

A New Architecture for Measuring and Assessing
Streaming Media Quality

Amy Csizmar Dalal, Ed Perry
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2003-28
February 10th , 2003*

E-mail: {amy.dalal, ed.perry} @hp.com

quality assessment,
analysis,
measurement tool,
measurement
architecture,
streaming media

Conducting quality assessment for streaming media services,
particularly from the end user perspective, has not been widely
addressed by the network research community and remains a hard
problem. In this paper we discuss the general problem of assessing
the quality of streaming media in a large-scale IP network. This
work presents two main contributions. First, we specify a new
measurement and assessment architecture that can flexibly support
the needs of different classes of assessment consumers while
supporting both new and existing measurements that can be
correlated with user perceptions of media stream quality. Second,
we demonstrate that a prototype implementation of this architecture
can be used to assess a user's perceived quality of a media stream,
by judicious choice and assessment of objective metrics. We
conclude by discussing how this architecture can be used to predict
future periods of stream quality degradation.

* Internal Accession Date Only Approved for External Publication
To be published in and presented at the Workshop on Passive and Active Measurement (PAM 2003), 6-8 April
2003, La Jolla, California
 Copyright Hewlett-Packard Company 2003

A New Architecture for Measuring and Assessing
Streaming Media Quality

Amy Csizmar Dalal and Ed Perry
Hewlett-Packard Laboratories, Palo Alto, CA, USA

{amy.dalal, ed.perry}@hp.com

Abstract—Conducting quality assessment for streaming media
services, particularly from the end user perspective, has not been
widely addressed by the network research community and re-
mains a hard problem. In this paper we discuss the general prob-
lem of assessing the quality of streaming media in a large-scale
IP network. This work presents two main contributions. First,
we specify a new measurement and assessment architecture that
can flexibly support the needs of different classes of assessment
consumers while supporting both new and existing measurements
that can be correlated with user perceptions of media stream qual-
ity. Second, we demonstrate that a prototype implementation of
this architecture can be used to assess a user’sperceivedquality of
a media stream, by judicious choice and assessment of objective
metrics. We conclude by discussing how this architecture can be
used to predict future periods of stream quality degradation.

Index Terms—quality assessment, analysis, measurement tool,
measurement architecture, streaming media

I. I NTRODUCTION

Much research effort over the past several years [1–5] has
addressed the general problem of constructing scalable and
relevant measurement infrastructures, network fault diagnosis
methods, and fault prediction methods, particularly in the con-
text of the Internet; see [6] for an overview. However, con-
ducting quality assessment for streaming media services, par-
ticularly from the end user perspective, has not been widely
addressed by the network research community and remains a
hard problem.

In this paper we discuss the general problem of assessing
the quality of streaming media in a large-scale system such
as the Internet. In this context, “streaming media” refers to a
combination of audio and/or video content that is accessed on-
demand, at scheduled times, or live. On-demand and scheduled
content is pre-encoded and stored at one or more media servers,
while live content is created, encoded, and distributed in real-
time.

In our discussion, we assume a client-server type system
in which multimedia is delivered over unicast using UDP.
Our system prototype uses Windows Media Server; thus the
streamed media is delivered via Microsoft’s Microsoft Media
Server (mms) protocol over UDP.

This work presents two main contributions. First, we specify
a new measurement and assessment architecture that can flex-

ibly support the needs of different classes of assessment con-
sumers while supporting both new and existing measurements
that can be correlated with user perceptions of media stream
quality. Second, we demonstrate that a prototype implementa-
tion of this architecture can be used to assess a user’sperceived
quality of a media stream, by judicious choice and assessment
of objective metrics.

The rest of the document is structured as follows. In Sec-
tion II, we present the case for client-side quality assessment
and discuss relevant prior work in this area. In Section III, we
identify indicators of poor received media quality and present
our proposed methodology for conducting quality assessment
of media streams. Section IV discusses a prototype implemen-
tation of this methodology and experimental results on its effi-
cacy in measuring a client’s experience of a media stream. In
Section V, we discuss how this mechanism could be used in
order to predict future periods of degraded media quality and
what could be done with this information. We conclude in Sec-
tion VI with some thoughts on future directions for this work.

II. T HE CASE FOR CLIENT-SIDE QUALITY ASSESSMENT

In this section we discuss some of the drivers for client-side
media quality assessment, such as the need for appropriate met-
rics for prediction and analysis. In addition, we discuss the lack
of appropriate assessment methods in existence today and how
this impacts client-side quality assessment.

A. Identifying appropriate metrics

Several factors make measuring media more difficult than
measuring, for example, Web transactions or file transfers. Me-
dia sessions tend to be of a longer duration than file transfer
sessions or Web sessions (see [7], for example, for RealAudio
traffic characteristics). Media files are larger than the typical
data file on the Web. Most significantly though, media met-
rics are very context-specific and temporal. For example, net-
work packet loss of five percent may have a more significant
effect on a stream with a high bandwidth requirement than on
a stream with a low bandwidth requirement; high bandwidth
streams typically involve the transfer of more packets per sec-
ond than lower bandwidth streams, which means a larger num-
ber of packets have the potential to be lost.

Traditional metrics of network quality, such as average re-
ceived bandwidth and average packet loss rate, are not ade-
quate for assessing media quality. For example, one widely
used metric in measuring streaming media is the instantaneous
bandwidth required by the stream. While bandwidth tells us
how many network resources a stream is currently consuming,
it cannot tell us anything about the user-perceived quality of
the stream. Variations in bandwidth may mean degraded qual-
ity, or they may be normal content encoding fluctuations for a
particular stream. This example illustrates the need for observ-
ing both short-term and long-term metrics as well as the need to
define appropriate metrics for the media services environment,
beyond simple averages or quality scores.

The recipient of a media stream is the best authority to as-
sess its quality. Thus, collecting data at the client-side is cru-
cial to determine the user’s perception of the stream. Subjec-
tive methods are often used to assess user-perceived received
media quality, typically via a “mean opinion score”, or a rank-
ing of the quality of the viewed clip on a scale of one to five
[8]. However, several issues make this method unattractive for
large-scale use. For one, it requires users to actively partic-
ipate in quality assessment. In turn, this requires training at
least a subset of users on how to accurately assess the quality
of a received video or audio stream. Additionally, the mean
opinion score does not indicate what exactly is wrong with
the clip, whether the clip buffered too much or was garbled
in parts, without more detailed information as to how the score
was achieved.

For large-scale streaming media quality assessment, an at-
tractive solution is to use objective metrics, those which can be
easily measured, in order to derive subjective quality metrics,
those which relate to what the user sees. One such solution is
given in [9] and [10], but it requires correlating measurements
on both the sender and receiver sides. A more useful solution
would assess received quality by taking a select set of mea-
surements from the receiver and using these measurements to
deduce the user’s received quality.

A significant challenge is to derive assessments from these
collected metrics with sufficient information to permit either
the adaptation of quality of service parameters or the correct
diagnostic action. For example, if an end user’s quality suffers
because of inadequate bandwidth for a particular media stream,
how can the network and/or media source address the problem
in real time? Can the network find an alternate, less-congested
path with more available bandwidth? Or can the source reduce
the rate at which it streams, by sending fewer encoded layers
(if applicable)? Achieving this goal requires developing new
test tools that can interact with client-side players and existing
network measurement tools.

Ideally, quality assessments should be obtainable without
need for end-user participation, under remote control. Marshal-
ing the resources to test the impact of large-scale crowds should
be possible, without requiring real end-users to consume their
time in the effort. Fault isolation and diagnosis activities should

be able to proceed with a minimum of coordination and co-
operation of the afflicted parties. On-going infrastructure and
service assessments should be possible without requiring end-
user involvement. By identifying metrics that can predict future
events that directly affect the user’s received stream quality, we
can potentially realize this goal.

B. The need for proper assessment tools

Existing software tools, such as [11–14], are not adequate
for large-scale assessment of streaming media quality from the
client’s perspective. They rely on synthetic test streams, syn-
thetic applications, and/or arbitrary test points in the network.
These tools can fail to detect application sensitivities to ser-
vice quality, such as timeout and failure responses, stream start-
up delay, or player stall, that are of relevance to actual media
clients.

Control channel solutions such as Real-time Transport Pro-
tocol’s RTCP [15] and agents in RealPlayer [16] and Win-
dows Media Player [17] provide feedback on the quality of re-
ceived streams to the media server (and, in the case of RTCP,
other users as well). However, these approaches have inherent
scalability issues which, in the case of RTCP, prevent it from
widespread adoption and use. Also, in the case of the two com-
mercial media players, the feedback mechanisms are limited to
the media server only and have limited functionality in terms
of what can be corrected and/or modified (mainly the rate at
which the stream is sent to the player). For RTCP, feedback is
limited to network-level metrics, such as network-level packet
loss.

The approach we propose is to utilize existing client-side
players in the assessment of streaming media quality via ob-
servations at the client. Previous work, such as [18, 19] has
addressed this as well, although the solutions derived either
require user intervention ([18]) or entirely new media player
applications ([19]). We propose a method that does not entail
the modification of the client-side media player application and
that is completely transparent to the user.

III. M ETHODOLOGY

In this section, we present our proposed methodology for
streaming media quality assessment. We begin by discussing
indicators of poor received stream quality that will be used by
our methodology. We then briefly describe the system architec-
ture, and conclude by discussing a client-side assessment tool
that we have developed for the purpose of making quality ob-
servations at the client in an unobtrusive manner.

A. Quality indicators

We have identified two indicators of poor received media
quality. These two indicators are player buffer starvation and
lost packets. We describe these in more detail below.

a) Player buffer starvation: Currently, media players
such as RealPlayer and Windows Media Player establish a
client-side receive buffer at startup. At the start of playback,
the player buffers for a predetermined period of time, typically
five to thirty seconds. This provides the player with a cush-
ion of several seconds should something go wrong during the
transmission of the stream and no packets arrive for a period
of time. This mechanism is meant to prevent the player from
having to stop and refill the buffer during playback. If the pe-
riod of time over which no packets are received is long enough
such that the player exhausts the receive buffer, the player will
be forced to stop and refill the buffer during playback. We refer
to this event asbuffer starvation. During buffer starvation, the
player must wait for new packets to arrive because it does not
have any data to render. The user notices this buffer starvation;
it manifests itself as “stop action” or a freezing of the last video
frame rendered and the absence of an audio stream.

b) Lost packets: Both RealPlayer and Windows Media
Player implement methods at the application level to request
application-level packets that have not yet been received be
retransmitted. This method allows for error correction and a
degree of reliability over the unreliable UDP protocol, which
does not support retransmissions at the transport layer. We refer
to this method as “application-level retransmission”. When an
application-level packet is initially lost or delayed, the player
will request for that packet to be retransmitted. If the retrans-
mitted packet, or the original packet, arrive at the player before
its scheduled playback time, the player will record this event as
a successful retransmission and render the packet as usual. If,
however, neither the original nor the retransmitted packet ar-
rive before its scheduled playback time, the player will record
this packet as lost. Lost application-level packets can manifest
themselves as anywhere from a slight to a severe degradation
in received video and/or audio quality. Examples of the effects
of lost packets include the appearance of shadows or visible
blocks in the video and garbled audio.

In this paper, we concentrate on player buffer starvation as
the indicator of interest. A more detailed treatment of lost pack-
ets appears in [20].

B. System architecture

We briefly sketch the proposed architecture for this system;
the full architecture can be found in [20].

Figure 1 illustrates the proposed architecture. The main
components of this system include assessment servers, media
clients, data collection points, and report servers.

1) Assessment servers:The assessment servers together
form the distributed control center of the architecture. They
control the collection of data at the media clients and the dis-
tribution of this data to one or more data collection points.
Assessment servers configure media clients to (1) schedule
and execute tests independent of user activity; (2) detect user-
requested media streams and selectively assess their quality;

Fig. 1. Proposed architecture diagram

and (3) deliver assessment results to one of the data collec-
tion points, with appropriate load-balancing across the various
points. They direct the analysis of the collected data, defining
which analyses should be performed on which data by which
collection point.

2) Media clients: The clients in this architecture are the end
users whose computers host the streaming media assessment
tool. The assessment tool collects data about the media stream
as it plays out at the client and returns this data to one or more
data collection points in the architecture.

3) Data analysis:Data analysis is accomplished by the data
collection points and the report servers. The data collection
points sample, reduce, and analyze the data received from the
clients and send this analyzed data to the appropriate report
server(s). The data collection points may also turn data collec-
tion at particular clients on or off during a test period or at any
other time that a client-side assessment tool is collecting data.
In the ideal scenario, the data collection points will be located
“close” (in a topological sense) to clusters of clients; for exam-
ple, a collection point may reside at the edge of a small ISP. The
report servers aggregate analyzed data from one or more collec-
tion points and package this data for various subsets of assess-
ment consumers. Note that an assessment “consumer” may in
fact be a subsystem, such as an SLA verification system. Ad-
ditionally, helper agents assist in the execution and collection
of additional on-demand network-level measurements, such as
traceroute, to supplement the data from the media clients. Such
measurements lend additional supporting data to the primary
analysis of client-generated data in order to more completely
identify and correct faults in the system.

C. Assessment tool

One of the main contributions of this work is a client-side
assessment tool whose purpose is to collect information about

Fig. 2. Diagram of the client-side quality assessment tool.

the stream as it is playing out,from the player itself, and return
this data tomultiple interested parties.

The assessment tool is a standalone application that resides
on each client machine within the system. It consists of three
parts, two of which reside on the client machine and one which
resides on a separate control server. We describe the tool in
more detail below. Its operation is illustrated in Figure 2.

The main part of the assessment tool is a media player
“wrapper”. This wrapper is a standalone software application
that interacts with the installed software media player’s API.
The wrapper polls the media player at predetermined intervals
for playback metrics, such as the number of lost, recovered, and
received packets; the current received bandwidth of the stream;
and whether or not the player is currently experiencing buffer
starvation.

It is important to note that the wrapper is independent of
the media player software. Thus, the assessment tool can be
developed independently of the media player software and does
not require the modification of the existing media player, nor
the installation of a new player onto the media clients.

Working in concert with the wrapper is an additional stan-
dalone application that resides at the client, the Listener. The
Listener runs in the background on each media client. It acts as
a liaison between the wrapper/player and the control server. It
detects both user-initiated activity and control server-initiated
activity, and reacts correspondingly. (The different modes in
which this system operates will be explained shortly.) The Lis-
tener also monitors the wrapper during runtime for indications
of success and failure conditions, such as the premature shut-
ting down of the media player before stream playback ends.

The third component of the assessment tool is a Controller,
which resides on a control server. The Controller directs the
collection of data from the media player on a client via the
wrapper. It determines which data should be collected from
which client and on what streams, and where this data should

be sent for analysis. It is a standalone software application that
also runs in the background on the control server.

There are two modes in which this tool can operate. We
term these two modes “test mode” and “user mode”. We define
each of these modes here and describe how the assessment tool
operates in each mode.

In test mode, the assessment tool collects data from the me-
dia player independently of user activity. That is, data is col-
lected on streams which users are not currently watching. Test
mode can be used in large-scale testing scenarios, such as ver-
ifying the correct amount of network resources are available to
support an upcoming webcast, as well as smaller-scale testing
scenarios, such as troubleshooting quality problems on a par-
ticular subnet.

In user mode, the assessment tool collects data from actual
user activity. That is, data is collected on streams that users
are currently watching. User mode can be used to monitor the
health of a network in terms of its support for streaming media,
determine if media server capacity is adequate, and so on.

The assessment tool operates in test mode as follows. The
control server predetermines which streams to test on which
clients at what times, and then schedules these at the Con-
troller. The Controller, at the specified times, sends a message
to the correct client-side Listener containing information about
the stream to play, the data to collect, for how long to monitor
the stream, how often to poll the player, and where to send the
data (either at the end of the stream or during playback). Details
about the data to collect can be specified via the wrapper com-
mand line or in a configuration file, for example. The Listener
verifies that the message came from a reputable control server.
It then starts the wrapper, which in turn starts the player with
the relevant parameters, such as the URL of the media stream.
The player then contacts the specified server and begins play-
ing back the stream. As the stream plays out, the wrapper polls
the player at intervals specified by the Controller, and logs this
information, sending it to the data collection point immediately
or storing it for later transmission. At the end of the data collec-
tion period, or at the end of the stream playback, the wrapper
shuts down the player, sends any remaining data to the spec-
ified analysis point, and logs success or failure conditions to
the Listener. The Listener then indicates to the Controller that
data collection has ceased, along with any other conditions that
should be reported, such as error conditions.

The assessment tool operates in user mode in a similar fash-
ion, only in this case action is initiated by the media player
when the user starts the player on hisor her machine. The Lis-
tener detects this activity, determines if possible the name of the
stream which the user is accessing, and then contacts the Con-
troller with this information. The Controller decides if it wants
to collect data about this particular stream for this particular
user, and if so, which data to collect. It then sends a message
to the Listener indicating if data collection should commence.
If so, the Listener starts the wrapper, passing along details as
to how often to poll the media player and what data to collect.

Fig. 3. The implementation of the test system architecture.

The wrapper then operates as in test mode, polling the player
and gathering the requested data. At the end of stream play-
back, the player shuts down, initiating the same exit process as
in test mode.

IV. EXPERIMENTAL RESULTS

In this section, we discuss an implementation of the architec-
ture and assessment tool and present some experimental results
gathered with this prototype.

A. Prototype implementation and testbed network

Figure 3 illustrates the prototype implementation and testbed
network. The test network consists of two portions, a con-
trolled subnet hosting the media server, and a population of
test clients that reside on the corporate network. The controlled
subnet is connected to but isolated from the corporate network.
The controlled subnet hosts a WAN emulation tool, which em-
ulates network congestion by dropping or delaying packets or
reducing the available bandwidth to individuals or groups of
users. The controlled subnet also hosts the media server used
in the evaluation of the prototype.

The media server is a Windows 2000 server running Win-
dows Media Services version 4.1. The WAN emulation tool is
a Linux machine running NIST Net.

Our measurements on the corporate network show negligible
packet loss, bandwidth limitation, and delay except in a few
rare cases. This allows us to assume that any perturbations
applied to the controlled portion of the network are the only
perturbations of significance in our evaluation.

The test client population consists of twelve PCs each run-
ning Windows 2000 or Windows NT and Windows Media
Player version 7.1 or 6.4. The clients are dispersed geographi-
cally over the United States and Canada. Via periodic measure-
ments, we determined that latency was not a factor of signifi-
cance in our measurements, and that all clients showed similar

behavior in the presence of similar network perturbations re-
gardless of geographic distance from the server. The clients all
have access to a shared network mount point to which they have
read and write access that serves as the data collection point.

B. Prototype client-side assessment tool

Our prototype client assessment tool is a Java application
that interacts with the Windows Media Player ActiveX Con-
trol, version 6.4, which is included with both the 7.1 and 6.4
versions of Windows Media Player. The assessment tool is
completely independent of the media player software, mean-
ing that installation of the tool does not require modifying the
existing media player software, and that the media player can
be used independently of the assessment tool with no differ-
ence in functionality. Thus, it can be deployed non-invasively
on the media clients.

The remote control structure that resides on the assessment
server to schedule and execute tests and collect data from
clients is also implemented in Java. In the current implemen-
tation, only the remote testing capability is included; the con-
trol structure does not interact with the player outside of sched-
uled testing, although this functionality is currently being im-
plemented.

C. Experimental validation

To verify our prototype architecture, we conducted exper-
iments on our testbed network between September 2001 and
December 2001. Table I describes the media clips used in the
experiments. All three clips are streamed via unicast over UDP,
and all are streamed using Microsoft’s mms format.

In our experiments, we introduce packet loss into the test net-
work by two different methods and observe the results.1 The
first method introduces random packet loss into the network of
one, five, or ten percent. The second method introduces deter-
ministic periods of bursty packet loss on the network of one to
three seconds over a sixty-second period. These bursts yield av-
erage network packet losses over the stream of 1.67%, 3.33%,
and 5% respectively.

In the experiments presented here, the assessment tool polls
the media player once every second. The metrics measured
include received bandwidth; the number of packets lost, recov-
ered, and received; and the start and end times of periods of
buffer starvation, which the player reports as “buffering”.

D. Results

Figure 4 presents the CDF of the length of time over which
a player reports that it is buffering (buffer starvation). The top
plot shows all buffering periods as reported by the player. No-
tice that there is a rather large spike at five seconds. Upon

1In this discussion, “packets” refer to “IP packets”. Throughout most of
the rest of this paper, “packets” refer to “application-level packets”. We will
reiterate the distinction when necessary.

TABLE I
L IST OF MEDIA FILES USED IN EXPERIMENTS

Stream Duration Size (MB) Average BW (kbps) Description
A 2 min 4 sec 16.5 457.5 movie trailer
B 11 min 26 sec 15.5 107.2 CEO message
C 30 min (truncated) 147.8 84.4 presentation

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (s)

C
um

ul
at

iv
e

fr
eq

ue
nc

y

All buffering periods

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (s)

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Initial buffering period eliminated

Stream A
Stream B
Stream C

Fig. 4. CDF of the duration of “buffering periods”, as reported by the player.
The top plot shows all buffering periods measured in the data, while the bottom
plot shows only the buffering periods that did not occur at the beginning of a
stream (startup buffering).

further inspection, it was discovered that the majority of these
buffering periods corresponded to the startup buffering period.
We filtered these periods out; the CDF of the remaining buffer-
ing periods, which are periods of true buffer starvation during
stream playback, is shown in the bottom plot. This plot shows
that, while the majority of buffer starvation periods are less than
ten seconds, there are a nontrivial number that are larger than
ten seconds, and in a few cases larger than 100 seconds (Stream
B).

Figure 5 shows the CDF of the duration of periods over

which no new packets arrive at the player’s receive buffer. Over
80% of these periods, among all streams, last for less than ten
seconds; for Streams B and C over 95% of these periods last
less than ten seconds. Because Stream A is a higher bandwidth
stream, it is more susceptible to random network losses, which
explains its longer tail as compared to the CDFs of Streams B
and C.

Analysis of Stream A’s tail led to the discovery that fragmen-
tation of the application-level packets was occurring at the me-
dia server, at rates as high as 5 fragments per application-level
packet. The encoder created packets that were much larger than
the network MTU of 1500 bytes, forcing the media server to
fragment the packets and increasing the apparent packet loss at
the player. This is an example of how the client-side assess-
ment tool can be used in the diagnosis of unexpected player
behavior.

V. PREDICTING DEGRADED MEDIA STREAM QUALITY

In this section, we discuss indicators that could be used to
predict future degraded stream quality, as seen by the user. We
define and present one particular indicator, discuss how know-
ing when a stream’s quality will degrade would be useful and
what could be done given this information, and present experi-
mental results that demonstrate how useful this indicator would
be and how realistic of a predictor it is.

A. Defining the predictor

In a previous section, we defined player buffer starvation as
an indicator of degraded stream quality. When a player is un-
dergoing buffer starvation, no packets can be rendered, and the
condition is visible to the user in the form of “freeze frame”
video and no audio.

Periods of buffer starvation are typically preceded by a pe-
riod of time over which no new packets arrive at the player’s
receive buffer. Thus, the player is forced to render packets that
are resident in the buffer until the buffer runs out of packets, in
which case buffer starvation occurs. We will use these periods
over which no new packets arrive to predict when buffer star-
vation will occur. We define these periods aspacket reception
pauses.

A more rigorous definition of packet reception pauses fol-
lows and is illustrated in Figure 6. LetA(t) be the arrival
process, in packets per second, of the application-level pack-

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duration (s)

C
um

ul
at

iv
e

fr
eq

ue
nc

y

CDF of the duration of "no packet arrivals" events

Stream A
Stream B
Stream C

Fig. 5. CDF of the duration of periods where no packets arrive at the receive
buffer, as reported by the player.

ets at the receiver buffer, a FIFO queueB of lengthL.2 L
is in units of seconds worth of playback data. DefineD(t)
as the departure process from queueB in packets per second.
The departure process is defined by the rate at which the media
player removes application-level packets from the buffer to be
rendered (and thus the rendering speed of the client software).
A(t) is dependent on the state of the network and also the state
of the media server from which it is drawing content. Because
the media player software is proprietary, bothL andD(t) are
unknown. We know, however, that the startup buffering time
is five seconds for the media player, soL contains at least five
seconds worth of audio and/or video data. By observingA(t),
we wish to determine the current length of the buffer,l(t). We
assume thatD(t) does not depend on eitherA(t) or l(t).

Given the above assumptions, a packet reception pause is
defined as a periodt ∈ [Tp1, Tp2] such thatA(t) = 0.

We are interested in determining which periods[Tp1, Tp2] are

2We assume that any reordering of out-of-order packets occurs at the network
layer.

Fig. 6. he receive buffer as a FIFO queueing system, to illustrate packet
reception pauses.

Fig. 7. Example of a buffer starvation period that follows a packet reception
pause period.

followed by a periodt ∈ [Tb1, Tb2] such thatD(t) = 0. In other
words, periods of buffer starvation are indicated by no packets
departing the queue. We define the interval[Tb1, Tb2] to follow
the interval[Tp1, Tp2] in the following instance. LetTA and
TB be the start times of two distinct periods of packet recep-
tion pauses. Then the buffer starvation period indicated by the
interval[Tb1, Tb2] follows the packet reception pause that starts
at timeTA if TA ≤ Tb1 ≤ TB . Alternately, ifTA indicates the
start time of the last packet reception pause event in a stream,
and0 < Tb1 − TA < ε, whereε is a threshold value, then we
say that the buffer starvation event[Tb1, Tb2] follows the packet
reception pause started at timeTA. As an example, Figure 7
illustrates a buffer starvation period that follows a period of no
packet arrivals.

Because there is always a startup buffering period that occurs
at the start of a stream, we ignore these in the following anal-
ysis. We also ignore any packet reception pauses that occur at
the very end of a stream, as these are also very common in the
data and simply mean that the player finishes playing out the
stream from its receive buffer. Among our experiments, 64%
of the streams ended with such a packet reception pause, com-
prising just under 11% of all packet reception pauses seen in
the data.

B. Uses of prediction

It should be noted that to some extent, the lack of newly-
received packets is information that is already communicated

to the media server by the player (in the case of RealPlayer and
Windows Media Player) as part of the player’s loss recovery
mechanism. We do not propose replacing this functionality.
Rather, we propose to share this and other information with
interested parties along the path of the media stream, such as
network operators and ISPs. In doing so, it is entirely possible
for these parties to use this information to either immediately
adapt to the impending buffer starvation or to utilize this infor-
mation in off-line analysis of the media stream. We focus here
on the former scenario.

Given that third parties have access to this predictive infor-
mation and could use it to mitigate the degraded quality at a
media player, what could be done? There are several possibili-
ties. First, a local ISP could serve local content to players that
are about to enter buffer starvation. This content could be third
party content, such as ads, or could be locally cached or “pre-
fetched” content from either the same media server or another
media server that is serving the same content. Second, net-
works could utilize this information to determine if the prob-
lem is originating with them, and if so either choose another
path on which to route the data or require the user to access
another server (if possible). If all else fails, the user could re-
ceive a message indicating impending failure of the delivery of
the stream and give the user the option to either “wait it out” or
come back at a later time.

C. Experimental results

The percentage of packet reception pauses that are followed
by a buffering event over all experiments is 7.4%. Figure 8
shows the percentage of packet reception pauses that are fol-
lowed by buffering events, as a function of the duration of the
packet reception pause in seconds. The packet reception pauses
are binned into five-second intervals. The overall percentage is
skewed lower by the presence of many small packet reception
pauses of less than five seconds in duration, of which less than
3% result in a buffering event immediately following. Beyond
ten seconds, this percentage rises significantly, with a few ex-
ceptions.3

Because there are so many small packet reception pauses
that do not lead directly to buffering events, the question arises
as to the proper threshold at which to consider packet recep-
tion pauses as likely indicators of buffering events. Figure 9
illustrates the percentage of packet reception pauses that are
followed by a buffering event for all packet reception pauses
greater thanx seconds. The point at which 50% of the packet
reception pauses are followed by buffering events is seven sec-
onds. This percentage rises to 60% if we raise the threshold
value to ten seconds.

For the data presented here, by observingA(t) = 0 for five
seconds we can accurately predict that a period of buffer star-
vation will follow 50% of the time. Whether or not there is

3It is unclear why there is a significant drop in the 30-35 second range. The
55-60 second range contains less than ten data points, so we omit this bin from
the plot.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Period in which no new packets received at player (s)

P
er

ce
nt

ag
e

of
 p

er
io

ds
 fo

llo
w

ed
 b

y
qu

eu
e

st
ar

va
tio

n

Prediction of queue starvation at player

Fig. 8. Prediction of queue starvation by observing periods of time over which
no new packets arrive. The periods are binned into five second intervals.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Threshold (s)

P
er

ce
nt

ag
e

of
 p

er
io

ds
 fo

llo
w

ed
 b

y
qu

eu
e

st
ar

va
tio

n

Prediction of queue starvation at player using threshold

Fig. 9. Prediction of queue starvation using a threshold value for periods of
no new packet arrivals.

enough time to feed this information to interested parties in
time for them to take corrective action depends on the lag time
between the onset of the packet reception pause and the onset
of the period of buffer starvation. We are currently studying
the lag times between these two events to determine if correc-
tive action is possible in some or most cases of degraded stream
quality.

VI. CONCLUSIONS

In this paper, we have presented a new measurement and as-
sessment architecture for determining streaming media quality
at the client. This architecture differs from previous and cur-
rent methods in that it is flexible, operating in both test mode
and user mode; it supports multiple consumers of assessment
data, such as ISPs, media servers, and content providers; and
it utilizes existing client-side media players without requiring
the modification of these players. We have implemented a pro-
totype of this architecture, which we have used to demonstrate

the type of measurements it is capable of collecting and how
these can relate to a user’s perceived quality of a media stream.
Finally, we discuss how one of these measurements can be used
to predict future periods of degraded stream quality and present
several scenarios in which this prediction would be useful.

There are several areas of future work that we are pursuing.
We are currently assessing the scalability of such a system, in
particular the scalability of the data collection and assessment
mechanism. Also, our assessment tool has uncovered some
unanticipated behavior in the way Windows Media Player and
Windows Media Server interoperate, particularly in the size of
the receive buffer as the stream plays out. We are utilizing this
architecture in order to explore these discrepancies more fully.
Finally, we are upgrading the measurement tool itself to fully
support both user mode and test mode.

ACKNOWLEDGMENTS

The authors would like to thank Puneet Sharma, Sujata
Banerjee, and Jack Brassil for their assistance and feedback
during this project.

REFERENCES

[1] S. Kalidindi and M. Zekauskas, “Surveyor: An infrastructure for Internet
performance measurements,” inProceedings of INET ’99, San Jose, CA,
June 1999.

[2] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An architecture for
large-scale Internet measurement,”IEEE Communications, vol. 36, no.
8, pp. 48–54, 1998.

[3] “NLANR’s Network Analysis Infrastructure,” http://moat.
nlanr.net/NAI/ .

[4] “Stanford Linear Accelerator Center’s IEPM project,”http://
www-iepm.slac.stanford.edu/ .

[5] D. Thaler and C.V. Ravishankar, “An architecture for inter-domain trou-
bleshooting,” inProceedings of the Sixth International Conference on
Computers Communications and Networks, Las Vegas, NV, September
1997.

[6] M. Murray and kc claffy, “Measuring the immeasurable: global Internet
measurement infrastructure,” inPAM 2001 – A Workshop on Passive and
Active Measurements, Amsterdam, Netherlands, April 2001.

[7] A. Mena and J. Heidemann, “An empirical study of Internet audio traffic,”
in Proceedings of the IEEE INFOCOM’00, Tel Aviv, Israel, March 2000,
pp. 101–110.

[8] ITU-T Recommendation P.910, “Subjective video quality assessment
methdods for multimedia applications,” Recommendations of the ITU,
Telecommunications Sector.

[9] S. Wolf and M. H. Pinson, “Spatial-temporal distortion metrics for in-
service quality monitoring of any digital video system,” inProceedings
of SPIE International Symposium on Voice, Video, and Data Communi-
cations, Boston, MA, September 1999.

[10] W. Ashmawi, R. Guerin, S. Wolf, and M. H. Pinson, “On the impact of
policing and rate guarantees in Diff-Serv networks: A video streaming
application perspective,” inProceedings of SIGCOMM 2001, San Diego,
CA, August 2001.

[11] “NetIQ’s Chariot software,”http://www.netiq.com .
[12] “Broadstream,”http://www.broadstream.com .
[13] “Streamcheck,”http://www.streamcheck.com .
[14] “Keynote Streaming Perspective,”http://www.keynote.com/

solutions/html/streaming_perspective1.html .
[15] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A trans-

port protocol for real-time applications,” IETF RFC 1889, January 1996.
[16] “RealNetworks’ RealPlayer,”http://www.real.com .
[17] “Windows Media Player,” http://www.microsoft.com/

windows/windowsmedia/players.asp .

[18] Y. Wang, M. Claypool, and Z. Zuo, “An empirical study of RealVideo
performance across the Internet,” inProceedings of ACM SIGCOMM
Internet Measurement Workshop, San Francisco, CA, November 2001.

[19] D. Loguinov and H. Radha, “Measurement study of low-bitrate Internet
video streaming,” inProceedings of ACM SIGCOMM Internet Measure-
ment Workshop, San Francisco, CA, November 2001.

[20] A. C. Dalal and E. Perry, “An architecture for client-side streaming media
quality assessment,” Tech. Rep. HPL-2002-90, Hewlett-Packard Labs,
April 2002.

