

]
, (83)

the expectation on the right-hand side assuming Xn ∼ PXn . By stationarity, for all m,n ≥ 0,

(m + n)D(PXm+n ,Π) ≤ mD(PXm ,Π) + nD(PXn ,Π). (84)

Thus, by the Sub-additivity Lemma (cf., e.g., [12, Lemma 6.1.11]),

lim
n→∞

D(PXn ,Π) = inf
n≥1

D(PXn ,Π)
4
= D(PX,Π). (85)

By definition, D(PX,Π) is the (distribution-dependent) optimal asymptotic denoising performance

attainable when the noiseless signal is emitted by the source PX and corrupted by the channel Π. The

main goal of this section is to establish the fact that the DUDE asymptotically attains D(PX,Π) no

matter what stationary ergodic source has emitted X. Note that in the definition leading to D(PX,Π)

we minimize over all denoising schemes, not necessarily sliding block schemes of the type considered in

Section 4. This is in accord with analogous situations in universal compression [60], prediction [31], and

noisy prediction [55], where in the individual-sequence setting the class of schemes in the comparison

class is limited in some computational sense. In the fully stochastic setting, on the other hand, such a

limitation takes the form of a restriction of the class of allowable sources (cf. discussion on the duality

between the viewpoints in [31]).

For integers i, j, let now P
X0|zj

i
∈ M denote the M -dimensional probability vector whose a-th

component is8 P (X0 = a|Zj
i = zj

i ). In Subsection 3-B, we used the fact that for a finite set of random

variables, the best denoising performance is given by the conditional Bayes envelope (cf., Equation (10)).

This property is now stated for a random process in Claim 2 below.

Claim 2 D(PX,Π) = EU(PX0|Z∞
−∞

).

The claim results from the following lemma.

Lemma 4 1. For k, l ≥ 0, EU(PX0|Zl
−k

) is decreasing in both k and l.

2. For any two unboundedly increasing sequences of positive integers {kn}, {ln},

lim
n→∞

EU(P
X0|Zln

−kn

) = EU(PX0|Z∞
−∞

).

8The definition is rigorously extended to cases with i = −∞ and/or j = ∞, by assuming P
X0|z

j
i

to be a regular version

of the conditional distribution (cf., e.g., [17]) of X0 given Zj
i , evaluated at zj

i .
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Lemma 4 and Claim 2 parallel similar results in sequential decision theory [31] (e.g., in the data

compression case, the limiting values of the block and conditional entropies coincide, defining the

entropy rate). Their proofs are also standard, but are given in Appendix B for completeness.

Next, we show that with probability one, the sliding window minimum loss (cf. the definition (53))

for an individual sequence drawn from a stationary ergodic source, coincides with D(PX,Π). This result

parallels [60, Theorem 4], where it is shown that the finite-state compressibility of an individual sequence

drawn from a stationary ergodic source coincides with the entropy of the source with probability one.

Claim 3 D(X,Z) = D(PX,Π) a.s.

Proof: Recall the definition of Dk(X,Z) in (54), and notice that by stationarity and ergodicity, for

each k and each map f taking A2k+1 into A,

lim
n→∞

[
1

n− 2k

n−k∑
i=k+1

Λ(Xi, f(Zi+k
i−k ))

]
= EΛ(X0, f(Zk

−k)) a.s. (86)

Since the set of all maps taking A2k+1 into A is finite, it follows that (86) implies

Dk(X,Z) = min
f :A2k+1→A

EΛ(X0, f(Zk
−k)) a.s.

Since

min
f :A2k+1→A

EΛ(X0, f(Zk
−k)) = EU(PX0|Zk

−k
),

the proof is completed by letting k →∞ and invoking Lemma 4 and Claim 2. 2

The main result of this subsection, Theorem 3, follows now from the properties shown for the

semi-stochastic setting and the above claims.

Theorem 3 The sequence of denoisers {X̂n
univ} with limn→∞ kn = ∞ satisfies

(a) lim supn→∞ LX̂n
univ

(Xn, Zn) ≤ D(PX,Π) a.s., provided that knM2kn = o(n/ log n).

(b) limn→∞ ELX̂n
univ

(Xn, Zn) = D(PX,Π), provided that
√

knMkn = o(
√

n).

Proof: To derive Part (a), notice that Corollary 1 (in Section 4) holds for all sequences x and, a fortiori,

almost surely. Thus, the result follows by invoking Claims 1 and 3. As for Part (b), by Claim 2, we

have

ELX̂n
univ

(Xn, Zn)−D(PX,Π) = E
[
U(P

X0|Zkn
−kn

)− U(PX0|Z∞
−∞

)
]
+E

[
LX̂n

univ
(Xn, Zn)− U(P

X0|Zkn
−kn

)
]

.

(87)
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The first expectation in the right-hand side of (87) vanishes in the limit by Lemma 4, whereas for the

second expectation we notice that, for any k ≥ 0,

EU(PX0|Zk
−k

) = min
f :A2k+1→A

EΛ(X0, f(Zk
−k)) (88)

= min
f :A2k+1→A

E

[
1

n− 2k

n−k∑
i=k+1

Λ(Xi, f(Zi+k
i−k ))

]

≥ E

[
min

f :A2k+1→A

1
n− 2k

n−k∑
i=k+1

Λ(Xi, f(Zi+k
i−k ))

]
(89)

= EDk(Xn, Zn) (90)

where the second equality follows by stationarity. Thus, the second expectation in the right-hand side

of (87) vanishes in the limit by Theorem 1, Part (b). 2

Remarks:

(a) Equation (87) provides insight into the convergence of ELX̂n
univ

(Xn, Zn) to D(PX,Π). The van-

ishing rate of the first expectation in the right-hand side depends on the underlying process,

and there is no upper bound on this rate which holds uniformly for all stationary ergodic X. In

contrast, the second expectation is uniformly bounded by Theorem 1, Part (b). A slower growing

rate for kn yields a faster vanishing rate for the second expectation but the price, of course, is a

slower vanishing rate for the first one.

(b) The inequality (90) parallels the well-known property that the conditional entropy of order k is

an upper-bound on the expectation of the corresponding empirical entropy.

(c) For the range of values of kn covered by Part (a) of the theorem, the convergence in expectation

could be easily derived from the almost sure convergence by use of Fatou’s Lemma.

6 Context-length selection

6-A The “best” k

The optimality results shown in the preceding sections provide asymptotic guidance on the choice of

the context length for universal denoising. However, these results refer to a sequence of problems,

shedding little light on how k ought to be selected for a specific sequence zn. In particular, notice that

even though Theorem 2 provides non-asymptotic information about how the denoiser X̂n,k compares

with the best k-th order sliding-window denoiser, it does not address the issue of comparing different

choices of k.

The problem of choosing k is, in many aspects, akin to that of double-universality in universal

data compression (see, e.g., [31]). In the data compression case, once a specific algorithm is shown
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to be universal for a given model structure parameterized by a value k (e.g., a mixture probability

assignment for some Markovian order k), the question arises as to what value of k minimizes the code

length assigned by that specific algorithm to an individual sequence. Notice that a comparison class is

used for analyzing universality for a given k, but once a universal algorithm is selected, the criterion for

choosing k is independent of the comparison class. The encoder can, for example, search for the optimal

k, and transmit its value to the decoder. The key difference with the denoising setting, however, is

that the optimal denoiser depends on the unobserved sequence xn. Yet, the data compression analogy

suggests the following formalization as a possible criterion for choosing k.

For a given pair (xn, zn), let

k∗(xn, zn)
4
= arg min

k
LX̂n,k(xn, zn) .

In words, k∗(xn, zn) is the order of the best denoiser having the same form as the DUDE. This best value

of k is, of course, unavailable as it depends on xn. Now, define the function kn : An → {0, 1, . . . , bn/2c}
given by

kn(·) 4= arg min
κ(·)

max
xn∈An

E
[
LX̂n,κ(Zn)(xn, Zn)− LX̂n,k∗(xn,Zn)(xn, Zn)

]
. (91)

The order kn(zn) provides a benchmark for choosing k as a function of zn (as opposed to the order kn

in previous sections, which depends just on n and was selected based on considerations of asymptotic

optimality). This choice aims at minimizing, in the worst case of xn, the expected excess loss over

the one we would have achieved had we been able to access the best order k∗(xn, zn) (namely, the

“regret”). Notice that with kmax = maxzn∈An kn(zn), X̂n,k(·) is a kmax-th order sliding window denoiser.

Unfortunately, kn(zn) may be difficult to compute, and in the next subsection we consider heuristics

for selecting k, or more generally, an appropriately sized context model, in practice.

6-B Heuristics for choice of context size

As mentioned, choosing “the best” k seems to present some theoretical and practical difficulties. Ideally,

we would like to be able to choose a value of k that approaches the DUDE’s best denoising performance

for the given input data sequence, and such that its determination from observable quantities is com-

putationally feasible. Fortunately, it was observed in experiments where the original noiseless sequence

xn was available as a reference, that the value of k that minimizes the distortion of the denoised se-

quence X̂n,k(zn) relative to the original xn, is consistently close to the value that makes X̂n,k(zn) most

compressible. Compressibility of X̂n,k(zn) can be estimated from observable data by using a practical

implementation of a universal lossless compression scheme. Figure 1 shows (suitably scaled) typical

plots of compressed code length and distortion of the denoised signal as a function of k, corresponding

to one of the data sets reported on in Section 7. All data sets mentioned in Section 7 actually exhibit
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Figure 1: Code length and distortion of denoised signal as a function of k

a similar behavior. A formalization of the link between compressibility and the best k for denoising is

an open problem of theoretical and practical interest.

The above discussion also applies to more general context models, in which the context length

depends not only on zn, but may vary from location to location, similar to the tree models customary

in data compression (see, e.g., [51, 58]). Moreover, the context length need not be equal on the left

and on the right. As mentioned in Section 3, the internal data structure of the DUDE can be readily

designed to support these models. Choosing an appropriately sized context model is important in

all applications, but essential in applications with large alphabets (e.g., continuous tone images), as

is evident from the error terms in Theorem 2 in Section 4. Similar issues of model cost [37] have

been addressed in related areas of lossless image compression (see, for instance, [6]), and significant

knowledge and experience have been generated, which can be brought to bear on the discrete denoising

problem. Finally, we mention that if a general tree model is used for the count statistics, the logarithm

of its size (number of states) can be used in lieu of k for the compressibility heuristics mentioned above.

7 Experimental Results and Practical Considerations

In this section, we report on experimental results obtained by implementation of the DUDE and its

application to a few noise-corrupted data sets.

7-A Binary Symmetric Markov Source Corrupted by a BSC

We implemented the DUDE for the BSC, as derived in subsection 3-D. A first-order symmetric binary

Markov source was simulated and corrupted by a simulated BSC for five values of the transition

probability p associated with the Markov source, {0.01, 0.05, 0.1, 0.15, 0.2}, and for three values of the
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δ = 0.01 δ = 0.10 δ = 0.20
p DUDE Bayes DUDE Bayes DUDE Bayes

0.01 0.000723 [3] 0.000721 0.006648 [5] 0.005746 0.025301 [6] 0.016447
0.05 0.004223 [3] 0.004203 0.030084 [5] 0.029725 0.074936 [5] 0.071511
0.10 0.010213 [8] 0.010020 0.055976 [3] 0.055741 0.120420 [4] 0.118661
0.15 0.010169 [8] 0.010050 0.075474 [5] 0.075234 0.153182 [4] 0.152903
0.20 0.009994 [8] 0.009940 0.092304 [3] 0.092304 0.176354 [4] 0.176135

Table 1: Denoising a BSC-corrupted Markov source

crossover probability δ associated with the BSC, {0.01, 0.1, 0.2} (one realization for each). A moderate

sequence length of n = 106 was used.

Table 1 shows the bit error rate of the denoised signal obtained when employing the DUDE for

the fifteen combinations of the pair (p, δ). The number in square brackets is the value of k employed,

which was obtained using the compressibility heuristic described in Section 6-B. For each combination

we also show the residual error rate of the optimal Bayesian distribution-dependent scheme tailored for

the specific corresponding value of the pair (p, δ), as implemented by the forward-backward recursions

[8, 1].

We observe that in the majority of the cases shown in the table, the DUDE approaches optimum

performance within a rather small margin. The somewhat less negligible gaps between the DUDE’s

performance and that of the optimal scheme are observed in the first line of the table, corresponding

to p = 0.01. A qualitative explanation for this performance may be that in this case the process is less

mixing or more “slowly varying”, so in order to approach the performance of the optimal scheme (which

bases its denoising decisions for each location on the whole noisy signal) to within a certain margin, a

sliding-window denoiser of higher order is needed. However, the sequence length in the experiments is

probably not sufficient for a close enough convergence to the optimum for these larger values of k.

7-B Denoising of Don Quixote

We employed the DUDE on a corrupted version of the book Don Quixote of La Mancha (English

translation), by Miguel de Cervantes Saavedra (1547-1616). The text, available online from the Project

Gutenberg web-site at http://promo.net/pg/, consists of approximately 2.3 · 106 characters. It was

artificially corrupted by flipping each letter, independently, with probability 0.05, equiprobably into one

of its nearest neighbors in the QWERTY keyboard. The resulting number of errors in the corrupted

text came out to 89087. The DUDE, employed with k = 2, reduced the number of errors to 50250,

which is approximately a 44% error-correction rate. Following are two segments from the corrupted

text, with the corresponding DUDE output.
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1. Noisy Text (21 errors):

"Whar giants?" said Sancho Panza. "Those thou seest theee,"

snswered yis master, "with the long arms, and spne have tgem

ndarly two leagues long." "Look, ylur worship," sair Sancho; "what

we see there zre not gianrs but windmills, and what seem to be

their arms are the sails that turned by the wind make rhe

millstpne go." "Kt is easy to see," replied Don Quixote, "that

thou art not used to this business of adventures; fhose are

giantz; and if thou arf wfraod, away with thee out of this and

betake thysepf to prayer while I engage them in fierce and unequal

combat."

DUDE output (7 errors):

"What giants?" said Sancho Panza. "Those thou seest there,"

answered his master, "with the long arms, and spne have them

nearly two leagues long." "Look, your worship," said Sancho; "what

we see there are not giants but windmills, and what seem to be

their arms are the sails that turned by the wind make the

millstone go." "It is easy to see," replied Don Quixote, "that

thou art not used to this business of adventures; fhose are

giantz; and if thou arf wfraod, away with thee out of this and

betake thyself to prayer while I engage them in fierce and unequal

combat."

2. Noisy Text (4 errors):

... in the service of such a masger ws Dpn Qhixote ...

DUDE output (0 errors):

... in the service of such a master as Don Quixote ...

7-C Image Denoising

The binary implementation of the DUDE was used to denoise binary images corrupted by BSCs of

various parameter values. In this setting, the input to the denoiser is a sequence zm×n, with components

37



z` ∈ {0, 1}, where ` = (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. We define two-dimensional context patterns as

follows: Let (0, 0), (−1, 0), (1, 0), . . . , be an ordering of Z2 by increasing order of L2 norm, with ties

broken first by increasing L∞ norm, then by increasing value of j, and finally by increasing value of i.

Denote by ∆t, t ≥ 0, the t-th integer pair in the order. For an integer K ≥ 0, the K-th order context

for z` consists of the symbols with coordinates ` + ∆1, ` + ∆2, . . . , ` + ∆K (with appropriate provisions

for image boundaries). The sequence of context patterns used in the one-dimensional case can be seen

to follow the same rules, except that the context size K is restricted to even values, i.e., K = 2k.

For the image experiments, an attempt was made to estimate the BSC parameter δ, rather than

assume it known. It was found that given K, a good estimate of the channel parameter δ is given by9

δ̂ = min
c

min
(
m(zm×n, c)[0],m(zm×n, c)[1]

)
,

the minimum taken over contexts c ∈ AK that occur in zm×n with frequency surpassing a given

threshold (to avoid “diluted” contexts). The intuition behind this heuristic is that if the image is

denoisable, then some significant context must exhibit skewed statistics, where the least probable

symbol has a low count, thus “exposing” the outcomes of the BSC. Notice that this estimate of δ can

be computed after running the first pass of the DUDE, and used during the second pass.

The compressibility heuristic of Section 6-B was used to determine the context order K. The steps

of empirically estimating δ and K might need to be iterated, as the estimate of one depends on the

estimate of the other. In practice, however, it was observed that very few, if any, iterations are needed

if one starts from a reasonable guess of the channel parameter. The best K is estimated given this

guess, and from it a more accurate estimate of δ is obtained. In the majority of cases, no further

iterations were needed.

We now present denoising results for two images. The first image is the first page from a scanned

copy of a famous paper [44], available in the publications data base of the IEEE Information Theory

Society. The results are shown in the upper portion of Table 2, which lists the normalized bit-error

rate of the denoised image, relative to the original one. The table also shows results of denoising the

same image with a 3 × 3 median filter [23], and a morphological filter [47] available under MATLAB.

The results for the morphological filter are for the best ordering of the morphological open and close

operations based on a 2 × 2 structural element, which was found to give the best performance. The

results in the table show that the DUDE significantly outperforms the reference filters. Figure 2

shows corresponding portions of the noiseless, noisy, and DUDE-denoised images, respectively, for the

experiment with δ = 0.05 (the whole image is not shown due to space constraints and to allow easy

comparison of the three versions).
9The vector-valued function m(·) now takes two arguments, as c represents the whole context, which was represented

by b, c in the one-dimensional case.
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Channel parameter δ
Image Scheme 0.01 0.02 0.05 0.10
Shannon DUDE 0.00096 0.0018 0.0041 0.0091
1800×2160 K=11 K=12 K=12 K=12

median 0.00483 0.0057 0.0082 0.0141
morpho. 0.00270 0.0039 0.0081 0.0161

Einstein DUDE 0.0035 0.0075 0.0181 0.0391
896×1160 K=18 K=14† K=12† K=12†

median 0.156 0.158 0.164 0.180
morpho. 0.149 0.151 0.163 0.193

Table 2: Denoising results for binary images

The second image reported on is a half-toned portrait of a famous physicist. While it is arguable

whether denoising of half-tone images is a common application, these images provide good test cases

for a denoiser, which has to distinguish between the random noise and the “texture” of the half-tone

pattern. The numerical results are shown in the lower part of Table 2, which shows that the DUDE is

able to achieve significant denoising of the half-tone. In contrast, the more traditional algorithms fail,

and, in fact, significantly amplify the distortion. Portions of the noiseless, noisy, and DUDE-denoised

half-tone images for the experiment with δ = 0.02 are shown in Figure 3. The experiments on half-

tones serve to showcase the universality of the DUDE: the same algorithm that performed well on the

scanned text of the first example, also performs well for the half-toned photograph, a very different

type of image.

7-D Other practical considerations and improvements

We briefly mention a few other possible avenues for improvement of the DUDE’s performance in

practical settings, in addition to those discussed in conjunction with the experimental results. Given

the diversity of applications of the algorithm, we expect that additional structure, specific to each

application, could be exploited to improve performance.

• Context Aggregation. The crux of the DUDE algorithm is the estimation of the empirical

statistics of the noiseless sequence xn from those of the noisy zn. If the context of a particular

symbol has been contaminated by one or more errors, the count corresponding to the symbol

will be credited to the “wrong” context, and, conversely, the statistics used for the correction

of the symbol will be partially based on counts of the “wrong” contexts. Thus, the statistics of

contexts that are close, in the sense of a higher probability of confusion due to the channel, get

intermixed. This suggests a strategy of making decisions based on the counts obtained not only
†One-dimensional contexts of size K, consisting of K/2 samples to the left, and K/2 to the right of the denoised sample,

were used in these cases to obtain the best results. While a two-dimensional context scheme obtains bit error-rates that
are not far from those reported, the visual quality of the denoised halftone was superior with the one-dimensional contexts.
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top-right : original

bottom-left : noisy, δ=0.05

bottom-right : denoised, k=12 (2D)

Figure 2: Denoising of a scanned text image
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top-right : original

bottom-left : noisy, δ=0.02

bottom-right : denoised, k=14 (1D)

Figure 3: Denoising of a binary halftone image
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from the observed context, but also from neighboring contexts. To that end, the first pass of the

denoiser proceeds as usual; for the second pass, the counts of similar contexts are aggregated,

weighing them by the similarity of the context to the observed one. The aggregation of statistics

can occur before the second pass, and its complexity is independent of the data size. The context

aggregation mechanism is different from, and complementary to, the techniques of context tree

pruning from the data compression literature [51, 58] mentioned in Section 6-B. In particular,

context aggregation need not reduce the size of the context model.

• Nonstationary data. While the algorithm presented in this work is well suited for stationary

sources (or for individual sequences having a low sliding-window minimum loss), it lends itself to

non-stationarity. For example, when the data may be assumed piecewise stationary (e.g., images

and various types of audio signals), the counting of the appearances of the strings can include

a “forgetting factor” to discount the contribution of strings according to their distance from the

relevant location. To that end, judicious segmentation of the input data sequence depending on

the expected dynamics of the data statistics can be helpful.

8 Related Directions

We have presented an asymptotically optimal, universal, low-complexity denoiser for the finite-alphabet

case, where the noiseless data is corrupted with a known channel that is invertible in the sense that its

associated matrix has full rank.

We next outline a few directions for related research that are currently under investigation.

The setting emphasized in this work, where little (or nothing) is known about the noiseless signal yet

the noisy channel is known, arises naturally in many applications. In many other cases, however, there

is also uncertainty in the characteristics of the noisy channel. The results attainable in the latter setting

are of a basically different nature due to the fact that knowledge of the channel output distribution may

not uniquely determine the joint input-output distribution when there is channel uncertainty. When

the optimal distribution-dependent denoisers corresponding to the possible input-output distributions

consistent with the observations do not coincide, it will not be possible to attain the distribution-

dependent optimal performance. For a simple illustration of this fact, consider the case of a BSC with

crossover probability δ only known to lie in [0, 1/2]. There is, of course, no way to distinguish between,

say, the all-zero input signal with δ = 1/4 and the i.i.d. Bernoulli(1/4) signal with a noise-free channel.

Since the optimal denoisers corresponding to the two possibilities are completely different, there exists

no scheme which will universally attain optimal distribution-dependent performance for all δ ∈ [0, 1/2]

and all stationary ergodic input processes. Thus, in general, in the case of channel uncertainty, if one’s

goal is, say, to attain optimal distribution-dependent performance for the stochastic setting, the class of
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allowable sources must be more limited than the class of all stationary ergodic processes. On the other

hand, we saw in Section 7 that accurate estimation of the channel parameters is feasible in practical

applications, the reason likely to be that real-life data sources are more limited and structured than,

say, the class of stationary ergodic sources. A related setting is the case of a channel whose associated

matrix is not of full rank. The similarity with the case of channel uncertainty is in that, here too, the

channel output distribution does not uniquely determine its input distribution. A fuller characterization

of these settings is, therefore, an open problem of both theoretical and practical interest.

The approach underlying the construction of the DUDE can be applied to the problem of causal

and delay-constrained denoising, also referred to in the HMM literature, respectively, as filtering and

smoothing. Specifically, define a delay-d denoiser to be a sequence of functions X̂ = {X̂[t]}t≥1, where

X̂[t] : At+d → A. For each point in time, t, the delay-d denoiser outputs a reconstruction for Xt based

on observing Zt+d, namely, X̂(Zt+d)[t]. For positive integers n, k, d, and a ∈ An, b ∈ Ak, c ∈ Ad,

let now m(a,b, c) and gk,d
a (b, α, c) denote the obvious extensions of the definitions in (1) and (6) to

accommodate the possibility k 6= d. Consider now the delay-d denoiser X̂k given, for t > k, by

X̂k(zt+d)[t] = gk,d
zt+d(z

t−1
t−k, zt, z

t+d
t+1). (92)

It is then plausible to expect that letting X̂ be the delay-d denoiser in (92) with k = kt, where {kt}
is a sequence of integers increasing at a slow enough rate, will result in a scheme with optimality and

practicality properties analogous to those established in this work for the DUDE. The scheme in this

case is sequential, both acquisition of the statistics and the actual denoising being performed in one

pass.

An extension of the DUDE approach to the continuous case is also plausible. Though the technical-

ities would be somewhat more involved and the context-based approach to estimating the finite-order

distributions would have to be replaced by an appropriate density estimator, it seems that the essential

feature of having to invert (or de-convolute) the output distribution of just one channel output would

remain. It would be of interest to see whether this approach could give rise to a practical scheme and

to compare its performance with that of Donoho and Johnstone’s wavelet thresholding techniques [15].

Additional interesting cases related to the setting of this work, but not covered by it, include:

Channels with memory; channels with deletions, insertions and transpositions; and rate-constrained

denoising.

Appendix
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A Proof of Lemma 2

Throughout the proof, we will simplify our notation by omitting the first two arguments in the vectors

q(zn, xn, u−1
−kbu

k
1) and q′(zn, xn, u−1

−kbu
k
1), as these arguments will always be zn and xn, respectively,

and we will replace the third argument, in which u−1
−k and uk

1 are fixed, by its central symbol, b ∈ A.

Similarly, we will omit all the arguments in the vector m(zn, u−1
−k, u

k
1). Since, for all b ∈ A, we have by

definition

m(b) =
∑
a′∈A

q(b)[a′]

it follows that, for all a ∈ A,[
πu0 � (Π−Tm)

]
(a) = Π(a, u0)

∑
a′,b∈A

Π−T (a, b)q(b)[a′]

= Π(a, u0)
∑

a′,b∈A
Π−1(b, a)

[
q(b)[a′]− q′(b)[a′] + q′(b)[a′]

]
= q′(u0)[a] + Π(a, u0)

∑
a′,b∈A

Π−1(b, a)
[
q(b)[a′]− q′(b)[a′]

]
(A.1)

where the last equality follows from the fact that, by the definition (72), the only dependence of q′(b)[a′]

on b is due to the factor Π(a′, b), and from the identity
∑

b Π(a′, b)Π−1(b, a) = 1a=a′ . Thus,

∥∥q(u0)− πu0 � (Π−Tm)
∥∥

1
=

∑
a∈A

∣∣∣∣∣∣q(u0)[a]− q′(u0)[a]−Π(a, u0)
∑

a′,b∈A
Π−1(b, a)

[
q(b)[a′]− q′(b)[a′]

]∣∣∣∣∣∣
≤

∥∥q(u0)− q′(u0)
∥∥

1
+
∑

a,b∈A
Π(a, u0)

∣∣Π−1(b, a)
∣∣ ∥∥q(b)− q′(b)

∥∥
1

. (A.2)

Summing (A.2) over u0 yields

∑
u0∈A

∥∥q(u0)− πu0 � (Π−Tm)
∥∥

1
≤

∑
u0∈A

∥∥q(u0)− q′(u0)
∥∥

1
+
∑
b∈A

[∥∥q(b)− q′(b)
∥∥

1

∑
a∈A

∣∣Π−1(b, a)
∣∣]

≤ (1 +
∥∥Π−1

∥∥
∞)

∑
u0∈A

∥∥q(u0)− q′(u0)
∥∥

1
(A.3)

where (A.3) follows from the definition (Section 2):∥∥Π−1
∥∥
∞ = max

b∈A

∑
a∈A

∣∣Π−1(b, a)
∣∣ .

2
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B Proof of Claim 2

Proof of Lemma 4: First, we recall that, as a direct consequence of its definition, the Bayes envelope

U(·) is a concave function. Specifically, for two M -vectors u and v, and α ∈ [0, 1],

U(αu + (1− α)v) = min
x̂∈A

λT
x̂ [αu + (1− α)v]

≥ α min
x̂∈A

λT
x̂ u + (1− α) min

x̂∈A
λT

x̂ v = αU(u) + (1− α)U(v) . (A.4)

Next, to show that EU(PX0|Zl
−k

) decreases with l, observe that

EU(PX0|Zl+1
−k

) =
∑

zl+1
−k ∈Ak+l+2

U(PX0|Zl+1
−k =zl+1

−k
)P (Z l+1

−k = zl+1
−k )

=
∑

zl
−k∈Ak+l+1

 ∑
zl+1∈A

U(PX0|Zl
−k=zl

−k,Zl+1=zl+1
)P (Zl+1 = zl+1|Z l

−k = zl
−k)

P (Z l
−k = zl

−k)

≤
∑

zl
−k∈Ak+l+1

U

 ∑
zl+1∈A

PX0|Zl
−k=zl

−k,Zl+1=zl+1
P (Zl+1 = zl+1|Z l

−k = zl
−k)

P (Z l
−k = zl

−k)

=
∑

zl
−k∈Ak+l+1

U(PX0|Zl
−k=zl

−k
)P (Z l

−k = zl
−k) = EU(PX0|Zl

−k
), (A.5)

where the inequality follows by concavity. The fact that EU(PX0|Zl
−k

) decreases with k is established

similarly, concluding the proof of the first item. For the second item note that, by martingale con-

vergence (cf., in particular, [4, Theorem 5.21]), P
X0|Zln

−kn

→ PX0|Z∞
−∞

a.s., implying, by the (easily

verified) continuity of U(·) that U(P
X0|Zln

−kn

) → U(PX0|Z∞
−∞

) a.s. Consequently, since U(P) ≤ Λmax

for all P ∈M,

EU(PX0|Z∞
−∞

) = E lim
n→∞

U(P
X0|Zln

−kn

) = lim
n→∞

EU(P
X0|Zln

−kn

),

the second equality following by bounded convergence. 2

Proof of Claim 2: We have

D(PXn ,Π) = min
X̂n∈Dn

ELX̂n(Xn, Zn) =
1
n

n∑
i=1

min
X̂:An→A

EΛ(Xi, X̂(Zn))

=
1
n

n∑
i=1

∑
zn∈An

P (Zn = zn) min
x̂∈A

E[Λ(Xi, x̂)|Zn = zn]

=
1
n

n∑
i=1

∑
zn∈An

P (Zn = zn)U(PXi|Zn=zn)

=
1
n

n∑
i=1

EU(PXi|Zn) =
1
n

n∑
i=1

EU(PX0|Zn−i
1−i

), (A.6)
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where the last equality follows by stationarity. Since, by Lemma 4, EU(PX0|Zn−i
1−i

) ≥ EU(PX0|Z∞
−∞

), it

follows from (A.6) that D(PXn ,Π) ≥ EU(PX0|Z∞
−∞

) for all n and, therefore, D(PX,Π) ≥ EU(PX0|Z∞
−∞

).

On the other hand, for any k, 0 ≤ k ≤ n, Lemma 4 and (A.6) yield the upper bound

D(PXn ,Π) ≤ 1
n

[
2kU(PX0) +

n−k∑
i=k+1

EU(PX0|Zn−i
1−i

)

]

≤ 1
n

[
2kU(PX0) +

n−k∑
i=k+1

EU(PX0|Zk
−k

)

]

=
1
n

[
2kU(PX0) + (n− 2k)EU(PX0|Zk

−k
)
]
. (A.7)

Considering the limit as n → ∞ of both ends of the above chain yields D(PX,Π) ≤ EU(PX0|Zk
−k

).

Letting now k →∞ and invoking Lemma 4 implies D(PX,Π) ≤ EU(PX0|Z∞
−∞

). 2
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