

Identity Based Authenticated Key
Agreement Protocols from Pairings

Liqun Chen, Caroline Kudla
Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2003-25
February 12th , 2003*

E-mail: {liqun.chen, caroline.kudla}@hp.com

identity based
cryptography,
authenticated key
agreement,
pairings, trusted
authority forward
secrecy

We investigate a number of issues related to identity based
authenticated key agreement protocols in the Diffie-Hellman family
enabled by the Weil or Tate pairings. These issues include how to
make protocols efficient; to avoid key escrow by a Trust Authority
(TA) that issues identity based private keys for users, and to allow
users to use different TAs. We describe a few authenticated key
agreement (AK) protocols and AK with key confirmation (AKC)
protocols by modifying Smart's AK protocol. We discuss the
security of these protocols heuristically and give formal proofs of
security for our AK and AKC protocols (using a security model
based on the Bellare-Rogaway model). We also prove that our AK
protocol has the key compromise impersonation property. We also
show that our second protocol has the TA forward secrecy property
(which we define to mean that the compromise of the TA's private
key will not compromise previously established session keys), and
we note that this also implies that it has the perfect forward secrecy
property.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

Identity Based Authenticated Key Agreement
Protocols from Pairings

Liqun Chen and Caroline Kudla1

 Hewlett-Packard Laboratories,

Filton Road, Stoke Gifford, Bristol BS34 8QZ, United Kingdom.
{liqun.chen, caroline.kudla}@hp.com

Abstract: We investigate a number of issues related to identity based authenticated key agreement
protocols in the Diffie-Hellman family enabled by the Weil or Tate pairings. These issues include
how to make protocols efficient; to avoid key escrow by a Trust Authority (TA) that issues
identity based private keys for users, and to allow users to use different TAs. We describe a few
authenticated key agreement (AK) protocols and AK with key confirmation (AKC) protocols by
modifying Smart's AK protocol [Sm02]. We discuss the security of these protocols heuristically
and give formal proofs of security for our AK and AKC protocols (using a security model based
on the model defined in [BJM97]). We also prove that our AK protocol has the key compromise
impersonation property. We also show that our second protocol has the TA forward secrecy
property (which we define to mean that the compromise of the TA’s private key will not
compromise previously established session keys), and we note that this also implies that it has the
perfect forward secrecy property.

Keywords: identity based cryptography, authenticated key agreement, pairings, trusted authority
forward secrecy

1 Introduction

Key establishment is a process whereby two (or more) entities can establish a shared secret
key (session key). There are two different approaches to key establishment between two
entities. In one scenario, one entity generates a session key and securely transmits it to the
other entity. This is known as enveloping or key transport. More commonly, both entities
contribute information from which a joint secret key is derived. This is known as key
agreement. All the protocols discussed in this paper are of this form.

A key agreement protocol is said to provide implicit key authentication (of B to A) if A is
assured that no other entity besides B can possibly ascertain the value of the secret key. A key
agreement protocol that provides mutual implicit key authentication is called an authenticated
key agreement protocol (or AK protocol). A key agreement protocol provides key
confirmation (of B to A) if A is assured that B possesses the secret key. A protocol that
provides mutual key authentication as well as mutual key confirmation is called an
authenticated key agreement with key confirmation protocol (or an AKC protocol).

It is desirable for AK and AKC protocols to possess the following security attributes:
1. Known-key security: Each run of the protocol should result in a unique secret session

key. The compromise of one session key should not compromise other session keys.
2. Forward secrecy: If long-term private keys of one or more of the entities are

compromised, the secrecy of previously established session keys should not be
affected. We say that a system has partial forward secrecy if the compromise of one
(or more but not all) of the entities’ long-term keys can be corrupted without
compromising previously established session keys, and we say that a system has
perfect forward secrecy if the long-term keys of all the entities involved may be
corrupted without compromising any session key previously established by these
entities. There is a further (perhaps stronger) notion of forward secrecy in identity-
based systems, which we call "TA forward secrecy", which certainly implies perfect
forward secrecy. This is the idea that the TA’s long-term private key may be

1 Associated with Royal Holloway, University of London. {c.j.kudla@rhul.ac.uk}

 1

mailto:{liqun.chen, caroline.kudla@hp.com

corrupted (and hence all users’ long-term private keys) without compromising the
security of session keys previously established by any users.

3. Key-compromise impersonation: The compromise of an entity A’s long-term private
key will allow an adversary to impersonate A, but it should not enable the adversary
to impersonate other entities to A.

4. Unknown key-share resilience: An entity A should not be able to be coerced into
sharing a key with any entity C when in fact A thinks that she is sharing the key with
another entity B.

5. Key control: Neither entity should be able to force the session key to be a preselected
value.

The first key agreement protocol based on asymmetric cryptography was the Diffie-
Hellman protocol [DH76]. It is a fundamental technique providing unauthenticated key
agreement using exponentiation. Its security is based on the intractability of the Diffie-
Hellman problem and the discrete logarithm problem. Many key agreement protocols are
based on the ideas of Diffie-Hellman, and such protocols can be described in any group in
which the discrete logarithm is hard and exponentiation is efficient. Such groups include the
multiplicative groups Z*

p (p a prime), , or the group of points on an elliptic curve over a
finite field.

mF
2

There have been many attempts to add authentication (and key confirmation) to the
Diffie-Hellman protocol. One of the well-known authenticated key agreement (AK) protocols
in the Diffie-Hellman family is the MQV protocol by Menezes, Qu and Vanstone [MQV95].
This is a two-pass AK protocol. It is heuristically argued that the MQV protocol provides
mutual implicit key authentication, and has the following security attributes: known-key
security, forward secrecy, key-compromise impersonation and key control. As pointed out by
Burton and Kaliski in [BK01], this AK protocol is vulnerable to an unknown key share attack.
To prevent this attack, Law et al [LMQSV] present a three-pass AKC protocol.

An authenticated key establishment protocol is called identity-based if users use their
identity based asymmetric key pair, instead of a traditional public/private key pair, in the
protocol for authentication and determination of the established key.

In 1984, Shamir [Sh84] proposed the idea of using an identity based asymmetric key pair
where an arbitrary string (typically an identity string) can be used as a user’s public key. A
trusted authority (TA) is required to derive private keys from arbitrary public keys. The TA
also publishes public information required for all encryption, decryption, signature and
verification algorithms in the system. This is referred to as identity-based cryptography (IBC).
Shamir gave a practical ID-based signature scheme but left as an open question the problem
of finding an efficient ID-based encryption scheme.

A few identity-based key agreement protocols have been developed based on Diffie-
Hellman and using Shamir's key set up idea. For instances, Okamoto [Ok86] presented an
identity-based scheme and Tanaka and Okamoto slightly modify this in [TO91]. Girault and
Pailles [GP90] developed an identity-based system, which can be used for non-interactive key
agreement schemes. Another non-interactive identity-based key agreement scheme is also
described in Annex B of ISO/IEC 11770-3 [ISO11770].

In 2001 the first feasible solutions for identity-based encryption were published. One of
them is Boneh and Franklin’s identity-based encryption scheme [BF01], which is based on
pairing on elliptic curves. Shortly after that, a few feasible identity-based key agreement
protocols (as well as signature schemes) based on pairing techniques were developed. Smart,
by combining the ideas from [BF01], [MQV95] and [Jo00], proposed an identity-based
authenticated key agreement protocol (ID-AK) and an identity-based authenticated key
agreement protocol with key confirmation (ID-AKC) in [Sm02].

The contributions of this paper are as follows:
1. Introducing an ID-AK protocol more efficient than Smart’s.
2. Modifying Smart's and our proposed AK protocol to include the TA forward secrecy

property and to avoid TAs being able to access user's communications.

 2

3. Introducing an AK protocol (also modified from Smart’s) to allow users to choose
different TAs.

4. Discussions on the security properties of these protocols and using formal security
models and methods to prove them.

2 Technical Backgrounds

2.1 Pairing Technique Concepts

Pairing has recently had a number of positive applications in cryptography, for instances,
identity-based encryption [BF01], identity-based signatures [He02, Pa02, and SOK00], key
agreement [Jo00, Sm02, and SOK00] and short signatures [BLS01].

Let G1 and G2 denote two groups of prime order q, where G1, with an additive notation,
denotes the group of points on an elliptic curve; and G2, with a multiplicative notation,
denotes a subgroup of the multiplicative group of a finite field.

A pairing is a computable bilinear map between these two groups. Two pairings have
been studied for cryptographic use. They are Weil pairing ref to [MOV93, Si94] and a
modified version ref to [BF01], and Tate pairing ref to [FMR99, Ga01]. For the purposes of
this paper, we let ê denote a general bilinear map, i.e., ê: G1 × G1 → G2, which can be either a
modified Weil pairing or a Tate pairing.

A Diffie-Hellman (DH) tuple in G1 is (P, xP, yP, zP) ∈ G1 for some x, y, z ∈ Z*
q satisfying

z = xy mod q.
Computational Diffie-Hellman (CDH) problem: Given any three elements from the four

elements in a DH tuple compute the remaining element.
CDH assumption: There exists no algorithm running in expected polynomial time, which

can solve the CDH problem with non-negligible probability.
Decision Diffie-Hellman (DDH) problem: Given P, xP, yP, zP ∈ G1, decide if it is a valid

DH tuple. This can be solved in polynomial time by verifying ê(xP, yP) = ê(P, zP).
Bilinear Diffie-Hellman (BDH) problem: Let P be a generator of G1. The BDH problem

in 〈G1, G2, ê〉 is that given (P, xP, yP, zP) for some x, y, z ∈ Z*
q, compute W = ê(P, P)xyz ∈

G2.
BDH assumption: There exists no algorithm running in expected polynomial time, which

can solve the BDH problem in 〈G1, G2, ê〉 with non-negligible probability.
Security of our authenticated key agreement protocols described in this paper is based on

the CDH and BDH assumptions.

2.2 Security Model

In the later part of this paper, we will prove security of the protocols proposed in this paper
using a security model, which was proposed by Bellare and Rogaway in [BR95] and used in a
number of other papers such as Blake-Wilson et al in [BJM97] and Al-Riyami and Paterson in
[AP02]. We now highlight the model as follows.

The model includes a set U = {1, …, T1(k)} of protocol participants and a set V = {1, …,
T4(k)} of TAs, where k is a security parameter, T1(k) is a polynomial bound on the number of
participants in k for some polynomial function T1 and T4(k) is a polynomial bound on the
number of TAs in k for some polynomial function T4. These participants are modelled by
oracles, e.g., Πn

I,J, which simulates a participant I carrying out a protocol session in the belief
that it is communicating with another participant J for the nth time (i.e. the nth run of the
protocol between I and J). Oracles keep transcripts that keep track of messages they have sent
or received, and of queries they have answered.

Each participant has a pair of ID-based long-term asymmetric keys, where the public key
is created using the participant's identifier and the private key is computed and issued by a
TA. We assume there is a key generation algorithm O which produces a description of groups
G1 and G2 and the bilinear map ê, assigns random tapes and oracles as necessary, and

 3

distributes long-term master keys to TAs and ID-based long-term public/private keys to
participants.

The model also includes an adversary, E, who is neither a participant nor a TA. E is a
probabilistic polynomial time Turing Machine and she has access to the participants' oracles.
E can relay, modify, delay, interleave or delete messages. For any pair of oracles Πn

I,J and
Πt

J,I, E is called the benign adversary on these two oracles if she simply passes messages to
and fro between participants, I and J. It is assumed that E is allowed to make the following
three types of queries of the oracles, as defined in [BJM97]:

• Send: this allows E to send a message of her choice to an oracle, say Πn
I,J, or to

initiate a protocol run between two participants, I and J.
• Reveal: this allows E to ask a particular oracle to reveal the session key (if any) it

currently holds to E.
• Corrupt: this allows E to ask a particular oracle to reveal it's long-term private key.

An oracle exists in one of the following several possible states:
• Accepted: an oracle is accepted if it decides to accept, holding a session key, after

receipt of properly formulated messages.
• Rejected: an oracle is rejected if it decides to reject holding a session key.
• *: an oracle is * if it has not made any decision to accept or reject.
• Opened: an oracle is opened if it has answered a reveal query.
• Corrupted: an oracle is corrupted if it has answered a corrupt query.

If both oracles, say Πn
I,J and Πt

J,I, have received (perhaps via the adversary) messages
exclusively generated by the other oracle, we say that these two oracles have had a matching
conversation (see [BR93] for a formal definition).

For attacking a protocol, E does an experiment with a set of selected oracles. During the
experiment E asks a polynomially bounded number of queries (including Send, Reveal and
Corrupt) to the oracles and finally makes a Test query to a chosen oracle. The oracle, say
Πn

I,J, to be chosen for answering the Test query must have accepted, be unopened and be
uncorrupted. Furthermore, there must be no opened or corrupted oracle Πt

J,I with which it has
had a matching conversation. To answer the query, the oracle flips a fair coin b ← {0, 1}, and
returns the session key if b = 0, or else a random key sampled from {0, 1}k if b = 1. Then E
has to guess b. E's advantage, denoted advantageE(k), is the probability that E can distinguish
the session key held by the queried oracle from a random string, and it is defined as:

AdvantageE(k) = |Pr[guess correct] – ½|.

Definitions of secure AK and AKC protocols are as follows:

Definition 1 [BJM97]. A protocol is a secure AK protocol if:

1. In the presence of the benign adversary on Π n
I,J and Π t

J,I, both oracles always accept
holding the same session key, FK, and this key is distributed uniformly at random on {0,
1}k;

and if for every adversary E:
2. If uncorrupted oracles Π n

I,J and Π t
J,I have matching conversations then both oracles

accept and hold the same session key, FK;
3. advantageE(k) is negligible.

A function ε(k) is negligible if for every c > 0 there exists kc > 0 such that ε(k) < k-c for all

k > kc. A function is non-negligible if it is not a negligible function.

Definition 2 [BJM97]. A protocol is a secure AKC protocol if:

1. In the presence of the benign adversary on Π n
I,J and Π t

J,I, both oracles always accept
holding the same session key, FK, and this key is distributed uniformly at random on {0,
1}k;

and if for every adversary E:

 4

2. If uncorrupted oracles Π n
I,J and Π t

J,I have matching conversations then both oracles
accept and hold the same session key, FK;

3. The probability of No-MatchingE(k) is negligible;
4. advantageE(k) is negligible.

In the third condition, No-MatchingE(k) denotes the event that, when the protocol is run

against adversary E, there exists an oracle Πn
I,J, which accepted, but there is no oracle Πt

J,I
which has engaged in a matching conversation to Πn

I,J. This condition says that essentially the
only way for any adversary to get an uncorrupted entity to accept in a run of the protocol with
any other uncorrupted entity is by relaying communications like a wire.

3 Smart’s ID-based AK Protocol

To describe the protocol, we use the notation, Mi: A → B: m, to state that in the ith message
flow, entity A sends a message m to entity B. This notation will be used throughout the paper.

Smart's ID-AK protocol involves three entities: two users Alice and Bob who wish to
establish a shared secret session key, and a TA from whom they each require their own
private key.

To provide a private key generation service, the TA uses a public/private key pair. The
public key is (P, Ps = sP ∈ G1) where P is a generator of G1 and the private key is s ∈ .
When a user registers with TA, the TA issues a private key S = sQ for the user, where Q =
H

q
*Z

1(ID) ∈ G1, H1 is a hash function, H1: {0,1}* → G1, and ID is the user's identifier string.
Note that this kind of identity based asymmetric key setup has been used in a number of ID-
based encryption and signature schemes with paring, e.g., [BF01, He02, Pa02, SOK00].

Suppose that the TA issues the following private keys for Alice and Bob respectively: SA
= sQA where QA = H1(Alice's ID), and SB = sQB where QB = H1(Bob's ID).

Alice and Bob each randomly choose an ephemeral private key, a, b ∈ Z*
q, and compute

the values of the corresponding ephemeral public keys, TA = aP and TB = bP. They then
exchange the public keys as follows:

Protocol 1.

M1: Alice → Bob: TA
M2: Bob → Alice: TB

At the conclusion of the protocol Alice computes KAB = ê(SA, TB)ê(aQB, Ps), and Bob
computes KBA = ê(SB, TA)ê(bQA, Ps). If Alice and Bob follow the protocol, they will compute
the same shared secret: K = KAB = KBA= ê(bQA + aQB, Ps). Their shared secret session key is
then FK = H2(K), where H2 is a key derivation function. This function will typically be a
random oracle, or secure hash function. It is important to make use of these key derivation
functions since an attacker might otherwise be able to gain partial information about the
session key even though the underlying problem is hard.

This protocol has the following security properties: mutual implicit key authentication,
known key security, partial forward secrecy (see discussion in the next section), imperfect key
control (see discussion in the next section), key-compromise impersonation, and unknown
key-share resilience.

We are now concerned about the following three issues:
Efficiency. In Protocol 1 (Smart’s protocol), each participant has to generate a random

number, perform two elliptic curve point multiplications, and compute two pairings. In the
next section, we will introduce a more efficient protocol, which offers the same security
properties as Protocol 1.

Key escrow. As mentioned above, this protocol allows the TA to escrow the session key
shared between Alice and Bob. This property may not acceptable for some applications.
Although one main property of ID-based systems is that the TA generates private keys for
users, some users may still want to conduct their own communications without the TA

 5

eavesdropping. This security feature holds in the identity-based key agreement protocols
using Shamir's key set up, ref to [Ok86, TO91, GP90, and ISO11770]. In Section 5, we will
describe a solution for Smart’s protocol that avoids the TA being able to deduce the
established key.

Single TA. In this protocol, both Alice and Bob register with a single TA. This is suitable
for the situation in which Alice and Bob belong to the same community. In some other real
life applications, Alice and Bob may personally make use of different TAs but they both trust
these two TAs to provide a key generation service properly. This security feature does not
hold in the existing identity-based key agreement protocols using Shamir's key set up. In
Section 6, we will introduce an extended protocol to support such a requirement.

In the following three sections, we give three modifications of Smart’s protocol. Each
focuses on one of the above three issues.

4 A More Efficient AK Protocol

We describe our first modification of Protocol 1. Alice and Bob each randomly choose an
ephemeral private key, a, b ∈ Z*

q, and compute the values of the corresponding ephemeral
public keys, WA = aQA and WB = bQB. They then exchange the public keys as follows:

Protocol 2.

M1: Alice → Bob: WA
M2: Bob → Alice: WB

At the conclusion of the protocol Alice computes KAB = ê(SA, WB + aQB), and Bob

computes KBA = ê(WA + bQA, SB). If Alice and Bob follow the protocol, they will compute the
same shared secret: K = KAB = KBA = ê(QA, QB)s(a + b). Their shared secret session key is then
FK = H2(K).

Efficiency. The above protocol has a very similar construct to Protocol 1. However, it is
more efficient. Protocol 1 requires each party to perform two elliptic curve point
multiplications and two evaluations of the pairing. This protocol requires each party to
perform two elliptic curve point multiplications, one elliptic curve point addition and one
evaluation of the pairing.

With the description of the security model in Section 2.2, we now state:

Theorem 1. Protocol 2 is a secure AK protocol, assuming that BDH problem (for the pair of
groups G1 and G2) is hard and provided that H2 is a random oracle.

Proof: Condition 1 follows from the assumption that the two oracles follow the protocol and
E is benign. In this case, both oracles accept (since they both receive correctly formatted
messages from the other oracle) holding the same key FK (since KAB = KBA by the bilinearity
of the pairing and the matching conversation). Since H2 is a random oracle, FK is distributed
uniformly at random on {0,1}k.

Condition 2 follows from the fact that if the two oracles are uncorrupted, then they cannot
be impersonated, and if they have had matching conversations then each has received
properly formatted messages from the other. So they will both accept holding the same
session key FK where FK has the same properties as for Condition 1.

Condition 3. Consider an arbitrary adversary E, and suppose, by the way of contradiction,
that advantageE(k) is non-negligible. Suppose that there exists an oracle Πn

I,J - after having a
matching conversation to another oracle Πt

J,I (both I, J have not been corrupted), Πn
I,J holds

the session key with the form H2(ê(QI, QJ)s(i + j)) for i chosen at random by Πn
I,J and j chosen at

random by Πt
J,I. We say that E succeeds (against Πn

I,J) if at the end of E's experiment, E picks
Πn

I,J to ask a Test query and outputs the correct bit guess. Thus,

Pr[E succeeds] = ½ + η(k),

 6

for some non-negligible η(k) by assumption. Now call Ak the event that H2 has been queried
on ê(QI, QJ)s(i + j) by E or some oracle other than Πn

I,J or Πt
J,I. Then

Pr[E succeeds] = Pr[E succeeds|Ak]Pr[Ak] + Pr[E succeeds|Āk]Pr[Āk].

Since H2 is a random oracle, and Πn

I,J and Πt
J,I remain unopened by definition, Pr[E

succeeds|Āk] = ½. Thus

½ + η(k) ≤ Pr[E succeeds|Ak]Pr[Ak] + ½,

so that Pr[Ak] ≥ η(k). We conclude that given E picks some Πn

I,J for which there exists some
Πt

J,I that has had a matching conversation to Πn
I,J, then the probability that H2 has previously

been queried on ê(QI, QJ)s(i + j) by E or some oracle other than Πn
I,J or Πt

J,I is non-negligible.
Therefore we use E to construct an algorithm F which solves the BDH problem with non-

negligible probability.
F's task: Given input of, as described in Section 2, the two groups G1, G2, the bilinear map

ê, a generator of G1, P, and a triple of elements xP, yP, zP ∈ G1 with x, y, z ∈ Z*
q where q is

the prime order of G1 and G2, F's task is to compute and output the value gxyz where g = ê(P,
P).

F's operation: F picks I, J ∈R U (the probability of picking a particular pair is 1/T1(k)2), n,
t ∈R {1, …, T2(k)} (the probability of picking a particular session is 1/T2(k)2), and l ∈R {1, …,
T3(k)} (the probability of picking a particular value is 1/T3(k)), where T2(k) denotes
polynomial bounds in the security parameter, k, on the number of sessions an oracle may
enter into with another oracle, for some polynomial function T2; and T3(k) denotes polynomial
bounds in the security parameter, k, on the number of distinct H2 queries made by E and its
oracles for some polynomial function T3. F guesses that E will select Πn

I,J to ask its Test query
after Πt

J,I has had a matching conversation to Πn
I,J, and also guesses that the lth distinct H2

call made during the experiment will be on ê(P, P)xyz.
F simulates the running of the key generation algorithm O by choosing xP as TA's public

key, sP, choosing all participants' long-term public keys randomly and computing the
corresponding long-term private keys, e.g., for participant M, the public key is QM = rMP
where rM ∈R Z*

q, and the private key is SM = rMxP, but with the exception of I and J's keys.
As public values for I and J, F chooses yP as I's public key, QI, and (i + j)-1zP as J's public
key, QJ, where i, j ∈R Z*

q. F then starts E.
During the period of E's attacking experiment, F answers E's queries in the following

ways:
1. Hash query. F answers all H2 oracle queries at random, just like a real random

oracle would.
2. Corrupt query. F answers Corrupt queries as specified by a normal oracle, i.e.,

revealing the long-term private key of the related participant, except that if E asks I
or J a Corrupt query, F gives up.

3. Reveal query. F answers Reveal queries as specified by a normal oracle, i.e.,
revealing the session key (if any) the oracle currently holds, except that if E asks
Πn

I,J or Πt
J,I a Reveal query, then F gives up.

4. Send query. F answers all Send queries as specified by a normal oracle, i.e., taking
a random sample to form its challenge, except that if E asks Πn

I,J Send query, F
answers iyP and if E asks Πt

J,I Send query, F answers j(i + j)-1zP.
There are the following possible results from the experiment involving F and E:

1. E does not make its queries in such a way that Πn
I,J has a matching conversation to

Πt
J,I, then F gives up.

2. E and its oracles do not make l distinct H2 oracle calls before E asks its Test query,
then F gives up.

 7

3. E does make its queries in this way, then Πn
I,J will accept (holding the key formed

as H2(ê(QI, QJ)s(i + j)) = H2(ê(yP, (i + j)-1zP)x(i + j)) = H2(ê(P, P)xyz), although F doesn't
know ê(QI, QJ)s(i + j), and so can't actually compute this key).

4. If the previous item happens and the lth distinct H2 call is made (say on h), then F
stops and outputs h as its guess at ê(P, P)xyz.

It is easy to observe that if the lth distinct H2 query made by E or its oracles is on ê(P,
P)xyz, then F certainly wins its experiment. Therefore, the probability that F outputs the
correct value ê(P, P)xyz is:

Pr[Ak]/(T1(k)2T2(k)2T3(k)) ≥ η(k)/(T1(k)2T2(k)2T3(k)),

which is non-negligible. This contradicts the BDH assumption. We conclude that η(k) is
negligible, and thus that advantageE(k) must be negligible. □

Since the security model which we used to prove Theorem 1 doesn't cover some known
active attacks, we now heuristically discuss some of the security properties related to these
attacks.

1. Known key security. In the proof of Theorem 1 above, E is allowed to make Reveal
queries to any oracle except for Πn

I,J and Πt
J,I. That does not help her to obtain the

key shared between Πn
I,J and Πt

J,I. This captures the notion of known key security.
Actually Protocol 2 has this property because each run of the protocol produces a
different session key, therefore knowledge of past session keys does not allow
deduction of future session keys.

2. Partial forward secrecy. We consider the following three separate parts of this
property:
(1) Compromise of long-term secret keys, either SA or SB, at some point in the

future does not lead to the compromise of communications in the past. But
compromising of both of them at some point in the future leads to the
compromise of communications in the past, because K = ê(SA, WB) ê(WA, SB).
So the protocol does not offer perfect forward secrecy.

(2) Compromising of the TA's master key s leads to the compromise of
communications in the past, because K = ê(QA, WB)sê(WA, QB)s. This means
the protocol does not offer TA forward secrecy.

(3) Compromising of one or both of the ephemeral private keys, a and b, reveals
none of the long-term secret keys, SA, SB and s, nor the shared secret session
key FK.

In the following section, we will modify Protocols 1 and 2 in order to provide TA
forward secrecy, i.e., compromising the TA’s master key (which also means
compromising the two long-term secret keys of the users) does not lead to the
compromise of communications in the past.

3. Imperfect key control. Protocol 2 does not have the full key control attribute since
Bob can select his ephemeral key after having received Alice's ephemeral key. Bob
can force l bits of the shared secret key to have a nominated value by evaluating K
for roughly 2l different choices of b. As it is noted in [MWW98], the responder in a
protocol almost always has an unfair advantage in controlling the value of the
established session key. This can be avoided by the use of commitments, although
this intrinsically requires an extra round.

4. Unknown key-share resilience. It is not easy to give a formal proof of whether the
protocol possesses the unknown key-share resilience attribute or not. It seems to be
difficult for an adversary to replace Alice's or Bob's public key with their own one
because every user's public key is a hash function output with their identity string
as input. To give a formal proof of this security feature is an interesting open
problem.

 8

5. Key-compromise impersonation. When an adversary knows Alice's long-term
private key, SA, the adversary is not able to impersonate other entities, say Bob, to
Alice.

Theorem 2. An adversary, who is polynomial time, cannot impersonate Bob to
Alice in Protocol 2 with knowing Alice's private key but not Bob's private key,
under the assumption of BDH problem and provided that H2 is a random oracle.

We prove this theorem in Appendix A. Since the protocol is symmetric, the
adversary cannot impersonate Alice to Bob either, if the adversary obtains Bob's
private key but not Alice’s.

5 Modification of Protocols 1 and 2 without Key Escrow

There are two properties missing from Protocols 1 and 2 that we may require. These are TA
forward secrecy (and therefore also perfect forward secrecy), and the fact that we may not
want the TA to be able to escrow session keys established by two users in the protocol.

Note that in identity-based cryptography (IBC) systems we cannot escape the possibility
of a TA impersonating any user in the system because the TA is always able to do so. In PKI
we have the same problem in fact. A CA (certification authority) can generate a key pair, and
(falsely) certify that the public key belongs to a user A. The CA can then impersonate A to
any other user B. In both IBC and PKI we therefore have to assume that the trusted authority
(TA or CA) will not impersonate users.

However a property that we may require from our identity-based key agreement protocol
is that, if two users are actually communicating with each other (that is, no user is being
actively impersonated by the TA), then the TA cannot derive (or therefore escrow) the
established session key. This is mainly a privacy issue since users may trust the TA with their
long-term keys, but may wish to be able to escape from the escrow environment (assuming no
active attacks by the TA) for communications they wish to keep confidential even from the
TA.

TA forward secrecy is another security issue. If at any stage the TA’s key is
compromised, this should not compromise the previously established session keys. This is
known as TA perfect forward secrecy, and in Protocols 1 and 2, this does not hold.

Recall that the concept of perfect forward secrecy captures the idea that the corruption of
both users’ long-term private keys does not compromise their previously established session
keys. Note that if the protocol has the property of TA forward secrecy, then it has perfect
forward secrecy since the TA knows all users’ long-term private keys. The converse is not
necessarily true since the TA knows not only all users’ long-term private keys, but also s, the
TA’s long-term master secret.

Ideally, we would like a key agreement protocol in which the long-term keys are used for
authentication, but the ephemeral keys are used in a way that cannot be known by the TA or
by anyone else who knows only the long-term secret keys. The most well-known method of
achieving this is for the users to calculate a Diffie-Hellman shared key from their ephemeral
contributions. We now introduce protocols modified from Protocols 1 and 2, which have the
above desired properties.

Protocol 1′:

There seem to be a simple way to escape the key escrow using the above protocol 1 and
Diffie-Hellman contributions. The key derivation function H2 in Protocol 1 could be changed
to

H2': G2 × G1 → {0, 1}k,

 9

and the shared secret key becomes FK = H2'(K, abP). We will refer to this protocol as
Protocol 1′.

In this case, if an adversary compromises both the users long-term private keys, SA and SB,
at some point in the future, the adversary is not able to compromise communications in the
past, because the adversary can calculate K but not abP. It is obvious that this modification
also prevents the TA from being able to access the session key.

Protocol 2′:

Note that this exact modification cannot be used in Protocol 2 because in Protocol 2,
Alice and Bob exchange aQA and bQB, which are not Diffie-Hellman contributions. If
avoidance of key escrow is required, we suggest the following modification.

Let Alice and Bob exchange aQA, aP and bQB, bP. Then they compute K as the same as in
Protocol 2. They finally compute the shared secret key as FK = H2'(K, abP). We will refer to
this protocol as Protocol 2′.

Compared with Protocol 1′, Protocol 2′ is more efficient on computation, in particular on
pairing computations since only a single pairing is required, but less efficient on the message
bandwidth since two points (as opposed to only one) need to be distributed by each user.

Theorem 3. Protocol 2′ is a secure AK protocol, and has the TA forward secrecy property,
assuming that BDH problem (for the pair of groups G1 and G2) is hard, the CDH problem
(for group G1) is hard, and provided that H2' is a random oracle.

Proof (sketch): The fact that Protocol 2′ is a secure AK protocol by Definition 1 follows
directly from Theorem 1 since the properties proved for Protocol 2 follow directly into
Protocol 2′.

We prove that Protocol 2′ has TA forward secrecy as follows:
The proof follows along similar lines to the proof of Theorem 1. Consider an arbitrary

adversary E as before, and suppose, by the way of contradiction, that advantageE(k) is non-
negligible. E is as before except that when E asks the test query of oracle Πn

I,J, E knows the
TA’s secret key s, so both oracles are in fact corrupted. However oracle Πn

I,J must be
unopened and have had a matching conversation with another unopened oracle Πt

J,I. Note that
since the oracles had matching conversations, their ephemeral data was relayed without
modification, so they should both have accepted holding a session key of the form H2(ê(QI,
QJ)s(i + j), ijP) for i chosen at random by Πn

I,J and j chosen at random by Πt
J,I.

Since H2' is a random oracle and the probability that E succeeds is non-negligible, the
probability that H2' has previously been queried on [ê(QI, QJ)s(i + j), ijP] by E or some oracle
other than Πn

I,J or Πt
J,I is non-negligible.

Therefore we use E to construct an algorithm F which solves the CDH problem with non-
negligible probability.

F's task: Given input of the two elements aP, bP ∈ G1 with a,b ∈ Z*
q, F's task is to

compute and output the value abP.
F's operation is as before, picking a pair of participants I, J ∈R U, simulating the running

of the key generation algorithm O and then starting E with the TA’s secret key s.
During the period of E's attacking experiment, F answers E's queries as a real oracle

except that if E asks Πn
I,J or Πt

J,I a Reveal query, then F gives up and if E asks Πn
I,J Send

query, F answers aP and if E asks Πt
J,I Send query, F answers bP.

E makes its queries as before, and if F is not forced to give up, then F stops and outputs
the second portion of the lth distinct H2' oracle calls as its guess at abP. As in the proof of
Theorem 1, we call Ak the event that H2' has been queried on [ê(QI, QJ)s(i + j), ijP] by E or some
oracle other than Πn

I,J or Πt
J,I, and then the probability that F outputs the correct value is

Pr[Ak]/(T1(k)2T2(k)2T3(k)) ≥ η(k)/(T1(k)2T2(k)2T3(k)),

 10

which is non-negligible, contradicting the CDH assumption. □

As was mentioned before, the TA forward secrecy property implies perfect forward
secrecy, so our Protocol 2′ also has perfect forward secrecy. This security property holds in
Protocol 1′ as well. We also note that the TA cannot deduce the session keys established by
oracles without actively attacking the protocol. So the TA cannot escrow the session keys
established by users in the system.

6 A Pairing Based AK Protocol with Separate TAs

Suppose that there are two trusted authorities, say TA1 and TA2; they each have a
public/private key pair: (P, s1P ∈ G1, s1 ∈ Z*

q) and (P, s2P ∈ G1, s2 ∈ Z*
q), where P and G1

are globally agreed, e.g., recommended by an international standard body.
Suppose also that Alice registers with TA1 and gets her private key SA = s1QA where QA =

H1(Alice's ID), and Bob registers with TA2 and gets his private key SB = s2QB where QB =
H1(Bob's ID).

Protocol 1 can be modified as follows. Alice and Bob each randomly choose an
ephemeral private key, a, b ∈ Z*

q, and compute the values of the corresponding ephemeral
public keys, TA = aP and TB = bP. They then exchange the public keys to each other as
follows:

Protocol 3.

M1: Alice → Bob: TA
M2: Bob → Alice: TB

At the conclusion of the protocol Alice computes KAB = ê(SA, TB)ê(QB, as2P), and Bob

computes KBA = ê(SB, TA)ê(QA, bs1P). If Alice and Bob follow the protocol, they will compute
the same shared secret: K = KAB = KBA= ê(bSA + aSB, P). Their shared secret session key is
then FK = H2(K), which does not have TA forward secrecy and allows key escrow (if two
TAs collude), or FK = H2'(K, abP), which has TA forward secrecy and does not allow key
escrow.

Efficiency. For the key escrow version, each party is required to compute two elliptic
curve point multiplications and two evaluations of the pairing. For no key escrow, each party
has to compute one extra elliptic curve point multiplication.

Security. This protocol has the same security properties as Protocol 1, except for the
second part of TA forward secrecy. For the key escrow version, the compromise of either of
the TA's master keys s1 or s2 does not lead to the compromise of communications in the past.
But knowing both s1 and s2 will allow anyone to compute the session key via K = ê(QB,
TA)s2ê(QA, TB)s1. This implies that the two TAs must work together (or collude) in order to
determine any secret session keys. For the no key escrow version, even the compromise of
both s1 and s2 (or the collusion of both TAs) does not compromise the shared session key.
Based on Definition 1 described in Section 2, we have the following theorem.

Theorem 4. Protocol 3 is a secure AK protocol, assuming that BDH problem (for the pair of
groups G1 and G2) is hard and provided that H2 is a random oracle.

We prove this theorem in Appendix B.

7 Key Confirmation Process

This section describes the AKC variant of Protocol 2 (the same can be done for Protocol 3).
Based on [SK00], an AKC protocol can be derived from an AK protocol by adding the MACs
of the flow number, identities and the ephemeral public keys.

 11

The following is a general protocol extended from Protocol 2. Here, MACs are used to
provide key confirmation; and H2 and H3 are two independent key derivation functions, FK =
H2(K) and FK' = H3(K). These two functions could be different since they are often with
different inputs from different groups and may be required to produce outputs of different
forms.

Protocol 4.

M1: Alice → Bob: WA
M2: Bob → Alice: WB, MACFK' (2, IDA, IDB, WA, WB)
M3: Alice → Bob: MACFK' (3, IDA, IDB, WA, WB)

If the protocol succeeds, Alice and Bob share the session key, FK.
Smart also adds key confirmation to his AK protocol to form an AKC protocol [Sm02],

although it is slightly different to the method described here. It also explicitly includes the
session key material before the derivation function is applied inside the MAC, which is not
generally considered as secure as simply including the ephemeral public keys.

The method used here is well known and is identical to that used to add key confirmation
to the MQV AK protocol as described in [LMQSV]. This in turn followed the key
confirmation method used by Blake-Wilson et al in [BJM97].

By using Definition 2 of a secure AKC protocol in Section 2 and the concept of a secure
MAC, taken from [BJM97], we have the following theorem.

Theorem 5. Protocol 4 is a secure AKC protocol, assuming that BDH problem (for the pair
of groups G1 and G2) is hard, the MAC is secure and provided that H2 and H3 are random
oracles.

We prove this theorem in Appendix C.

8 Conclusions

We have investigated some security issues related to identity based authenticated key
agreement, and proposed a few new protocols modified from previous protocols to efficiently
achieve certain security properties. We have then used formal methods to prove that our new
protocols do indeed possess these security properties.

In the protocols presented, each user gets their long term private key from a chosen TA,
therefore, the users have to trust TAs not to impersonate any entity using their key generation
services, because the TAs are able to do so. If we do not want an individual TA to have too
much power, we can use multiple TAs instead of a single one. [CHSS02, CHMSS02] have
recently proposed a number of various implementations for using multiple TAs in ID-based
cryptography, where those TAs do not have to share a secret with the others, and users are
able to flexibly choose a set of TAs for each application.

Acknowledgements

We thank Sattam Al-Riyami, Alex Dent, Steven Galbraith, Keith Harrison, Antonio Lain,
Wenbo Mao, Brain Monahan, Kenneth Paterson, Nigel Smart and David Soldera for useful
comments and discussions.

References

[AP02] Al-Riyami S. and Paterson K. G.. Tripartite authenticated key agreement protocols

from pairings. Cryptology ePrint Archive, Report 2002/035, available at
http://eprint.iacr.org/2002/035/.

 12

[BF01] Boneh, D. and M. Franklin. Identity-based encryption from the Weil pairing. In
Advances in Cryptology – CRYPTO ’01, LNCS 2139, pages 213–229, Springer-Verlag,
2001.

[BJM97] Blake-Wilson S., Johnson D. and Menezes A. Key agreement protocols and their
security analysis. In Proceedings of the sixth IMA International Conference on
Cryptography and Coding, LNCS 1355, pages 30-45, Springer-Verlag, 1997.

[BK01] Burton S. and J.R. Kaliski. An unknown key-share attack on the MQV key agreement
protocol. ACM transactions on Information and System Security, 4(3):275-288, August
2001.

[BLS01] Boneh, D., B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
Advances in Cryptology – ASIACRYPT ’01, LNCS 2248, pages 514-532, Springer-
Verlag, 2001.

[BR93] Bellare M. and P. Rogaway. Entity authentication and key distribution. In Advances
in Cryptology - CRYPTO '93, LNCS 773. pages 232-249, Springer-Verlag, 1994. A full
version of this paper is available at http://www-cse.ucsd.edu/users/mihir.

[BR95] Bellare M. and P. Rogaway. Provably secure session key distribution: the three party
case. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, pages 57-66, ACM, 1995.

[CHSS02] Chen L., K. Harrison, N.P. Smart and D. Soldera. Applications of multiple trust
authorities in pairing based cryptosystems. In Proceedings of Infrastructure Security
Conference 2002, LNCS 2437, pages 260-275, Springer-Verlag, 2002.

[CHMSS02] Chen L., K. Harrison, A. Moss, N.P. Smart and D. Soldera. Certification of
public keys within an identity based system. In Proceedings of Information Security
Conference 2002, LNCS 2433, pages 322-333, Springer-Verlag, 2002.

[DH76] Diffie W. and M.E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644-654, 1976.

[FMR99] Frey G., M. Müller, and H. Rück. The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Transactions on Information Theory,
45(5):1717–1719, 1999.

[Ga01] Galbraith S.. Supersingular curves in cryptography. In Advances in Cryptology –
Asiacrypt’ 01, LNCS 2248, pages 495-513, Springer-Verlag, 2001.

[GP90] Girault M. and J.C. Paillès. An identity-based scheme providing zero-knowledge
authentication and authenticated key exchange. In Proceeedings of ESORICS ’90, pages
173-184, 1990.

[He02] Hess F.. Efficient identity based signature schemes based on pairings. To appear in
Proceedings of the Ninth Annual Workshop on Selected Areas in Cryptography.

[ISO11770] ISO/IEC 11770-3. Information technology – Security Techniques – Key
management – Part 3: Mechanisms using asymmetric techniques. International
Organization for Standardization, Geneva Switzerland, 1999 (first edition).

[JN01] Joux A. and K. Nguyen. Separating decision Diffie-Hellman from Diffie-Hellman in
cryptographic groups. Cryptology ePrint Archive, Report 2001/003, available at
http://eprint.iacr.org/2001/003/.

[Jo00] Joux A.. A one round protocol for tripartite Diffie-Hellman. In Proceedings of
Algorithmic Number Theory Symposium, ANTS-IV, LNCS 1838, pages 385-394,
Springer-Verlag, 2000.

[LMQSV] Law L., A. Menezes, M. Qu, J. Solinas and S. Vanstone. An efficient protocol for
authenticated key agreement. Technical Report CORR 98-05, 1998. Available at
citeseer.nj.nec.com/law98efficient.

[MOV93] Menezes A.J., T. Okamoto and S. Vanstone. Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Transactions on Information Theory, 39:1639-1646,
1993.

[MQV95] Menezes A., M. Qu and S. Vanstone. Some new key agreement protocols
providing mutual implicit authentication. In Proceedings of the Second Workshop on
Selected Areas in Cryptography (SAC '95, Ottawa, May 18-19), pages 22-32.

 13

http://eprint.iacr.org/2001/003/

[MWW98] Mitchell C., M. Ward and P. Wilson. Key control in key agreement protocols.
Electronics Letters, 34:980-981, 1998.

[Ok86] Okamoto E.. Proposal for identity-based key distribution system. Electronics Letters,
22:1283-1284, 1986.

[Pa02] Paterson K.G.. ID-based signatures from pairings on elliptic curves. Cryptology ePrint
Archive, Report 2002/004, available at http://eprint.iacr.org/2002/004/.

[Sh84] Shamir A.. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology - CRYPTO '84, LNCS 196, pages 47-53, Springer-Verlag, 1984.

[Si94] Silverman J.H.. Advanced topics in the arithmetic of elliptic curves. GTM 151, ISBN
0-387-94325-0, Springer-Verlag, 1994.

[SK00] Song B. and K. Kim. Two-pass authenticated key agreement protocol with key
confirmation. In Progress in Cryptology - INDOCRYPT 2000, LNCS 1977, pages 237-
249, Springer-Verlag, 2000.

[Sm02] Smart N.P.. An identity based authenticated key agreement protocol based on the
Weil pairing. Electronics Letters, 38:630-632, 2002.

[SOK00] Sakai R., K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. In the 2000
Symposium on Cryptography and Information Security (SCIS2000), Okinawa, Japan, Jan.
26–28, 2000.

[TO91] Tanaka K. and E. Okamoto. Key distribution system for mail systems using ID-
related information directory. Computers & Security, 10:25-33, 1991.

Appendix A: Proof of Theorem 2

Theorem 2. An adversary, who is a polynomial time, cannot impersonate Bob to Alice in
Protocol 2 with knowing Alice's private key but not Bob's private key, under the assumption of
BDH problem and provided that H2 is a random oracle.

Proof: First of all, to prove this theorem, we allow an adversary E to make a Test query to an
oracle, which has been corrupted.

Consider an arbitrary adversary E, and suppose, by the way of contradiction, that the
probability of E successfully impersonating J to I is non-negligible, given that E has
compromised I's long term private key, sQI. Suppose that there exists an oracle Πn

I,J (which
has been corrupted) - after having a matching conversation to E, which impersonates another
oracle Πt

J,I (which has not been corrupted) , Πn
I,J holds the session key with the form H2(ê(QI,

QJ)s(i + j)) for i chosen at random by Πn
I,J and j chosen at random by E. We say that E succeeds

(impersonate Πt
J,I to Πn

I,J) if at the end of E's experiment, E picks Πn
I,J to ask a Test query and

outputs the correct bit guess. Thus,

Pr[E succeeds] = ½ + η(k),

for some non-negligible η(k) by assumption. Now call Ak the event that H2 has been queried
on ê(QI, QJ)s(i + j) by E or some oracle other than Πn

I,J or Πt
J,I. Then

Pr[E succeeds] = Pr[E succeeds|Ak]Pr[Ak] + Pr[E succeeds|Āk]Pr[Āk].

Since H2 is a random oracle, and Πn

I,J and Πt
J,I remain unopened, Pr[E succeeds|Āk] = ½. Thus

½ + η(k) ≤ Pr[E succeeds|Ak]Pr[Ak] + ½,

so that Pr[Ak] ≥ η(k). We conclude that given E picks some Πn

I,J for which there exists some
Πt

j,i that has been impersonated by E to have had a matching conversation to Πn
I,J, then the

probability that H2 has previously been queried on ê(QI, QJ)s(i + j) by E or some oracle other
than Πn

I,J or Πt
J,I is non-negligible.

 14

http://eprint.iacr.org/2002/004/

Therefore we use E to construct an algorithm F which solves the BDH problem with non-
negligible probability.

F's task: The same as in the proof of Theorem 1, F's task is given a triple of elements xP,
yP, zP ∈ G1 with x, y, z ∈ Z*

q compute the value gxyz ∈ G2 where g = ê(P, P).
F's operation: F picks I, J ∈R U, n, t ∈R {1, …, T2(k)}, and l ∈R {1, …, T3(k)} , guessing

that E will select Πn
I,J to ask its Test query after E has impersonated Πt

J,I and has had a
matching conversation to Πn

I,J, and also guessing that the lth distinct H2 call made during the
experiment will include ê(P, P)xyz.

F simulates the running of the key generation algorithm O by choosing xP as TA's public
key, sP, choosing all participants' long-term public keys randomly and computing the
corresponding long-term private keys, e.g., for participant M, the public key is QM = rMP
where rM ∈R Z*

q, and the private key is SM = rMxP, but with the exception of J's keys. As
public value for J, F chooses yP as J's public key, QJ,. F then starts E.

During the period of E's attacking experiment, F answers E's queries in the following
ways:

1. Hash query. F answers all H2 oracle queries at random, just like a real random
oracle would.

2. Corrupt query. F answers Corrupt queries as specified by a normal oracle, i.e.,
revealing the long-term private key of the related participant, except that if E asks J
a Corrupt query, F gives up. Note that when E asks for I a Corrupt query, F reveals
rI xP.

3. Reveal query. F answers Reveal queries as specified by a normal oracle, i.e.,
revealing the session key (if any) the oracle currently holds, except that if E asks
Πn

I,J or Πt
J,I a Reveal query, then F gives up.

4. Send query. F answers all Send queries as specified by a normal oracle, i.e., taking
a random sample to form its challenge, except that if E asks Πn

I,J Send query, F ask
her for an input, then E provides jyP, where j ∈R Z*

q, and if E asks Πt
J,I Send query,

F answers (1/rI)zP.
There are the following possible results from the experiment involving F and E:

1. E does not make its queries in such a way that E has impersonated Πn
I,J to have a

matching conversation to Πt
J,I, then F gives up.

2. E and its oracles do not make l distinct H2 oracle calls before E asks its Test query,
then F gives up.

3. E does make its queries in this way, then Πn
I,J will accept (holding the key formed

as H2(ê(QI, QJ)s(i + j)) = H2(ê(sQI, jQJ)ê(sQI, iQJ)) = H2(ê(rIxP, jyP)ê(rI xP, (1/rI)zyP))
= H2(ê(rIxP, jyP)ê(P, P)xyz), although F doesn't know ê(QI, QJ)s(i + j), and so can't
actually compute this key). By the way F knows ê(rI xP, jyP).

4. If the previous item happens and the lth distinct H2 call is made (say on h), then F
stops and outputs h/ê(rI xP, jyP) as its guess at ê(P, P)xyz.

It is easy to observe that if the lth distinct H2 query made by E or its oracles is on ê(rI xP,
jyP)ê(P, P)xyz, then F certainly wins its experiment. Therefore, the probability that F outputs
the correct value ê(P, P)xyz is:

Pr[Ak]/(T1(k)2T2(k)2T3(k)) ≥ η(k)/(T1(k)2T2(k)2T3(k)),

which is non-negligible. This contradicts the BDH assumption. We conclude that η(k) is
negligible, and thus that the probability of E successfully impersonating Πt

J,I to Πn
I,J must be

negligible.

Appendix B: Proof of Theorem 4

Theorem 4. Protocol 3 is a secure AK protocol, assuming that BDH problem (for the pair of
groups G1 and G2) is hard and provided that H2 is a random oracle.

 15

Proof: As discussed in the proof of Theorem 1 described in Section 4, conditions 1 and 2
follow immediately from the assumption that H2 is a random oracle.

Condition 3. Consider an arbitrary adversary E, and suppose, by the way of contradiction,
that advantageE(k) is non-negligible. Suppose that there exists an oracle Πn

I,J - after having a
matching conversation to another oracle Πt

J,I (both I, J have not been corrupted), Πn
I,J holds

the session key with the form H(ê(jSI + iSJ, P)) for i chosen at random by Πn
I,J and j chosen at

random by Πt
J,I. We say that E succeeds (against Πn

I,J) if at the end of E's experiment, E picks
Πn

I,J to ask a Test query and outputs the correct bit guess.
From the same argument made in the proof of Theorem 1, we have that given E picks

some Πn
I,J for which there exists some Πt

J,I that has had a matching conversation to Πn
I,J, then

the probability that H2 has previously been queried on ê(jSI + iSJ, P) by E or some oracle other
than Πn

I,J or Πt
J,I is non-negligible.

Therefore we use E to construct an algorithm F which solves the BDH problem with non-
negligible probability.

F's task: The same as in the proof of Theorem 1, F's task is given a triple of elements xP,
yP, zP ∈ G1 with x, y, z ∈ Z*

q compute the value gxyz ∈ G2 where g = ê(P, P).
F's operation: F picks I, J ∈R U, n, t ∈R {1, …, T2(k)}, and l ∈R {1, …, T3(k)}, guessing

that E will select Πn
I,J to ask its Test query after Πt

J,I has had a matching conversation to Πn
I,J,

and also guessing that the lth distinct H2 call made during the experiment will be on ê(P, P)xyz.
F simulates the running of the key generation algorithm O by choosing xP as both TA1

and TA2's public key, i.e., s1P = s2P = xP, choosing all participants' long-term public keys
randomly and computing the corresponding long-term private keys, e.g., for participant M, the
public key is QM = rMP and the private key is SM = rMxP, but with the exception of I and J's
keys. As public values for I and J, F chooses yP as I's public key, QI, and zP as J's public key,
QJ. F then starts E.

During the period of E's attacking experiment, F answers E's Hash queries, Corrupt
queries and Reveal queries in the same way as it does in the proof of Theorem 1. Only for
Send query, F answers all Send queries as specified by a normal oracle, i.e., taking a random
sample to form its challenge, except that if E asks Πn

I,J Send query, F answers (1/2)yP and if
E asks Πt

J,I Send query, F answers (1/2)zP.
Again, the same as in the proof of Theorem 1, if E does not make its queries in such a

way that Πn
I,J has a matching conversation to Πt

J,I, and if E and its oracles do not make l
distinct H2 oracle calls before E asks its Test query, F gives up. Otherwise, Πn

I,J will accept
(holding the key formed as H2(ê(jQI + iQJ, sP)) = H2(ê((1/2)yzP + (1/2)yzP, xP)) = H2(ê(P,
P)xyz), and F will outputs the lth distinct H2 call as its guess at ê(P, P)xyz.

Therefore, if the probability that H2 has previously been queried on ê(jSI + iSJ, P) by E or
some oracle other than Πn

I,J or Πt
J,I is non-negligible, the probability F output the correct

value ê(P, P)xyz is also non-negligible. This contradicts the BDH assumption. We conclude
that advantageE(k) must be negligible.

It is obvious that so far we have also proved the security of Protocol 1, because the only
difference between Protocol 1 and Protocol 3 is in Protocol 1 two users make use of the same
TA and in Protocol 3 two users make use of different TAs. In the above description of proof
of Theorem 3, we let F to choose s1P = s2P = xP, therefore to prove the security of Protocol 1,
we can simply allow F to choose sP = xP.

Appendix C: Proof of Theorem 5

Definition 3 [BJM97]: A MAC is a secure MAC if for every polynomially bounded adversary
E of the MAC, the function ε(k) defined by

ε(k) = Pr[k′ ← {0,1}k; (m,a) ← E : (m,a) = MACk′ (m)]
is negligible.

This means that the probability of a polynomially bounded adversary E being able to

forge a valid MAC on any message m is negligible.

 16

Theorem 5. Protocol 4 is a secure AKC protocol, assuming that BDH problem (for the pair
of groups G1 and G2) is hard, the MAC is secure and provided that H2 and H3 are random
oracles.

Proof (sketch): Again the proof is by contradiction. The proof follows both the proofs of
Theorem 1 described in Section 4 this paper and the proof of Theorem 8 in [BJM97], so we
reference these and leave most of the details to the reader.

Conditions 1 and 2 follow immediately from the assumption that H2 is a random oracle.
Condition 4 follows from Theorem 1 and the fact that H2 is a random oracle. It remains to
prove that Condition 3 holds.

Condition 3. Consider an arbitrary adversary E, and suppose, by the way of contradiction,
that Pr[No-MatchingE(k)] is non-negligible. We say that E succeeds (against oracle Πn

I,J) in
her experiment if there exists an oracle Πn

I,J which has accepted but no oracle Πt
J,I has had a

matching conversation to Πn
I,J . Thus,

Pr[E succeeds] = η(k),

for some non-negligible η(k) by assumption. Now call Ak the event that H3 has been queried
on ê(QI, QJ)s(i + j) by E or some oracle other than Πn

I,J or Πt
J,I.

Case 1: Suppose that Pr[Ak] = η1(k) is non-negligible. In this case we can construct from E
an algorithm F which can solve the BDH problem with non-negligible probability. This is
done in the same manner as is described in the proof of Theorem 1 described in Section 4, so
the details are left to the reader.

Case 2: We let η2(k) be the probability that E succeeds against at least one initiator oracle,
and η3(k) be the probability that E succeeds against at least one responder oracle but no
initiator oracles. So we have

η(k) = η2(k) + η3(k).

Now either η2(k) or η3(k) are non-negligible, and in either case, we can construct from
adversary E an adversary F of the MAC. These two sub-cases follow the same form as in
[BJM97] with some minor adjustments. We consider the case where η2(k) is non-negligible,
and the case where η3(k) is non-negligible is similar and we leave the details to the reader.

So suppose that η2(k) is non-negligible. We now construct from E an adversary F of the
MAC.

F's task: F has access to a MACing oracle that computes MACs under a key FK′′ which
was chosen at random from {0,1}k. F’s task is to compute a valid MAC (m,a) where m was
not queried of its oracle.

F's operation: F picks I, J ∈R U, n ∈R {1, …, T2(k)}. F guesses that E will succeed against
initiator oracle Πn

I,J .
F simulates the running of the key generation algorithm O and chooses all participants'

long-term public keys randomly and computing the corresponding long-term private keys and
forms the directory public-info. F then starts E.

During the period of E's attacking experiment, F answers E's queries in the following
ways:

1. Hash query. F answers all H2 and H3 oracle queries at random, just like a real
random oracle would except for the case when H3 is queried on K= ê(jQI + iQJ, sP)
(which F can in fact compute). If H3 is queried on K by E or an oracle other than
Πn

I,J or Πt
J,I then F gives up. Such queries by oracles Πn

I,J or Πt
J,I are specified

below.
2. Corrupt query. F answers Corrupt queries as specified by a normal oracle, i.e.,

revealing the long-term private key of the related participant, except that if E asks I
or J a Corrupt query, F gives up.

 17

 18

3. Reveal query. F answers Reveal queries as specified by a normal oracle, i.e.,
revealing the session key (if any) the oracle currently holds, except that if E asks
Πn

I,J or Πt
J,I a Reveal query, then F gives up.

4. Send query. F answers all Send queries as specified by a normal oracle, except that
instead of calculating FK′ = H3(K) and using this key to MAC messages, F calls its
own MACing oracle (on FK′′) to compute its response. F also calls its MACing
oracle to decide whether or not such oracles should accept.

There are the following possible results from the experiment involving F and E:
1. If E does not invoke Πn

I,J as an initiator oracle then F gives up.
2. If E does invoke Πn

I,J as an initiator oracle at time t0, F makes iQI as Πn
I,J’s

response. If Πn
I,J does not at some later time receive a message of the form (m,a)

where m = (2, IDI, IDJ, iQI, jQJ) for some jQJ then F gives up. Note that for Πn
I,J to

accept (and therefore for E to succeed), it must receive such a message.
3. If E does invoke Πn

I,J as an initiator oracle at time t0, and Πn
I,J receives at some

later time a message of the correct form (m,a) and F has previously queried its
MACing oracle on m then F gives up. Otherwise F stops and outputs (m,a) as its
guess at a valid forgery.

Analysis: If E succeeds against initiator oracle Πn
J,I , then F outputs a valid MAC forgery

and wins the experiment, provided E or some other oracle (except Πn
I,J or Πt

J,I) has not called
H3 on K, and provided F has not previously calculated the message flow that makes Πn

I,J
accept.

By Case 1, the probability that H3 has been queried on K is negligible.
The probability that F has called its MACing oracle to produce the appropriate flow is

also negligible. This is because F could only have called the MAC on this message on behalf
of a responder Πt

J,I which received iQI as its own first flow, or on behalf of an initiator Πu
I,J

with u ≠ n which also chose iQI and needs to know whether or not to accept.
The probability that responder Πt

J,I made the call before t0 is negligible since i is chosen
at random, and if the call was made after t0 then Πn

I,J and Πt
J,I had a matching conversation.

The probability that the call was made by Πu
I,J is also negligible since in this event, Πn

I,J
and Πu

I,J independently chose the same i.
Therefore, the probability F outputs a valid MAC (m,a) is:

η2(k)/(T1(k)2T2(k)) - λ(k),

for some negligible λ(k), which is non-negligible. This contradicts the assumption of a secure
MAC. Thus η2(k) is negligible.

Similarly, it can be shown that η3(k) is also negligible, so we conclude that η(k) is negligible,
and thus that Pr[No-MatchingE(k)] must be negligible.

