A

invent

OWL DL: Treesor Triples?

Sean Bechhofer’, Jeremy J. Carroll
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2003-267

January 16", 2004+

E-mail: seanb@cs.man.ac.uk, jjc@hpl.hp.com

semantic The Web Ontology Language (OWL) defines three classes of
web, OWL, documents: Lite, DL and Full. All RDF/ XML documents are OWL
parsng, RDF Full documents, some OWL Full documents are also OWL DL

documents, and some OWL DL documents are also OWL Lite
documents. This paper discusses parsing and species recognition -
that is the process of determining whether a given document falls
into the OWL Lite, DL or Full class. We described two aternative
approaches to this task, one based on abstract syntax trees, the other
on RDF triples, and compare their key characteristics.

* Internal Accession Date Only Approved for External Publication
! Department of Computer Science, University of Manchester, Manchester, M13 9PL UK
a Copyright Hewlett-Packard Company 2004

OWL DL: Trees or Triples?

Sean Bechhofer
Department of Computer Science
University of Manchester
Manchester, M13 9PL
UK

seanb@cs.man.ac.uk

ABSTRACT

The Web Ontology Language (OWL) defines three classes of docu
ments: Lite, DL and Full. All RDF/XML documents are OWL Full
documents, some OWL Full documents are also OWL DL docu-
ments, and some OWL DL documents are also OWL Lite docu-
ments. This paper discusgearsingandspecies recognitior that

is the process of determining whether a given document ifatits

the OWL Lite, DL or Full class. We described two alternatiye a
proaches to this task, one based on abstract syntax treesthiér

on RDF triples, and compare their key characteristics.

Categories and Subject Descriptors

Jeremy J. Carroll
Hewlett-Packard Labs
Bristol, BS34 12QZ
UK

jjc@hpl.hp.com

During the development of OWL, some doubt was expressed as
to whether this was possible. An implementor reading the doc
umentation gets a shock when they realize they have to run the
nondetermistic mapping backwards.

We describe two different implementations, one based aroun
the trees, the other on the triples.

1.1 Whatis OWL Syntax?

The Web Ontology Language (OWL) [8] defines three classes
of documents: Lite, DL and Full. All RDF/XML documents are
OWL Full documents. Some OWL Full documents are also OWL
DL documents, and some OWL DL documents are also OWL Lite
documents. The characterisation of OWL DL and OWL Lite is

1.2.4 [Artificial Intelligence]: Knowledge Representation Formalismsessentiallysyntacticin nature. That is, the relevant rules define

and Methods—-Representation language®.3.4 [Programming
Language$: Processors-Rarsing

General Terms
Algorithms, Languages, Performance

Keywords
Semantic Web, OWL, Parsing, RDF

1. INTRODUCTION

In 1999, van Harmelen and Fensel [15], argued:

No matter how nice any KR representation language is
as proposed by the Al community, [...] the order of
precedence is the other way rouritbw wellcan Al
concepts be fitted into the markup languages that are
widely supported on the Web, [.our emphasik

This question is answered with OWL, the Web Ontology Lan-
guage. The underlying Al concept is Description Logic [Het
Web markup language is RDF [10].

This paper discussd®w wellthe triple oriented RDF abstract
syntax can encode the more conventional tree structuraebsfor
description logics.

The OWL Semantics and Abstract Syntax Recommendation [12]
normatively defines OWL. Two different semantics are givame
for the RDF triples, the other for the OWL abstract syntaxesre
(corresponding to a mainstream description logic syntak s1$ in
[1]). Mapping rules are specified linking the trees with thiplés.

For this to work, for OWL to make sense, it has to be possible
to switch between the triples and the trees. A minimal taskyat
of being a syntax checker [7] — which involves classifying tree,
given the triples.

structural manipulation, rather than the semantic rulasdtve in-
terpretation of structures.

The first structural rules are those defined by RDF/XML syntax
[3], which gives a set of rules for converting an RDF/XML decu
ment into an RDF graph [10].

This paper is concerned with the further rules, found in tiéLO
Semantics and Abstract Syntax [12] (S&AS), which then ctrara
terise the RDF graphs that are in OWL DL and OWL Lite.

1.2 Terminology

A parsertakes an input document and returns an abstract syntax
tree (which can then be classified).

A recognizer(or species recognizer) takes an input document
and indicates if it belongs to OWL DL or OWL Lite.

A parser can easily be transformed into a recognizer, butinet
versa.

An OWL Syntax Checkeas defined in the OWL Test Cases Rec-
ommendation [7], is a recognizer for OWL DL and OWL Lite.

1.3 Two Approaches

This paper presents two different systems reflecting twiermifit
approaches to OWL syntax.
The more conventional, WonderWeb parser, constructs an ab-
stract syntax tree and checks its well-formedness. Thisoaph is
also used by the other OWL Syntax checkers that reporteagluri
the OWL Candidate Recommendation, such as OWLP and Pellet.
The other, the Jena checker, is a recognizer, which is dyrong
triple oriented, depending on a pretransformation of thergnar
and mapping rules to be a triple-centric grammar with norezfee
to abstract syntax trees.

2. OWL SYNTAX

1Seent t p: / / www. wa. or g/ 2001/ sw/ VebOnt /i npl s for details.

A document is in OWL DL, if it is an RDF/XML document for
which the corresponding graph conforms to the rules for OVLL D

The rules for OWL DL are defined constructively in S&AS. An
abstract syntax is defined, that describes a set of parse Eeeh

As in OWL Overview [11]), OWL Lite and OWL DL can be
partially differentiated by the vocabulary used, for exéargm : -
uni oncf does not occur in OWL Lite. However, this approximation
is wholly inadequate for writing a species recognizer.

of these parse trees can then be converted into one or more RDF

graphs using nondeterministic mapping rules. This is shiovta-
ble 1

An OWL syntax checker, has to, at least implicitly, do this{pr
cess backwards - i.e. take an RDF graph, invert the mappleg,ru
and hence find a corresponding abstract syntax tree. If iberee,
then the document is in OWL DL, otherwise it is in OWL Full.

2.3.1 Axioms and OWL Lite

There are a number of situations when different constrastio
in the abstract syntax could yield the same triples. For gtem
axioms[A], [B] and[C] in Table 2 all yield the same RDF triple
shown in the table, whermc is a bnode representing the intersec-
tion of b andc. Note however, that in this casebifindc are classes,

If more than one graph corresponds to a parse tree, then thesghen[A] may be part of an OWL Lite ontology whil] and[C]

graphs have the same semantic interpretation. Moreovee than

may not as they involve disallowed boolean expressionss pai-

one parse tree may correspond to the same RDF graph, in whichticular example illustrates that species recognition ketwDL and

case the two trees have the same semantic interpretation.

2.1 The Abstract Syntax

The abstract syntax rules are described in section 2 of S&AS
[12].

These are fairly conventional looking BNF [9] rules:

{ontology ::= ‘Ont ol ogy ([(ontologylD] { (directive })’

(axiom)

‘d ass(’ (classID (modality) ...")’
| 'DatatypeProperty({datavaluedPropertylld...’)’

(individualy ::= ’Individual(’ [(individuallD)] ...
{ 'type((typg)’ } { (valug })

The principle novelty is that these rules describe abssgatax
trees, and not a document. There is no intent that the tetmina
leaves of the tree be read off to form a text string.
Thus the abstract syntax is a set of trees, defined by a BNF.
The trees defined by these rules are not quite the parse trees a
cording to the BNF, but structural trees defined by the ‘(' §huh
the terminals in the rules. A simple rule like:

(individual)

(fact)
is not made explicit in any corresponding abstract synteex.tr

2.2 The Mapping Rules

The mapping rules are described in section 4 of S&AS [12].
A typical mapping rule looks like:

Individual(
valuepI D1v1) ———_:XT(pID:) T(v1).
.. .value(uIDkvk)) L_X T(pIDk) T(Uk).

This shows that an abstract syntax tree matching the lett bale,
can be transformed into triples as given on the right hanel Sile
functorT'(-) is used to show recursive application of the mapping
rules. A node is returned from such a recursive applicatia is
used within the triples on the right hand side of the rule.

We show the node to be returned (a ‘main node’ in the terminol-
ogy of S&AS), as a superscript above the arrow of the rule.

Lite is not simply a case of checking vocabulary — we must also
examine how the vocabulary has beeed

2.4 Error Classification

There are, in general, two ways in which an RDF graph may fail
to correspond to an OWL Lite or DL ontology.

e Thereis an OWL Lite or DL ontology in abstract syntax form
which maps to a superset of the given triples but some of the
triples have been forgotten and are not in the graph.

e The ontologies in abstract syntax form that map to the tiple
or any superset of the triples violate some of the restristio
for membership of the OWL Lite or DL subspecies. (This
includes the case where there are no such ontologies).

We might (loosely) describe the first asternalerrors, and the
second aiternal errors.
Examples oexternalerrors include:

e Using a URI reference in a particular context (e.g. as the
subject of arrdfs: subd assOf triple) without including an
appropriate explicit type triple;

e Malformed syntactic constructs, e.g. a node typed as an
ow : Restriction that is not the subject of asw : onPr op-
erty triple;

e Using the wrong vocabulary, e.g.df: Property instead of
the more specifiéw : Obj ect Property Of ow : Dat at ypePr op-
erty,;

Examples ofnternal errors include:

e Violation of the rules concerning separation of classedi; in
viduals and properties (in DL and Lite we require that these
interpretations are disjoint);

e The use of expressiveness outside the scope of the species
— for example using aow : uni ono in an OWL Lite docu-
ment;

e Redefining the reserved vocabulary (e.g. those things in the
OWL, RDF and RDF(S) namespaces).

o A directed cycle of blank nodes is usually an internal error
(see section 2.6.2)

Errors concerning structure sharing, the use of blank nodey

fall into either category depending on the exact error, (&=

tion 2.6.2).
It may often be the case that “missing” triples are simply due

The mappings of the substructures are shown on the right handto an omission, rather than a desire to use expressivenésisieou

side in the same order as the abstract syntax tree on th&estis
important when there are many optional or repeated elements

2.3 OWL Lite

the scope of OWL DL. For example a URI may only be used in
a “class” context, but without an explicit triple. In thisssg the
document will be OWL Full, but a “fix” may be applied to the doc-
ument (effectively adding the missing triple). We must beetid

Some OWL DL documents are also in OWL Lite. These are the when applying such fixes that the original intention of thewo

ones for which there is an abstract syntax tree which onlg tiee
grammar rules from the OWL Lite section of S&AS.

ment is not altered, but such a facility is likely to prove fuseWe
return to this issue in Section 9.

Ontol OQY(<rdf : RDF
—Cd ass(eg:cl) xm ns: owl ="ht t p: / / waw. w3. or g/ 2002/ 07/ owl #"
_ . xm ns: rdf s="http://ww.w3. or g/ 2000/ 01/ r df - schema#"
Dat aPr operty(€g:p) _:o rdf: type ow : Ontol ogy . xm : base="http:// ww. exanpl e. or g/ eg"
eg: cl rdf: type ow : Cl ass . xm ns: rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#" >
I ndi vi dual (= eg:p rdf:type ow : DatatypeProperty . o omrowelogyE s
—type(eg:cl) _:i rdf:type eg:cl . <ow : Dat at ypeProperty rdf:|D="p"/>
)) L p " " ccl
—val ue(eg:p, bar") i1 eg:p "bar <igg:cpibar</eg: p>
</eg:cl>
)) </ rzfg: (I:QDF>
OWL Abstract Syntax [12] RDF Graph [10] RDF/XML Syntax [3]

Mapping Rules

Table 1: Overview of Definition of OWL Syntax

Abstract Syntax RDF triples
[A] | dass (a conplete b c)
[B] Class (a conplete intersectionOf(b c)) a ow : equival ent Cl ass Tbc
[C] | Equivalentd asses (a intersectionO(b c))

Table 2: Axioms and OWL Lite

2.5 Imports is permitted — each bnode can participate as the object obat m

A number of difficult issues in parsing and recognition relt one triple. _
imports. Species validation must be done onithports closure There are, however, two cases where a blank node corresypndi
of the ontology — this effectively involves retrieving URtsat are to an expression can be used in more than one place — when the
the object of arw : i npor t s triple and adding any triples from an tra_nslatlon results from amyui val ent C asses O Di sj oi nt O asses
RDF graph found there to the current RDF graph. axiom.

Validation cannot be performeldcally, i.e. without first cal-

culating the imports closufgas it may be the case that required 2.6.1 Bnodes in axioms

type triples are actually present in the imports. For examplest When anonymous class expressions are usedlirval ent d asses
imports-008, the required triple typing the imported URI as an on- OF D sj oi nt O asses axioms, the mapping rules permit the re-use of
tology (required in OWL DL) is actually contained in the invped the resulting bnodes produced. However, this reuse is diolyed
ontology. Similar situations can arise with classes anggnies. within the context of the triples produced by the mappingrfitbat

It can also be that case that an ontology may import an RDF Particular axiom. _
graph from a URI where the imported graph is in OWL Full, but ~ FOr an equivalent classes axiom:

the importing ontology still remains in OWL Lite. This woulte Equivalent O asses(di ... dn)
the case where, for example, the imported ontology asserds: - the mapping requires the production of a sebwf: equi val ent -
type bwithout explicitly typingb as a class. We return to thisissue ~ C ass triples that form an (undirected) connected graph over the
in Section 8. nodes produced by translating eath
For a disjoint classes axiom:
2.6 Blank Nodes DisjointClasses(di ... dn)

A number of conditions regarding valid OWL syntax relate to the mapping requires the production of a sebwaf: di sj oi nt Wth
blank nodes (or bnodes) in the RDF graph. A blank node is a node triples s.t. each node produced by translatiagia related to every

that is not a URI reference or a literal — it is a unique nod¢ ¢ha otherd; for i # j as either subject or object irvai : di sj oi nt W th

be used in one or more RDF statements, and has no globally-dist triple (forming anow : di sj oi nt W t h clique).

guishing identity. A key point is that bnodes cannot be reféito We can see that in the above cases, bnodes corresponding to a

from outside the document that we are processing. translation from an anonymous class expression may pzatein
Bnodes generated by the mapping correspond to: a number of triples. They may not, however, participate iy an

triples that do not correspond to those generated by the im@app
rule applied to the axiom.

In addition, thesubcl ass axiom, may introduce a blank node
that is the subject of andfs: subd asso triple, and such a blank
node cannot be the object of any triple.

e Anonymous classes, e.g. arbitrary class expressions such a
intersections, unions and enumerations.

e Restrictions, e.g. existential quantifications over prtgs.

e Anonymous individuals, e.glohn’s brother

The mapping rules [12] state:
Bnode identifiers here must be taken as local to each transfor 2.6.2 Bnode Summary
mation, i.e., different identifiers should be used for easfocation In summary, blank nodes must fit at most one of the following
of a transformation rule. cases:
Thus whenever an expression such @r secti on (Person

Ml &) is used in an ontology, the mapping createses bnode 1. Be the subject or object of any numberoef : equi val ent -

- . . d ass triples
corresponding to that expression. In general, no sharitmofles 2. Be the subject or object of any numberaf: di sj of nt Wit h
2See Section 5.3. of S&AS. triples (in which case a further check must be applied)
Shtt p://ww. wa. or g/ 2002/ 030wl t /i nport s/ 3. Be the subject or object of adf s: subd assc triple.

Mani f est 005. r df 4. Be the object of some other triple.

Hence, a graph may have an internal error concerning a blank Moreover, the OWL support is intended as OWL Full support

node which is in more than one of these categories, or is\vedol
in two triples in cases 3 or 4. Or it may have an external ecan;
cerning the blank nodes involved withw : di sj oi nt Wt h triples
which may not form a clique.

In addition blank nodes may not form directed cycles, exaept
cases 1 and 2.

3. SYSTEM DESCRIPTIONS

In the following sections we provide overviews of the two-sys
tems discussed in this paper — these will be referred to agiéven
Web and Jena.

3.1 WonderWeb

WonderWeB is an EU IST FET project concerned with “Onto-
logy Infrastructure for the Semantic Web”. As part of the kvof
WonderWeb, an API for OWL Ontologies has been developed, pro
viding a collection of (Java) interfaces allowing the reganetation
and manipulation of OWL ontologies. A detailed descriptdthe
rationale behind the APl is given in [2], but put briefly, th®An-
sulates application developers from the vagaries of comssmtax,
and provides a higher level view of the objects (classeqgties,
axioms etc) in an OWL Ontology. The structure of the data rhode
in the APl is largely based on the OWL Abstract Syntax [12].

The WonderWeb API also aims to separate the functionaldy th
one might require when working with OWL ontologies. Aspedfts
functionality such as:

e change (addition/removal)

e serialization

e parser/deserialization

o inference

are all considered separately, allowing implementatiorsetclear
about the services they provide. The codebase of the ARU¢imy
a species validator as decribed here) is available for dmaehéis an
open source projett

Of course, insulating applications from concrete syntaslis
well and good, but it is clear that mechanisms for parsing seid
rializing from/to concrete representations are vital fealrworld
applications. To this end, a parser for OWL ontologies re@néd
in RDF/XML has been produced. The parser takes an RDF/XML
document and attempts to produce a corresponding absgraaks
tree.

The WonderWeb OWL API is particularly targeted at the OWL
DL and Lite species (a research agenda of the project is thefus
Description Logic reasoners with OWL). The ability to renomp
when a particular document is in a species (and is thus arteenab
to the appropriate reasoning techniges) is a key requireraed
the WonderWeb parser performs species recognition as pst o
parsing process.

3.2 Jena

Jen4 [5] is an open source semantic web developers kit, princi-
pally developed at HP Labs.

It provides APIs for manipulating RDF graphs. The Ontology
API provided for OWL and DAML ontologies, while abstracting
from the underlying RDF graph, does not attempt to totaltetor
replace it.

*htt p: // wonder web. semant i cweb. or g
Shtt p://sourceforge. net/projects/ow api
http://jena. sourceforge.org

with reasoning support for cases not included in the OWL Dh-sy
tactic subset. The Ontology API within Jena has explicit ORIl
support handling the polymorphism that can occur betwegssels
and individuals, datatype properties and object properéte.

Thus the syntax checker requirements are an add on to thie onto
ogy support rather than a prerequisite. The typical userirespent
which may be addressed is to verify that a graph is within OWL D
before saving it to be exported. A further goal is to be ablesizh
up a file that is nearly in OWL DL or OWL Lite, so that it is within
the syntactic subset, (see section 9). There is no requiretoe
produce abstract syntax trees. Moreover, it is more in keppith
the triple-centric philosophy of Jena to have a triple-deniew of
OWL syntax. A further goal is to be as incremental as possible
the processing of the triples. This goal is motivated by nishing
to place arbitrary limits on the usefulness of the checkertiqu-
larly since the decision not to produce an abstract synéexdutput
makes incremental processing significantly easier.

The Jena syntax checker operates in a triple oriented fashio
and hence depends upon a different triple oriented expressi
the grammar of OWL DL. This is produced in a precompilation
stage, akin to the well known compiler-compiler technidug[In
this stage, which occurs while the system is being builtathetract
syntax rules and the mapping rules are analyzed in detailetA s
of syntactic categories for nodes in a graph and a table piegi
linking these syntactic categories is produced. This tabteples
is used as the grammar at runtime.

The Jena syntax checker’s principle task is to find a mapping
from the nodes in the graph to the syntactic categories shath t
every triple appears in the transformed grammar.

4. THE WONDERWEB PARSER

The WonderWeb parser takes an RDF graph and attempts to
build an abstract syntax tree. The basic strategy employed i
follows.

1. Identify named objects: classes, properties

2. ldentify axioms asserted in the ontology. In the course of
identifying axioms, we may need to translate nodes corre-
sponding to class expressions.

3. Translate anything that’s left. Again this may require th
conversion of class expressions occurring as the subject of
rdf: type triples.

During this process, we keep a note of those triples that have
been “used”, e.g. those that are identified as being thetresul
the application of the mapping rules to a particular cormstriBy
doing this we can identify any triples that are “left” afteevaave
constructed all classes, properties and the axioms cangethose
classes. These unused triples are then interpreted asafacts
individuals in the ontology.

Identifying named objects is simply a case of finding all thos
(named) nodes that are the subject of an t ype triple where the
object isow : O ass, ow : bj ect Property OF ow : Dat at ypePr op-
erty’. In these cases, optional triples may also be present — for
example if we have rdf:type ow : O ass, the rules also allow
the addition of rdf:type rdfs: d ass (even though the additional
triple adds no extra semantic information).

Once those objects are identified, we can translate axioms co
cerning them. For example, for any triples of the forpow : -

"we must also identify instances ofu : Ont ol ogyProperty and
ow : Annot at i onPr operty, but space precludes us from providing
a detailed exposition of the parsing process here.

i nverse q we check thap andq are instances afw : bj ect Pr op-
erty and addy to the list of inverses held by. If p andq are not
instances obw : Ovj ect Property, and we are simply interested in
recognizing OWL DL and OWL Lite ontologies, we can stop asthi

sponding to each RDF graph retrieved from a particular URIST

is done by recursively calling a new parse on an imported URI.
In order to do this successfully though, we need to passrimder

tion between the parsing processes, in particular recoprdhether

point as we now know that the RDF graph cannot correspond to a URIs have been correctly typed. This then allows us to detd wi

OWL DL or Lite ontology.

Other axiom types such asfs: subProperty are dealt with in
a similar manner. A more interesting translation task is e
axiom deals with a bnode representing a class expressiorFg-i
ure 1. In this situation, we first identify the node which ie tibject

<ow : Obj ect Property rdf:about ="#p">
<r df : domai n>
<owl : Cl ass>
<owl : conpl ement O rdf: resource="#A"/>
</ ow : C ass>
</ rdf : domai n>
</ oW : Qbj ect Property>

Figure 1: Complex Domain Expression

of the triple. This is then translated to a class expressjoa tase
analysis on the triples in which the node appears as subjact.
general, there should be a single such triple, with its pegdide-
termining the form of the expression produced. The presefice
more than one such triple indicates an OWL Full ontology. lRec
sive translations may be necessary if the expression ieslodsted
expressions.

Lists are used to represent the operands in expressionsasuch
intersections. Such lists are translated by collectinghainodes
that appear in the list (as the object of adi: first triple) and
forming a new expression using the translations of thoseesiod
The well-formedness of the list (each node in the list shdadd
the subject of exactly onedf: first andrdf:rest triple) is also
checked during this process.

4.1 Axioms and OWL Lite

As discussed in Section 2.3.1, care needs to be taken when han

dling axioms concerning classes. The strategy employesligeo
translate anydf s: subd assO andow : equi val ent d ass triples to
“class definitions” whenever possible. For example, withzéd a
rdfs: subO assO x, wherea is a named node (as opposed to a bn-
ode), then we attempt to construct an object corresponding t

Class(a partial Tx)

whereTx is the translation of to a class expression. Similarly, if
we encountes ow : equi val ent O ass x then this is translated to

Class(a conplete Tx)

(but see later discussion on handling blank nodes). Trasesfy
ensures that OWL Lite ontologies are produced wheneveilgess

4.2 Handling Imports

The use ofow : i nport s allows us to refer to RDF graphs held
at separate locations. Although the validation processtifopned
over the imports closure of the graph, it can be useful torid/@o-
cess each chunk separately. It is often the case when weae
ow :inports onto2 that the statements aht o1 are intended to
form a singleont ol ogy, while those abnt 02 form anothet. A for-
mal definition of this difficult due to the inexpressivene$R0F
— we cannot represent the fact that particular assertidosdén a
particularont ol ogy (See Section 8). The parser attempts, wherever
possible, to perform this “chunking” (based on the physioah-
tions of the triples) and builds individuaht ol ogy objects corre-

8E.qg. thef ood andwi ne examples from the OWL Guide [14].

situations where a URI is used in a class contexiniro1 and has
the appropriate type triple int o2 (or vice versa).

In adopting this approach to imports, we need to relax our han
dling of typing somewhat. In thew :inverse example above,
thelocal information may not be enough to determine whether the
properties are of the required types as the triple regartttiadype
of p may be in an imported ontology. In this case, we make an
assumption that the types are appropriate, and check atnthe e
of the complete parsing process that any such assumptiode ma
have been discharged (e.g. we really encountered the apyieop
typing triple). Assumptions are also passed to any receigarse
along with type information. If assumptions remain at thd eh
the parse, required type triples were missing, signifyingdo&VL
Full ontology.

Note that the grouping of statements into separate ontesddtas
no effect on the semantics of importing ontology, in termshef
entailmentghat hold.

4.3 Blank Nodes and Structure Sharing

In addition to flagging “used” triples, the parsing procelsoa
flags bnodes as they are translated to expressions or usistsin |
If a flagged bnode is encountered in a translation, this atdic
that structure sharing has occurred, the document is OV &nd
appropriate action can be taken.

Cases involving equivalence and disjointness axioms (gee S
tion 2.6.1 require special handling. In order to check weeduuiv-
alence axioms are well-formed, we do the following.

1. Gather together all nodes that participate in tripleslivimg
ow : equi val ent Cl ass;

2. Partition these nodes into sets, where two nadexlb are in
the same set iff there exists a tripleow : equi val ent d ass
b Orb ow : equi val ent Cl ass a.

Each of these equivalence classes can now be translated.dize
of the set is 2 and the triple that induced the set is of the form
ow : equi val ent 0 ass x wherea is a named node, then we trans-
late to a class definition (see Section 4.1). Otherwise weskate
to anEqui val ent O asses axiom.

The conditions regarding disjointness are more complicafae
rules forbi sj oi nt d asses axioms tell us that an axionm sj oi nt -
Casses(dy do ...d;) istranslated to a collection of nodes, one
for each expression in the equivalence, and a numbewiofii s-
joi ntWth triples, such that every node in the collection is con-
nected to every other node by at least one triple (in eithescdi
tion). This may lead to blank nodes being used in more than one
place and participating in many triples. We apply the follogv
strategy toow : di sj oi nt Wt h triples.

1. Gather together all nodes that participate in tripleslivimg
ow : di sjointWth;
2. While there are bnodes in the collection of nodes that we
have not already dealt with, do the following:
(a) Pick a bnode: that we haven't already dealt with.
(b) Gather together all the nodes, n», ...n; that can
be reached fromm via a path that consists o : di s-
j oi ntwth triples, and which does not pass through a
named class node — in other words the traversal stops
when we reach a named node. Includin this collec-
tion.

(c) In order for the graph to be in OWL DL, the subgraph
formed from these nodes considering : di sj oi nt -
W th edges must be fully connected: every node must
have an edge to every other node. If this is not the case,
the graph is not in DL. If it is the case, then we add a
Di sj oi nt O asses axiom using translations of the nodes
in the collection formed above.

5. THE JENA RECOGNIZER

The Jena recognizer uses a very different technique. We-intr
duce it with an example, followed by describing the key cahod
node categorization, before launching into a detailedugision.

5.1 An Example of the Approach

Suppose we are given the following three triples in order:
_:r ow:onProperty eg:p .
_:r ow :hasVvalue "a val ue" .
eg:p rdf:type ow : Obj ect Property .
When processing the first triple, we can conclude that it rhage
come from one of the mapping rules for restrictions, for eplam

restriction(ID
al | Val uesFr on(=X
range))
Thuseg: p must be either a datavaluedPropertyler an indivi-
dualvaluedPropertylD, and r is the node corresponding to some
restriction.
When we process the second triple, we already know thats
a restriction of some sort, and the additional triple tefighat it is
aval ue(-) restriction. Moreover, the literal object, tells us thasth
is a value restriction using the following mapping rule:
restriction(ID _:x rdf:type ow : Restriction .
val ue(_:x ow :onProperty T(ID).
value)) _:x ow : hasVal ue T(value) .
We note that fofl'(value) to be a literal, thewaluemust bedatal-
iteral and the following abstract syntax rule must have been used:

_:x rdf:type oW : Restriction .
_:x ow :onProperty T(ID).
_:x ow :all Val uesFrom T'(range) .

X
-

(dataRestrictionComponent= ‘value(’ (dataLiteral) ')’

This rule can only fire if D is adatavaluedPropertylD

Thus, the second triple tells us thatr corresponds to a value
restriction on alatavaluedPropertyIDIf we now return to the first
triple, given the new information aboutr we now know thatg: p
is adatavaluedPropertylD

Since the mapping rule only applies to abstract syntax coctst
that come from OWL DL we know that the triples are not from an
OWL Lite document.

There is nothing more that can be said about either the predi-
cate or the object of either the first or second triples. Thaither
triple will make any further difference to the rest of the gessing,
and both could be discarded in an incremental recognizéthad
needs to be remembered is the classification efandeg: p.

When we come to the third triple, we finddatavaluedProper-
tylD as the subject of andf : t ype triple, with anow : oj ect Pr op-

erty object. The mapping rules do not produce such triples, and so

this is an interal error (cf. section 2.4).

If we processed the triples in the reverse order, we woule@ hav
concluded thaég: p was anindividualvaluedPropertylD(from the
third triple), and found the error while processing the firigte, be-
cause the grammar does not genesate onpr opert y triples link-
ing value restrictions on datavalued properties viittiividualval-
uedPropertyl3.

9The reader will need to refer to an open copy of S&AS[12] dyrin
this section!

5.2 Node Categorization
The example depended upon an analysis of

e Whethereg: p was anindividualvaluedPropertylDor adata-
valuedPropertylD
e What sort of restriction corresponded _tor

We view this as a function from the nodes in the graph to a set of
syntactic categories generated from the grammar.

Each uriref node may be a builtin uriref, with its own syniact
category (such as : onProperty), or a user defined ID, such as a
classID

Each blank node is introduced by one of the mapping rules. We
hence have one or mdfesyntactic categories for each mapping
rule that creates a blank node.

5.3 The Category Refinement Algorithm

The main goal of the algorithm is to determine which category
each of the nodes is in.

To make the runtime algorithm simpler, the grammar (incigdi
the mapping rules) is preprocessed into a grammar tablépddgr
of syntactic categories.

Two of the entries in this table, relevant to the example are:

i ndi vi dual Val uedProperty rdf:type ow : Cbj ect Property .
literal Val ueRestriction ow : hasValue literal . (DL)

Some of the entries are annotated with actions, for exarhgle t
second triple sets the not-Lite flag.

Each step in the algorithm processes one triple.

The currently known possible categories for each of theethre
nodes are retrieved. Each combination of these is testezktd &
is in the grammar table. Such tests allows the eliminatiosoofie
of the previous possible categories for each node.

If all the possible categories are eliminated, then the lyidid
not conform to the syntax.

The algorithm is specified in terms of the definition of a fuoict
C that assigns a set of categories to each node in the graph.

1. For each blank node in the graph, sef’(n) to the set of all
blank categories.
2. For each builtin uriref: in the graph, sef’(n) to be{n}.
3. For other urirefs: in the graph, se€(n) to be the set of all
ID categories (classID etc).
. For each node equivalent to" ~xsd: int "1"~xsd:int set
C(n) to {litelntegenr} (for use in cardinality restrictions).
. For each other node equivalentxtocsd: nonNegat i vel nt e-
ger setC(n) to {dlinteger}.
. For any typed literal node with user defined type(sét) to
{uTypedLitera}.
7. For each othét literal node seC (n) to {literal}.
. For each triplé =< s, p, 0 > in the graphrefingt), where
refineis defined as:
(a) SetS = C(s), P = C(p), O = C(0), to be the set of
categories currently associated with the subject, predi-
cate and object of respectively.

()]

(o]

[ee]

1°Sometimes, the combination of the abstract syntax and tfge ma
ping rules, is such that the same mapping rule is used for tfvo d
ferent abstract syntax constructs. The rule for the valagriction

is one, which can be used for both literal values and objdoega

In such cases, we clone the mapping rule and have one for each
abstract syntax construct, giving rise to two syntactiegaties for
blank nodes.

"This ratherad hoclist of literal classifications reflects precisely
the relevant division in OWL DL syntax. In particular, namtéger

XSD literals are treated the same as plain literals.

(b)

SetS’ = {s* € S|Tp* € P, 0% € O with
< s%, p*,0x >€ Gramma#

(c) If §" is empty then fail.

(d) SetP’ andO’ similarly

(e) If S # S updateC(s) := S’ and for eacht’ involving
s which has already been processedingt’)

(f) Similarly for P' andO’

(g) If every match fromS’, P’ O’ in the grammar table is
annotated with the same action, perform that action.

9. Check for missing triples, (i.e. for external errors, see-
tion 2.4).

The actions in step 8g and the final checks in step 9 are dstuss
in more detail below.

5.4 The Compiler Compiler

The compiler compiler transforms the OWL DL grammar from
the form in S&AS[12] to a triple oriented form suitable foettiena
checker.

The input consists of:

e Alist of the names of the syntactic categories for urirefg.(e
classID).

e The abstract syntax (somewhat reformulated)

e The mapping rules (somewhat reformulated).

The output is as follows:

e A list of syntactic categories for nodes (148 categories: 45
for the keywords in OWL, such asif : t ype, 14 correspond-

ing to the different uses of user defined urirefs, 83 for diffe
ent usages of blank nodes, 6 artificial pseudocategories)
Various groupings of these categories (e.g. all those cate-
gories that are involved witbw : di sj oi nt W t h).

Atable of legal triples of syntactic categories, annotatét
actions and a DL flag (2486 entries).

A lookup functions that assign an initial set of syntactit ca
egories to a node

The compiler compiler is written in Prolog, and the grammat a
mapping rules have been written in a Prolog form. A detailisd d
cussion lies outside the scope of this paper, however thmafivig
syntactic aspects of OWL DL are dealt with in this stage.

The rules concerning blank nodes corresponding to desmpt
and restrictions are somewhat complicated. There are tivwala
categories: descriptions being blank nodes with explgiebw : -

d ass, and restriction being blank nodes with explicit type : Re-
striction. It is convenient to subdivide these categories into one
category per mapping rule.

We saw in section 2.6.2 that blank node usage fell into fosesa
in the compiler compiler, this is expressed by convertinghes the
syntactic categories coming from a mapping rule for detiorng
or restrictions into four subcategories, one for each cde¢heases.
Since there are 19 such mapping rules in the grammar used, thi
accounts for 76 of the 83 blank node categories.

It would be possible to recombine some of these in a further
precompilation step.

5.5 The Actions

The actions used by the grammar are: the DL actions, foesipl
which do not occur in Lite; an Object action when the object of
this triple is a blank node which must not be the object of ahgio
triple; and the actions FirstOfOne, FirstOfTwo and Secdiftho
when the subject of this triple corresponds to a construttt ame

or two components each reflected by a triple in the graph. This
triple is the stated component (e.gu : onProperty is the first of

the two components of a restriction). For each of these ttheme
processing remembers the triple as fulfilling the specifadd and

itis an error if some other triple plays the same role.

5.6 Pseudotriples

Given the framework of category refinement, some of the other
syntactic aspects of OWL can be expressed within it. Thishsed
by introducing additional syntactic categories, which iacuded
in the initial assignment of categories to nodes. The tablgmes
is extended with a further virtual table of pseudotriplemgshese
virtual categories. This table of pseudotriples is a sh@te of
code rather than actual entries in a table.

By an appropriate choice of which pseudotriples are in tite vi
tual table, global properties can be propogated througmdtue
categories.

The goal with the pseudocategories is that nodes with stjatac
defects are marked as being in a pseudocategory. Whenaisipl
processed which addresses those defects then the nodeisgeo |
marked as in the pseudocategory.

The final stage of the algorithm searches for all marked nodes
and takes appropriate action (such as rejecting the input).

5.6.1 Typing

As an example, most nodes in OWL Lite and OWL DL have to
have an explicit type triple in OWL Lite and OWL DL.

In the Jena checker, all relevant nodes have initially aaieg
assignment including the categosyt ype. This pseudocategory
appears in pseudotriples in all three places with arbitregy cat-
egories in the other two places. The key exception is when the
predicate ig df : t ype which typically provides the required type.
Such triples do not appear in the pseudotable.

Thus, if there is an appropriate type triple, the pseudgcayeis
removed from the category assignment for the node by theaeper
tion of the refinement algorithm.

5.7 The Final Checks

These checks check external errors, i.e. where neededstripl
were missing, and some internal errors which were not fuly-c
ered elsewhere.

To continue the typing example, the final check is a simple in-
spection for nodes in the pseudocategaryype.

Every blank node in category such as restriction or desoript
which require one or two structural triples, is inspectedieafy
that such triples have been found.

5.8 The Difficult Cases

Most of the difficult cases are handled using a combination of
pseudocategories, pseudotriples and final checks. Tharizp-
larly suited to the external errors, which cannot be detkbtethe
refinement algorithm. Some of these cases concern exception
the required type triple rule, such as@m: d ass being a permit-
ted type for a restriction. Others concemphans blank nodes that
are not the object of any triple: for example, list nodes matyle
orphans.

Most directed cycles of blank nodes are prohibited. Whiéséh
form internal errors, the refinement algorithm cannot deteem.
However, it can detect many cases of provably non-cyclicesod
(e.g. a blank node that is the object of a triple whose suligect
a URIref or a non-cyclic blank node). The final check then only
examines those nodes not already proven to be non-cyclieeTh
pseudocategories are used during refinement for the dmiecti

non-cyclic nodes.

The hardest part is checking the constrainéan di sj oi nt Wt h.
During the refinement algorithm each pair of nodes linkedwy -
di sj oi ntWth is saved in a classical undirected graghThe final
check then verifies the following transitivity constraim@, which
is sufficient for there to be appropriai@ : di sj oi nt W t h cliques:

Va,c € V(G)V blankb € V(G),
{a,b} € E(G) A {b, ¢} € B(G) = {a,c} € E(G)

6. PERFORMANCE

Performanc¥ figures are shown in Table 3. The two systems
were run on the OWL Test Cases (resulting in approx 480 single
document recognition tasks). Test documents were accessed
motely from the W3C site. In addition, the systems were gigen
large™® OWL Lite ontology (the NCI Cancer Ontolodf}) to recog-
nize. For these tests, a local copy of the ontology was uskeé. T
tests were run on a Sun Microsystems Sun Fire 280R with Dual
900 MHz UltraSPARC-III+ Processors and 2048 Mb memory. The
figures shown are an average of 3 runs. Times show real (elapse

user and system times in seconds and the maximum memory use

during the execution.

As we can see from the figures, the systems are roughly com-

parable in time and space required. Neither system is péatlg
optimised, and it is highly likely that improvements in tiraed
resource requirements could be made.

7. COMPARISON

Concerning the memory footprint, again the current codenis u
optimised, but the algorithm holds some hope for sensildeein
mental processing. Some features of OWL require keepirtg sta
from the beginning of processing to the end, particularhe &s-
signment of nodes to syntactic categories; andthedi sj oi nt -

W t h subgraph. The triples that participate in each descriptien
striction or list, and each triple with a blank node objectjsinbe
retained until the blank node is out of scope. Since the RIME/X
parser used does not report the scope of blank nodes, thatipbte
garbage collection cannot yet be implemented.

For the external errors, the Jena code could give elegant err
messages. For the internal errors, the code currently ca®@u
minimal subgraph exhibiting the error. The error messaga th
prints this subgraph. This is not user friendly, and is a eqonsnce
of the design with a core table driven engine. A way to impribne
error messages would be to write additional code that exadirtime
minimal subgraph produced looking for common problems.sThi
would tend to duplicate some of the WonderWeb code.

What would make the Jena code particularly attractive ikef t
overall design of OWL DL, with an abstract syntax and mapping
rules, were duplicated for some other RDF extension. A p&ssi
candidate may be any specific ontology, for which the data file

ould be OWL files using mainly theact directives, and most of

he axi om directives would be disabled. Moreover, additional re-
strictions may be applied to thect directives. This would allow
an ontology creator to specify a syntactic conformance ab ¢in-
tology. If the structure of the OWL DL definition were usedetth
the Jena checker could be recompiled using the new definifion
make this feasible, a significant clean up to the approadmtak
S&AS would be needed. In particular, it is not plausible tppsort

ad hocEnglish annotations to the formal rules.

Here we compare the two approaches and consider their advan7 2 WonderWeb

tages and disadvantages.

7.1 Jena

The Jena implementation has two main attractions: mucheof th
code is generated from the gramamr, and, in principle, the-al
rithm need only remember relatively small amounts conogrni
triples that have been processed.

A key defect is that the approach does not generate an abstrac©"

syntax tree.

The WonderWeb approach results in the construction of an ob-
ject representing the abstract syntax tree of the Ontol®bis has
a number of advantages, in particular it can facilitatenfeirimanip-
ulations or translations of the ontology, e.g. to an altévadormat
amenable for processing. This has allowed us to experimiht w
alternative reasoning strategies for OWL using first oréeson-
45 or logic programming.
In addition, the approach allows us to provide “user frighef-

In general, generating code from a grammar using a compiler 'Or messages, informing the usehy their ontology fails to belong

compiler should make it easy to change. Many changes carysimp
be copied into the source grammar, and the system is themreco
piled. However, the grammar for OWL, particularly the magpi
rules, is augmented with English text, which provides addél
difficulties that sabotage the simple recompile. Moreatrer treat-

to a particular language species. Similarly, fixing patdckinds

of errors (such as missing type triples) would be relatiezgy.
Actually building the abstract syntax objects does not cuiitie-

out a cost. In “difficult” RDF graphs, say where we have awb: -

ont ol ogy Objects in the graph, we have no way of deciding where to

ment in the Jena checker depends on a number of global feature PUt @nything —if we're solely interested in validation (evehether

of the abstract syntax grammar, such as the assignment gka ty
to every node. These features are partly there as a reswubeof |
bying by the author between the first draft of S&AS and the final
recommendation. Hence, the approach is fragile to change.

A further advantage of using a compiler compiler is that theec
engine is very small, and can, in principle, be optimisedereas-
ily than a hand coded solution. However, the initial codeas n
optimised at all ... Currently the triple table is unnecesséarge.

12The figures shown here use test harnesses produced indafignde
for each implementation. These differ slightly in the wagttthe

tests are run. As a result these should only be taken as a rough

indication of comparative performance.
3over 500,000 triples.

Yhttp: // ww. ni ndswap. or g/ 2003/
Cancer Ont ol ogy/

an ontologies can exist), then this is not an issue, otherwis
can only apply heuristics to determine where informatioousth
be contained.

As with Jena, the WonderWeb codebase is largely unoptimised
and the memory footprint is large (see Section 6. The styatay
ployed requires the entire RDF graph (or at least an interéde
lowing query of the entire graph) to be available to the ckeck
This could, of course, be done using some persistent storage
ducing the memory requirements. Similarly the constructibthe
abstract syntax objects requires storage, which is clyrbetd in
main memory.

The main drawback of the approach, however, is that it ixeffe
tively a bespoke or hard-coded solution — the rules for didh

Bhtt p: // wonder web. man. ac. uk/ owl / first - order.
shtm

OWL Tests NCI Ontology

Real | User| Sys| Mem || Real | User | Sys | Mem
WonderWeb|| 408 | 47 0.4 | 50 183 | 178 | 3 1066
Jena 273 | 79 2.4 | 85 276 | 270 | 2.6 | 885

Table 3: Performance Figures

are encapsulated in the implementation, both of the parsktte
post-parsing validation. Small scale changes to the magppiles
could be accommodated, large scale changes would requiogea m
extensive rewrite. Changes to S&AS as discussed in Sectibn 7
are unlikely to be of much benefit here.

Another disadvantage is that the original structure of ti#-R
is lost — thus the WonderWeb parser and APl is not well suibed t
handling general RD.

8. DISCUSSION

8.1 Imports

It is clear that the handling @ : i nport s is a crucial aspect to
parsing and recognition. AS&S says:

anow : i nport s annotation also imports the contents of another
OWL ontology into the current ontology and requires that raeii-
pretation of an ontology O satisfies the ontology iff it alatisfies
all ontologies mentioned in awi : i nport s directive.

In terms of RDF graphs, the interpretation of imports is that

[an ontology] isimports closed iff for every triple in any element
of K of the formx ow :inports u, then K contains a graph that
is the result of the RDF processing of the RDF/XML documént, i
any, accessible at into an RDF graph. The imports closure of a
collection of RDF graphs is the smallest import-closed extibn
of RDF graphs containing the graphs.

There is a tension here between these interpretationsl of
i nport s — the interpretation in terms of RDF graphs does not nec-
essarily coincide or respect the boundaries of the int&afoa in
terms of “abstract syntax” ontologies.

This tension is reflected in the two implementations disedss
here. The triple based approach used in Jena handles inparts
natural fashion. The abstract syntax approach taken in Afvvieb
requires careful handling of imports — in some situationsrise
tics have to applied in order to determine exactly wherertiess
belong, and information must be passed around during addin
imported ontologies.

8.2 Context

A related issue here is that of containmentontext The map-
ping rules translate an Ontology to a collection of tripl€Bhis
collection includes triples that relate to the ontologyeatjitself.
For example the ontology:

Ontol ogy(U
Class(a)
)
yields the following triples:

U rdf:type ow : Ont ol ogy
a rdf:type ow : Cl ass

(a)

(b)

The problem here is that there is no connection betweereripl
and(b) , other than the fact that they occur in the same graph. The
fact that the typing occurs within the context of the Ontglagnot
represented explicitly.

This is no surprise though as it is not intended to be a ge RD&l
API.

If anow : i nport s triple occurs, the imported RDF graph is sim-
ply added to the existing graph — again though the fact treaetts
no explicit representation of tharigin of those statements means
that the context has to be handled using hueristics.

The situation is compounded further by the fact that the rimapp
rules allow for an RDF graph to be the translation of a coitect
of OWL ontologies. In this case, we cannot even apply hueris-
tics'” to determine which assertions belong with which ontology.
Of course, this difficulty is a direct consequence of the réet
actually reverse the mapping rather than demonstrate tiesease
mapping ispossible— which is all that is required for recognition.
The desire to construct a representation closer to thesastyntax
is, however, not unreasonable.

The link between the physical location of the RDF graph aed th
URI assigned to the ontology in the abstract is also uncl&ar.
example the ontology:

Ontol ogy(http://xyz/things

)

could be mapped to an RDF graph G1 which is then made available
ata URInhttp: //abc/ stuf f. A second ontology can now make use
of this:

Ont ol ogy(Annotation(ow :inports http://abc/stuff))

)

If this ontology is mapped to an RDF graph G2, calculatingitine
ports closure of G2 actually results in the addition of theil@d the
RDF graph, including the triples referring tot p: / / xyz/ t hi ngs
as an ontology. This is at best confusing, and is likely taltdéa
OWL Full ontologies due to the lack of appropriat@ : ont ol ogy
triples.

Carroll and Stickler [6] suggest that the naming of RDF gsaph
should be promoted to a first class operation, and not hamaied
plicitly through document names. They suggest that thigaves
the semantics of both thev : ont ol ogy class and thew : i nports
predicate.

8.3 bnodes

Rules concerning bnodes cause a number of difficulties. th pa
ticular, identifying valid uses of bnodes &w : di sj oi nt Wth and
ow : equi val ent d ass triples is non-trivial.

9. FIXING UP OWL

Both systems could be modified to fix errors to transform OWL
Full documents into OWL DL documents. Some changes would be
semantically sound, others unsound.

The sound changes are those where the original document both
entails and is entailed by the transformed document, aswptd
the OWL Full semantics.

Unsound changes either lose information or add informattion
the original document (or both).

Example sound fixups are:

For example, lumping all the triples obtained from a singRLU

together as one “ontology”.

e Adding missing type triples for classes and individual ealu
properties.

e Adding missing type triples with typea : Thi ng for individ-
uals.

11. ACKNOWLEDGMENTS

Jeremy Carroll is a visiting researcher at ISTI, CNR in Pésal
thanks his host Oreste Signore. Sean Bechhofer is suppnyrtie
WonderWeb project (EU grant IST-2001-33052) and thankssBor

» Doing a deep copy of a unnamed class description when itis otk and Raphael Volz for implementation assitance. Thaans
the object of two triples (soundness depends on a conjecturegyld also like to thank Peter Patel-Schneider for usefstu-

from Carroll [4]).

e Converting a named restriction into a named class, and an un-

named restriction, linked by aw : equi val ent d ass triple.

Example unsound fixups that add information, i.e. the trans-
formed document entails the original:

e Adding missing type triples for data valued properties.
e Using a skolemization to resolve bnode problems.

Example unsound fixups that lose information, i.e. the nebi
document entails the transformed document:

e Forgetting either a transitivity constraint or a cardityation-
straint on a property with both.

e Doing a deep copy of an unnamed individual which is the
object of two triples.

e Take a large DL subset of the RDFS closure of the input
graph. This is particularly useful when the OWL vocabulary

has been extended. This is easier in Jena than in WonderWeb,

since Jena includes an RDFS reasoner.

A further unsound, but potentially useful, fixup is to clone a
property that is used both as a data valued property andadodi
valued property. One version is used for data values, ther ¢t
individual values.

For the external errors both systems know what went wrong and [6]

the appropriate place for the fixup is clear. For internabrsirthe
Jena recognizer faces the same problem as with error message
that it finds bad subgraphs without a clear idea of why they are

bad. Hence the fixup code would need to be able to analyse such

subgraphs to identify the problem. Some errors defy fixupr— fo
example cycles of bnodes in descriptions.

10. CONCLUSIONS

We answer the syntactic aspects of van Harmelen and Fensel's

question [15] of how wellcan Al concepts be fitted into the markup
languages on the Web?” with a weak affirmative: well enoulgt, (
it was not easy).

We have demonstrated thatistpossible to build OWL parsers
and recognisers. Moreover, one of our implementationsatsftee
needs and interests of the Al community, the other thosesof\tab
community. This is a non-trivial exercise, but the inforioatin
the OWL document set is sufficient to allow implementors tiddou
recognisers that behave appropriately on the OWL Test G@kes
The identification and discussion of issues and hard casgsisa
prove useful for those wishing to implement OWL-based syste

Demonstration of implementation experience is a key préreq
site to the endorsement of a recommendation by the W3C. Tibe ex
tence of both the WonderWeb and Jena checkersd the fact that
the two implementations decribed here adopt very diffesémite-
gies to the task can be taken as further evidence that thdispec
tion is implementable.

To answer the question raised in the title of the paper, itlet
and tree-based approaches are possible. Each has its grosren
— which to choose depends primarily on the perspective oafhe
plication.

18Along with other systems such as OWLP and Pellet —getep:
/[www. W3. or g/ 2001/ sw/ WebOnt /i npl s for details

sions on tackling the harder cases.

12. REFERENCES

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and
P. Patel-Schneider, editoiBhe Description Logic
Handbook: Theory, Implementation and Applications
Cambridge University Press, 2003.

S. Bechhofer, P. Lord, and R. Volz. Cooking the Semantic

Web with the OWL API. In2nd International Semantic Web

Conference, ISWGolume 2870 of_ecture Notes in

Computer Scien¢eéanibel Island, Florida, October 2003.

Springer.

D. Beckett. RDF/XML Syntax Specification (Revised).

http://ww. w3. org/ TR/ rdf - synt ax- grammar/,

2003.

J. Carroll. B1 B2 proof [sic].

http://1ists.w3.org/Archives/Public/

ww webont - wg/ 2003Jun/ 0294/, 2003. This proof is

known to be flawed, the conjecture is open.

J. Carroll, I.Dickinson, C. Dollin, D. Reynolds, A. Seaine,

and K. Wilkinson. Jena: Implementing the semantic web

recommendations. Submitted to WWW2004, 2003.

J. Carroll and P.Stickler. RDF Triples in XML. Submittéal

WWW2004, 2003.

[7] J.J. Carroll and J. D. Roo. Web Ontology Language (OWL)

Test Casedht t p: / / ww. w3. or g/ TR/ oW - test/,

2003.

M. Dean and G. Schreiber. OWL Web Ontology Language

Referenceht t p: / / www. W3. or g/ TR/ ow - ref/,

2003.

ISO/IEC. Information technology — Syntactic metalaaga

— Extended BNF. Technical Report 14977:1996(E),

ISO/IEC, 1996.

G. Klyne and J. Carroll. Resource Description Framéwor

(RDF): Concepts and Abstract Syntax.

http://ww. w3. org/ TR/ rdf - concept s/, 2003.

D. L. McGuinness and F. van Harmelen. OWL Web

Ontology Language Overview.

http://ww. w3. org/ TR ow - f eat ur es/, 2003.

P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWb We

Ontology Language Semantics and Abstract Syntax.

http://ww. w3. org/ TR/ ow - semanti cs/,2003.

[13] S.C.Johnson and R. Sethi. Yacc: a parser generataiNIX
Vol. II: research systenW.B.Saunders, tenth edition, 1990.

[14] M. K. Smith, C. Welty, and D. L. McGuinness. OWL Web
Ontology Language Guide.
http://ww. w3. org/ TR/ ow - gui de/ , 2003.

[15] F. van Harmelen and D. Fensel. Practical Knowledge
Representation for the Web. In D. Fensel, editor,
Proceedings of the IJCAI'99 Workshop on Intelligent
Information Integration 1999.

(2]

(3]

(4]

(5]

(8]

(9]

[10]

[11]

[12]

