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Abstract

We consider the problem of optimally recovering a finite-alphabet discrete-time stochastic process {Xt} from
its noise-corrupted observation process {Zt}. In general, the optimal estimate of Xt will depend on all the
components of {Zt} on which it can be based. We characterize non-trivial situations (i.e., beyond the case where
(Xt, Zt) are independent) for which optimum performance is attained using “symbol by symbol” operations (a.k.a.
“singlet decoding”), meaning that the optimum estimate of Xt depends solely on Zt. For the case where {Xt} is a
stationary binary Markov process corrupted by a memoryless channel, we characterize the necessary and sufficient
condition for optimality of symbol by symbol operations, both for the filtering problem (where the estimate of Xt

is allowed to depend only on {Zt′}t′≤t) and the denoising problem (where the estimate of Xt is allowed dependence
on the entire noisy process). It is then illustrated how our approach, which consists of characterizing the support
of the conditional distribution of the noise-free symbol given the observations, can be used for characterizing the
entropy rate of the binary Markov process corrupted by the BSC in various asymptotic regimes. For general
noise-free processes (not necessarily Markov), general noise processes (not necessarily memoryless) and general
index sets (random fields) we obtain an easily verifiable sufficient condition for the optimality of symbol by symbol
operations and illustrate its use in a few special cases. For example, for binary processes corrupted by a BSC, we
establish, under mild conditions, the existence of a δ∗ > 0 such that the “say-what-you-see” scheme is optimal
provided the channel crossover probability is less than δ∗. Finally, we show how for the case of a memoryless
channel the large deviations (LD) performance of a symbol by symbol filter is easy to obtain, thus characterizing
the LD behavior of the optimal schemes when these are singlet decoders (and constituting the only known cases
where such explicit characterization is available).

Key words and phrases: Asymptotic entropy, Denoising, Discrete Memoryless Channels, Entropy rate, Estimation,

Filtering, Hidden Markov processes, Large deviations performance, Noisy channels, Singlet decoding, Symbol by

symbol schemes.

1 Introduction

Let {Xt}t∈Z be a discrete-time stochastic process and {Zt}t∈Z be its noisy observation signal. The denoising problem

is that of estimating {Xt} from its noisy observations {Zt}. Since perfect recovery is seldom possible, there is a given

loss function measuring the goodness of the reconstruction and the goal is to estimate each Xt so as to minimize the

expected loss. The filtering problem is the denoising problem restricted to causality, namely, when the estimate of

Xt is allowed to depend on the noisy observation signal only through {Zt′}t′≤t.

When {Xt} is a memoryless signal corrupted by a memoryless channel the optimal denoiser (and, a fortiori,

the optimal filter) has the property that, for each t, the estimate of Xt depends on the noisy observation signal

only through Zt. A scheme with this property will be referred to as a symbol by symbol scheme or as a singlet

decoder [Dev74]. When {Xt} is not memoryless, on the other hand, the optimal estimate of each Xt will, in
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general, depend on all the observations available to it in a non-trivial way. This is the case even when the noise-free

signal is of limited memory (e.g., a first-order Markov process) and the noise is memoryless. Accordingly, much

of non-linear filtering theory is devoted to the study of optimal estimation schemes for these problems (cf., e.g.,

[AZ97, ABK00, Kal80, Kun71, EM02] and the many references therein), and basic questions such as the closed-form

characterization of optimum performance (beyond the cases we characterize in this work where singlet decoding is

optimum) remain open.

One pleasing feature of a singlet decoder is that its performance is amenable to analysis since its expected loss in

estimating Xt depends only on the joint distribution of the pair (Xt, Zt) (rather than in a complicated way on the

distribution of the process pair ({Xt}, {Zt})). Another of the obvious merits of a singlet decoder is the simplicity

with which it can be implemented, which requires no memory and no delay. It is thus of practical value to be

able to identify situations where no such memory and delay are required to perform optimally. Furthermore, it will

be seen that in many cases of interest where singlet decoding is optimal, it is the same scheme which is optimal

across a wide range of sources and noise distributions. For example, for a binary source corrupted by a BSC we

shall establish under mild conditions the existence of a δ∗ > 0 such that the “say-what-you-see” scheme is optimal

provided the channel crossover probability is less than δ∗. This implies, in particular, the universality of this simple

scheme with respect to the family of sources sharing this property, as well as with respect to all noise levels ≤ δ∗.

Thus, the identification of situations where singlet decoding attains optimum performance is of interest from both

the theoretical and the practical viewpoints, and is the motivation for our work.

Qualitatively speaking, a singlet decoder will be optimal if the value of the optimal estimate conditioned on all

available observations coincides with the value of the optimal estimate conditioned on the present noisy observation1,

for all possible realizations of the noisy observations2. This translates into a condition on the support of the distri-

bution of the unobserved clean symbol given the observations (a measure-valued random variable measurable with

respect to the observations). Indeed, for the Markov process corrupted by a memoryless channel this will lead to a

necessary and sufficient condition for the optimality of singlet decoding in terms of the support of the said distri-

bution. In general, however, the support of this distribution (and, a fortiori, the distribution itself) is not explicitly

characterizable, and, in turn, neither is the condition for optimality of singlet decoding. The support, however,

can be bounded, leading to explicit sufficient conditions for this optimality. This will be our approach to obtaining

sufficient conditions for the optimality of singlet decoding, which will be seen to lead to a complete characterization

for the case of the corrupted binary Markov chain (where the upper and lower endpoints of the said distribution can

be obtained in closed form).

Characterization of cases where singlet decoding is optimal both for the filtering and the denoising problems

was considered in [Dev74] (cf. also [Dra65, Sag70]) for the binary Markov source corrupted by a BSC. Though the

characterization of situations where optimum performance is attained using symbol-by-symbol schemes has since

been studied for other problems in information theory (e.g. [GRV03, NG82]), the optimality of singlet schemes for

filtering and denoising has, to our knowledge, not been considered beyond the setting of [Dev74]. Our interest in

the problem was triggered by the recently discovered Discrete Universal Denoiser (DUDE) [WOS+03a, WOS+03b].

Experimentation has shown cases where the scheme applied to binary sources corrupted by a BSC of sufficiently

small crossover probability remained idle (i.e., gave the noisy observation signal as its reconstruction). A similar

phenomenon was observed with the extension of this denoiser to the finite-input-continuous-output channel [DW03]

1Note that this does not mean that the distribution of the clean symbol conditioned on all available observations coincides with its
distribution conditioned on the present noisy observation (that would only be the case if the underlying source was memoryless), but
only that the corresponding optimal estimates do.

2More precisely, for source realizations in a set of probability one.
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where, for example, in denoising a binary Markov chain with a strong enough bias towards the 0 state, corrupted by

additive white Laplacian noise, the reconstruction was the “all zeros” sequence. As we shall see in this work, these

phenomena are accounted for by the fact that the optimum distribution-dependent scheme in these cases is a singlet

decoder (which the universal schemes identify and imitate).

An outline of the remainder of this work is as follows. In Section 2 we introduce some notation and conventions

that will be assumed throughout. Section 3 is dedicated to the case of a Markov chain corrupted by a memoryless

channel. To fix notation and for completeness we start in subsection A by deriving classical results concerning the

evolution of conditional distributions of the clean symbol given past and\or future observations. We then apply these

results in subsection B to obtain necessary and sufficient conditions for the optimality of singlet decoding in both the

filtering and the denoising problems. These conditions are not completely explicit in that they involve the support

of a measure satisfying an integral equation whose closed-form solution is unknown.

In Section 4 (subsections A and B) we show that when the noise-free process is binary enough information about

the support of the said measure can be extracted for characterizing the optimality conditions for singlet decoding in

closed form. Furthermore, the conditions both for the filtering and for the denoising problem are seen to depend on

the statistics of the noise only through the support of the likelihood ratio between the channel output distributions

associated with the two possible inputs. In subsection C we further specialize the results to the BSC, characterizing

all situations where singlet decoding is optimal (and thereby re-deriving the results of [Dev74] in a more explicit

form). In subsection D we point out a few immediate consequences of our analysis such as the fact that singlet

decoding for the binary-input-Laplace-output channel can only be optimal when the observations are useless and

that singlet decoding is never optimal for the binary-input-Gaussian-output channel.

In Section 5 we digress from the denoising problem and illustrate how the results of Section 4 can be used for

obtaining bounds that appear to be new3 on the entropy rate of a hidden Markov process. In particular, these

bounds lead to a characterization of the behavior of the entropy rate of the BSC-corrupted binary Markov process

in various asymptotic regimes (e.g. “rare-spikes”, “rare-bursts”, high “SNR”, low “SNR”, “almost memoryless”).

The bounds also establish “graceful” dependence of the entropy rate on the parameters of the problem. Our results

will imply continuity, differentiability, and in certain cases higher-level smoothness of the entropy rate in the process

parameters. These results are new, even in view of existent results on analyticity of Lyapunov exponents in the

entries of the random matrices [ADG94, Per] and the connection between Lyapunov exponents and entropy rate

[HGG03, JSS03]. The reason is that in the entropy rate perturbations of the parameters affect both the matrices

(corresponding to the associated Lyapunov exponent problem) and the distribution of the source generating them.

Section 6 is dedicated to the derivation of a general and easily verifiable sufficient condition for the optimality of

symbol by symbol schemes in both the filtering and the denoising problems. The condition is derived in a general

setting encompassing arbitrarily distributed processes (or fields) corrupted by arbitrarily distributed noise. The

remainder of that section details the application of the general condition to a few concrete scenarios. In subsection

A we look at the memoryless symmetric channel (with the same input and output alphabet) under Hamming loss.

Our finding is that under mild conditions on the noise-free source there exists a positive threshold such that the

“say-what-you-see” scheme is optimal whenever the level of the noise is below the threshold. Subsection B shows

that this continues to be the case for channels with memory such as the Gilbert-Elliot channel (where this time it is

the noise level associated with the “bad” state that need be below the said threshold).

In Section 7 we obtain the exponent associated with the large deviations performance of a singlet decoder, thus

3The closed form for the entropy rate of a hidden Markov process is still an open problem (cf. [EM02, HGG03] and references therein).
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characterizing the LD behavior of the optimal schemes when these are singlet decoders (and constituting the only

cases where the LD performance of the optimal filter is known). Finally, in Section 8 we summarize the paper and

discuss a few directions for future research.

2 Notation, Conventions, and Preliminaries

In general we will assume a source X(T ) = {Xt}t∈T , where T is a countable index set. The components Xt will be

assumed to take values in the finite alphabet A. Z(T ) will denote the noisy observation process, jointly distributed

with X(T ) and having components taking values in B. Formally, we define a denoiser to be a collection of measurable

functions {X̂t}t∈T , where X̂t : BT → A and X̂t = X̂t(Z(T )) is the denoiser’s estimate of Xt.

We assume a given loss function (fidelity criterion) Λ : A2 → [0,∞), represented by the matrix Λ = {Λ(i, j)}i,j∈A,

where Λ(i, j) denotes the loss incurred by estimating the symbol i with the symbol j. Thus, the expected loss of a

denoiser in estimating Xt is EΛ(Xt, X̂t(Z(T ))). A denoiser will be said to be optimal if, for each t, it attains the

minimum of EΛ(Xt, X̂t(Z(T ))) among all denoisers.

In the case where T = Z we shall use the notation X, {Xt}t∈Z or X∞
−∞ interchangeably with X(T ). We shall

also let Xt = {Xt′}t′≤t. In this setting we define a filter analogously as a denoiser only now X̂t is a function only

of Zt
−∞ rather than of the whole noisy signal Z. The notion of an optimal filter is also extended from that of an

optimal denoiser in an obvious way.

If {Ri}i∈I is any collection of random variables we let F ({Ri}i∈I) denote the associated sigma algebra. For any

finite set S, M(S) will denote the simplex of all |S|-dimensional probability column vectors. For v ∈ M(S) v(s) will

denote the component of v corresponding to the symbol s according to some ordering of the elements of S.

For P ∈ M(A), let U(P) denote the Bayes envelope (cf., e.g., [Han57, Sam63, MF98]) associated with the loss

function Λ defined by

U(P) = min
x̂∈A

∑

a∈A

Λ(a, x̂)P(a) = min
x̂∈A

λ
T
x̂ P, (1)

where λx̂ denotes the column of the loss matrix associated with the reconstruction x̂.

We will generically use P to denote probability. P will also be used for conditional probability with (when

involving continuous alphabets or infinite index sets) the standard slight abuse of notation that goes with it: P (Xi =

a|Zi
−∞), for example, should be understood as the (random) probability of Xi = a under a version of the conditional

distribution of Xi given F(Zi
−∞). For a fixed individual zi

−∞, P (Xi = a|zi
−∞) will denote that version of the

conditional distribution evaluated for Zi
−∞ = zi

−∞. Throughout the paper, statements involving random variables

should be understood, when not explicitly indicated, in the almost sure sense.

Since the optimal estimate of Xt is the reconstruction symbol minimizing the expected loss given the observations,

it follows that for an optimal denoiser

EΛ(Xt, X̂t(Z(T ))) = EU(P (Xt = ·|Z(T ))), (2)

with P (Xt = ·|Z(T )) denoting the M(A)-valued random variable whose a-th component is P (Xt = a|Z(T )). Simi-

larly, an optimal filter satisfies

EΛ(Xt, X̂t(Z
t
−∞)) = EU(P (Xt = ·|Zt

−∞)). (3)

To unify and simplify statements of results, the following conventions will also be assumed: 0/0 ≡ 1, 1/0 ≡ ∞,

1/∞ ≡ 0, log∞ ≡ ∞, log 0 ≡ −∞, e∞ ≡ ∞, e−∞ ≡ 0, ∞ + c ≡ ∞. More generally, for a function f : R → R, f(∞)
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will stand for limx→∞ f(x) where the limit is assumed to exist (in the extended real line) and f(−∞) is defined

similarly. For concreteness, logarithms are assumed throughout to be taken in the natural base.

For positive valued functions f and g, f(ε) ∼ g(ε) will stand for limε↓0
f(ε)
g(ε) = 1 and f(ε)

∼
< g(ε) will stand

for lim supε↓0
f(ε)
g(ε) ≤ 1. f(ε) = O(g(ε)) will stand for lim supε↓0

f(ε)
g(ε) < ∞ and f(ε) = Ω(g(ε)) will stand for

lim infε↓0
f(ε)
g(ε) > 0. f(ε) ≍ g(ε) will stand for the statement that both f(ε) = O(g(ε)) and f(ε) = Ω(g(ε)) hold.

Finally, when dealing with the M -ary alphabet {0, 1, . . . ,M − 1}, ⊕ will denote modulo M addition.

3 Finite-Alphabet Markov Chain Corrupted by a Memoryless Channel

In this section we assume {Xt}t∈Z to be a stationary ergodic first-order Markov process with the finite alphabet A.

Let K : A2 → [0, 1] be its transition kernel

K(a, b) = P (Xi+1 = b|Xi = a), (4)

Kr be the transition kernel of the time reversed process

Kr(a, b) = P (Xi = b|Xi+1 = a), (5)

and let µ denote its marginal distribution

µ(a) = P (Xi = a), (6)

which is the unique probability measure satisfying

µ(b) =
∑

a∈A

µ(a)K(a, b) ∀b ∈ A. (7)

We assume, without loss of generality, that

µ(a) = Pr(Xt = a) > 0 ∀a ∈ A. (8)

Throughout this section we assume that {Zt} is the noisy observation process of {Xt} when corrupted by the

memoryless channel C. For simplicity, we shall confine attention to one of two cases4:

1. Discrete channel output alphabet, in which case C(a, b) denotes the probability of a channel output symbol b

when the channel input is a.

2. Continuous real-valued channel output alphabet, in which case C(a, ·) will denote the density with respect to

Lebesgue measure (assumed to exist) of the channel output distribution when the input is a.

For concreteness in the derivations below, the notation should be understood in the sense of the first case whenever

there is ambiguity. All the derivations, however, are readily verified to remain valid for the continuous-output channel

with the obvious interpretations (e.g. of C(a, ·) as a density rather than a PMF and P (Zi = z|Zi
−∞) as a conditional

density rather than a conditional probability).

4The more general case of arbitrary channel output distributions can be handled by considering densities with respect to other
dominating measures and the subsequent derivations remain valid up to obvious modifications.
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A Evolution of the Conditional Distributions

Let {βi}, {γi}, denote the processes with M(A)-valued components defined, respectively, by

βi(a) = P (Xi = a|Zi
−∞) (9)

and

γi(a) = P (Xi = a|Z∞
i ). (10)

For a ∈ A,

βi(a) = P (Xi = a|Zi
−∞)

=
P (Xi = a, Zi|Zi−1

−∞)

P (Zi|Zi−1
−∞)

=
P (Xi = a|Zi−1

−∞)P (Zi|Xi = a)

P (Zi|Zi−1
−∞)

=
C(a, Zi)

∑

b∈A P (Xi = a|Xi−1 = b)P (Xi−1 = b|Zi−1
−∞)

P (Zi|Zi−1
−∞)

=
C(a, Zi)

∑

b∈A K(b, a)βi−1(b)

P (Zi|Zi−1
−∞)

=
C(a, Zi)[K

T βi−1](a)
∑

a′∈A C(a′, Zi)[KT βi−1](a′)
, (11)

where in the last line KT denotes the transposed matrix representing the Markov kernel of (4). In vector form (11)

becomes

βi =
1

1T [cZi
⊙ [KT βi−1]]

cZi
⊙ [KT βi−1] = T (Zi, βi−1), (12)

where, for b ∈ B, cb denotes the column vector whose a-th component is C(a, b) and ⊙ denotes componentwise

multiplication. Thus, defining the mapping T : B ×M(A) → M(A) by

T (b, β) =
1

1T [cb ⊙ [KT β]]
cb ⊙ [KT β], (13)

(12) assumes the form

βi = T (Zi, βi−1). (14)

An equivalent way of expressing (14) (which will be of convenience in the sequel) is in terms of the log-likelihoods:

for a, b ∈ A,

log
βi(a)

βi(b)
= log

C(a, Zi)

C(b, Zi)
+ log

[KT βi−1](a)

[KT βi−1](b)

= log
C(a, Zi)

C(b, Zi)
+ log

∑

c∈A K(c, a)βi−1(c)
∑

c∈A K(c, b)βi−1(c)
. (15)

By an analogous computation, we get

γi−1 = Tr(Zi, γi), (16)

with the mapping Tr : B ×M(A) → M(A) defined by

Tr(b, γ) =
1

1T [cb ⊙ [KT
r γ]]

cb ⊙ [KT
r γ]. (17)
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By the definition of βi clearly βi ∈ F(Zi
−∞) and similarly γi ∈ F(Z∞

i ). Somewhat surprisingly, however, both

{βi} and {γi} turn out to be first-order Markov processes. Indeed, defining for E ⊆ M(A) and β, γ ∈ M(A),

F (E, β) =
∑

b:T (b,β)∈E

[

∑

a∈A

cb ⊙ [KT β]

]

, Fr(E, γ) =
∑

b:Tr(b,γ)∈E

[

∑

a∈A

cb ⊙ [KT
r γ]

]

, (18)

the following result is implicit in [Bla57].

Claim 1 (Blackwell [Bla57]) {βi}, {γi} are both stationary first-order Markov processes. Furthermore, the dis-

tribution of β0, Q, satisfies, for each Borel set E ⊆ M(A), the integral equation

Q(E) =

∫

β∈M(A)

F (E, β)dQ(β) (19)

and the distribution of γ0, Qr, satisfies the integral equation

Qr(E) =

∫

γ∈M(A)

Fr(E, γ)dQr(γ). (20)

We reproduce a proof in the spirit of [Bla57] for completeness.

Proof of Claim 1: We prove the claim for {βi}, the proof for {γi} being analogous. Stationarity is clear. To prove

the Markov property, note that

P (βi ∈ E|Zi−1
−∞) = P (T (Zi, βi−1) ∈ E|Zi−1

−∞)

=
∑

b:T (b,βi−1)∈E

P (Zi = b|Zi−1
−∞)

=
∑

b:T (b,βi−1)∈E

[

∑

a∈A

P (Zi = b,Xi = a|Zi−1
−∞)

]

=
∑

b:T (b,βi−1)∈E

[

∑

a∈A

cb ⊙ [KT βi−1]

]

= F (E, βi−1),

where the last equality follows similarly as in the derivation of (14). Thus we see that P (βi ∈ E|Zi−1
−∞) depends on

Zi−1
−∞ only through βi−1 which, since F(βi−1

−∞) ⊆ F(Zi−1
−∞), implies that

P (βi ∈ E|βi−1
−∞) = F (E, βi−1), (21)

thus establishing the Markov property. Taking expectations in both sides of (21) gives (19). 2

Note that the optimal filtering performance, EU(βi) (recall (3)), has a “closed form” expression in terms of the

distribution Q:

EU(βi) =

∫

β∈M(A)

U(β)dQ(β). (22)

Similarly, as was noted in [Bla57], the entropy rate (assuming a discrete channel output5) of Z can also be given a

“closed form” expression in terms of the distribution Q. To see this note that

P (Zi+1 = z|Zi
−∞) =

[

βT
i · K · C

]

(z), (23)

5The case of a continuous-valued output (and differential entropy rate) would be handled analogously.
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with K denoting the Markov transition matrix (with (a, b)-th entry given by (4)) and C denoting the channel

transition matrix (with (a, z)-th entry given by C(a, z)). Thus, letting H denote the entropy functional H(P) =

−∑z P(z) log P(z) and H(Z) denote the entropy rate of Z,

H(Z) = EH(P (Zi+1 = ·|Zi
−∞)) = EH

([

βT
i · K · C

])

=

∫

β∈M(A)

H
([

βT · K · C
])

dQ(β). (24)

Optimum denoising performance can also be characterized in terms of the measures Q and Qr of Claim 1. For

this we define the M(A)-valued process {ηi} via

ηi(a) = P (Xi = a|Z∞
−∞) (25)

and note that

ηi(a) = P (Xi = a|Z∞
−∞)

= lim
n→∞

P (Xi = a, Zn
−n)

P (Zn
−n)

= lim
n→∞

P (Zn
−n|Xi = a)µ(a)

P (Zn
−n)

= lim
n→∞

P (Zi−1
−n |Xi = a)P (Zn

i+1|Xi = a)P (Zi|Xi = a)µ(a)

P (Zn
−n)

= lim
n→∞

P (Xi=a|Zi−1

−n
)P (Zi−1

−n
)

µ(a) · P (Xi=a|Zn
i+1)P (Zn

i+1)

µ(a) P (Zi|Xi = a)µ(a)

P (Zn
−n)

= lim
n→∞

P (Xi = a|Zi−1
−n )P (Zi−1

−n )P (Xi = a|Zn
i+1)P (Zn

i+1)P (Zi|Xi = a)

µ(a)P (Zn
−n)

= lim
n→∞

1
µ(a)P (Xi = a|Zi−1

−n )P (Xi = a|Zn
i+1)P (Zi|Xi = a)

∑

a′∈A
1

µ(a′)P (Xi = a′|Zi−1
−n )P (Xi = a′|Zn

i+1)P (Zi|Xi = a′)

=

1
µ(a)P (Xi = a|Zi−1

−∞)P (Xi = a|Z∞
i+1)P (Zi|Xi = a)

∑

a′∈A
1

µ(a′)P (Xi = a′|Zi−1
−∞)P (Xi = a′|Z∞

i+1)P (Zi|Xi = a′)

=

1
µ(a) [K

T βi−1](a)[KT
r γi+1](a)C(a, Zi)

∑

a′∈A
1

µ(a′) [K
T βi−1](a′)[KT

r γi+1](a′)C(a′, Zi)

or, in vector notation,

ηi =
[KT βi−1] ⊙ [KT

r γi+1] ⊙ cZi
÷ µ

1T [[KT βi−1] ⊙ [KT
r γi+1] ⊙ cZi

÷ µ]
= GZi

(βi−1, γi+1), (26)

where here ÷ denotes componentwise division and, for b ∈ B, we define the mapping Gb : M(A) ×M(A) → M(A)

by

Gb(β, γ) =
[KT β] ⊙ [KT

r γ] ⊙ cb ÷ µ

1T [[KT β] ⊙ [KT
r γ] ⊙ cb ÷ µ]

. (27)

Analogously to (15) we can write

log
ηi(a)

ηi(b)
= log

C(a, Zi)

C(b, Zi)
+ log

[KT βi−1](a)

[KT βi−1](b)
+ log

[KT
r γi+1](a)

[KT
r γi+1](b)

− log
µ(a)

µ(b)
. (28)

Note that, by (26), optimum denoising performance is given by EU(ηi) = EU (GZi
(βi−1, γi+1)) (which can be

expressed in terms of the measures Q and Qr of Claim 1 analogously as in (22)6).

6Conditioned on Xi, Zi, βi−1 and γi+1 are independent. Thus EU
(

GZi
(βi−1, γi+1)

)

is obtained by first conditioning on Xi. Then
one needs to obtain the distribution of βi−1 and of γi+1 conditioned on Xi, which can be done using calculations similar to those detailed.
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The measure Q is hard to extract from the integral equation (19) and, unfortunately, is not explicitly known

to date (cf. [Bla57] for a discussion of some of its peculiar properties). Correspondingly, explicit expressions for

optimum filtering performance (cf. [KZ96]), denoising performance (cf. [SDAB01]), and for the entropy rate of the

noisy process (cf. [Bla57, HGG03, EM02]) are unknown.

B A Generic Condition for the Optimality of Symbol-by-Symbol Operations

We shall now see that the optimality of symbol-by-symbol operations for filtering and for denosing depends on the

measures Q and Qr (detailed in Claim 1) only through their supports. In what follows we let CQ and CQr
denote,

respectively, the support of Q and of Qr.

For P ∈ M(A) define the Bayes response to P, X̂(P), by

X̂(P) = {a ∈ A : λ
T
a P = min

x̂∈A
λ

T
x̂ P}. (29)

Note that we have slightly deviated from common practice, letting X̂(P) be set-valued so that |X̂(P)| ≥ 1 with

equality if and only if the minimizer of λ
T
x̂ P is unique. With this notation, the following is a direct consequence of

the definition of βi and of the fact that an optimal scheme satisfies (respectively) (2) or (3):

Fact 1 A filtering scheme {X̂i(·)} is optimal if and only if for each i

P (X̂i(Z
i
−∞) ∈ X̂(βi)) = 1. (30)

A denoising scheme {X̂i(·)} is optimal if and only if for each i

P (X̂i(Z
∞
−∞) ∈ X̂(ηi)) = 1. (31)

For f : B → A define Sf ⊆ M(A) by

Sf = {s ∈ M(A) : f(b) ∈ X̂(T (b, s)) ∀b ∈ B}. (32)

In words, Sf is the set of distributions on the clean source alphabet sharing the property that f(b) is the Bayes

response to T (b, s) for all b ∈ B. Somewhat less formally7, Sf is the largest set with the property that the Bayes

response to T (·, s) is f(·) regardless of the value of s ∈ Sf . It is thus clear, by (30) and (12), that singlet decoding

with f(·) will result in optimal filtering for Xi if βi−1 is guaranteed to land in Sf . Conversely, if βi−1 can fall outside

of Sf then, on that event, the Bayes response to T (·, βi−1) will not be f(·) so singlet decoding with f cannot be

optimal. More formally:

Theorem 1 Assume C(a, b) > 0 for all a ∈ A, b ∈ B. The singlet decoding scheme X̂i = f(Zi) is an optimal filter

if and only if CQ ⊆ Sf .

Proof of Theorem 1: Suppose that CQ ⊆ Sf . Then P (βi−1 ∈ Sf ) = 1 and, by the definition of Sf ,

P
(

f(b) ∈ X̂(T (b, βi−1)) ∀b ∈ B
)

= 1.

Consequently P
(

f(Zi) ∈ X̂(T (Zi, βi−1))
)

= P
(

f(Zi) ∈ X̂(βi)
)

= 1, establishing optimality by (30).

7Neglecting the possibility that |X̂(T (b, s))| > 1.
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For the other direction, suppose that CQ 6⊆ Sf . Then there exists a J ⊆ M(A) with J ∩ Sf = ∅ such that

P (βi−1 ∈ J) > 0. Since J ∩ Sf = ∅ this implies that

P
(

f(b) ∈ X̂(T (b, βi−1)) ∀b ∈ B
)

< 1,

implying the existence of b ∈ B with

P
(

f(b) ∈ X̂(T (b, βi−1))
)

< 1,

implying, in turn, when combined with (8) the existence of a ∈ A such that

P
(

f(b) ∈ X̂(T (b, βi−1))|Xi = a
)

< 1. (33)

Now, Zi and βi−1 are conditionally independent given Xi and therefore

P
(

f(Zi) ∈ X̂(βi)|Xi = a
)

= P
(

f(Zi) ∈ X̂(T (Zi, βi−1))|Xi = a
)

=
∑

b′∈B

P
(

f(b′) ∈ X̂(T (b′, βi−1))|Xi = a
)

C(a, b′).

(34)

Inequality (33), combined with (34) and the fact that C(a, b) > 0, implies P
(

f(Zi) ∈ X̂(βi)|Xi = a
)

< 1, which, in

turn, leads to P
(

f(Zi) ∈ X̂(βi)
)

< 1. Thus, X̂i(Z
i
−∞) = f(Zi) does not satisfy (30) and, consequently, is not an

optimal filtering scheme. 2

Remark: The assumption that all channel transitions have positive probabilities was made to avoid some technical

nuisances in the proof. For the general case the above proof can be slightly elaborated to show that Theorem 1

continues to hold upon slight modification of the definition of Sf in (32) to

{s ∈ M(A) : f(b) ∈ X̂(T (b, s)) ∀b ∈ S(s)}, (35)

where S(s) = {b ∈ B : C(a, b) > 0 for some a ∈ A with [sT K](a) > 0}.
A similar line of argumentation leads to the denoising analogue of Theorem 1. For f : B → A define Rf ⊆

M(A) ×M(A) by

Rf = {(s1, s2) ∈ M(A) ×M(A) : f(b) ∈ X̂(Gb(s1, s2)) ∀b ∈ B}. (36)

Theorem 2 Assume C(a, b) > 0 for all a ∈ A, b ∈ B. The scalar scheme X̂i = f(Zi) is an optimal denoiser if and

only if CQ × CQr
⊆ Rf .

The proof, deferred to the Appendix, is similar to that of Theorem 1.

In general, even the supports CQ and CQr
may be difficult to obtain explicitly. In such cases, however, outer

and inner bounds on the supports may be manageable to obtain8. Then, the theorems above can be used to obtain,

respectively, sufficient and necessary conditions for the optimality of symbol-by-symbol schemes. As we shall see in

the next section, when the source alphabet is binary, Q and Qr are effectively distributions over the unit interval,

and enough information about their supports can be extracted to characterize the necessary and sufficient conditions

for the optimality of symbol-by-symbol schemes. For this case the conditions in Theorem 1 and Theorem 2 can be

recast in terms of intersections of intervals with explicitly characterized endpoints.

8To get outer bounds, for example, it is enough to bound the supports of the distributions of βi(a) for each a, which is a much simpler
problem that can be handled using an approach similar to that underlying the results of Section 4.
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4 The Binary Markov Source

Assume now A = {0, 1} and that {Xi} is a stationary binary Markov source. Let π01 = K(0, 1) denote the probability

of transition from 0 to 1 and π10 = K(1, 0). We assume, without loss of generality9, that 0 < π01 ≤ 1 and 0 < π10 ≤ 1.

For concreteness we shall assume Hamming loss, though it will be clear that the derivation (and analogous results)

carry over to the general case.

For this case (15) becomes

log
βi(1)

1 − βi(1)
= log

C(1, Zi)

C(0, Zi)
+ log

∑

c∈A K(c, 1)βi−1(c)
∑

c∈A K(c, 0)βi−1(c)

= log
C(1, Zi)

C(0, Zi)
+ log

π01(1 − βi−1(1)) + (1 − π10)βi−1(1)

(1 − π01)(1 − βi−1(1)) + π10βi−1(1)
. (37)

Equivalently, letting10 li = log βi(1)
1−βi(1)

, we obtain

li = log
C(1, Zi)

C(0, Zi)
+ h(li−1), (38)

where

h(x) = log
π01 + ex(1 − π10)

(1 − π01) + exπ10
. (39)

Denoting further ki = log γi(1)
1−γi(1)

, mi = log ηi(1)
1−ηi(1)

, and since the time-reversibility of the binary Markov process

implies that Kr = K, equation (28) becomes

mi = log
C(1, Zi)

C(0, Zi)
+ h(li−1) + h(ki+1) − log

π01

π10
. (40)

A The Support of the Log-Likelihoods

By differentiating it is easily verified that

Fact 2 The function h is non-decreasing whenever π10 + π01 ≤ 1, otherwise it is non-increasing.

Define now11

Ubs = ess sup
C(1, Z0)

C(0, Z0)
(41)

and

Lbs = ess inf
C(1, Z0)

C(0, Z0)
. (42)

Examples:

• BSC with δ ≤ 1/2. Ubs = 1−δ
δ , Lbs = δ

1−δ .

• Binary Input Additive White Gaussian Noise (BIAWGN) channel where

Zi|Xi = 0 ∼ N (−1, 1), Zi|Xi = 1 ∼ N (1, 1). (43)

Ubs = ∞, Lbs = 0.

9The remaining cases imply zero probability to one of the symbols and so are trivial.
10li, as well as ki and mi defined below, are R ∪ {∞,−∞}-valued random variables.
11For a general binary input channel the ratios in equations (41) and (42) would be replaced by the Radon-Nykodim derivative of the

output distribution given input symbol 1 w.r.t. the output distribution given input symbol 0.
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• Binary input additive Laplacian noise (BIALN) channel where

C(0, z) = c(α)e−α|z+µ|, C(1, z) = c(α)e−α|z−µ|, µ > 0, z ∈ R, (44)

c(α) being the normalization factor. Ubs = e2αµ, Lbs = e−2αµ.

Define further

I1 = ess inf li (45)

and

I2 = ess sup li. (46)

The reason for our interest in I1 and I2 is that [I1, I2] is the smallest interval containing the support of li. The

sufficiency of symbol-by-symbol operations for the filtering problem, as will be seen below, depends on the support

of li solely through this interval.

Theorem 3 The pair (I1, I2) (defined in (45) and (46)) is given by the unique solution (in the extended real line) to

1. When π1,0 + π0,1 ≤ 1: I1 = log Lbs + h(I1) and I2 = log Ubs + h(I2).

2. When π1,0 + π0,1 > 1: I1 = log Lbs + h(I2) and I2 = log Ubs + h(I1).

Note, in particular, the dependence of (I1, I2) on the channel only through Lbs and Ubs.

Proof of Theorem 3: We assume π1,0 + π0,1 ≤ 1 (the proof for the case π1,0 + π0,1 > 1 is analogous). Monotonicity

and continuity of h imply

ess inf h(li−1) = h(ess inf li−1) = h(ess inf li) = h(I1). (47)

Thus

I1 = ess inf li (48)

= ess inf

[

log
C(1, Zi)

C(0, Zi)
+ h(li−1)

]

(49)

= ess inf

[

log
C(1, Zi)

C(0, Zi)

]

+ ess inf h(li−1) (50)

= log

[

ess inf
C(1, Zi)

C(0, Zi)

]

+ h(I1) (51)

= log Lbs + h(I1), (52)

where (49) follows from (38), (50) follows since all transitions of the Markov chain have positive probability, and (51)

is due to (47). The relationship I2 = log Ubs + h(I2) is established similarly. 2

Elementary algebra shows that for π1,0 + π0,1 ≤ 1 and any α > 0 the unique real solution (for x) of the equation

x = log α + h(x) is given by x = f(π01, π10, α) where

f(π01, π10, α) = log

[

−1 + α + π01 − απ10 +
√

4απ01π10 + (1 − α − π01 + απ10)2

2π10

]

. (53)

Thus, from Theorem 3 we get I1 = f(π01, π10, Lbs) and I2 = f(π01, π10, Ubs) when π1,0 + π0,1 ≤ 1. An explicit form

of the unique solution for the pair (I1, I2) when π1,0 +π0,1 > 1 can also be obtained12 by solving the pair of equations

in the second item of Theorem 3.

12We omit the expressions which are somewhat more involved than that in (53).
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For the analogous quantities in the denosing problem

J1 = ess inf mi (54)

and

J2 = ess sup mi, (55)

we have the following:

Theorem 4 1. When π1,0 + π0,1 ≤ 1: J1 = log Lbs + 2h(I1) − log π01

π10
and J2 = log Ubs + 2h(I2) − log π01

π10
.

2. When π1,0 + π0,1 > 1: J1 = log Lbs + 2h(I2) − log π01

π10
and J2 = log Ubs + 2h(I1) − log π01

π10
.

Proof: The proof is similar to that of Theorem 3, using (40) (instead of (38)) and the fact (by time reversibility)

that li−1 and ki+1 are equal in distribution and, in particular, have equal supports. 2

Thus, when π1,0 + π0,1 ≤ 1, we get the explicit forms J1 = log Lbs + 2h(f(π01, π10, Lbs)) − log π01

π10
and J2 =

log Ubs + 2h(f(π01, π10, Ubs))− log π01

π10
where f was defined in (53). Explicit (though more cumbersome) expressions

can also be obtained for the case π1,0 + π0,1 > 1.

B Conditions for Optimality of Singlet Decoding

When specialized to the present setting, Fact 1 asserts that in terms of the log-likelihood processes {li} and {mi},
X̂i is an optimal filter if and only if it is of the form

X̂i(Z
i
−∞) = fopt(Z

i
−∞) =







1 a.s. on {li > 0}
0 a.s. on {li < 0}

arbitrary on {li = 0}.
(56)

Similarly, a denoiser is optimal if and only if it is of the form

X̂i(Z
∞
−∞) = gopt(Z

∞
−∞) =







1 a.s. on {mi > 0}
0 a.s. on {mi < 0}

arbitrary on {mi = 0}.
(57)

The following is a direct consequence of equations (56) and (57) and the definitions of I1, I2, J1, J2.

Claim 2 The filter ignoring its observations and saying

• “all ones” is optimal if and only if I1 ≥ 0.

• “all zeros” is optimal if and only if I2 ≤ 0.

The denoiser ignoring its observations and saying

• “all ones” is optimal if and only if J1 ≥ 0.

• “all zeros” is optimal if and only if J2 ≤ 0.

Proof: To prove the first item note that if I1 ≥ 0 then li ≥ 0 a.s. thus, by (56), X̂i(Z
i
−∞) ≡ 1 is an optimal filter.

Conversely, if X̂i(Z
i
−∞) ≡ 1 is an optimal filter then, by (56), li ≥ 0 a.s. which implies that I1 ≥ 0. The remaining

items are proven similarly. 2

Note that theorems 3 and 4, together with Claim 2, provide complete and explicit characterization of the cases

where the observations are “useless” for the filtering and denoising problems. For example, for the filtering problem,

by recalling that I1 = f(π01, π10, Lbs) and I2 = f(π01, π10, Ubs) (with f given in (53)) we obtain:
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Corollary 1 Assume π1,0 + π0,1 ≤ 1. The filter ignoring its observations and saying

• “all-zeros” is optimal if and only if

√

4Ubsπ01π10 + (1 − Ubs − π01 + Ubsπ10)2 ≤ 1 − Ubs − π01 + Ubsπ10 + 2π10.

• “all-ones” is optimal if and only if

√

4Lbsπ01π10 + (1 − Lbs − π01 + Lbsπ10)2 ≥ 1 − Lbs − π01 + Lbsπ10 + 2π10.

Explicit characterizations for the case π1,0 + π0,1 > 1 as well as for the denoising problem can be obtained similarly.

We now turn to a general characterization of the conditions under which the optimum scheme needs to base its

estimate only on the present symbol.

Claim 3 Singlet decoding is optimal for the filtering problem if and only if

log
C(1, Z1)

C(0, Z1)
6∈ (log Ubs − I2, log Lbs − I1) a.s. (58)

or, in other words, the support of log C(1,Z1)
C(0,Z1)

does not intersect the (log Ubs − I2, log Lbs − I1) interval.

Remark: Elementary algebra shows that, for π1,0 + π0,1 ≤ 1,

h(I1) = log
−Lbs(1 − π10)

2 − π01(1 + π10) + (−1 + π10)
(

−1 +
√

4Lbsπ01π10 + (−1 + π01 + Lbs(1 − π10))2
)

π10

(

−1 + π01 − Lbs(1 − π10) −
√

4Lbsπ01π10 + (−1 + π01 + Lbs(1 − π10))2
) . (59)

Thus the condition in this case is that C(1,Z1)
C(0,Z1)

lie outside the interval whose left endpoint is

π10

(

−1 + π01 − Ubs(1 − π10) −
√

4Ubsπ01π10 + (−1 + π01 + Ubs(1 − π10))2
)

−Ubs(1 − π10)2 − π01(1 + π10) + (−1 + π10)
(

−1 +
√

4Ubsπ01π10 + (−1 + π01 + Ubs(1 − π10))2
) (60)

and right endpoint is

π10

(

−1 + π01 − Lbs(1 − π10) −
√

4Lbsπ01π10 + (−1 + π01 + Lbs(1 − π10))2
)

−Lbs(1 − π10)2 − π01(1 + π10) + (−1 + π10)
(

−1 +
√

4Lbsπ01π10 + (−1 + π01 + Lbs(1 − π10))2
) . (61)

Proof of Claim 3: From (56) it follows that the optimal filter is a singlet decoder if and only if the sign of li is, with

probability one, determined solely by Zi. From (38) (and the fact that all transitions of the underlying Markov chain

have positive probability) it follows that this can be the case if and only if, with probability one,

log
C(1, Zi)

C(0, Zi)
≥ −ess inf h(li−1) or log

C(1, Zi)

C(0, Zi)
≤ −ess sup h(li−1). (62)

But, by Theorem 3, (−ess sup h(li−1),−ess inf h(li−1)) = (log Ubs − I2, log Lbs − I1) so (62) is equivalent to (58). 2

The analogous result for the denoising problem is the following:

Claim 4 Singlet decoding is optimal for the denoising problem if and only if

1

2

[

log
C(1, Z1)

C(0, Z1)
− log

π01

π10

]

6∈ (log Ubs − I2, log Lbs − I1) a.s. (63)

or, in other words, the support of 1
2

[

log C(1,Z1)
C(0,Z1)

− log π01

π10

]

does not intersect the (log Ubs − I2, log Lbs − I1) interval.
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Proof: The proof follows from (40) and Theorem 4 analogously as Claim 3 followed from (38) and Theorem 3. 2

Remarks:

1. For the case π1,0 + π0,1 ≤ 1, the condition (63) is equivalent to
√

C(1,Z1)π10

C(0,Z1)π01
lying outside the interval whose

endpoints are given, respectively, by (60) and (61).

2. Claim 3 (resp. 4) explicitly characterizes the conditions under which singlet decoding is optimal for the filtering

(resp. denoising) problems. The proof idea, however, is readily seen to imply, more generally, even in cases

where singlet decoding is not optimal, that if the observation Zi happens to be such that log C(1,Zi)
C(0,Zi)

(resp.

1
2

[

log C(1,Zi)
C(0,Zi)

− log π01

π10

]

) falls outside the (log Ubs − I2, log Lbs − I1) interval, then the optimal estimate of Xi

will be independent of the other observations (namely, it will be 0 if the said quantity falls below the interval

and 1 if it falls above it irrespective of other observations).

3. Note that the optimality of singlet decoding depends on the noisy channel only through the support of log C(1,Z1)
C(0,Z1)

(or, equivalently, of C(1,Z1)
C(0,Z1)

).

C Optimality of Singlet Decoding for the BSC

We now show that the results of the previous subsection, when specialized to the BSC, give the explicit charac-

terization of optimality of singlet decoding derived initially in [Dev74]. The results below refine and extend those

of [Dev74] in that they provide the explicit conditions for optimality of the “say-what-you-see” scheme in the non-

symmetric Markov chain case as well. Also, our derivation (of the results in the previous subsection) avoids the need

to explicitly find the “worst observation sequence” (the approach on which the results of [Dev74] are based). Finally,

due to a parametrization different than that in [Dev74], the region of optimality of singlet decoding for this setting

admits a simple form.

We assume here a BSC(δ), (δ ≤ 1/2), and restrict attention throughout to the case π1,0 + π0,1 ≤ 1. In this case,

Ubs = (1−δ)/δ, and Lbs = δ/(1−δ) so that, by Theorem 3 (and the remark following its proof), the smallest interval

containing the support of li is [f(π01, π10, δ/(1 − δ)), f(π01, π10, (1 − δ)/δ)], where f is given in (53).

Corollary 2 For the BSC(δ), we have the following:

1. Filtering: The “say-what-you-see” filter is optimal if and only if either

π01 ≤ π10 and 2 log
1 − δ

δ
≥ −f(π01, π10, δ/(1 − δ))

or

π01 > π10 and 2 log
1 − δ

δ
≥ f(π01, π10, (1 − δ)/δ).

2. Denoising: The “say-what-you-see” denoiser is optimal if and only if

3

2
log

1 − δ

δ
≥ max

{

−1

2
log

π10

π01
− f(π01, π10, δ/(1 − δ)),

1

2
log

π10

π01
+ f(π01, π10, (1 − δ)/δ)

}

.

Remark: Note that Corollary 2, together with Corollary 1, completely characterize the cases of optimality of singlet

filtering for the BSC. Optimality of singlet denoising is similarly characterized by the second part of Corollary 2 as

well as (for the “all-zero” and “all-one” schemes) by writing out the conditions J2 ≤ 0 and J1 ≥ 0 (recall Claim 2)

using the expressions for J1 and J2 as characterized by Theorem 4.
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Proof of Corollary 2: Claim 3 and the remark closing the previous subsection imply that the condition for optimality

of the “say-what-you-see” filter is that log
[

1−δ
δ

]

be above the interval on the right side of (58) and log
[

δ
1−δ

]

be

below that interval. More compactly, the condition is

log

[

1 − δ

δ

]

≥ max {log Lbs − f(π01, π10, δ/(1 − δ)),− log Ubs + f(π01, π10, (1 − δ)/δ)}

or, since for this case 1−δ
δ = Ubs = 1/Lbs,

2 log
1 − δ

δ
≥ max {−f(π01, π10, δ/(1 − δ)), f(π01, π10, (1 − δ)/δ)} . (64)

Now, it is straightforward to check that when π01 ≤ π10, it is the left branch which attains the maximum in (64),

otherwise it is the right branch. This establishes the first part. The second part follows from Claim 4 similarly as

the first part followed from Claim 3. 2

For the symmetric Markov source, where π01 = π10 = π, the “all-zeros” and “all-ones” schemes are clearly always

suboptimal except for the trivial case δ = 1/2. For the optimality of the “say-what-you-see” scheme, the conditions

in Corollary 2 simplify, following elementary algebra, to give the following:

Corollary 3 For the symmetric Markov source with π ≤ 1/2, corrupted by the BSC(δ), we have:

1. The “say-what-you-see” scheme is an optimal filter if and only if either π ≥ 1/4 (and all 0 ≤ δ ≤ 1/2), or

π < 1/4 and δ ≤ 1
2 (1 −

√
1 − 4π). More compactly, if and only if δ ≤ 1

2 (1 −
√

max{1 − 4π, 0}).

2. The “say-what-you-see” scheme is an optimal denoiser if and only if either π ≥ 1/3 (and all 0 ≤ δ ≤ 1/2), or

π < 1/3 and δ ≤ 1
2

(

1 −
√

1 − 4
(

π
1−π

)2
)

. More compactly, if and only if δ ≤ 1
2

(

1 −
√

max

{

1 − 4
(

π
1−π

)2

, 0

}

)

.

Note that Corollary 3, both for the filtering and the denoising problems, completely characterizes the region in the

square 0 ≤ π ≤ 1/2, 0 ≤ δ ≤ 1/2 where the minimum attainable error rate is δ. The minimum error rate at all points

outside that region remains unknown13.

This characterization carries over to cover the whole 0 ≤ π ≤ 1, 0 ≤ δ ≤ 1/2 region14 as follows. The idea is to

show a one-to-one correspondence between an optimal scheme for the Markov chain with transition probability π

and that for the chain with transition probability 1 − π. Let X̂t(Z
t) be a filter and bt be the alternating sequence,

e.g., bt = (· · · 010101). Consider the filter Ŷt given by Ŷt(Z
t) = bt ⊕ X̂t(Z

t ⊕ bt). We argue that the error rate of

the filter X̂t on the chain with transition probability π equals that of the filter Ŷt on the chain with 1 − π. To see

this note that Ŷt(z
t) makes an error if and only if X̂t(z

t ⊕ bt) 6= xt ⊕ bt. The claim follows since the distribution of

{(Xt, Zt)} under π is equal to the distribution of {(Xt ⊕ bt, Zt ⊕ bt)} under 1 − π. The same argument applies for

denoisers. Thus, the overall region of optimality of the “say-what-you-see” scheme in the 0 ≤ π ≤ 1, 0 ≤ δ ≤ 1/2

rectangle is symmetric about π = 1/2.

Figure 1 plots the two curves associated with Corollary 3, as well as the line δ = π. All points on or below the

solid curve (and only such points) correspond to a value of the pair (π, δ) for which the “say-what-you-see” scheme is

an optimal filter. All points below the dotted curve correspond to values of this pair where the “say-what-you-see”

scheme is an optimal denoiser. The latter region is, of course, contained in the former. A few additional observations

in the context of Figure 1 are as follows:

13Other than that, the asymptotic behavior of the minimum error rate as π → 0 has been characterized, respectively, for the filtering
and denoising problems in [KZ96] and [SDAB01].

14The characterization for the 0 ≤ π ≤ 1, 0 ≤ δ ≤ 1/2 region trivially extends to that of the whole 0 ≤ π ≤ 1, 0 ≤ δ ≤ 1 square by
looking at the complement of each bit when δ > 1/2.
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1. The region δ ≤ π is entirely contained in the region of optimality of the “say-what-you-see” filter. This can be

understood by considering the genie-aided filter allowed to base its estimate of Xi on Xi−1 (in addition to the

noisy observations), which reduces to a singlet decoder when δ ≤ π. Note that this implies, in particular, that

optimum filtering performance

{

= δ for δ ≤ π
> π for δ > π.

(65)

2. On the other hand, the δ ≤ π region is not entirely contained in the region of optimality of the “say-what-you-

see” denoiser. This implies, in particular, that

optimum denoiser performance

{

< δ for a non-empty subset of the δ < π region
> π for a non-empty subset of the δ > π region

(66)

3. For filtering or denoising a Bernoulli(π) process corrupted by a BSC(δ) we have

optimum filtering/denoising Bernoulli(π)

{

= δ for δ ≤ π
= π for δ > π

(67)

Comparing with (65) and (66) we reach the following conclusions:

• Filtering of the symmetric Markov chain is always (i.e., for all values of (δ, π)) harder (not everywhere

strictly) than filtering of the Bernoulli process with the same entropy rate.

• For some regions of the parameter space denoising of a Markov chain is harder than denoising a Bernoulli

process with the same entropy rate, while for other regions it is easier.

In particular, this implies that the entropy rate of the clean source is not completely indicative of its “filter-

ability” and “denoisability” properties.

4. It is interesting to note that both for the filtering and the denoising problems, for π large enough (≥ 1/4 and

≥ 1/3, respectively) the “say-what-you-see” scheme is optimal, no matter how noisy the observations.

D Singlet Decoding is Optimal for the Laplacian Channel only when Observations

are Useless

For the Laplacian channel detailed in (44) we now argue that singlet decoding can be optimal only when the

observations are useless, namely, when the optimal scheme is either the “all-zeros” or the “all-ones” (and hence never

in the case of a symmetric Markov chain). To see this, consider first the filtering problem. As is readily verified, for

this channel the support of log C(1,Z1)
C(0,Z1)

is the interval [−2αµ, 2αµ]. Thus, for the support not to intersect the interval

(log Ubs − I2, log Lbs − I1), it must lie either entirely below this interval (in which case the “all-zeros” filter would be

optimal) or entirely above it (in which case the “all-ones” filter would be optimal). A similar argument applies to

the denoising problem.

A similar conclusion extends to any continuous output channel when, say, the densities associated with the

output distributions for the two possible inputs are everywhere positive and continuous. In this case the support of

log C(1,Z1)
C(0,Z1)

will be a (not necessarily finite) interval. In particular, if it does not intersect the (log Ubs−I2, log Lbs−I1)

interval it must be either entirely below or entirely above it.

Finally, we note that by a similar argument, for the BIAWGN channel detailed in (43), singlet decoding can never

be optimal since the support of log C(1,Z1)
C(0,Z1)

(resp. 1
2

[

log C(1,Z1)
C(0,Z1)

− log π01

π10

]

) is the entire real line (so, in particular,

intersects the said interval).
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5 Asymptotics of the Entropy Rate of the Noisy Observation Process

In this section we digress from the filtering and denoising problems to illustrate how the bounds on the support of

the log likelihoods developed in Section 4 can be used to bound the entropy rate of the noisy observation process,

the precise form of which is unknown (cf. [EM02, HGG03, GV96, MBD89] and references therein).

Assuming a discrete-valued noisy process, from equation (24) it is clear that a lower and an upper bound on its

entropy rate is given by

min
β∈CQ

H
([

βT · K · C
])

≤ H(Z) ≤ max
β∈CQ

H
([

βT · K · C
])

, (68)

with CQ denoting the support of βi. We now illustrate the use of (68) to derive an explicit bound for the entropy

rate of the binary Markov chain corrupted by a BSC (considered in subsection 4.C). For this case,

H
([

βT · K · C
])

= hb ([β(1)(1 − π10) + (1 − β(1))π01] ∗ δ) , (69)

where hb is the binary entropy function

hb(x) = −[x log x + (1 − x) log(1 − x)] (70)

and ∗ denotes binary convolution defined, for p, δ ∈ [0, 1], by

p ∗ δ = p(1 − δ) + (1 − p)δ. (71)

A Entropy Rate in the “Rare-Spikes” Regime

Assuming δ ≤ 1/2, π01 + π10 ≤ 1, and π01 ≤ π10 it is readily verified that [β(1)(1 − π10) + (1 − β(1))π01] ∗ δ is

increasing with β(1) and is ≤ 1/2 when β(1) ∈ [0, 1/2]. Thus, since βi(1) = eli/(1 + eli), it follows that the right

side of (68) in this case becomes

hb

([

eI2

1 + eI2
(1 − π10) +

1

1 + eI2
π01

]

∗ δ

)

(72)

provided I2 ≤ 0 (since then eI2/(1 + eI2) ≤ 1/2), as hb(x) is increasing for 0 ≤ x ≤ 1/2. Hence, the expression in

(72), with I2 given explicitly in (53) with α = (1 − δ)/δ, is an upper bound to the entropy rate of the noisy process

for all δ ≤ 1/2 and all π01, π10 satisfying π01 + π10 ≤ 1 and π01 ≤ π10, provided I2 ≤ 0. Arguing analogously, for the

parameters in this region the expression in (72) with I1 replaced by I2 is a lower bound on the entropy rate so we

get

hb

([

eI1

1 + eI1
(1 − π10) +

1

1 + eI1
π01

]

∗ δ

)

≤ H(π10, π01, δ) ≤ hb

([

eI2

1 + eI2
(1 − π10) +

1

1 + eI2
π01

]

∗ δ

)

, (73)

where we let H(π10, π01, δ) denote the entropy rate of the noisy process associated with these parameters. It is

evident from (73) that the bounds become tight as I1 and I2 grow closer to each other or very negative.

One regime where this happens (and the conditions I2 ≤ 0, π01 +π10 ≤ 1, and π01 ≤ π10 are maintained) is when

the Markov chain tends to concentrate on state 0 by jumping from 1 to 0 with high probability and from 0 to 1 with

low probability (the “rare-spikes” regime). More concretely, for

π10 = 1 − ε and π01 = a(ε), (74)

where a(·) is an arbitrary function satisfying 0 ≤ a(ε) ≤ ε (and all ε sufficiently small so that I2 ≤ 0), (73) becomes

hb

([

eI1

1 + eI1
ε +

1

1 + eI1
a(ε)

]

∗ δ

)

≤ H(1 − ε, a(ε), δ) ≤ hb

([

eI2

1 + eI2
ε +

1

1 + eI2
a(ε)

]

∗ δ

)

. (75)
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Note, in particular, that for a(ε) = ε (75) gives H(1 − ε, ε, δ) = hb(ε ∗ δ) as it should since for this case the clean

source is Bernoulli(ε). Furthermore, as ε becomes small the noise-free source with parameters given in (74) tends to

the “all-zeros” source so it is natural to expect that

lim
ε↓0

H(1 − ε, a(ε), δ) = hb(δ). (76)

We now use the bounds in (75), combined with the characterization of I1 and I2 from subsection 4.A, to show that

not only does (76) hold, but the convergence rate is linear in a(ε) with the constant identified as well.

Theorem 5 For 0 ≤ δ ≤ 1/2 and an arbitrary function a(·) satisfying 0 < a(ε) ≤ ε

lim
ε↓0

H(a(ε), 1 − ε, δ) − hb(δ)

a(ε)
= lim

ε↓0

H(1 − ε, a(ε), δ) − hb(δ)

a(ε)
= (1 − 2δ) log

1 − δ

δ
. (77)

Proof: The first equality in (77) follows trivially by symmetry, thus we turn to establish the second equality. Substi-

tuting into (53) we obtain

eI2 =
−1 + α + a(ε) − α(1 − ε) +

√

4αa(ε)(1 − ε) + (1 − α − a(ε) + α(1 − ε))2

2(1 − ε)
, (78)

where α = 1−δ
δ . It follows from (78) (using a first-order McLaurin approximation to

√
1 + ε) that

lim
ε↓0

eI2

a(ε) 1−δ
δ

= 1. (79)

It thus follows from the upper bound in (75) that for η > 0 and all sufficiently small ε > 0

H(1 − ε, a(ε), δ) ≤ hb ([(1 + η)a(ε)] ∗ δ) (80)

and, consequently,

H(1 − ε, a(ε), δ) − hb(δ) ≤ hb ([(1 + η)a(ε)] ∗ δ) − hb(δ). (81)

Applying a Taylor’s expansion around δ and noting that [(1 + η)a(ε)] ∗ δ − δ = [(1 + η)a(ε)] (1 − 2δ) gives

hb ([(1 + η)a(ε)] ∗ δ) − hb(δ) = (1 + η)a(ε)(1 − 2δ)h′
b(δ) + o(a(ε)) (82)

= (1 + η)a(ε)(1 − 2δ) log
1 − δ

δ
+ o(a(ε)). (83)

Combining (81) with (83) gives

lim sup
ε↓0

H(1 − ε, a(ε), δ) − hb(δ)

a(ε)
≤ (1 + η)(1 − 2δ) log

1 − δ

δ
, (84)

implying

lim sup
ε↓0

H(1 − ε, a(ε), δ) − hb(δ)

a(ε)
≤ (1 − 2δ) log

1 − δ

δ
(85)

by the arbitrariness of η. The inequality

lim inf
ε↓0

H(1 − ε, a(ε), δ) − hb(δ)

a(ε)
≥ (1 − 2δ) log

1 − δ

δ
(86)

is established similarly. 2
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B Entropy Rate in the “Rare-Bursts” Regime

The bounds in (73) are valid also in the “rare-bursts” regime where 0 < π10 < 1 remains fixed and π01 = ε is small

(since for ε small π10 + π01 ≤ 1, π01 ≤ π10, and I2 ≤ 0 will be satisfied).

For this case we get

eI2 =
−1 + α + ε − απ10 +

√

4αεπ10 + (1 − α − ε + απ10)2

2π10
, (87)

with α = 1−δ
δ . It follows via Taylor expansions from (87) that, as ε ↓ 0,

eI2 ∼















(1−δ)ε
δ−(1−δ)(1−π10)

for 1 > π10 > 1−2δ
1−δ

√

1−δ
δπ10

√
ε for π10 = 1−2δ

1−δ

−1+ 1−δ
δ

(1−π10)

π10
for 0 < π10 < 1−2δ

1−δ ,

(88)

or, since ess sup βi(1) = eI2/(1 + eI2), that

ess sup βi(1) ∼















(1−δ)ε
δ−(1−δ)(1−π10)

for 1 > π10 > 1−2δ
1−δ

√

1−δ
δπ10

√
ε for π10 = 1−2δ

1−δ

1 − δπ10

(1−2δ)(1−π10)
for 0 < π10 < 1−2δ

1−δ .

(89)

Remark: Note, in particular, that

lim
ε↓0

ess sup βi(1) =

{

0 for π10 > 1−2δ
1−δ

1 − δπ10

(1−2δ)(1−π10)
for π10 < 1−2δ

1−δ .
(90)

A possible intuition behind this phase transition is as follows: In the “rare-bursts” regime, the noise-free signal

consists of a long stretch of zeros followed by a stretch of a few ones (a “burst”) followed by another long stretch of

zeros, etc. Accordingly, βi(1) is, with high probability, close to zero. There is always, however, positive probability

of observing, say, a very long stretch of ones in the noisy signal. When that happens, there are two extremal

explanations for it. One is that this is the result of a large deviations event in the channel noise (namely, that all

noise components = 1 while the underlying signal is at zero). The other extreme is that this is the result of a long

burst of ones in the noise-free signal (while all noise components are zero). If the length of the burst is l then the first

possibility has probability ≈ δl(1−ε)l ≈ δl while the second one ≈ (1−δ)l(1−π10)
l. Thus, when δ > (1−δ)(1−π10),

equivalently, when π10 > 1−2δ
1−δ , even when observing a long stretch of ones in the noisy signal the underlying clean

symbol is still overwhelmingly more likely to be a zero than a one. Thus βi(1) will always be close to zero (and

hence ess sup βi(1) will be close to zero). On the other hand, when π10 < 1−2δ
1−δ , a very long stretch of ones in the

noisy signal is more likely to be due to a long burst (with noise components at zero) than to a fluctuation in the

noise components, and therefore, when such bursts occur, the value of βi(1) will rise significantly above zero (so

ess sup βi(1) is significantly above zero).

Continuing the derivation, eI1 is given by the right side of (87) with α = δ
1−δ , so

ess inf βi(1) ∼ eI1 ∼ δε

(1 − δ) − δ(1 − π10)
(91)

(since π10 > 2δ−1
δ always holds for δ ≤ 1/2). Combining (88), (91), and (73) leads to the following:

Theorem 6 1. For 0 ≤ δ ≤ 1/2 and 0 < π10 < 1

lim inf
ε↓0

H(π10, ε, δ) − hb(δ)

ε
≥ (1 − δ)(1 − 2δ)

(1 − δ) − δ(1 − π10)
log

1 − δ

δ
. (92)
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2. For 0 ≤ δ ≤ 1/2 and 1−2δ
1−δ < π10 < 1

lim sup
ε↓0

H(π10, ε, δ) − hb(δ)

ε
≤ δ(1 − 2δ)

δ − (1 − δ)(1 − π10)
log

1 − δ

δ
. (93)

3. For 0 ≤ δ ≤ 1/2 and π10 = 1−2δ
1−δ

lim sup
ε↓0

H(π10, ε, δ) − hb(δ)√
ε

≤
√

1 − δ

δ · π10
(1 − π10)(1 − 2δ) log

1 − δ

δ
. (94)

Proof of Theorem 6: Since the claim trivially holds for δ = 1/2 assume 0 ≤ δ < 1/2. From the left inequality in (73)

and (91) it follows that for fixed η > 0 and all sufficiently small ε > 0

H(π10, ε, δ) ≥ hb

({[

δε

(1 − δ) − δ(1 − π10)
(1 − π10) + ε

]

(1 − η)

}

∗ δ

)

(95)

= hb

({[

(1 − δ)(1 − η)

(1 − δ) − δ(1 − π10)

]

ε

}

∗ δ

)

. (96)

Applying a Taylor’s expansion to hb around δ, similarly as in (83), (96) gives

H(π10, ε, δ) − hb(δ) ≥ (1 − δ)(1 − η)

(1 − δ) − δ(1 − π10)
ε(1 − 2δ) log

1 − δ

δ
+ o(ε), (97)

implying (92) by the arbitrariness of η.

The second item is proven similarly (using (88) instead of (91)).

For the third item note that from the right inequality in (73) and (88) it follows that when π10 = 1−2δ
1−δ , for fixed

η > 0 and all sufficiently small ε > 0,

H(π10, ε, δ) ≤ hb

([

√

1 − δ

δπ10

√
ε(1 − π10)(1 + η)

]

∗ δ

)

. (98)

The claim now follows analogously as in proof of previous items via the Taylor approximation and the arbitrariness

of η. 2

Note that Theorem 6 implies, in particular:

1. For 0 ≤ δ ≤ 1/2 and 1−2δ
1−δ < π10 < 1,

H(π10, ε, δ) − hb(δ) ≍ ε. (99)

2. For 0 ≤ δ ≤ 1/2 and π10 = 1−2δ
1−δ , H(π10, ε, δ) − hb(δ) = O(

√
ε) and H(π10, ε, δ) − hb(δ) = Ω(ε).

3. For 0 ≤ δ ≤ 1/2 and 0 < π10 < 1−2δ
1−δ , H(π10, ε, δ) − hb(δ) = Ω(ε).

It is the authors’ conjecture that (99) holds for values of (δ, π10) in the other two regions. Our proof technique, which

sandwiches the entropy rate using (73), fails to give a non-trivial upper bound on H(π10, ε, δ) − hb(δ) in the region

0 ≤ δ ≤ 1/2 and 0 < π10 < 1−2δ
1−δ . In this region, since the third branch in (89) does not approach 0 as ε ↓ 0, the

upper bound in (73) would not even imply the trivial fact that lim supε↓0 H(π10, ε, δ) − hb(δ) ≤ 0.

Note also that Theorem 6 implies

lim
π10↑1

lim inf
ε↓0

H(π10, ε, δ) − hb(δ)

ε
= lim

π10↑1
lim sup

ε↓0

H(π10, ε, δ) − hb(δ)

ε
= (1 − 2δ) log

1 − δ

δ
, (100)

which is consistent with Theorem 5 (though does not imply it).
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C Entropy Rate when the Underlying Markov Chain is Symmetric

When the clean source is a binary symmetric Markov process π10 = π01 = π with π ≤ 1/2 equation (69) implies

H(π, π, δ) = Ehb (βi(1) ∗ π ∗ δ) . (101)

Equation (53) for this case implies

eI1 =
−1 + α + π − απ +

√

4απ2 + (1 − α − π + απ)2

2π
, (102)

with α = δ/(1 − δ). Thus,

ess inf βi =
eI1

1 + eI1
=

−1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2

2π − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
. (103)

Also, it follows from the first item in Corollary 3 that when δ ≤ 1
2 (1 −

√

max{1 − 4π, 0}) h(I1) + log 1−δ
δ is the

lowest point of the support of li in the positive part of the real line15. Now, the first part of Theorem 3 implies that

h(I1) + log 1−δ
δ = I1 + 2 log 1−δ

δ . Translating to the βi domain, this implies that the lowest point of the support of

βi(1) above 1/2 is

eI1+2 log 1−δ
δ

1 + eI1+2 log 1−δ
δ

=

(

1−δ
δ

)2
eI1

1 +
(

1−δ
δ

)2
eI1

(104)

implying, by symmetry, that the highest point of the support of βi(1) below 1/2 is

1 − eI1+2 log 1−δ
δ

1 + eI1+2 log 1−δ
δ

=
α2

α2 + eI1
=

2πα2

2πα2 − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
. (105)

Summarizing, we obtain the following:

Theorem 7 For all 0 ≤ π ≤ 1/2 and 0 ≤ δ ≤ 1
2 (1 −

√

max{1 − 4π, 0})

hb

(

−1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2

2π − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
∗ π ∗ δ

)

(106)

≤ H(π, π, δ) (107)

≤ hb

(

2πα2

2πα2 − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
∗ π ∗ δ

)

, (108)

where α = δ/(1 − δ).

It is instructive to compare the bounds of Theorem 7 to those obtained by bounding the entropy rate from above by

H(Z0|Z−1) and from below by H(Z0|X−1) which leads to

hb(π ∗ δ) ≤ H(π, π, δ) ≤ hb(δ ∗ π ∗ δ). (109)

Evidently, the lower bound of Theorem 7 is always better than that in (109) . The upper bound is better whenever
2πα2

2πα2−1+α+π−απ+
√

4απ2+(1−α−π+απ)2
< δ. It will be seen below that there are asymptotic regimes (e.g., Corollary

5) where the bounds of Theorem 7 are tight while those in (109) are not. Similarly, there are regimes where the

bounds of Theorem 7 would be tight, whereas bounds of the form H(Z0|Z−1
−k ,X−(k+1)) ≤ H ≤ H(Z0|Z−1

−k), for fixed

k, would not. For example, in the setting of Corollary 6 below, it can be shown (cf. discussion below) that any lower

bound of the form H(Z0|Z−1
−k ,X−(k+1)) ≤ H would not give the right order.

The High SNR Regime:

15The fact that h(I1) + log 1−δ

δ
≥ 0 follows from (38) and the optimality of the “say-what-you-see” scheme. The fact that this is the

lowest point in the support of li in the positive part of the real line follows from the monotonicity of h and the definition of I1.
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Corollary 4 For 0 ≤ π ≤ 1/2

(1−2π)[(1−π)π+1] log
1 − π

π
≤ lim inf

δ↓0

H(π, π, δ) − hb(π)

δ
≤ lim sup

δ↓0

H(π, π, δ) − hb(π)

δ
≤ (1−2π)

1 + (1 − π)π

(1 − π)π
log

1 − π

π
,

(110)

in particular,

H(π, π, δ) − hb(π) ≍ δ as δ → 0. (111)

Proof: Using the Taylor expansion for
√

1 + ε gives

−1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2

2π − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
∼ (1 − π)πα as α ↓ 0 (112)

and
2πα2

2πα2 − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
∼ α

(1 − π)π
as α ↓ 0. (113)

Since α ∼ δ as δ ↓ 0 it follows from (112) that for fixed η > 0 and all sufficiently small δ

hb

(

−1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2

2π − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
∗ π ∗ δ

)

(114)

≥ hb ([(1 − η)(1 − π)πδ] ∗ π ∗ δ) (115)

≥ hb ([(1 − 2η)[(1 − π)π + 1]δ] ∗ π) (116)

= hb (π + (1 − 2π)(1 − 2η)[(1 − π)π + 1]δ) (117)

= hb(π) + (1 − 2π)(1 − 2η)[(1 − π)π + 1]δh′
b(π) + o(δ) (118)

= hb(π) + (1 − 2π)(1 − 2η)[(1 − π)π + 1]δ log
1 − π

π
+ o(δ), (119)

implying the left inequality in (110) via (107) and the arbitrariness of η. The right inequality in (110) follows from

(113) in an analogous way. 2

It is easy to check that, for this regime, the bounds of (109) would give

(1 − 2π) log
1 − π

π
≤ lim inf

δ↓0

H(π, π, δ) − hb(π)

δ
≤ lim sup

δ↓0

H(π, π, δ) − hb(π)

δ
≤ 2(1 − 2π) log

1 − π

π
, (120)

which is a slightly better upper bound and a slightly worse lower bound than in (110) (but implies (111) just

the same). The bounds in (120) and (110) are consistent with the main result of the recent work [JSS03], which

established
H(π10, π01, δ) − H(π10, π01, 0)

δ
∼ υ(π10, π01), (121)

explicitly identifying υ(π10, π01).

The “Almost Memoryless” Regime:

Corollary 5 For 0 ≤ δ ≤ 1/2

lim
ε↓0

1 − H
(

1
2 − ε, 1

2 − ε, δ
)

ε2
= 4(1 − 2δ)4. (122)

Note that H
(

1
2 − ε, 1

2 − ε, 0
)

= hb(
1
2 − ε) so limε↓0

1−H( 1
2
−ε, 1

2
−ε,0)

ε2 = 4 (namely, (122) at δ = 0) would follow from

a Taylor expansion of hb around 1/2. Equality (122) also trivially holds at δ = 1/2, as H
(

1
2 − ε, 1

2 − ε, 1/2
)

=

1. The simple intuition behind (122) is the following: when π is close to 1/2, the support of βi(1) is highly
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concentrated around δ and 1 − δ (when π = 1/2 it is exactly {δ, 1 − δ}). Thus 1 − H
(

1
2 − ε, 1

2 − ε, δ
)

∼ 1 −
hb ((δ ± o(1)) ∗ (1/2 − ε) ∗ δ) ∼ ε24(1 − 2δ)4. More formally:

Proof of Corollary 5: At π = 1/2 we have

−1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2

2π − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
=

2πα2

2πα2 − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
= δ,

(123)

where α = δ/(1 − δ). The claim now follows by continuity of the expressions in (123) at π = 1/2, the relationship
1
2 − (δ + ξ) ∗ ( 1

2 − ε) ∗ δ = ε(1 − 2(2δ − 2δ2 + ξ(1 − 2δ))) = ε(1 − 2δ)2(1 + O(ξ)), Theorem 7, and the fact that

hb(1/2 − ε) = 1 − 4ε2 + o(ε2). 2

For this regime, the bounds of (109) would imply

1 − H

(

1

2
− ε,

1

2
− ε, δ

)

≍ ε2, (124)

but not give the constant characterized in (122).

The Low SNR Regime:

Corollary 6 For 1/4 ≤ π ≤ 1/2

4

[

(4π − 1)(1 − 2π)

π

]2

≤ lim inf
ε→0

1 − H
(

π, π, 1
2 − ε

)

ε4
≤ lim sup

ε→0

1 − H
(

π, π, 1
2 − ε

)

ε4
≤ 4

[

1 − 2π

π

]2

. (125)

In particular

1 − H

(

π, π,
1

2
− ε

)

≍ ε4 as ε → 0. (126)

Note that the ratio between the upper and lower bound in (125) approaches 1 as π ↑ 1/2. Also, it is not hard to see

that for any k, a bound of the form H(Z0|Z−1
−k ,X−(k+1)) ≤ H would lead to 1 − H

(

π, π, 1
2 − ε

)

= O(ε2), failing to

capture the true ε4 behavior.

Proof of Corollary 6: Since H
(

π, π, 1
2 − ε

)

= H
(

π, π, 1
2 + ε

)

, we may assume the limits in (125) are taken along

ε ↓ 0. Letting δ = 1/2 − ε, it is straightforward to show using a Taylor expansion that

1

2
− −1 + α + π − απ +

√

4απ2 + (1 − α − π + απ)2

2π − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
∼ 1

2π
ε (127)

and that
1

2
− 2πα2

2πα2 − 1 + α + π − απ +
√

4απ2 + (1 − α − π + απ)2
∼
(

2 − 1

2π

)

ε. (128)

It thus follows from Theorem 7 that for every 1/4 ≤ π ≤ 1/2 and ε > 0

1 − hb

([

1

2
−
(

2 − 1

2π

)

ε

]

∗ π ∗
(

1

2
− ε

))

(129)

∼
< 1 − H

(

π, π,
1

2
− ε

)

(130)

∼
< 1 − hb

([

1

2
− 1

2π
ε

]

∗ π ∗
(

1

2
− ε

))

. (131)

The claim now follows by

[

1

2
−
(

2 − 1

2π

)

ε

]

∗ π ∗
(

1

2
− ε

)

=
1

2
− (4π − 1)(1 − 2π)

π
ε2, (132)
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[

1

2
− 1

2π
ε

]

∗ π ∗
(

1

2
− ε

)

=
1

2
− 1 − 2π

π
ε2, (133)

and the fact that hb(1/2 − ε) = 1 − 4ε2 + o(ε2). 2

In this regime, the bounds of (109) become

hb(π ∗ (1/2 − ε)) ≤ H(π, π, δ) ≤ hb(π ∗ (1/2 − ε) ∗ (1/2 − ε)). (134)

The upper bound implies, via a Taylor approximation (as in the above proof),

lim inf
ε→0

1 − H
(

π, π, 1
2 − ε

)

ε4
≥ 16(1 − 2π)2, (135)

which gives a slightly better constant than the left side of (125). The lower bound in (134), however, would only

imply 1 − H
(

π, π, 1
2 − ε

) ∼
< ε2.

6 A Sufficient Condition for the Optimality of Singlet Decoding

In this section we derive sufficient conditions for the optimality of singlet decoding for more general noise-free

processes (not necessarily Markov), noise processes (not necessarily memoryless), and index sets. To minimize non-

essential technicalities and simplify notation we assume both that the components of the clean and noisy process

take values in the same finite alphabet A, and that the loss function is Hamming. It will be seen that under mild

general conditions there exists a threshold such that if the noise level is below it the “say-what-you-see” scheme is

optimal.

We start with the general setting of an arbitrarily distributed noise-free process {Xt} corrupted by a noisy channel,

i.e., there exists some process {Nt} (the noise process, not necessarily of independent components) independent of

{Xt} and (deterministic) mappings {gt} such that the noisy observation process {Zt} is given by Zt = gt(Xt, Nt) for

all t. Observe first that for all t, xt, any finite index set T , and z(T )

P (xt|z(T )) =
P (xt, zt|z(T \ t))

P (zt|z(T \ t))
=

P (xt|z(T \ t))P (zt|xt, z(T \ t))

P (zt|z(T \ t))
, (136)

so that

log
P (Xt = a|z(T ))

P (Xt = b|z(T ))
= log

P (zt|Xt = a, z(T \ t))

P (zt|Xt = b, z(T \ t))
+ log

P (Xt = a|z(T \ t))

P (Xt = b|z(T \ t))
. (137)

Note that for a memoryless channel C, (137) particularizes to

log
P (Xt = a|z(T ))

P (Xt = b|z(T ))
= log

C(zt|a)

C(zt|b)
+ log

P (Xt = a|z(T \ t))

P (Xt = b|z(T \ t))
. (138)

By observation of (137) it is clear that an essentially necessary and sufficient condition for the optimal estimate of

Xt to depend on Z(T ) only through Zt is that for all a, b ∈ A the sign of the right side of (137) be determined by zt,

regardless of the value of z(T \ t). This depends on the conditional distribution of Xt given Z(T \ t) only through the

values
{

ess sup log P (Xt=a|Z(T\t))
P (Xt=b|Z(T\t))

}

a,b∈A
. While for the binary Markov chain these value were obtainable in closed

form (Section 4), in general they are difficult to derive. They can, however, be bounded via the supports of the

log-likelihoods of the clean signal, leading to sufficient conditions for the optimality of singlet decoding. This is the

approach taken below.
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Returning to the general setting,

P (xt = a|z(T \ t)) =
∑

x(T\t)

P (xt = a, x(T \ t)|z(T \ t)) (139)

=
∑

x(T\t)

P (xt = a|x(T \ t), z(T \ t))P (x(T \ t)|z(T \ t)) (140)

=
∑

x(T\t)

P (xt = a|x(T \ t))P (x(T \ t)|z(T \ t)), (141)

where the last equality is due to the fact that Z(T \ t) is a deterministic function of X(T \ t) and N(T \ t), so the

independence of {Xt} and {Nt} implies the independence of Xt and Z(T \ t) when conditioned on X(T \ t). This

leads to:

Lemma 1 For all a, b ∈ A, and finite index set T

max
z(T\t)

P (xt = a|z(T \ t))

P (xt = b|z(T \ t))
≤ max

x(T\t)

P (xt = a|x(T \ t))

P (xt = b|x(T \ t))
. (142)

Proof:

P (xt = a|z(T \ t))

P (xt = b|z(T \ t))
=

∑

x(T\t) P (xt = a|x(T \ t))P (x(T \ t)|z(T \ t))
∑

x(T\t) P (xt = b|x(T \ t))P (x(T \ t)|z(T \ t))
(143)

=
∑

x(T\t)

P (xt = b|x(T \ t))P (x(T \ t)|z(T \ t))
[

∑

x′(T\t) P (xt = b|x′(T \ t))P (x′(T \ t)|z(T \ t))
] · P (xt = a|x(T \ t))

P (xt = b|x(T \ t))
(144)

≥





∑

x(T\t)

P (xt = b|x(T \ t))P (x(T \ t)|z(T \ t))
[

∑

x′(T\t) P (xt = b|x′(T \ t))P (x′(T \ t)|z(T \ t))
] · P (xt = b|x(T \ t))

P (xt = a|x(T \ t))





−1

,

(145)

where the first equality follows from (141) and the inequality follows from Jensen’s inequality (and convexity of 1/x

for x > 0). Thus we get

P (xt = b|z(T \ t))

P (xt = a|z(T \ t))
≤

∑

x(T\t)

P (xt = b|x(T \ t))P (x(T \ t)|z(T \ t))
[

∑

x′(T\t) P (xt = b|x′(T \ t))P (x′(T \ t)|z(T \ t))
] · P (xt = b|x(T \ t))

P (xt = a|x(T \ t))
(146)

≤ max
x(T\t)

P (xt = b|x(T \ t))

P (xt = a|x(T \ t))
, (147)

implying (142) by the arbitrariness of z(T \ t). 2

Equipped with Lemma 1 we can obtain an easily verifiable sufficient condition for the optimality of singlet

decoding in this general setting.

Claim 5 Let T be an arbitrary index set and suppose for each zt ∈ A there exists a = a(zt) ∈ A such that for all

b 6= a

ess inf
P (zt|Xt = a(zt), Z(T \ t))

P (zt|Xt = b, Z(T \ t))
≥ ess sup

P (xt = b|X(T \ t))

P (xt = a(zt)|X(T \ t))
. (148)

Then an optimal estimate of Xt based on Z(T ) is

X̂t(Z(T )) = a(Zt). (149)
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Proof: By standard limiting and continuity arguments it will suffice to assume T a finite index set and to show that

if for each zt ∈ A there exists a = a(zt) ∈ A such that for all b 6= a

min
z(T\t)

P (zt|Xt = a, z(T \ t))

P (zt|Xt = b, z(T \ t))
≥ max

x(T\t)

P (xt = b|x(T \ t))

P (xt = a|x(T \ t))
, (150)

then the estimate in (149) is an optimal estimate of Xt based on Z(T ). To see this note that if (150) holds then, for

all z(T ), a = a(zt) ∈ A, and all b 6= a,

P (zt|Xt = a, z(T \ t))

P (zt|Xt = b, z(T \ t))
≥ min

z′(T\t)

P (zt|Xt = a, z′(T \ t))

P (zt|Xt = b, z′(T \ t))
(151)

≥ max
x(T\t)

P (xt = b|x(T \ t))

P (xt = a|x(T \ t))
(152)

≥ P (Xt = b|z(T \ t))

P (Xt = a|z(T \ t))
, (153)

where (152) is due to (150) and (153) to (142). This implies, by (137), that log P (Xt=a|z(T ))
P (Xt=b|z(T )) ≥ 0 for all b 6= a

implying, in turn, that the optimal estimate of Xt based on z(T ) is a = a(zt). 2

In what follows we illustrate the use of Claim 5 by deriving sufficient conditions for optimality of symbol by

symbol filtering and denoising in a few specific settings.

A The Memoryless Symmetric Channel

In this subsection we assume the memoryless symmetric channel with error probability δ, uniformly distributed

among the |A| − 1 erroneous symbols. For this case we have for b 6= a and zt = a

ess inf
P (zt|Xt = a, Z(T \ t))

P (zt|Xt = b, Z(T \ t))
= (|A| − 1)

1 − δ

δ
, (154)

so Claim 5 implies

Corollary 7 If

(|A| − 1)
1 − δ

δ
≥ max

a,b∈A
ess sup

P (xt = b|X(T \ t))

P (xt = a|X(T \ t))
(155)

then X̂t(Z(T )) = Zt is an optimal estimate of Xt.

The right side of (155) can readily be computed, or at least upper bounded, for various processes and random fields

leading to a sufficient condition for the optimality of singlet decoding. A few examples follow.

Denoising a Gibbs Field: Let T = Z
d and S denote all finite subsets of T . Let X(T ) be the Gibbs field

associated with the potential Φ [Geo88, Guy95]. A potential is summable if

‖Φ‖t
△
=

∑

A∈S,A∋t

‖ΦA‖∞ < ∞, ∀t. (156)

It is immediate from the definition of a Gibbs field that for all a, b ∈ A, t ∈ T ,

ess sup
P (xt = b|X(T \ t))

P (xt = a|X(T \ t))
≤ e2‖Φ‖t . (157)

Combining Corollary 7 with (157) gives
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Corollary 8 The optimal estimate of Xt based on Z(T ) is Zt if δ ≤
(

1
|A|−1e2‖Φ‖t + 1

)−1

. In particular, singlet

decoding with “say-what-you-see” is an optimal denoiser whenever δ ≤
(

1
|A|−1e2‖Φ‖max + 1

)−1

, where ‖Φ‖max =

supt∈T ‖Φ‖t.

Note that ‖Φ‖max < ∞ for any spatially stationary (shift invariant) Gibbs field with a summable potential. This

includes, in particular, all Markov Random Fields (MRFs) with no restricted transitions (i.e., with the property

that conditioned on any configuration of its neighborhood, all values at a given site have positive probability). The

“say-what-you-see” denoiser is optimal for all such fields when δ is sufficiently small. Finally, we note that for fixed

δ < |A|−1
A and a potential satisfying ‖Φ‖max < ∞, singlet decoding is optimal denoising for the field associated with

βφ whenever β ≤ log[(1/δ−1)(|A|−1)]
2‖Φ‖max

(i.e., at sufficiently high temperatures [Geo88, Guy95]).

Filtering and Denoising a Stationary Source: If X(T ), T = Z, is a stationary process then by defining

R(X(T ))
△
= max

a,b∈A
ess sup

P (X0 = b|X−1
−∞)

P (X0 = a|X−1
−∞)

(158)

and

S(X(T ))
△
= max

a,b∈A
ess sup

P (X0 = b|X−1
−∞,X∞

1 )

P (X0 = a|X−1
−∞,X∞

1 )
(159)

Corollary 7 implies

Corollary 9 The “say-what-you-see” scheme is an optimal filter if δ ≤
(

1
|A|−1R(X(T )) + 1

)−1

and an optimal

denoiser if δ ≤
(

1
|A|−1S(X(T )) + 1

)−1

.

Note, in particular, that if X(T ) is a kth-order Markov source with no restricted sequences then

R(X(T )) = max
ab,x−1

−k

P (X0 = a|X−1
−k = x−1

−k)

P (X0 = b|X−1
−k = x−1

−k)
> 0 and S(X(T )) = max

ab,x−1

−k
,xk

1

P (X0 = a|X−1
−k = x−1

−k,Xk
1 = xk

1)

P (X0 = b|X−1
−k = x−1

−k,Xk
1 = xk

1)
> 0

(160)

so the “say-what-you-see” scheme is optimal for all sufficiently small δ.

To get a feel for the tightness of these conditions, consider the symmetric binary Markov chain for which the

optimality of the “say-what-you-see” scheme has been characterized in Corollary 3. Assuming π ≤ 1/2, we have

R(X(T )) = (1− π)/π and S(X(T )) = [(1− π)/π]2 so Corollary 9 would imply for this case that the “say-what-you-

see” scheme is an optimal filter whenever δ ≤ π and is an optimal denoiser whenever δ ≤ π2

1−2π+2π2 . The solid and

dashed curves in figure 1 display the curve characterizing the whole region of optimality of the singlet decoder for

the filtering problem (from Corollary 3), together with the curve associated with the sufficient condition implied by

Corollary 9, namely, the straight line δ = π. Figure 2 displays the analogous curves for the denoising problems. The

region δ ≤ π can be understood as the condition for optimality of singlet filtering when allowing a genie-aided filter

to observe the clean symbol one step back. Similarly, the δ ≤ π2

1−2π+2π2 region is obtained by allowing the genie-aided

denoiser to observe the clean symbols from both sides.

Denoising a Process or Field that can be Represented as Output of DMC (Hidden Markov Pro-

cesses): Suppose that the noiseless process, X(T ), was generated (or can be represented) as the output of a DMC

whose input is some other process U(T ), which we assume for simplicity has components taking values in the same

finite alphabet A. Denote the DMC by W , i.e., W (a|u) = Pr(Xt = a|Ut = u). Thus we have, assuming first T finite,

P (Xt = a|X(T \ t) = x(T \ t)) =
∑

u

P (Ut = u|X(T \ t) = x(T \ t))W (a|u). (161)
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Consequently, for a, b ∈ A, reasoning similarly as in the proof of Lemma 1, we obtain

P (Xt = a|X(T \ t) = x(T \ t))

P (Xt = b|X(T \ t) = x(T \ t))
≤ max

u∈U

W (a|u)

W (b|u)
(162)

for all x(T \ t). By a standard limiting argument, we obtain for an arbitrary index set T

ess sup
P (Xt = a|X(T \ t))

P (Xt = b|X(T \ t))
≤ max

u∈U

W (a|u)

W (b|u)
. (163)

Combined with Corollary 7 this gives

Corollary 10 If X(T ) is output of DMC W (for some input U(T )) then the “say-what-you-see” scheme is an

optimal denoiser of Z(T ) provided

δ ≤
(

1

|A| − 1
max

a6=b,u∈U

W (a|u)

W (b|u)
+ 1

)−1

.

Corollary 10 implies, in particular, for the case where the channel W is symmetric with parameter ε, that the “say-

what-you-see” scheme is an optimal denoiser whenever δ ≤ ε. Note that X(T ) being the output of such a channel W

is equivalent to its satisfying the Shannon lower bound (cf. [Ber71], [CT91, Ex. 13.6]) with equality (under Hamming

loss) for distortion levels ≤ ε. It thus follows that any source or random field whose rate distortion function at

distortion level D is given by the Shannon lower bound (cf., e.g., [HB87, Gra70, Gra71, WM03] for examples of

processes and fields with this property) is optimally denoised by the “say-what-you-see” scheme whenever δ ≤ D.

Filtering an Auto-Regressive Source: Let T = Z, A = {0, 1, . . . ,M − 1}, and suppose the noiseless process

can be represented by

Xt = gt(X
t−1) ⊕ Wt, (164)

where ⊕ denotes modulo-M addition and {Wt} are i.i.d. (gt and Wt take values in A). For this process

P (Xt = a|Xt−1 = xt−1) = Pr(Wt ⊕ gt(x
t−1) = a) (165)

so, for a 6= b,

P (Xt = a|Xt−1 = xt−1)

P (Xt = b|Xt−1 = xt−1)
≤ max

m∈A

P (Wt = m)

P (Wt = (b − a) ⊕ m)
≤ max

a6=0,m∈A

P (Wt = m)

P (Wt = a ⊕ m)
. (166)

Applied to this setting, and combined with (166), Corollary 7 gives

Corollary 11 Let {Xt} be given by (164), where {Wt} is an i.i.d. sequence. The “say-what-you-see” scheme is an

optimal filter provided

δ ≤
(

1

|A| − 1
max

a6=0,m∈A

P (Wt = m)

P (Wt = a ⊕ m)
+ 1

)−1

. (167)

Note, in particular, that for the commonly occurring case where the innovations are symmetric, namely,

P (Wt = a) =

{

1 − ε for a = 0
ε/(|A| − 1) for a 6= 0,

(168)

Corollary (11) implies optimality of the “say-what-you-see” filter provided δ ≤ ε.
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B Channels with Memory

The Gilbert-Elliot Channel: Assume T = Z and that Z(T ) is the noisy version of X(T ) when corrupted by the

Gilbert-Elliot channel [MBD89]. Let S(T ), with components in {B,G}, denote the first-order Markov channel state

process and let δg, δb denote the crossover probabilities associated, respectively, with the good and bad states where

0 ≤ δg ≤ δb ≤ 1/2. In this case

P (zt|Xt = a, Z(T\t)) =
∑

st

P (zt|Xt = a, st, Z(T\t))P (st|Xt = a, Z(T\t)) =
∑

st

P (zt|Xt = a, st)P (st|Xt = a, Z(T\t))

(169)

and thus, by an argument similar to that proving Lemma 1, we obtain for a 6= b and zt = a

ess inf
P (zt|Xt = a, Z(T \ t))

P (zt|Xt = b, Z(T \ t))
≥ min

st∈{G,B}

P (zt|Xt = a, st)

P (zt|Xt = b, st)
=

1 − δb

δb
. (170)

A similar argument implies an inequality like (170) where in the left side the conditioning is on the one-sided Zt−1
−∞

instead of on Z(T \ t). Combining (170) (and its analogue for the one-sided conditioning) with Claim 5 gives

Corollary 12 The “say-what-you-see” scheme is an optimal denoiser (and a fortiori an optimal filter) for the

Gilbert-Elliot channel if
1 − δb

δb
≥ max

b6=a
ess sup

P (xt = b|X(T \ t))

P (xt = a|X(T \ t))
. (171)

It is also an optimal filter provided

1 − δb

δb
≥ max

b6=a
ess sup

P (xt = b|Xt−1
−∞)

P (xt = a|Xt−1
−∞)

. (172)

Arbitrarily Distributed State Process: A first point to note is that the derivation of Corollary 12 did not

depend in any way on the distribution of the state process. Also, the conclusion regarding the optimality condition

for denoising did not rely on the fact that T = Z and would hold for any index set T . It is also readily checked

that the binary alphabet can be replaced by any finite alphabet where δg, δb would denote the crossover parameters

indexing the symmetric channels associated, respectively, with the good and bad states (and the left side of (171)

and (172) would be replaced by (|A| − 1) 1−δb

δb
). Finally, the state space need not be restricted to only two states;

in general each state will index a channel with a different parameter in which case the definition of δb would be

extended to δb = maxs∈S δs, S being the state space.

In this generality, of an arbitrarily distributed state process, a general state space, and a finite alphabet of any

size, all the results of the previous subsection (namely corollaries 7 through 11) carry over with δb replacing δ.

Other channels with memory abound for which P (zt|Xt=a,Z(T\t))
P (zt|Xt=b,Z(T\t)) can be lower bounded leading, via Claim 5,

to sufficient conditions for the optimality of symbol-by-symbol schemes in denoising and filtering of various other

processes and fields.

7 Large Deviations Performance of the Optimal Filter

For concreteness assume here T = Z, that the components of X(T ) take values in the finite alphabet A, and that

Z(T ) is the output of a DMC C whose input is X(T ) with channel output alphabet B.

Using standard large deviations theory [DZ98] or the method of types [CK81, CT91] it is straightforward to show

that for every f : B → A and xn ∈ An

Pr

(

1

n

n
∑

t=1

Λ(Xt, f(Zt)) ≥ d

∣

∣

∣

∣

∣

Xn = xn

)

≈ exp (−nJ(Pxn , d)) , (173)
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where

J(P, d) = min
Q:EP⊗QΛ(X,f(Z))≥d

D(Q‖C|P ), (174)

with D(Q‖C|P ) denoting the conditional divergence (cf., e.g., Section 2 of [CK81]) between conditional distributions

(channels) Q and C (true channel) conditioned on a channel input distribution P , and EP⊗Q denotes expectation

assuming that X ∼ P and that Z is the output of the channel Q whose input is X.

More precisely, it can be shown (cf., e.g., [DK99, MK03, WM02, Wei02] for proofs of results in this spirit) that

for any individual sequence x = {xt}
∣

∣

∣

∣

∣

− 1

n
log Pr

(

1

n

n
∑

t=1

Λ(Xt, f(Zt)) ≥ d

∣

∣

∣

∣

∣

Xn = xn

)

− J(Pxn , d)

∣

∣

∣

∣

∣

−→ 0. (175)

This exponent can also be given in the form (cf., e.g., [DK99, Prop. 1]):

J(P, d) = sup
λ∈R

{

λd −
∑

a∈A

[

log
∑

b∈B

eλΛ(a,f(b))C(a, b)

]

P (a)

}

. (176)

It follows from (175) that if the empirical measure associated with X(T ) satisfies an LDP [DZ98] with the rate

function I then

− 1

n
log Pr

(

1

n

n
∑

t=1

Λ(Xt, f(Zt)) ≥ d

)

−→ min
P∈M(A)

[

I(P ) + min
Q:EP⊗QΛ(X,f(Z))≥d

D(Q‖C|P )

]

. (177)

This gives a single-letter characterization of the “error exponent” associated with the optimal (in expectation sense)

filter for all cases characterized in previous sections where the optimal scheme is a symbol-by-symbol filter and the

underlying noise-free process satisfies an LDP with a known rate function (cf. [DZ98] for wide range of processes for

which this is the case). In particular, the error exponent is given by the right side of (177) with f being the filtering

function associated with the optimal scheme.

8 Conclusion and Open Directions

The goal of this work was to identify situations where optimal estimation of each signal component when observing a

discrete signal corrupted by noise depends on available observations only via the noisy observation of that component.

We obtained easily verifiable sufficient conditions for the optimality of such “symbol-by-symbol” schemes. For a

binary Markov process corrupted by a general memoryless channel an explicit necessary and sufficient condition was

obtained. The condition for the optimality of singlet decoding was seen to depend on the channel only through the

support of the Radon-Nikodym derivative between the distributions of the channel output associated with the two

inputs (and, in fact, depend on this support only through its upper and lower ends). It was also observed that the

large deviations behavior of a singlet filter can be easily characterized (provided the large deviations behavior of the

noise-free process is known) when the noise is memoryless. Thus, the large deviations performance of the optimal

scheme is characterized whenever it is a singlet decoder.

Characterization of the singlet filtering region for the corrupted binary Markov chain involved the computation

of the lower and upper end points of the support of the distribution of the clean symbol conditioned on its noisy

observation and noisy past. These bounds were seen to lead to new bounds on the entropy rate of the noisy

observation process. The latter were shown to be tight and characterize the precise behavior of the entropy rate in
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various asymptotic regimes. Further exploration of this approach to characterize the entropy rate in other asymptotic

regimes, for larger alphabets, etc., is deferred to future work.

Two additional future research directions arise in the context of the LD performance analysis for a singlet

scheme in Section 7. The first regards the question of whether the expected-sense optimality of a singlet decoder

(the criterion considered in this work) implies its optimality under the LD criterion as well. More generally, can

conditions for the optimality of singlet decoding in the LD sense be obtained ? The second interesting direction

regards the characterization of the LD performance of a scheme which is not singlet. Even the characterization of

the LD performance of a sliding window scheme of length 2 is currently open.

It should be noted that a singlet decoder is a sliding-window scheme of length 1. A natural extension of the

characterization of optimal singlet decoding would be, for a given l > 1, to characterize conditions under which the

optimal filter or denoiser is a sliding window scheme of length l.

Finally, it may be interesting to see whether a meaningful analogue of the notion of a singlet scheme can be found

for the continuous-time setting (say, for a Markov source corrupted by white noise as in the setting of [Won65]), and

whether there exist non-trivial situations where such singlet schemes are optimal.

Appendix
Proof of Theorem 2: The proof is similar to that of Theorem 1. Suppose that CQ × CQr

⊆ Rf . The fact that

P (βi−1 ∈ CQ) = P (γi+1 ∈ CQr
) = 1 implies that P

(

f(b) ∈ X̂(Gb(βi−1, γi+1)) ∀b ∈ B
)

= P ((βi−1, γi+1) ∈ Rf ) = 1.

Consequently, 1 = P
(

f(Zi) ∈ X̂(GZi
(βi−1, γi+1))

)

= P
(

f(Zi) ∈ X̂(ηi)
)

, establishing optimality by (31).

Conversely, suppose that CQ × CQr
6⊆ Rf . Then there exists J ⊆ M(A) × M(A) such that J ∩ Rf = ∅ and

P ((βi−1, γi+1) ∈ J) > 0. This implies that P ((βi−1, γi+1) ∈ Rf ) = P
(

f(b) ∈ X̂(Gb(βi−1, γi+1)) ∀b ∈ B
)

< 1, which

implies the existence of b ∈ B with P
(

f(b) ∈ X̂(Gb(βi−1, γi+1))
)

< 1 implying, in turn, the existence of a ∈ A such

that

P
(

f(b) ∈ X̂(Gb(βi−1, γi+1))|Xi = a
)

< 1. (A.1)

Now, Zi, βi−1 and γi+1 are conditionally independent given Xi and therefore

P
(

f(Zi) ∈ X̂(ηi)|Xi = a
)

= P
(

f(Zi) ∈ X̂(Gb(βi−1, γi+1))|Xi = a
)

=
∑

b′∈B

P
(

f(b′) ∈ X̂(Gb′(βi−1, γi+1))|Xi = a
)

C(a, b′).

(A.2)

Inequality (A.1), combined with (A.2) and the fact that C(a, b) > 0 leads to P
(

f(Zi) ∈ X̂(ηi)|Xi = a
)

< 1 implying

P
(

f(Zi) ∈ X̂(ηi)
)

< 1 and establishing the fact that (31) is not satisfied by X̂i(Z
∞
−∞) = f(Zi). 2
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