

Energy Estimation of Peripheral Devices
in Embedded Systems

Ozgur Celebican, Tajana Simunic Rosing
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-251
December 2nd , 2003*

energy,
estimation,
device
drivers,
embedded
systems

This paper presents a methodology for estimation of energy
consumption in peripherals such as audio and video devices. In
current embedded systems peripherals can be responsible for
significant amount of the energy consumption. We introduce a
cycle-accurate energy simulator and profiler capable of simulating
peripheral devices. Our energy estimation tool for peripherals can
help with hardware and software energy optimization of multimedia
applications and device drivers. Our tool uses cycle-accurate energy
and performance models for peripheral devices with the cycle-
accurate energy and performance models for computing, storage
and power devices created in previous work. I/O communication
protocols such as polling, I/O interrupts and direct memory access
(DMA) are implemented. To demonstrate benefits of our estimation
scheme we compared two different types of audio drivers, one using
interrupt driven direct memory access and the other using polling.
Results show 57% of reduction in total system energy consumption
for an audio driver.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

1

Abstract— This paper presents a methodology for
estimation of energy consumption in peripherals such as
audio and video devices. In current embedded systems
peripherals can be responsible for significant amount of
the energy consumption. We introduce a cycle-accurate
energy simulator and profiler capable of simulating
peripheral devices. Our energy estimation tool for
peripherals can help with hardware and software energy
optimization of multimedia applications and device
drivers. Our tool uses cycle-accurate energy and
performance models for peripheral devices with the cycle-
accurate energy and performance models for computing,
storage and power devices created in previous work. I/O
communication protocols such as polling, I/O interrupts
and direct memory access (DMA) are implemented. To
demonstrate benefits of our estimation scheme we
compared two different types of audio drivers, one using
interrupt driven direct memory access and the other using
polling. Results show 57% of reduction in total system
energy consumption for an audio driver.

Index Terms—device drivers, energy estimation, software
optimization, embedded systems.

I. INTRODUCTION
Energy-efficiency is important for both portable and non-

portable embedded systems. In portable systems the goal is to
extend battery lifetime. In non-portable systems it is to reduce
the cost of cooling. The energy-efficiency of an embedded
system must be increased without hindering cost and time to
market constraints. Significant ratio of energy consumption in
portable systems comes from peripheral devices such as audio,
video and wireless link. Up to now optimizing energy
consumption of peripheral devices has been done in an ad hoc
manner. Adding up datasheet energy values for each
component is a commonly used solution. Often optimization
is also done using prototypes. Prototype testing gives the
exact power and performance analysis of the embedded
system but the cost of the prototype and time spent for its
development makes it impossible to try all possible solutions
for a commercial product. There is considerable number of
established tools for performance simulation of embedded
systems; but a few include energy simulation. There are no
tools to simulate energy performance at system level for

peripheral devices.
 In our work, we introduce a tool capable of simulating and

profiling of cycle accurate energy and performance models for
peripheral devices such as audio. Using profiling a software
designer can determine which routines in the program flow
are consuming a lot of power. Two different types of
communication protocols between processor and peripherals
are implemented. These are polling and interrupt-based
communication. Direct memory access (DMA) is also
implemented to enable direct access between memory and
peripherals. Each I/O component is characterized with
different operation modes. For each mode an equivalent
energy per cycle value is calculated from the power and
performance values given in the manufacturer datasheets.
Models from Simunic et. al [1] are used to create processor,
memory and power supply components of the system. Choice
of the communication protocol affects the energy consumption
of the system up to 57% as shown in the results

The rest of the report is organized as follows. Section 2
gives an overview of the related work. Section 3 describes our
methodology. Section 4 presents the simulation results.
Finally, we summarize our findings in Section 5.

II. RELATED WORK

Several commercial CAD tools focus on integration of the
system components [2][3][4][5], but are limited to
performance simulation. Synopsys Power Compiler [6] is a
tool for estimating energy consumption for HDL designs
Power Compiler is a circuit level simulator, which calculates
the energy consumption using switching information of the
circuit. Its complexity increases exponentially with the size of
the design and this is not practical for system level simulation.

 SimOS [7] is a system level performance simulation
environment for both uniprocessor and multiprocessor
systems. SimOS can simulate a computer hardware system
which can run a commercial operating system. However, it
does not have any energy simulation capabilities.

There is a considerable amount of work on energy-driven
optimization of embedded systems. Much of the work just
considers the energy consumption of the processor alone
[8][9][10][11]. In current embedded systems, processor
accounts for a limited ratio of the total energy budget. Energy
optimization of memory and communication systems between
processor and memory are presented in [12][13][14][15].
Simunic et. al. [1] and SimplePower [17] present cycle-
accurate energy simulators consisting of processor and

Ozgur Celebican and Tajana Simunic Rosing
Hewlett-Packard Labs, Palo Alto

Energy Estimation of Peripheral Devices in
Embedded Systems

2

memory modules However, current portable embedded
systems often run multimedia applications, which require
multiple peripheral devices. The peripheral devices such as
video and wireless link have a considerable impact on energy
consumption. This impact can be up to 60% of the total
system energy consumption for the wireless link [19].

A method for optimizing peripheral devices and their
drivers is defined in Wang et. al.[16]. In this work device
driver behaviors are specified using event driven finite
machines, with constraints and synthesis patterns. A device
driver is synthesized automatically using the constraints given.
The goal is to automatically create platform independent
device drivers, which can be mapped to a specific platform
with little effort. There are no system level energy simulators
that take peripherals into account.

Our work presents an energy-driven optimization
methodology using cycle-accurate energy simulation for
peripheral devices. Energy models for such devices are
created from datasheets provided by manufacturers. Cycle-
accurate simulator enables simulating real applications such as
MP3 audio playback or MPEG video on cutting-edge
embedded systems. Another advantage of our work is the
energy profiling. Energy profiler shows how much energy is
spent in each software routine (e.g. device driver) by each
hardware component (e.g. processor) including peripherals.
Total system energy consumption can also be profiled. In the
next section we describe our methodology for energy
estimation.

Figure 1: Simulator architecture

III. SYSTEM MODEL

A typical embedded system consists of computing, storage,
peripheral and power devices as shown in Figure 1. In this
work we introduce general cycle-accurate energy and
performance models for the peripherals. Previous work
implemented cycle-accurate models of computing, storage and
power elements [1].

In current systems there are two commonly used styles of
peripheral operation [20]. One of these methods is using
special I/O instructions in CPU to activate the peripheral. The
other method is using memory-mapped I/O. In this case
portions of address space are assigned to I/O device and
processor communicates with the device by reading from or
writing to those addresses. The abstract behavior of a
peripheral device for different communication schemes is
shown in Figure 2.

Peripheral devices have two ways to signal back to the
CPU: polling and interrupts. In polling, peripheral device
writes the data into a status register and the processor
periodically checks the status register. Advantages of polling
are, it is simple to implement and the processor is in control
all the time. The disadvantage is polling crates overhead in
CPU time and energy consumption. Polling is implemented in
a cycle-accurate simulator as a memory read and a status
check in a loop, which runs until the necessary peripheral
status is reached. CPU will be active all the time.

The other method is using I/O interrupts. In this case
peripheral device creates an I/O interrupt when it requires
processor cycles. The advantage is that the processor is
occupied only when required. On the other hand, special
hardware is needed to create and detect an interrupt. In
addition, for each interrupt processor needs to save its state.
This is implemented on a cycle-accurate simulator with an
interrupt routine and a delay in simulator. Processor is in idle
state or runs any other task until it is interrupted.

A common method used with interrupts is direct memory
access (DMA). DMA is very helpful if the processor is just a

Figure 2: I/O peripheral controller model.

 Storage
(Memory)

Interface

Perip. 2
(video)

Computing
(CPU)

Perip. 1
(audio)

Communication

Power

FIFO status interrupt

FIFO FIFO

DMA

FIFO

 (a)
Polling

 (b)
Interrupt driven

 (c)
Dma enabled

interrupt

data data

data
addr

3

medium for communication between memory and the
peripheral. In such case DMA enables memory and peripheral
to communicate directly. DMA controller is the master and
the communication is done external to the processor. DMA is
implemented in a cycle-accurate simulator with direct data
transfer between two memory regions. The processor is idle
while transfer is done .

We implemented a general memory-mapped peripheral
device energy model. We focused on memory-mapped I/O
because it is very common in the current system
implementations. Both polling and interrupt-based
communication between processor and peripherals are
implemented. Also we include DMA capability. The energy
and performance models for peripherals are added to
ARMulator [18], a commercial performance simulator for
ARM processors. To add a new module to the ARMulator,
designer must provide a simple cycle-accurate functional and
performance model for each system component. Then
application software can be cross-compiled with provided
compiler and compiled software is loaded to the simulator to
get performance statistics. Cycle-accurate energy models for
each component have been added. Energy models are based
on datasheets provided by component manufacturers. Energy
models introduced by Simunic et. al. [1] are included in our
work.

Simulator architecture is shown in Figure 1. In each cycle
ARMulator sends information about state of the processor and
data and address bus values to the external modules.
Processor cycles can be classified in two groups; active cycles
where processor is operating, and idle cycles where processor
is waiting for memory or peripheral access. Using the
processor state, address and data bus information from
ARMulator, each module determines its state and its energy
consumption in that state. Switching activity on each bus is
calculated for each cycle. Energy loss on the bus is calculated
using bus capacitance and switching activity. Two power
devices are represented: the DC/DC converter and the battery.
Both calculate the energy loss from the efficiency tables.
Total energy consumption per cycle is sum of component
energy consumption values as shown in Equation 1.

speripheralpowerStorageComputingCycle EEEEE +++= . (1)

The energy and performance profiler is used to obtain the

distribution of the energy consumption per software routine of
a specific hardware unit as well as the overall system. In each
cycle, the profiler determines the currently executing
procedure and adds the energy increment between this and
previous cycle to energy consumption of that software routine.
Profiler cycle frequency is determined before the execution of
the code by the user. At the end, the profiler reports energy
distribution with percentages.

We next show a sample implementation of a peripheral
system in our simulator consisting of a coprocessor as I/O
controller and an ADC converter as an audio module. They

combine to drive a sound device such as microphone or
speaker. These devices are typical example of peripherals
found in embedded systems such as portable MP3 players.

A. I/O controller
I/O controller receives data from processor and converts it

to the format needed by peripheral hardware. In some systems
a coprocessor is used as an I/O controller. In other cases an
FPGA or ASIC is used or even in some cases main processor
itself handles I/O controller functionality. I/O controller can
communicate with direct memory access (DMA) to decrease
interconnect switching activity and also to free the main
processor for other tasks. A high-level model of the I/O
controller is shown in Figure 3. In our model, coprocessor
has a queue, which can communicate with the processor or
memory and a communication channel between the queue and
audio/video device. When memory access is finished,
coprocessor creates an interrupt to activate the processor. If
the operation is recording to memory, DMA control waits
until FIFO is filled to a user-specified threshold value and
then uses burst access to write into memory. When the system
is playing audio/video from memory using DMA, memory
writes a burst of data to the FIFO. Using burst accesses
decreases the time the bus is busy and also decreases energy
consumption on the address bus.

I/O controller energy model is created from datasheet
information given by the manufacturer. There are two power
modes for coprocessor: active and idle. Using the supply
voltage and current information given in datasheets equivalent
capacitance values for each mode can be found from Equation
2.

coproccoproc,dd

mod,coproc
mod,coproc f*V

I
C = (2)

Using this capacitance, the energy consumption per cycle in

active mode can be calculated from Equation 3.

coproc

coprocddactivecoproc
activecoproc N

VC
E

2
.,

,

*
= (3)

audio

video

DMA control

FIFO
 addr data

wlan

Figure 3: An I/O controller model

4

Coprocessor is modeled as idle when there is no access to
peripheral devices. In such case energy consumption of
coprocessor per coprocessor cycle can be calculated from
Equation 4.

coproc

coprocddidlecoproc
idlecoproc N

VC
E

2
.,

,

*
= (4)

Ncoproc is the ratio of bus frequency to coprocessor
frequency.

B. Audio Module
 Audio module converts digital information to appropriate

analog voltage level and sends it to the sound device, or
receives analog data and converts it to digital before
transferring it to the system. In our model we combine the
audio controller with the audio device itself. To model energy
consumption of an audio device per cycle we use the
information given in datasheets.

Three operation modes for audio device are defined:
standby, digital to analog and analog to digital. For each
mode an equivalent capacitance is calculated using source
voltage, current and clock frequency of the device. Equations
used for capacitance calculations are similar to Equation 2.
Energy per cycle for each mode is calculated using Equation
5. Naud is the ratio of bus frequency to audio device clock
frequency.

aud

2
aud.ddmodaud

mod,aud N
V*C

E = (5)

Another factor in energy consumption is the sound device

itself. It can be a speaker, headphone or microphone. A
capacitance or resistance or both in parallel model each of
these devices. Equation 6 shows the energy consumption per
audio sample for the sound device. Rdev and Cdev are
resistance and capacitance parameters of the sound device,
faudio is audio frequency, ∆V is the voltage difference between
consecutive samples and Vsample is the voltage level of the
sample. Equation 7 shows how to calculate Vsample.

VVC
fR

V
E sampledev

audiodev

sample
dev ∆+= **

*

2

 (6)

In D/As or A/Ds analog voltage level is proportional to the
digital data value and maximum digital data is generally equal
to supply voltage of the converter. In Equation 7 analog
voltage level equivalent of a digital sample with value dsample
is given. Number of bits used to represent digital data is n.

n
sampledd

sample

dV
V

2
*

= (7)

Finally energy lost on the interconnect between the audio

module and the I/O controller are calculated using the
capacitance of the interconnect, the voltage level and the
switching activity. Capacitance can be calculated if the length
of the connection is known using the material properties of the

hardware platform. Switching activity (Nswitch) per sample is
obtained from the simulator on every cycle. Equation 8 shows
the resulting interconnect energy per audio sample.

switchddlineconnection NVCE ** 2= (8)

IV. RESULTS

To demonstrate our energy models we used a Linux based
embedded system developed by Hewlett-Packard Labs, called
SmartBadge IV. SmartBadge IV consists of an ARM
processor (SA-1110), three different types of memory
(FLASH, SRAM and SDRAM), a coprocessor (SA-1111) and
an audio interface (UDA 1341). Table 1 shows the datasheet
values used for energy models for the components.

 To test our methodology we started with a default audio
device driver that is a part of the SmartBadge IV Linux
distribution. The device driver can both record and play
audio. When recording (playing) the device driver receives
(sends) data from (to) the peripheral using polling. Polling is
done to determine if the queue in the I/O controller is not
empty (not full). If it is not empty (not full) processor reads
(writes) a data from the queue. If it is empty (full) processor
continuously check the queue until there is some data (space)
in it. This continues until all samples are recorded (played).

 Our profiling tool highlights energy wasted in continuous
checking of the queue status in Table 2. Profiling shows that
with the default audio driver only 3% of the energy is used for
the audio data transfer, while 96% of the energy is wasted for
polling. In addition, using processor as a medium to send data
between the memory and the device creates extra bus
switching. As a result, we redesigned this device driver

Table 1: Datasheet information about components
Type Device Mode and characteristic of the mode

active = 500mW @200MHz

idle = 85 mW @ 200MHz CPU SA-1100

sleep = 5 uA

active = 50mA @ 3.3V I/O
Controller SA-1111

sleep = 50 uA @ 3.3V

read = 18 mA @5 MHz Flash
Mem. 28F800C3

standby = 7 uA

active = 50 mA @ 3V

standby = 2 mA @ 3V SRAM TC55V400FT –
70

low standby = 0.5 uA @ 3V

active = 480mA @ 3.3V

standby = 120 mA @ 3.3V SDRAM KMM466S924T

idle = 20mA @3.3V

playback = 20mA @ 3V

record = 19.55mA @ 3V
Audio

CODEC UDA1341TS

standby = 10.05mA @ 3V
Sound
device

Speaker and
microphone

R= 5K C=25pF (including termination
resistor)

5

 New device driver uses DMA to communicate between
memory and I/O controller. Interrupts are used to inform the
processor when the operation is done or when the size limit
for DMA access is reached. Profiler results in Table 3 show
that nearly all system energy is consumed for the actual data
transfer with DMA.

 We further compare the two device drivers with a simple
application. A 0.1 sec audio clip with 48KHz audio frequency
is sent from an audio device and stored into memory. Same
audio is then played back. Table 4 shows the performance
and total system energy consumption.. There is a 58%
decrease in energy consumption with DMA-based audio
driver. As expected, there is little change in execution time,
which is nearly the same as the time spent to receive and send
audio sample.

 Energy consumption for each device is shown in Table 5
and Figure 4. DMA-based driver decreases the energy
consumption of processor, memory, system bus and
coprocessor. Because we used the same sample clip for
testing both audio drivers, the energy consumption of
microphone and speaker are unchanged. Power source
modules (battery and DC/DC converter) spend less energy
because of the decrease in current demanded by the rest of the
system. CPU energy consumption decreases because
processor is in the idle state during the DMA access. Memory
power is decreased because of the reduced number of
instruction reads. As can be seen from these results, with our
tool we can not only detect potential problem areas in
hardware and software design of the peripherals but can also

solve them.

V. CONCLUSION

 In this work we present a methodology for estimating
energy consumption of peripherals such as audio device in
embedded systems. We develop a cycle-accurate simulator
and profiler to estimate the energy consumption of the
peripherals. Profiler enables optimization of the driver
software. A memory-mapped I/O device is modeled to test our
method. Communication of peripheral device and CPU is
implemented both using polling and interrupts. Also DMA is
modeled to enable direct communication between storage
devices and peripherals. Our simulation shows that power
consumption in such peripheral devices and their
communication interface with other parts of embedded system
can count for up to 70-75% of total system energy
consumption. We also show using our tool that it is possible
to optimize energy consumption in device drivers. We
decreased system energy consumption of the audio driver 57%
by just changing the communication protocol between I/O
controller, main CPU and memory.

VI. REFERENCES
[1] T. Simunic, L. Benini, G. De Micheli, "Cycle-Accurate

Simulation of Energy Consumption in Embedded
Systems," Proceedings of 36th Design Aautomation
Conference, 1999.

[2] CoWare http://oradev.coware.com

Table 2: Energy profile of polling based device driver

routine energy %
check_fifo 96.29

to_fifo 1.30
from_fifo 1.29

main 0.29
flsbuf 0.02

Table 3: Energy profile of DMA based device driver

routine energy %
dma_transfer 98.78

flsbuf 0.49
fprintf 0.11

freopen 0.06
fputc 0.04

Table 4: Performance and total energy consumption

Device driver Time(sec)
System

Energy(uWhr)
DMA-based 0.2017 48.06

Polling-based 0.2011 114.22
% difference 0.34 57.93

Table 5: Energy consumption per module

 DMA Polling

Energy
(uWhr) %

Energy
(uWhr) % % diff.

Proc. 0.32 0.67 18.80 16.46 98.30
Mem. 6.28 13.06 27.96 24.48 77.56

SA1111 9.20 19.15 10.61 9.28 13.22
Sys. Bus 0.05 0.09 0.14 0.13 68.36
Audio D. 28.33 58.94 28.26 24.74 -0.24
DC_DC 3.52 7.33 5.90 5.17 40.31

Battery loss 0.37 0.76 22.55 19.74 98.38

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Energy(uWhr) Energy(mWhr)

DMA Polling
device drivers

en
er

gy
(m

W
hr

)

Battery loss

DC_DC

Audio D.

Sys. Bus

SA1111

Mem.

Proc.

Figure 4: Distribution of energy consumption to different modules

6

[3] Mentor Graphics, http://www.mentor.com/codesign/
[4] Synopsys, System-level design

http://www.synopsys.com/sps/sld.html
[5] Cadence,

http://www.cadence.com/products/
incisive_unified_simulator.html

[6] Synopsys, Power Compiler
http://www.synopsys.com/products/power/power.html

[7] SimOS http://simos.stanford.edu/
[8] V. Tiwari, S. Malik, A. Wolfe, “Power Analysis of

Embedded Software: a First Step Towards Software
Power Minimization,” IEEE Transaction on Very
Large Scale Integration (VLSI) Systems, 1994, v. 2, no.
4, pp 437-445

[9] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria,
R. Zafalon, “Energy Estimation and Optimization of
Embedded VLIW Processors Based on Instruction
Clustering,” Proceedings of 39th Design Automnation
Conference, 2002, pp 886-891.

[10] J. T. Russell, M. F. Jacome, “Software Power
Estimation and Optimization for High Performance,
32-bit Embedded Processors,” Proceedings of the Int.
Conference on Computer Design: VLSI in Computers
and Processors (ICCD’98), 1998, pp. 328-333.

[11] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V.
Zyuban, P. N. Strenski, P. G. Emma, “Optimizing
Pipelines for Power and Performance,” Proceedings of
the 35th Annual ACM/IEEE International Symposium
on Microarchitecture, 2002, pp.333-344.

[12] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S.
Kim, W. Ye, “Energy-driven Integrated Hardware-
software Optimizations Using SimplePower,”
Proceedings of the 27th Annual International
Symposium on Computer Architecture, 2000, pp. 95-
106.

[13] Erik Brockmeyer, Arnout Vandecappelle, Francky
Catthoor, “Systematic Cycle Budget Versus System
Power Trade-off: A New Perspective on System
Exploration of Real-time Data-dominated
Applications,” Proceedings of the 2000 International
Symposium on Low Power Electronics and Design,
2000, pp 137-142.

[14] Tao Li, Lizy Kurian John, “Run-time Modeling and
Estimation of Operating Power Consumption,”
Proceedings of the International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS’03), 2003, pp 160-171.

[15] T. Simunic, L. Benini, G. De Micheli, M. Hans,
“Source Code Optimization and Profiling of Energy
Consumption in Embedded Systems,” Proceedings of
the 13th International Symposium on System Synthesis,
2000, pp 193-198.

[16] S. Wang, S. Malik, A. Bergamaschi, “Modeling and
Integration of Peripheral Devices in Embedded
Systems,” Proceedings of Design, Automation and Test
in Europe Conference, 2003, pp. 136-141.

[17] W. Ye, N. Vijaykrishnan, M. Kandemir, M. J. Irwin,
“The Design and Use of SimplePower: A Cycle-

Accurate Energy Estimation Tool,” Proceedings of 37th
Design Automation Conference, 2000, pp. 340-345.

[18] Advanced RISC Machines Ltd. (ARM) ARM Software
Development Toolkit Version 2.11, 1996.

[19] Acquaviva, Andrea; Simunic, Tajana; Deolalikar,
Vinay; Roy, Sumit, “Server Controlled Power
Management for Wireless Portable Devices,” HP Labs
Technical Report (HPL-2003-82), April 2003.

[20] David A. Patterson and John L. Hennessy, “Computer
Organization and Design: The Hardware/Software
Interface,” Second Edition, August 1997, publisher
Morgan Kaufmann.

