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ABSTRACT 
 

Bistable director configurations are of great interest in liquid crystal display technologies, offering the possibility of 
higher resolution combined with reduced power consumption. One way to achieve such bistability is to use the cell 
geometry.  As part of an ongoing programme to analyze quasi-stable configurations of liquid crystals in polyhedral 
geometries, we construct a topological classification scheme of unit-vector fields in convex polyhedra subject to 
tangential boundary conditions and obtain a general lower bound on the energy of these configurations.  We also study 
the specific case of a unit cube, where we obtain lower and upper bounds for the energies of a family of topological 
types. 
 

1. INTRODUCTION 
 
Our problem is motivated by the study of liquid crystals in confined geometries. Confined geometries may require the 
liquid crystal molecules to satisfy certain material-dependent boundary conditions, amongst which tangential boundary 
conditions are one possibility. A stable configuration of a nematic liquid crystal may be described by a unit-vector field 
that minimizes the energy, the so-called Frank elastic energy [1] subject to the imposed boundary conditions. Such 
configurations satisfy the associated Euler-Lagrange equations – a non-linear system of elliptic partial differential 
equations.  
 
 Simple geometries may support only one stable configuration. Display technologies based on such geometries need a 
constant source of power to maintain optical contrast. On the other hand, more complex polyhedral geometries can 
support multiple stable configurations with distinct optical properties [3]. Such geometries form the basis of one class of 
bistable display technologies, in which power is required only to switch between optically contrasting states but not to 
maintain them. Our study of these geometries includes a complete topological classification of the admissible 
configurations along with an analysis of the energies of the stable (or metastable) states of different topological types. 
 

2. TOPOLOGICAL CLASSIFICATION [4] 
 
Consider unit-vector fields, ϕ̂ , in a three-dimensional convex polyhedron, P, subject to tangential boundary conditions. 
Tangential boundary conditions implies that on the faces of P, ϕ̂  is tangent to the faces. Consequently on the edges of P, 
ϕ̂  is parallel to the edges and therefore, necessarily discontinuous at the vertices. We require that, away from the 
vertices, ϕ̂  is continuous (thus we do not consider defects in the bulk). 
 
Two vector fields, ϕ̂  and 'ϕ̂ , are said to be homotopic if one can be continuously deformed into the other whilst 
preserving the boundary conditions. We want to determine the homotopy classes of such vector fields. These classes are 
labelled by a complete set of integer invariants, which we call edge orientations, kink numbers, and wrapping 
numbers.  The values of these invariants are constrained by certain sum rules. It turns out that ϕ̂ and 'ϕ̂ are homotopic 
if and only if their invariants are the same.   
 
Below we give a brief and informal description of these invariants. See [4] for details. 
 
The edge orientations, ( )ϕ̂bE , are just the values of ϕ̂  on the edges be  (they are determined up to a sign). 
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Kink numbers.  Consider a path 10),(', ≤≤ ttP bb , on a face of the polyhedron, denoted by cf , which connects a pair 

of adjacent edges, be and 'be , on cf . Tangential boundary conditions imply that, along )(', tP bb ,ϕ̂  is constrained to lie 

in the unit circle tangent to cf . The associated kink number, ( )ϕ̂',bbk , counts the number of times ))((ˆ ', tP bbϕ winds 

around this circle relative to the shortest arc joining the values of ϕ̂  at the endpoints, namely ( )ϕ̂bE and ( )ϕ̂'bE .   
 
 
 
 
 
 
 
 
 
 
 
 
 
Continuity implies that the kink numbers on each face satisfy a sum rule, which depends on the edge orientations (the 
form can be worked out explicitly).   
 
Wrapping numbers.   Let at be a surface which isolates one of the vertices, av  , from the others.  The wrapping number 

( )ϕ̂aw  is a signed count of the number of times ( )atϕ̂  covers, or wraps, around the unit sphere relative to some 
conventionally defined reference configuration. Continuity implies that the wrapping numbers sum to zero. 
 
 
 
 
 
 
 
 
 
 
 

 
3. LOWER BOUNDS FOR THE ENERGY [5] 

 
In the one-constant approximation, the Frank energy is given by 

 
.|ˆ| 2 dVE

P
∫∫∫ ∇= ϕ  

Let IE  denote the minimal energy for configurations of a given topological type, characterised by a set of values I of the 
edge orientations, kink numbers and wrapping numbers. We extend methods from [2] to unit-vector fields satisfying 
tangent boundary conditions, to obtain a lower bound for IE  - this lower bound is a function of the topological 
invariants. Below we give a brief description of the argument and the result.  For details see [5]. 
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Let ϕ̂  be a unit-vector field of topological type I with continuous second partial derivatives.  A unit-vector field is a 

mapping from P to the two-sphere, 2S . Let D denote the vector dual to the pullback, ( )ωϕ *ˆ , of the area-form,ω , on 
2S  i.e. 

                                                                    ν
γ

µ
β

ρ
ρµνγαβ

α ϕϕϕεε ˆˆˆ
2
1

∂∂=D                              (1)                                                   

 
where γαβε  is the antisymmetric tensor and  the subscripts γβ , denote partial derivatives. Thus, the flux of D through 

a surface Σ  in P is the signed area of ( )Σϕ̂ on 2S . It follows that div D = 0 in the interior of P, and one can check the 
following inequality,  

                                                                                    2|ˆ|
2
1|| ϕ∇≤D .                                              (2)                                                    

. 
Consequently, IE is bounded from below by 

         ∫∫∫≥
P

I dVDE ||2                                             (3)                        

Now, let ( )rξ  be any real-valued Lipschitz function on an arbitrary bounded domain 3R⊂Ω with Lipschitz constant 

less than or equal to 1 i.e. ( ) ( ) |||| 2121 rrrr −≤− ξξ . Then the following holds for a vector field A with continuous 
partial derivatives  
                                                   ∫∫∫ ∫∫∫ ∫∫

Ω Ω Ω∂

⋅+⋅∇−≥ dSAdVAdVA ξξ||                     (4) 

 
(Note that (4) follows directly from integration by parts for a continuously differentiable ( )rξ  with .1|| ≤∇ξ ) 

We apply (4) to the case DA= , taking Ω  to be a subset P̂ of P , obtained by removing small neighbourhoods of each 

of its vertices. Using the properties that div D = 0 in P̂  and 0=D  on the truncated faces of P̂  [4], we obtain 
 
                                                                    ( ) ( )a

v
aI vQE

a

ξϕπ ∑≥ ˆ8max .                                     (5) 

Here ( )ϕπ ˆ4 aQ is the flux of D through a small surface in P isolating the vertex av  from the other vertices (eg. at  to 

Figure2). In fact, ( )ϕ̂aQ depends only on the topology of ϕ̂ ; it is by itself a homotopy invariant independent of any 

convention. An explicit expression in terms of the invariants I is given in [4]. Note that, in general, ( )ϕ̂aQ  is not an 

integer in contrast to the related notion of the integer-valued degree of a map 22:ˆ SSf →  The continuity of ϕ̂  in the 
bulk implies that 
                                                                              ( ) .0ˆ =∑ ϕ

av
aQ                                                         (6)                      

 Let  +S  (respectively −S ) denote the set of vertices av  where ( )ϕ̂aQ > 0 (respectively ( )ϕ̂aQ < 0).  We now use the 
Kantorovich theorem [2] to deduce that the energy is bounded by the minimum of the following linear function: 
 
                                                         |,.|8min

,
ji

SjSi
ijI vvaE −≥ ∑
−+ ∈∈

π                                                   (7)      

 

where 0≥ija , and 
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                                             ( ) ( )∑ ∑
− +∈ ∈

==
Sj Si

jijiij QaQa |ˆ|,ˆ ϕϕ  

This gives a lower bound for the energy in terms of the solution of (7). Such problems can be easily solved for given 
values of ( )ϕ̂aQ  and || ji vv − . 

 
4. THE MODEL CONFIGURATIONS [6] 

 

We introduce a 2-parameter family of unit-vector fields, nm,ϕ̂ , contained in a unit cube, subject to tangential boundary 
conditions, labelled by two integers m and n, called the (m,n)-wrapion configurations. For definiteness, take a unit cube 
to be the region of space { }1,,0|),,( ≤≤ zyxzyx . We parameterise physical space by polar coordinates, θ and φ , 
with respect to the origin and define the vector field in the first octant by 

2
1,,0))12cos(,)12sin()12sin(,)12cos()12(sin(ˆ *

, ≤≤+++++= zyxmnmnmnm θφθφθϕ . (8) 

Elsewhere, ))(),(),((ˆ),,(ˆ *
,, zhyhxhzyx nmnm ϕϕ = where 









≤≤−
≤≤

=
12/11

2/10
)(

tt
tt

th . 

 
4.1 The associated invariants. 
 

1.Edge orientations: Let zyx EEE ˆ,ˆ,ˆ  denote the edge orientations on the edges along the positive x,y and z axes 
respectively. Then, it follows from (1) above that 

zEyExE z
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y
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x ˆˆ,ˆ)1(ˆ,ˆ)1(ˆ =−=−= +  

nm,ϕ̂ is identified on pairs of parallel edges so that the corresponding edge orientations are equal.   
 
2. Kink numbers: We have three kink numbers associated with the origin, one for each of the coordinate planes, 
labelled by xzzyyx kkk ,,, ,,  respectively. 
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[X] denotes the integer part of the quantity X.  
At vertices other than the origin, with coordinates ),,( zyx εεε , the kink numbers change by a sign ( ) zyx εεε ++−1 .  
 
3. Wrapping numbers: The wrapion-wrapping number relative to the origin, w0, is shown below for two distinct cases – 
n even and n odd. 
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n w0 
 

n even 
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n odd 1
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The wrapping numbers associated with the other vertices are of the same magnitude as w0 but alternate in sign. 
 
4.2 Lower bounds. 
 

Let 0
,nmE  denote the total energy of the (m,n)-wrapion configuration. Then ),( nmIE  is the minimal energy in the  

(m,n)-homotopy class – the class of all vector fields which are homotopic to the (m,n)-wrapion state. Firstly, we 
calculate lower bounds for ),( nmIE . 

The symmetry of these configurations implies that ( )ϕ̂aQ  is of equal magnitude for all the vertices av , but alternates 

in sign. ( )ϕ̂aQ  is explicitly calculated to be 8/)12( +n . It follows from (6) that there four positive and four negative 
vertices respectively; these are paired together to minimize the sum (7) . This yields the following lower bound 
 
                                                                  )12(4),( +≥ nE nmI π .                                                      (9)                                                  
Note that this lower bound is linear in the parameter n. 
 
4.3. Upper bounds. 
 

0
,nmE  is itself an upper bound for ),( nmIE . By symmetry, all octants of the cube make an equal contribution to 0

,nmE  and 

it, therefore, suffices to consider only the first octant, namely, )2/1(,,0 ≤≤ zyx . 2
, |ˆ| nmϕ∇ is explicitly calculated to 

be 
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We have analytically computed the integral of (10) over a unit cube; the expression involves the Appell hypergeometric 
functions of two variables, ( )yxF ,;',,',,2 γγββα , for a suitable choice of the parameters and is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(10) 

(11) 
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0
,nmE  can also be represented in terms of a double infinite series or a single infinite series involving the Gauss 

hypergeometric function of one variable. The detailed calculations are presented in [6]. 
 
A simple approximation is obtained by inscribing the octant of the cube within an octant of a ball of radius 2/3 .  
This yields the following upper bound for the minimal energy 
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Note that (12) contains quadratic terms in both the parameters m and n. This indicates that there will be a large difference 
between the lower (9) and upper (12) bounds with increasing values of m and n.  
 
We have also carried out some preliminary numerical analysis of the (m,n)-wrapion configurations using FEMLAB – 
Finite Element Modelling LABoratory, a commercial PDE solver package. Some early results in this context are 

 
(m,n) 

nmE ,  The energy of the 
corresponding FEMLAB 

solution 

Lower bound using (9) 

(0,0) 15.2 14.8 12.6 
(0,1) 78.8 49.8 37.7 
(1,0) 74.9 67.8 12.6 
(1,1) 164.2 122.9 37.7 

 
We see that (9) suggests that the minimal energy is completely determined by the parameter n. 
 

5. FURTHER WORK 
 
Ongoing work includes a study of the minimizing configurations and trying to obtain refined estimates of the minimal 
energy in the different homotopy classes. We also aim to extend our study to other topological classes and arbitrary 
polyhedra.  
 
Further extensions of this work are to incorporate defects in our set-up, either in the bulk or on the surface of the 
polyhedron, construct similar classification schemes for normal and periodic boundary conditions and deal with more 
complex (non-convex) geometries. 
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