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1.0  Introduction

Jena is a leading Semantic Web programmers’ toolkit[1]. It is an open-source project, imple-
mented in Java, and available for download from SourceForge. Jena offers a simple abstraction of
the RDF graph as its central internal interface. This is used uniformly for graph implementations,
including in-memory, database-backed, and inferred graphs.

Jena2 is the second generation of the Jena toolkit. It conforms to the revised RDF specification,
has new capabilities and a new internal architecture. A design principle for Jena2 was to minimize
changes to the API. This simplifies migration from Jena1 to Jena2. This paper describes Jena2
persistent storage; details on other aspects of Jena2 are available in [2]. 

The Jena database subsystem implements persistence for RDF graphs using an SQL database
through a JDBC connection. The Jena1 implementation supported a number of database engines
(e.g., Postgresql, MySQL, Oracle) and had a flexible architecture that facilitated porting to new
SQL database engines and experimentation with different database layouts. Some options
included the use of value-based identifiers (e.g., SHA-1) for inter-table references, use of data-
base procedures, etc. Jena1 also worked with Berkeley DB.

Among the lessons learned from Jena1 was that database portability was valuable to the open
source community and this was retained as a goal for Jena2. However, Jena1 users did little
experimentation with schema flexibility. In general, the default layouts were used. The design
focus for Jena2 was performance and scaling. Although Jena1 performance was quite good, there
is room for improvement. It was felt that performance issues will become more important with the
renewed interest in applying semantic web technology to real-world applications [6]. Jena2
addresses the following performance issues.

Too many joins. The use of a normalized schema requires a three-way join for find operations.
Single statement table. A single statement table doesn’t scale for large data sets and cannot take

advantage of locality among subjects and predicates.
Reification storage bloat. A naive implementation of the RDF specification stores four state-

ments for each reification. A more efficient technique is required, especially since some appli-
cations reify every statement. Jena1 provided optimized storage for reified statements but a
statement could only be reified once. Revisions of the RDF specification removed this restric-
tion. The goal for Jena2 was to implement the revised specification with similar or better opti-
mization. 

Query optimization. In Jena1, joins for RDQL queries were not pushed-down to the database
engine and were instead performed within the Java layer of Jena.

This paper describes how these performance issues were addressed. The next section provides an
overview of Jena and RDF for readers unfamiliar with those technologies. More details on RDF
are available in [3]. Section 3.0 describes the Jena database schema. Section 4.0 is a high-level
overview of the database subsystem of Jena2. Section 5.0 addresses query processing. The final
sections cover miscellaneous topics, the status of the implementation and related work.
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2.0  Overview of Jena and RDF

2.1  Jena Overview

Jena offers a simple abstraction of the RDF graph as its central internal interface. This is used uni-
formly for graph implementations, including in-memory, database-backed, and inferred graphs.
The main contribution of Jena is a rich API for manipulating RDF graphs. Around this, Jena pro-
vides various tools, e.g., an RDF/XML parser, a query language, I/O modules for N3, N-triple and
RDF/XML output. Underneath the API the user can choose to store RDF graphs in memory or in
databases. Jena provides additional functionality to support RDFS and OWL.

The two key architectural goals of Jena2 are:

• Multiple, flexible presentations of RDF graphs to the application programmer. This allows 
easy access to, and manipulation of, data in graphs enabling the application programmer to 
navigate the triple structure.

• A simple minimalist view of the RDF graph to the system programmer wishing to expose data 
as triples.

The first is layered on top of the second, so that essentially any triple source can back any presen-
tation API. Triple sources may be materialized, for example database or in-memory triple stores,
or virtual, for example resulting from inference processes applied to other triple sources.

An simplified overview of the Jena 2 architecture is shown in Figure 1. Applications typically

Figure 1. Jena2 Architectural Overview
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interact with an abstract Model which translates higher-level operations into low-level operations
on triples stored in an RDF Graph. There are several different graph implementations, but in this
paper we focus on those which provide persistent storage.

At an abstract level, the Jena2 storage subsystem need only implement three operations: add state-
ment, to store an RDF statement in a database; delete statement, to remove an RDF statement
from the database; and the find operation. The find operation retrieves all statements that match a
pattern of the form <S,P,O> where each S, P, O is either a constant or a don’t-care. Jena’s query
language, RDQL, is converted to a set of find operations in which variables are permitted in the
find patterns. The variables enable joins across the patterns.

A widely used implementation technique [4,5] is to store RDF statements in a relational database
using a single statement table, often called a “triple-store.” This is a table that stores each RDF
statement as a row and has columns for the subject, predicate and object. Jena1 used this approach
but normalized the statement table so that literals and resources are only stored once. This is
described below.

2.2  RDF Overview

The Resource Description Framework (RDF) has rapidly gained popularity a means of expressing
and exchanging semantic metadata, i.e., data that specifies semantic information about data. RDF
was originally designed for the representation and processing of metadata about remote informa-
tion sources (referred to as resources or Web resources), and defines a model for describing rela-
tionships among resources in terms of uniquely identified properties (attributes) and values. RDF
provides a simple tuple model, <S,P,O>, to express all knowledge. The interpretation of this state-
ment is that subject S has property P with value O, where S and P are resource URIs and O is
either a URI or a literal value. RDF and its related specifications, RDF Schema and OWL, pro-
vide some predefined basic properties such as type, class, subclass, etc.

RDF is characterized by a property-centric, extremely flexible and dynamic data model.
Resources can acquire properties and types at any time, regardless of the type of the resource or
property. This flexibility makes RDF an attractive technology for the specification and exchange
of arbitrary metadata because resource descriptions are ``grounded'' without necessarily being
bound by fixed schemas.

In object-oriented (OO) terms, we might consider RDF resources to be analogous to objects, RDF
properties to represent attributes, and RDF statements to express the attribute values of objects. A
key difference between the two communities is that unlike OO systems which use the concept of
a type hierarchy to constrain the properties that an object may possess, RDF permits resources to
be associated with arbitrary properties; statements associating a resource with new properties and
values may be added to an RDF fact base at any time. 

The challenge is thus how to provide persistent storage for the new RDF data model in an effi-
cient and flexible manner. A naïve approach might be to map the RDF data to XML and simply
leverage prior work on the efficient storage of XML. However, the standard RDF/XML mapping
is unsuitable for this since multiple XML serializations are possible for the same RDF graph,
making retrieval complex. Non-standard RDF-to-XML mappings are possible, and have been
4



used in some implementations. However the simpler mappings are unable to support advanced
features of RDF, such as the ability of RDF to treat both properties and statements as resources,
which allows metadata describing these elements to be incorporated seamlessly into the data
model and queried in an integrated fashion.

Many RDF systems have used relational or object databases for persistent storage and retrieval.
However, this is not always a good fit and the mapping can be challenging because the semantics
of the underlying database model clash with the openness and flexibility of RDF. For example,
SQL requires fixed, known column data types; object systems often have restrictions on class
inheritance and type membership (changes).

3.0  Storage Schema

In this section we compare the storage of arbitrary RDF statements between Jena1 and Jena2. We
then look at optimizations for common patterns of statements.

3.1  Storing Arbitrary RDF Statements

Jena1. The first version of Jena used two different database schemas. One for relational databases,
and a special one for Berkeley DB.  For relational databases, the schema consisted of a statement
table, a literals table and a resources table (Figure 2). The statement table contained all asserted
and reified statements and referenced the resources and literals tables for subjects, predicates and
objects. To distinguish literal objects from resource URIs, two columns were used. The literals
table contained all literal values and the resources table contained all resource URIs in the graph.
There was no reference counting to reduce overhead. This schema was very efficient in space as
multiple occurrences of the same resource URI or literal value were only stored once. However,
every find operation required multiple joins between the statement table and the literals table or
the resources table.

The Jena1 schema for BerkeleyDB was quite different. It stored all parts of a statement in a single

 
Statement Table

Subject Predicate ObjectURI ObjectLiteral
201 202 null 101

201 203 204 null

201 205 101 null  
Literals Table

Id Value
101 Jena2

101 The description - a very 
long literal that might be 
stored as a blob.

Resources Table

Id URI
201 mylib:doc

202 dc:title

203 dc:creator

204 hp:JenaTeam

205 dc:description
Figure 2. Jena1 Schema (Normalized) 
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row and each statement was stored three times: once indexed by subject, once by predicate and
once by object.

Comparing the two approaches, it was observed that Jena graphs stored using Berkeley DB were
often accessed significantly faster than graphs stored in relational databases [8]. While part of this
could be attributed to the absence of transactional overheads in BerkeleyDB, our intuition was
that most of the speed difference was because the Berkeley DB schema used a single access
method to store statements and that use of a denormalized relational schema might reduce
response times.

Jena2. The Jena2 schema trades-off space for time. Drawing on experience with Jena1, it uses a
denormalized schema in which resource URIs and simple literal values are stored directly in the
statement table (Figure 3).

In order to distinguish database references from literals and URIs, column values are encoded
with a prefix that indicates which the kind of value (codes are not shown). A separate literals table
is only used to store literal values whose length exceeds a threshold, such as blobs. Similarly, a
separate resources table is used to store long URIs. By storing values directly in the statement
table it is possible to perform many find operations without a join. However, a denormalized
schema uses more database space because the same value (literal or URI) is stored repeatedly.

The increase in database space consumption is addressed in several ways. First, common prefixes
in URIs, such as namespaces, are compressed. They are stored in a separate table (not shown) and
the prefix in the URI is replaced by a database reference. It is expected that the number of com-
mon prefixes will be small and cacheable in memory. Expanding the prefixes will be done in
memory and will not require a database join.

Second, as mentioned earlier, long values are stored only once. The length threshold for determin-
ing when to store a value in the literals or resources table is configurable. Applications may trade-
off time for space by lowering the threshold. Third, Jena2 supports property tables as described

    
Literals Table

Id Value
101 The description - a very 

long literal that might be 
stored as a blob.

Resources Table

Id URI
201 hp:aResource-

WithAnExtreme-
lyLongURI

Figure 3. Jena2 Schema (Denormalized) 

  
Statement Table

Subject Predicate Object
mylib:doc1 dc:title Jena2

mylib:doc1 dc:creator HP Labs - Bristol

mylib:doc1 dc:creator Hewlett-Packard

mylib:doc1 dc:description 101

201 dc:title Jena2 Persistence

201 dc:publisher com.hp/HPLaboratories
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below. Property tables offer a modest reduction in space consumption in that the property URI is
not stored.

Both Jena1 and Jena2 permit multiple graphs to be stored in a single database instance. In Jena1,

all graphs were stored in a single statement table1. However, Jena2 supports the use of multiple
statement tables in a single database so that applications can flexibly map graphs to different
tables. In this way, graphs that are often accessed together may be stored together while graphs
that are never accessed together may be stored separately (Figure 6). For example, as described
below, the system metadata is stored as RDF statements in its own statement table separate from
user tables. The use of multiple statement tables may improve performance through better locality
and caching. It may also simplify database administration since the separate tables can be sepa-
rately managed and tuned. 

3.2  Optimizing for Common Statement Patterns

An RDF graph will typically have a number of common statement patterns. One source of those
patterns is the RDF specification itself which defines some types and properties for modeling
higher-level constructs such as bags, sequences and reification. For example, if object x is a
sequence, it will have a type property with value rdf:Seq and one or more element properties, _1,
_2, _3, etc. that specify elements of the sequence. A reified statement (i.e., a statement about
some other statement) has a type property with value rdf:Statement and three properties, rdf:sub-
ject, rdf:predicate, rdf:object for values of the statement’s subject, predicate and object.

The other source of common patterns is the user data. Applications typically have access patterns
in which certain subjects and/or properties are accessed together. For example, a graph of data
about persons might have many occurrences of objects with properties name, address, phone,
gender that are referenced together. Using knowledge of these access patterns to influence the
underlying database storage structures can provide a performance benefit. Techniques for detect-
ing patterns in user data and in RDF query logs are reported in [16]. 

Jena1. In Jena1, the commonly-occurring case of reified statements was handled as a special-case.
Rather than storing four separate triples for each reified statement, it stored the reified subject,
predicate and object in the regular statements table, with two additional columns to indicate its
reified state and to store a statement identifier. Since a statement had only one identifier, it could
only be reified once. For Jena2, changes were required to conform with the revised RDF specifi-
cation that allows multiple reified instances of any statement.

Jena2 Property Tables. Jena2 will provide a general facility for clustering properties that are com-
monly accessed together. A Jena2 property table is a separate table that stores the subject-value
pairs related by a particular property. A property table stores all instances of the property in the
graph, i.e., that property does not appear in any other table used for the graph. For properties that
have a maximum cardinality of one, it is possible to efficiently cluster multiple properties
together in a single table. A single row of the table would store those property values for a com-
mon subject. For example, in Dublin Core, it may be beneficial to create a property table for the

1. In Jena1 and Jena2, tables include a column for the graph identifier; this is not shown.
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three properties dc:title, dc:publisher, dc:description if these properties are frequently accessed
together. The use of such a property table for the data in Figure 3 is presented in Figure 4.

Multi-valued properties may be clustered or may be stored in a separate table. For example,
dc:creator might be stored in a multi-valued property table containing two columns, one for the
subject and one for dc:creator. Alternatively, it might be stored with the same property table as
title, publisher and description although this may be less efficient if it results in many null-valued
columns for a row. At first glance, it may seem that multi-valued property tables offer little bene-
fit. However, there may be benefits to clustering values if they are frequently accessed together,
e.g. a set of values that is searched as a lookup table. Note that property tables offer a small stor-
age savings because the property URI is not stored in the table, and for clustered property tables,
the subject is only stored once.

For some properties, the datatype of the object value will be fixed and known. It may be specified
as a property range constraint. Property tables can leverage this knowledge by, when possible,

making the underlying database column for the property value match the property type1. This
may enable the database to better optimize the storage and searching of the column.

Jena 2 Property-Class Tables. A property-class table is a special kind of property table that serves
two purposes. It records all instances of a specified class, i.e., resources that have that class. It
also stores properties of that class, i.e., each property in the table must have the class as its
domain. Thus, a property-class table has two or more columns: one for the subject resource, a sec-
ond boolean column indicating if the subject has been explicitly asserted as a class member (as
opposed to inferred as a member), and zero or more columns for property values.       

It is worth noting that Jena2 implements reification as a property-class table (Figure 5). The prop-

1. Not all XSD types correspond to an SQL datatype.

Figure 4. Dublin Core Property Table

Statement Table

Subject Predicate Object
mylib:doc1 dc:creator HP Labs - Bristol

mylib:doc1 dc:creator Hewlett-Packard

DC Properties Table

Subject Title Publisher Description
mylib:doc1 Jena2 - 101

201 Jena2 Persistence com.hp/HPLaboratories -

Figure 5. Reification as a Property-Class Table

Reified Statement Table

StmtURI Subject Predicate Object Type
mydir:alice mylib:doc1 dc:title Jena2 rdf:Statement

mydir:bob mylib:doc2 - Jena2 -
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erties are rdf:subject, rdf:predicate, rdf:object and the class is constrained to be rdf:Statement. The
subject of the property-class table is the URI that reifies the statement. Storing a reification this
way saves space compared to the alternative of explicitly storing the four statements of a reifica-
tion. Note that partially reified statements are easily supported.

Applications specify the schema for a graph, i.e., the property, property-class and statement tables
at graph creation time through the configuration meta-graph. To simplify the implementation,
once defined, the table configuration cannot be altered. However indexes may be added or
removed. In the future, some limited changes to the table configuration may be enabled.

4.0  Jena2 Persistence Architecture

An overview of the Jena2 persistence architecture was presented in Figure 1. In this section, we
describe the implementation of that architecture, including the specialized graph interface that
implements RDF sub-graphs and the database drivers that access the database on their behalf.

4.1  Specialized Graph interface

The Jena2 persistence layer presents a Graph interface to the higher levels of Jena, supporting the
usual Graph operations of add, delete and find (Figure 6). Each logical graph is implemented
using an ordered list of specialized graphs; each of which is optimized for storing a particular
style of statement. For example, in the figure the first logical graph is implemented using three
specialized graphs: one optimized for reified statements, another optimized for ontology triples
and a third which handles any remaining triples.

An operation on the entire logical graph, such as add statement, delete statement or find, is pro-
cessed by invoking add, delete, find on each specialized graph, in turn. The results of the individ-
ual operations are combined and returned as the result for the entire graph.

Note that this process can be optimized because, in certain cases, an operation can be completely
processed for the entire graph by one specialized graph. Thus, the operation need not be invoked
on the remaining specialized graphs. For example, a specialized graph that stores every statement
with a property of dc:title can process all add and delete operations that reference dc:title and can
fully satisfy any request to find all such properties. To support this optimization, each specialized
graph operation returns a completion flag to indicate if the operation has been completely pro-
cessed and the ordering of the specialized graphs is kept constant.

In the case of a find operation, an additional optimization, which the specialized graphs permit, is
to evaluate the find on each graph in a lazy fashion; using resources from later specialized graphs
only if the application is still hungry after consuming results from earlier graphs.

Each specialized graph maps the graph operations onto appropriate tables in the database. In the
present implementation, there is a many-to-one mapping between specialized graphs and database
tables. In some cases, this allows the overhead of each database table to be amortized across sev-
eral graphs.
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4.2  Database Driver

The database driver provides an abstract storage interface that insulates the specialized graphs
from differences in how database engines support blobs, nulls, expressions, table and index cre-
ation, etc. There is a generic driver implementation for SQL databases and engine-specific drivers
for Postgresql, MySQL, Oracle, etc. The engine-specific drivers override the generic methods as
necessary, e.g., for different quoting conventions or treatment of blobs.

The driver is responsible for data definition operations such as database initialization, table cre-
ation and deletion, allocating database identifiers. It is also responsible for mapping graph objects
between their Java representation and their database encoding. For data manipulation, the drivers

Figure 6. Graphs Comprise Specialized Graphs Over Tables

Logical Graph 2

Specialized Graph 1

Optimized for
ontology triples

Specialized Graph n

Handles any triple

Database tables

Property Table 1  (Optimized for reification
triples)

Property Table 2 (Optimized for ontology
triples)

Standard Triple Table  1

Property Table M

Standard Triple Table  2

Standard Triple Table  N

Logical Graph 1

Specialized Graph 1

Optimized for
reification triples

Specialized Graph 2

Optimized for
ontology triples

Specialized Graph n

Handles any triple
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use a combination of static and dynamically generated SQL. The static SQL is used for fixed, pre-
defined operations such as inserting a triple in a graph or the various forms of the find operation.
For access to property-class tables and for RDQL queries, the drivers dynamically generate SQL
select statements. To reduce the overhead of query compilation, the driver layer maintains a cache
of prepared SQL statements.

The driver uses a storage abstraction that is designed to be mapped to other persistent stores. Non-
SQL drivers are also possible. In the future, we plan to support a Berkeley DB driver and a native-
Java persistent store.

4.3  Configuration and Meta-graphs

In Jena1, database configuration parameters and options were specified in a configuration file of
property-value pairs that was read when initially connecting to the database. In Jena2, the files are
not used. Instead, configuration parameters are specified as RDF statements. This is analogous to
storing metadata for relational databases in tables. A graph containing configuration parameters
may be passed as an argument when creating a new persistent graph. Jena2 provides default
graphs containing the default configuration parameters for all supported databases.

Associated with each Jena2 persistent store is a meta-graph, a separate, auxiliary RDF graph con-
taining metadata about each logical graph. This auxiliary graph includes the configuration param-
eters and options mentioned above as well as other metadata such as the date the database was
formatted, the version of the driver, a list of graphs stored in the database, the mapping of graphs
to tables, etc. The meta-graph may be queried just as any other Jena graph but, unlike other
graphs, it may not be modified and it does not support reification.

The default schema for a graph is a statement table and a reified statement table, implemented as
a property-class table. The user-provided meta-graph may specify that graphs share tables. The
meta-graph may also specify additional property, property-class tables and indexes. Parameters
such as the threshold size for long literals and resources are also specified as statements within the
meta-graph.

5.0  Jena2 Query Processing

There are two forms of Jena querying. The find operation returns all statements satisfying a pat-
tern. A find pattern has the form (S,P,O) where each element is either a constant or a don’t-care.
An RDQL query [17] is compiled into a conjunction of find patterns that may include variables to

specify joins. It returns all possible valid bindings of the variables over statements in the graph1.

The addition of property tables significantly complicates query processing. Consider iterators.
Unlike a statement table where each row corresponds to a single RDF statement, an iterator over a
property table may need to expand a row into multiple statements and add URIs for properties
that are not explicitly stored. In addition, columns in a property table can be null.

However, the major complexity occurs when a query references an unknown property, i.e., where

1. Querying over inferred graphs is not addressed here.
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the property is a don’t-care or a variable that will be bound when the query is processed. These
cases are discussed below.

5.1  Find Processing

In Jena1, a find pattern was evaluated with a single SQL select query over the statement table. In
Jena2, this has to be generalized because there can be multiple statement tables for a graph. To
evaluate a pattern in Jena2, the pattern is passed, in turn, to each specialized graph handler for
evaluation, stopping when the completion flag is set. The results are concatenated and returned to
the application. This handles the case when the pattern contains an unspecified property, i.e., a
don’t-care (note that find operations do not have variables).

Currently, each specialized graph issues a separate database query for the pattern. We plan to
investigate if a single database query over all specialized graphs would be more efficient. For
example, suppose the pattern is (*,*,*), which retrieves all statements, and suppose the graph has
two tables, a statement table and a reified statement table. Rather than two separate queries, the
following  single SQL query could be used to process the pattern.

Select t.subject, t.predicate, t.object from stmt_table t
Union
Select r.URI, “rdf:subject”, r.subject from reif_table r where r.subject is not null
Union
Select r.URI, “rdf:predicate”, r.predicate from reif_table r where r.predicate is 

not null
Union
Select r.URI, “rdf:object”, r.object from reif_table r where r.object is not null
Union
Select r.URI, “rdf:type”, r.type from reif_table r where r.type is not null

Such queries can quickly become unwieldy for complicated patterns and several statement tables
and may cause challenges for query optimizers. In addition, it is not clear that a single, large
union query is more efficient that the alternative of issuing two separate queries. With the single,
union query, rows in the reification table are read four times.

5.2  RDQL Processing

In Jena1, an RDQL query is converted into a pipeline of find patterns connected by join variables.
The query is then be evaluated in a nested-loops fashion in Jena by using the result of a find oper-
ation over one pattern to bind values to variables and then generating patterns for new find opera-
tions. It would be more efficient if the join could be pushed into the database engine for
evaluation.

This is a goal of Jena2 query processing, i.e. converting multiple triple patterns into a single query
to be evaluated by the database engine. A full discussion of query processing is beyond the scope
of the paper. In this section, we discuss two simple cases and mention the difficulties for the gen-
eral case.

For the first simple case, assume that the find patterns for a query reference only the statement
table, i.e., it can be determined a priori that statements in the property tables match none of the
patterns. As mentioned above, a single pattern can be completely evaluated by a single SQL
12



query over the statement table. To evaluate multiple patterns, it is sufficient to associate a table
alias with each pattern and perform a join across the aliases for linking variables in the find pat-
terns. For example, consider an RDQL query to get the authors of a paper. It requires two pat-
terns, each of which has an associated SQL evaluation expression.

Pattern 1: (Var1, dc:title, “Jena2”)
Pattern 2: (Var1, dc:creator, Var2)

Select p1.subject, p2.object
from stmt_table p1, stmt_table p2 
where p1.predicate = “dc:title” and p1.object=“Jena2” and

p2.predicate=”dc.creator” and p1.subject = p2.subject

The second simple case occurs when all patterns can be completely evaluated by a single property
table. The interesting thing about this case is that it is possible to eliminate joins if the patterns
reference single-valued properties clustered together. For example, suppose there is a clustered
property table for dc:title and dc:creator (assume creator is single-valued here). Then, the two pat-
terns in the previous example require only a single table alias and can be evaluated without a join.

Select p1.subject, p1.creator from dcPropertyTable p1 
where p1.title=“Jena”

When the find patterns for a query apply to multiple tables, it is more difficult to construct a sin-
gle SQL query to satisfy all patterns. This presents the same issues as generating a single SQL
query for a find operation. The current approach in Jena2 is to partition the patterns into groups,
where each group contains patterns that can be completely evaluated by a single table, plus one
additional group containing patterns that span tables. A SQL query is then generated for the
former groups and the latter group is processed using the nested loops approach as in Jena1.

In Jena2, there are three cases in which a pattern may span tables. First, the property may be a
don’t-care in which case all tables must be searched. Second, the property may refer to an unspec-
ified class, i.e., the property is rdf:type but the object value (the class) is not specified. In this case,
it is impossible to know which property table may contain values for the pattern. Third, the prop-
erty may be a variable. This is the most interesting case as it corresponds to table variables in rela-
tional database querying processing, i.e., the table name is unknown until the query is processed.
This is a difficult query processing problem.

Finally, a feature of Jena2 is that queries may span graphs. This is done by specifying the graph to
which a pattern applies. If the graphs reside in the same database instance, it is possible to opti-
mize those query patterns as if they were all part of the same graph. If the graphs reside in differ-
ent instances or different database engines, no attempt is made to optimize the query and the basic
nested-loop approach is applied.

6.0  Miscellaneous Topics
Jena2 Performance Toolkit. To explore various layout options and understand performance trade-
offs, a set of Jena utility programs are under development. The first is an RDF synthetic data gen-
erator that generates statements for a specified number of classes and instances. Uniform and
skewed data distributions can be generated as well as predefined reference patterns for properties,
such as trees (for taxonomies, ancestor relations, etc.).
13



The second tool is a benchmark suite to measure the effectiveness of Jena2 enhancements and to
compare different database layouts. It is designed as a general framework that can be used to
make comparative runs of an arbitrary set of Jena programs. The third tool is an RDF data analy-
sis tool that, when applied to a set of RDF statements, suggests potentially beneficial property and
property-class tables to store the statements [16].

Jena Transaction Management. In Jena1, the underlying database may or may not support transac-
tions. Consequently, all Jena API methods were atomic to ensure database consistency. In addi-
tion, transaction begin, commit and abort methods were available to declare explicit transactions
when desired. Jena2 provides the same capabilities. However, there is an interesting case in which
Jena cannot ensure database consistency. The Jena2 query handler supports queries across graphs.
If the graphs are stored in separate databases, then a consistent read-set for the query cannot be
guaranteed because a Jena2 transaction applies to a single database connection.

In principle, it should be possible to open an XOpen/XA distributed transaction connection to the
other data source to ensure consistency. However, in the open world of the semantic web, the
common case is that data sources do not support transactions, let alone the XA protocol. This sug-
gests that a richer transaction interface for Jena2 is needed and it remains future work.

Bulk Load. A goal of Jena2 was to significantly reduce the time to load persistent graphs compared
to Jena1. This is a critical issue if RDF is to be applied to very large datasets. The use of a denor-
malized schema helps address this problem since a typical Jena2 add operation updates fewer
tables than Jena1. Jena2 also includes support for JDBC2 batch operations which enable multiple
JDBC statements to be passed in one call to the database engine. The value of batching depends
on the level of optimization within the database engine but in any event it reduces the number of
database calls significantly.

7.0  Status and Future Work
Performance Notes. Preliminary performance measurements indicate that the denormalized schema
of Jena2 is faster than the normalized schema of Jena1, twice as fast for many operations. The
results of one simple retrieval experiment are presented in Table 1. The test retrieved a single,
200-byte property value for 1000 randomly selected objects. The test was run under two configu-
rations. The denormalized configuration stored the property value directly in the statement table.
The normalized configuration reduced the long literal threshold (see Section 3.1) to 100 bytes
which caused the property value to be stored in the literals table. 

Thus, retrieving the property value in the denormalized configuration requires two retrievals, one
for the statement table and a second for the literals table while the denormalized case requires
only one. Each configuration was run multiple times with different random seeds and the result of
the first and final run are presented. The times are in milliseconds and the tests were run using
MySQL under WinXP on a recent generation PC workstation with 1.5GB RAM.

The large reduction in run time for the initial run compared to the final run we attribute to hard-
ware cache effects. For the warm run, as expected, the denormalized retrieval is twice as fast as
the normalized retrieval. If the schema were completely normalized so that the subject and predi-
cate were also stored in separate tables as was done in Jena1, we would see an even greater speed-
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up for the denormalized schema. A more systematic study will be done upon completion of a Jena

performance toolkit. Similarly, the database size increase due to the denormalized schema has not
been studied pending impletion of URI prefix compression.

Next we provide some preliminary results that show the value of property-class tables for reifica-
tion. A synthetic database of 10,000 reified RDF statements was generated and stored in two dif-
ferent formats. In the first case, the reified statement was stored in an optimized form as a
property-class table. In the second case, the reified statement was stored unoptimized as RDF tri-
ples, i.e., each reified statement was stored as four RDF statements. Consequently, the first table
contained 10,000 rows while the second table contained 40,000 rows.

Then a simple test program randomly selected a reified statement and retrieved the four reifica-
tion triples for that statement (recall that on retrieval, the property-class table converts each table
row to a set of triples). Each test was run four times with different random number seeds and three
different test sizes were run of 200, 1000, 5000 retrievals. The results are presented in Table 2. As
before, the times are in milliseconds and the tests were run using MySQL under WinXP on a
recent generation PC workstation with 1.5GB RAM.

Our expectation was that the optimized format would perform anywhere between one and four
times faster than the unoptimized form since it only needs to invoke the database engine once to
get all four triples whereas the unoptimized format makes four calls. For a small number of
retrievals, the optimized format shows a large improvement between the first and fourth run. We
attribute this to caching effects that decrease with larger numbers of retrievals. It is interesting to
see that the speed-up for large numbers of retrievals exceeds our expectations. This may be due to
database caching effects. Since the optimized table is smaller, it is possible to cache a larger per-
centage of the entire table which reduces the number of relatively slow disk seek operations.

A comprehensive study of RDQL query processing has not been done. Some preliminary analysis
indicates that the Jena2 algorithm is a modest improvement over the Jena1 nested-loops approach.
The Jena1 algorithm works quite well for queries with high selectivity since such queries require
few nested find operations. For such queries, Jena1 and Jena2 perform about the same. Jena2 per-
forms better than Jena1 on queries which join a large number of tuples.

Future Work. Currently, Jena2 stores all literals as strings. An important enhancement for typed lit-

Table1. Retrieval Times for Normalized vs. Denormalized Literal

Number of Retrievals Normalized Denormalized Speed-up

1000 (initial run) 3270 2850 1.2

1000 (final run) 840 420 2.0

Table2. Retrieval Times for Four Triples of a Reified Statement

Number of Retrievals Optimized Unoptimized Speed-up

 200 (initial run) 1000 1860 1.8

 200 (final run) 270 1470 5.4

1000 (initial run) 1330 7380 5.5

1000 (final run) 700 6970 10.0

5000  (initial run) 4220 34380 8.1

5000 (final run) 3470 34270 9.9
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erals will be to store them as native SQL types. This will enable inequality comparisons and range
queries to be processed within the database engine. This is future work.

A major goal of Jena2 is support for OWL and reasoning. Now that this is available, it will be
interesting to explore how the persistence layer can better support these capabilities, e.g. perform-
ing transitive closure within the database.

We are presently investigating caching strategies to improve performance. One approach is to
implement the caching inside the persistence layer using the specialized graph interface. An alter-
native is to implement caching for arbitrary logical graphs. The latter provides a convenient gen-
eral-purpose solution, while the former may make use of intimate knowledge of the database to
improve performance. Our initial caching algorithm is to implement a write-through cache which
holds statements with commonly-used subjects.   If the cache holds one statement with subject=X
then it has every statement with subject=X. Currently, the cache assumes exclusive access to that
subject to avoid cache consistency issues due to conflicting updates from other Jena applications.
However, such exclusive access appears to be a common case. This style of cache has previously
been suggested by others with experience in using RDF with Jena1 [11] and we hope will prove to
be a good match for common application usage patterns. Testing and analysis is underway.

8.0  Related Work

A good introduction to RDF storage subsystems and a comparative review of implementation is
available in [4,5]. We do not attempt to duplicate such a survey here. However, if we compare the
Jena2 persistent store to some of these systems along the dimensions of database schemas, archi-
tecture, and system functionality, then we can better characterize the strengths and limitations of
our approach.

The Jena2 schema design is unique in that it supports two basic schema types: both a denormal-
ized schema used for storing generic triple statements as well as property tables to store subject-
value pairs related by arbitrarily specified properties. To the best of our knowledge, no other sys-
tem supports the generation of property tables based on arbitrary properties; other systems are
strictly schema-specific. Jena2 uses the arbitrary property tables to implement a novel architec-
ture where the statements associated with a given graph are stored in multiple specialized sub-
graphs. This architecture enables the Jena2 query processor to effectively treat the subgraphs as
data partitions and provides an efficient implementation for reification. 

Most systems (including KAON [9,], Parka Database[13], and rdfDB[14]), support only a fixed
set of underlying tables that implement a (non-schema-specific) generic store. This means that the
storage mechanism cannot adapt to the data characteristics, impacting scalability.

ICS-FORTH’s RDF Suite [10] supports both generic stores as well as automatically-generated
schema-specific Object-Relational (SQL3) schema definitions. However, unlike Jena2, RDF
Suite relies on schema specifications to create the specialized tables; it doesn’t support arbitrary
property tables. Similarly, the Sesame [15] system creates one specialized table per class. Tightly
coupling the table layout to schema structure can facilitate inferencing by allowing the systems to
exploit the explicit schema relationships, but it also means that the tables must be rebuilt when-
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ever the schema structure changes. This forces the storage system to forfeit RDF’s unique support
for flexible dynamic schema restructuring; Jena2 is not subject to this limitation.

Insofar as the schema-specific tables partition the stored data, such schema-specific storage
resembles the Jena2 notion of specialized subgraphs. However, because these systems tightly
couple the subgraphs with the schemas, they can only partition data according to its syntactic
structure; they cannot create subgraphs based on other factors. The Storage and Inference Layer
(SAIL) [15] provides layered interfaces to Sesame modules that stack and allow actions to be
passed between them until handled. However, because it based upon Sesame, the SAIL database
schema is class-specific, and thus subject to the limitations listed above.

To the best of our knowledge, no other RDF system optimizes storage for reification in the style
of Jena2. The notion of property-class tables appears to be new in RDF stores although it is com-
monly used in object and functional database systems.

9.0  Conclusions

The Jena2 persistence layer supports application-specific schema while retaining the flexibility to
store arbitrary graphs. The notion of property-class tables appears to be new and should be bene-
ficial for query languages that expose higher-level abstractions to applications. However, the mix-
ing of property tables and statement tables in a graph database complicates query processing and
optimization. More work is needed on efficient algorithms for this case. 
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