

Resource Assignment for Large-Scale Computing
Utilities using Mathematical Programming

Xiaoyun Zhu, Cipriano Santos, Julie Ward, Dirk Beyer,
Sharad Singhal
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2003-243(R.1)
February 11, 2004*

E-mail: {xiaoyun.zhu, cipriano.santos, jward, dirk.beyer, sharad.singhal}@hp.com

utility computing,
resource
assignment,
storage area
networks, mixed
integer
programming

In this paper, we describe a resource assignment problem (RAP) for a
large-scale computing utility, such as an Internet data center. The
problem is defined as follows: For a given topology of a network
consisting of switches and servers with varying capabilities, and for a
given application with a distributed architecture, decide which server
from the physical network should be assigned to each application
component, such that the traffic-weighted average inter-server distance is
minimized, and the application's processing, communication and storage
requirements are satisfied without exceeding network capacity limits.
This problem is first formulated as a nonlinear combinatorial
optimization problem. We then describe three mixed integer
programming formulations, RAP-LINI, RAP-LINII, and RAP-MCFM, as
the result of different linearization techniques. These models were
numerically tested using CPLEX on a number of examples, ranging from
a 125-server utility data center to a set of hypothetical data centers with
increasing size. In all cases and for all three models, the CPELX solver
was able to find an optimal solution within reasonable amount of time.
RAP-LINII is the most efficient and required the minimum solution time.
RAP-MCFM has the highest complexity but is the most general in terms
of its applicability to any network topology.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2004

Resource Assignment for Large-Scale Computing
Utilities using Mathematical Programming

Xiaoyun Zhu, Cipriano Santos, Julie Ward, Dirk Beyer, Sharad Singhal
Hewlett Packard Laboratories

Palo Alto, CA 94304

{xiaoyun.zhu, cipriano.santos, jward, dirk.beyer, sharad.singhal}@hp.com

Abstract

In this paper, we describe a resource assignment problem
(RAP) for a large-scale computing utility, such as an
Internet data center. The problem is defined as follows:
For a given topology of a network consisting of switches
and servers with varying capabilities, and for a given
application with a distributed architecture, decide which
server from the physical network should be assigned to
each application component, such that the traffic-
weighted average inter-server distance is minimized, and
the application’s processing, communication and storage
requirements are satisfied without exceeding network
capacity limits. This problem is first formulated as a
nonlinear combinatorial optimization problem. We then
describe three mixed integer programming formulations,
RAP-LINI, RAP-LINII, and RAP-MCFM, as the result of
different linearization techniques. These models were
numerically tested using CPLEX on a number of
examples, ranging from a 125-server utility data center to
a set of hypothetical data centers with increasing size. In
all cases and for all three models, the CPELX solver was
able to find an optimal solution within reasonable amount
of time. RAP-LINII is the most efficient and required the
minimum solution time. RAP-MCFM has the highest
complexity but is the most general in terms of its
applicability to any network topology.

Keywords: utility computing, resource assignment,
storage area networks, mixed integer programming

1. Introduction

1.1 Motivation and background

Although utility computing is viewed by many as the
model of computing for the future, the vision has been
around for decades. The MULTICS project in the 1960s
[6] had the goal of developing “a new computer system
specifically organized as a prototype of a computer
utility,” with one of its requirements being “continuous
operation analogous to that of the electric power and

telephone companies.” In a computing utility, computing
resources and capabilities are provided to people and
businesses as a service. One example of a computing
utility that exists today is the Grid [9], which offers spare
compute cycles to scientific and engineering applications.
Another example is data center, where a large pool of IT
resources are centrally managed to meet the needs of
business critical enterprise applications such as enterprise
resource planning applications, database applications,
customer relationship management applications, and
general e-commerce applications. There has been a wave
of industrial initiatives to provide infrastructure and
management support for such utilities, including On
Demand Computing [11], HP’s Utility Data Center (UDC)
[22], Sun’s N1 initiative [21], Microsoft’s Dynamic
Systems Initiative [14], and many others.

Figure 1. Architecture of a computing utility

Figure 1 is an architecture diagram for a computin
utility. Such an environment can contain thousands o

switched
fabric

processing
elements

storage
elements

infrastructure on demand

internet

intranet
1

g
f

 2

servers and storage devices connected through a shared
high speed network fabric. The goal is to offer
“infrastructure on demand,” which means compute,
networking, and storage resources are provided to
applications as they need them. Most of the resources will
be virtualized and shared across multiple applications to
achieve economies of scale and increase return on
investment. The complexity of managing such an
infrastructure and applications simultaneously is
enormous. Automation is needed to lower operation cost
and reduce human error. Well-informed capacity planning
and resource provisioning are required to increase asset
utilization and meet service level objectives.

When an application is deployed in a computing utility,
it is allocated a partition of resources in a virtual
application environment [16] to meet the specific needs of
the application. As each application’s real time workload
varies over time, resources can be dynamically re-
allocated and re-distributed among all running
applications to achieve high resource utilization. In most
cases, the physical identities of the allocated resources are
transparent to the application due to virtualization of
resources. And it is the utility provider’s job to choose the
right set of physical resources for each application and its
components to satisfy the application’s configuration and
performance requirements, to avoid resource bottlenecks
in the infrastructure, to achieve certain goals or enforce
certain policies. We refer to this decision making process
as resource assignment. Techniques for dealing with this
process are an integral part of a resource access
management framework [20] that controls the complete
lifecycle of applications’ access to resources in a
computing utility.

In today’s data centers, resource assignment is typically
done by human operators, which is slow, expensive, and
error prone. As the size of future computing utilities
grows into the magnitude of tens of thousands of
resources, the number of possibilities to provision a given
application goes far beyond the tracking ability of any
human. This calls for a more systematic approach for
resource assignment so that it can be automated to
significantly shorten application deployment cycles and
minimize operator overhead. In general, a naïve scheme
such as random selection or first-come-first-served may
not work because there are too many consequences to any
particular solution that is chosen. For instance, the
compute requirements of the application may not be met
by some of the servers, the latency of the application can
be poor, or the cost involved may be too high, etc. In
particular, since networking resources are shared among
different applications and their components, it is highly
likely for a network link to become a bottleneck thus
degrading the performance of the applications that share
this link. This, of course, has the assumption that network
resources are not over-provisioned, and relatively high

utilization on these resources is desired. We believe this is
reasonable to assume given the current economic pressure
to reduce IT cost and to increase return on investment.
Therefore, resource assignment is a highly complex
problem that requires more intelligent solution techniques.

Every application to be deployed in a computing utility
has high-level metrics such as number of concurrent users,
number of transactions per second and infrastructure cost.
Usually the mapping between these requirements and the
specific identities of the resources that are used to host the
application is not straightforward. We believe that a two-
step process is the most efficient to perform this mapping,
which is shown in Figure 2. A step that we refer to as
“Grounding” translates the application’s high-level
requirements into a “grounded application model” that
represents the low-level processing, communication and
storage requirements on the physical resources. This step
requires a great deal of domain knowledge and experience
with the specific application, and typically involves
benchmarking exercises. “Resource assignment” chooses
the specific instances of resources from the infrastructure.
This step requires knowledge and data on the physical
resources. This paper deals with the second step.
Although how to do grounding effectively is an interesting
research question in itself, it is not addressed here.

Figure 2. Application requirement mapping process

1.2 Problem statement

In this paper, we specifically study the following
resource assignment problem (RAP): For a given
topology of a network consisting of switches and servers
with varying capabilities, and for a given application with
a distributed architecture and a set of requirements for
processing, communication and storage; decide which

Grounding

Resource
Assignment

Application’s
high level

requirements

Grounded
application

model

Infrastructure
resource
model

Resource
assignment

decision

 3

server from the physical network should be assigned to
each application component, such that the traffic-
weighted average inter-server distance is minimized, and
the application requirements are satisfied without
exceeding network capacity limits.

This problem is first formulated as a nonlinear
combinatorial problem. Shahoumian proved that it is NP-
hard [19] by showing that the problem of Minimum Cut
into Bounded Sets, a well-known NP-complete problem
[8], can be reduced to RAP in polynomial time. There are
potentially many algorithms for tackling this kind of
problem, including simple heuristics such as greedy
algorithms, and more evolved meta-heuristics such as
Tabu search, genetic algorithms, and simulated annealing
[13]. We chose mathematical programming (MP) [23] for
the following reasons. First, MP is a common and flexible
framework for modeling a large class of optimization
problems. Second, there are commercially available MP
solvers that have been tested extensively by both
academia and industry, such as CPLEX [10]. This gives us
the ability to separate models from solution techniques.
We can focus on developing representative models for
real systems, improve efficiency of problem formulations,
and revise the models as assumptions change. Third, MP
is a powerful tool for handling a large number of hard
capacity constraints, a characteristic of the RAP problem,
which is difficult to deal with using meta-heuristic type of
methods. Finally, the algorithms used by CPLEX for
solving MP problems, such as the branch and bound
algorithm for integer programming (IP), have provable
global optimality. And for any given period of
computation time, bounds on the optimal objective
function value can be provided as an indicator of the
solution quality. On the other hand, one major drawback
of the MP approach is that it requires someone who is
well-versed in the MP language to develop a good MP
model for a given problem. The solution time often
depends on the efficiency of the particular formulation.

The main contribution of this paper is the formalization
of resource assignment in a computing utility as a
mathematical optimization problem. In addition,
reformulating the problem as various mixed integer
programming (MIP) problems enables us to use an off-
the-shelf solver such as CPLEX for finding optimal
solutions. Finally, the multicommodity flow formulation
of RAP makes it applicable to resource assignment in
networks with arbitrary topology.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 describes the
mathematical model for the application. Section 4
describes the resource model for a computing utility.
Section 5 presents the complete optimization problem for
RAP. In Section 6, we present three MIP formulations for
the original nonlinear combinatorial problem. Section 7
describes numerical experiments on a set of examples.

The results are presented to demonstrate the efficiency of
the solution techniques and the complexity of the three
models. Section 8 offers conclusion and future directions.

2. Related Work

There is a rich literature on resource assignment
problems in a wide range of computer systems or
networking systems. The terminology comes in many
forms, such as “device selection,” “application
placement,” “node placement”, etc., which all refer to the
process of choosing the right physical resources for
hosting certain computing tasks. Each piece of work may
differ from ours in certain aspects. For example, it may be
assigning different kinds of resources in a different
environment, such as nodes in a supercomputer cluster or
spare workstations in a grid. In addition, it may focus on
applications/jobs of different nature with different
characteristics in their resource requirements, such as
short-lived batch processing jobs. The optimization
criterion could range from application performance,
economic concerns, to certain utility functions. Finally,
the solution techniques can vary significantly.

A large amount of prior work in this area dealt with
uncapacitated networks. This applies to the well-known
facility location problem [3], a widely studied quadratic
assignment problem, where n facilities are assigned onto n
sites such that the average transportation cost between
sites is minimized. Another example is the conventional
node placement optimization (NPO) [4], where the job is
to allocate traffic matrix source/destinations to nodes in a
multi-processor interconnection architecture such that the
mean traffic-weighted inter-nodal distance is minimized.
Both problems are difficult to solve optimally, and many
heuristic approaches have been exploited to find near-
optimal solutions. Our RAP problem involves a similar
decision problem and has essentially the same objective
function, but is even harder in that any assignment
solution has to satisfy a set of capacity constraints.

The resource allocation problem studied in [12] does
consider a capacitated network. The problem is: given a
set of jobs that require computing and bandwidth
resources and generate profits, select the feasible subset of
jobs that maximizes profits and decide placement of these
jobs onto a network of compute nodes. This paper
contributes to the current grid-computing or peer-to-peer
systems research in providing “bandwidth guarantee” in
resource allocation or job scheduling. However, it is more
suitable for large scientific and engineering jobs that can
rely on aggregated resources from multiple nodes to fulfill
a single task. It is not a model with sufficient information
for more complex enterprise applications.

The resource assignment problem was originally
defined in [24], where the task was to assign physical

 4

servers in a tree network to logical servers in a multi-tier
application architecture. In [17,18] the same problem was
reformulated as a series of MIP and quadratic
programming (QP) problems that were solved using
commercial solvers. The solution technique proved more
scalable than the enumerative approach used in [24]. The
RAP problem defined in this paper differs from the above
in the following aspects. First, we now deal with more
general distributed applications whose component
architecture can be an arbitrary graph. Second, the utility
infrastructure we study here includes a storage area
network (SAN), which has become increasingly important
in modern data centers, but was not present in the earlier
work. This addition allows our work to be applied to
applications that access data in centralized storage devices
through a SAN. Third, the tree network in the earlier
problem has a hierarchical structure, where servers only
appear at the bottom layer. This restrictive assumption has
been removed. Furthermore, the multicommodity flow
model in this paper allows the LAN topology to be an
arbitrary graph as well.

A decision related to server assignment is application
data placement in storage devices, commonly known as
the file assignment problem (FAP). This problem has been
studied in depth using optimization approaches. Dowdy
and Foster gave a unified view of various models people
had developed for FAP and provided detailed comparison
of their respective contributions and suitable solution
techniques [7]. However, none of these models had the
concept of separated compute nodes and storage nodes
and the notion of a storage area network with capacity
limits. One piece of more recent work in this area is the
Ergastulum project [2] at HP Labs. For a given storage
access workload, Ergastulum solves the data placement
problem as well as the storage system configuration
problem at the same time. Compared to the storage related
models in our RAP formulation, Ergastulum uses a more
sophisticated storage workload description and contains a
more detailed view of each storage device. However,
Ergastulum does not take into account capacity constraints
in the SAN when it heuristically searches for optimal file
mapping onto disk arrays. Therefore, Ergastulum does a
better job optimizing the performance of storage devices
but ignores the storage network performance. The latter,
we believe, is a practical concern for many storage
systems. A full blown optimization problem encompassing
file placement and server assignment seems appealing, but
is likely to be computationally intractable. As a first step,
we choose to separate these two problems. We can use
Ergastulum or any other FAP solver to generate a near-
optimal file placement decision for a given application
workload. It can then be provided as an input to our
resource assignment problem, where we focus on optimal
server selection while meeting SAN capacity constraints.

3. The Application Model

This section describes the mathematical model for the
application architecture obtained in the grounding
process, which serves as an input to the resource
assignment problem.

3.1 A component-graph based model

An application can be characterized by a set of
components that communicate with one another in a
certain way. It can be represented by a directed graph
G(C, L), where each node Cc ∈ represents an application
component, and each directed edge Lccl ∈=)',(is an
ordered pair of component nodes, representing
communication from component c to component c’. The
matrix T is defined to characterize the traffic pattern of the
application. Each element 'ccT represents the maximum
amount of traffic going from component c to component
c’. 0' ====ccT if an edge (c,c’) does not exist, indicating no
traffic flows from component c to component c’. The
component-graph based application architecture is
illustrated in Figure 3.

Figure 3. Component-graph based application model

Each application component has requirements on the

type of servers on which it can be hosted. Let P to be the
set of server attributes (or properties) that are of interest to
a particular application, such as processor type, processor
speed, number of processors, memory size, disk space,
and so on. Then for each attribute Pp ∈ and each
application component Cc ∈ , the requirement is
characterized by a set cpVREQ , which contains the
permissible values of attribute p for component c. This set
may be either discrete or continuous. For example, an
application component may require a server’s processor
type to be in {SPARC, PA_RISC}, and its processor
speed to be in an interval [500, 1000] (in MHz).

The multi-tier application architecture studied in
[17,18,24] can be considered a special case of the above

T12

T21
C1

C3

C7 C6

C4 C5

C2

 5

component-based model, where a tier consists of multiple
application components of similar functionality. For a
given network of compute nodes, instead of assigning the
right server to each application component, the task there
is to assign the right set of servers to each tier, which
results in a smaller problem with fewer variables. When
the application to be deployed does have a tiered
structure, we should consider using the multi-tier model so
that the solution time can be shortened.

3.2 Model for storage requirements

Assume that data for an application can be divided into
a set of “files”. Here we use the abstract notion of a file to
represent a logically contiguous chunk of data that may be
accessed by application components. The storage access
pattern of all the components can be represented by a
bipartite graph as shown in

Figure 4. The example illustrates that the mapping
between an application component and a file is not one-to-
one. More specifically, each component may access
multiple files, and each file may be accessed by more than
one component.

Figure 4. Storage access pattern of an application

Remark: The above application model can be used for

simultaneous assignment of resources to multiple
applications. A single big graph can be constructed with
all the components from all the applications, where each
application is represented by a sub-graph. Two sub-graphs
are disconnected if the two corresponding applications do
not communicate with each other. The same idea can be
applied to the storage access graph.

To summarize, the application model contains the
following sets and parameters:
Sets and indices

Cc ∈∈∈∈ : Set of application components.
Ff ∈∈∈∈ : Set of files to be placed on storage devices.

Ll ∈ : Set of directed links in the application
architecture graph.

cNc ∈′ : Set of components that communicate with
component c, i.e., })',(:{ LccCcN c ∈∈′= .
Parameters:
T: |||| CC ×××× -dim matrix. ccT ′ is the amount of traffic
from component c to component c’.

TCF: |||| FC ×××× -dim matrix. cfTCF is the amount of
write traffic from component c to file f.
TFC: |||| CF ×××× -dim matrix. fcTFC is the amount of
read traffic from file f to component c.
TO: || C -dim vector. �

∈
=

cNc
ccc TTO

'
' is the total amount

of LAN traffic originating from component c.
TI: || C -dim vector. �

∈
=

cNc
ccc TTI

'
' is the total amount

of LAN traffic received by component c.

4. The Resource Model

This section describes the mathematical models for the
processing, networking and storage resources in a
computing utility. The collection of resources as a whole
is referred to as the “utility fabric”, which includes servers
that can be assigned to applications, the Ethernet (LAN)
fabric that connects the servers to each other, and the
storage area network (SAN) fabric that connects the
servers to the centralized storage devices.

4.1 Server attributes

Let S be the set of servers in the physical network.
Similar to the application component model, a server’s
processing capability is characterized by a set of
attributes. The value for each attribute may be fixed, or
configurable. For example, a server may have a CPU
speed of 550 MHZ, but its memory size is changeable
between 4 and 8 MB. For each server Ss ∈ , we use the
set spV to represent its possible values for attribute

Pp ∈ . Note that the notion of a “server” here is not
restricted to a compute server. It can be a firewall, a load
balancer, a network attached storage (NAS) device, a
VPN gateway, or any other device an application may
need as a component. A server attribute “server type” can
be used to distinguish between different kinds of servers.

4.2 Common networking assumptions

Before describing the mathematical models for the
networking fabric, we first present a common set of
networking assumptions we made to simply the models.

• We assume that all the network links are duplex links
and traffic can flow in either direction. In addition,
link capacities for the two directions can be different.

• For any physical link in any direction, its “link
capacity” is indeed the minimum of the bandwidth
capacities of the link, the source port and the
destination port.

C1 C3 C4 C5 C2 C7

F1 F3 F2 F4 F5 F6 F7 F8

C6

TCF11

 6

• Multiple physical links between two devices that are
all active and load balanced are combined into one
logical link with aggregated capacity. For example,
four 1 Gbit/sec physical links can be combined to form
one 4 Gbit/sec link in the logical topology. This
simplification is valid when the combined links have
equal bandwidth and share approximately equal load,
which is typically true. It also comes naturally if
trunking technology is applied on the links [5].

• If two switches appear in a redundant pair to avoid
single point of failure, then redundant paths exist
between at least one pair of devices in the physical
topology. This can be simplified in different ways
depending on the network protocol the switches
implement. For example, in the LAN fabric, the
spanning tree protocol [15] may be enforced, resulting
in all the redundant paths between two network
devices being blocked except one. If two switches in a
redundant pair are both active and being load
balanced, then we can partition the switches or servers
that are connected to these two switches into two sets,
one under each switch. And the cross links will be
blocked. On the other hand, the SAN fabric may
implement the Fabric Shortest Path First (FSPF)
protocol [5], which assures uniform traffic load
sharing over equivalent paths. Moreover, the two links
in the same segment of the two paths usually have the
same bandwidth. As a consequence, we can merge a
pair of redundant switches into one switch.
Corresponding links will also be merged to form a
bigger link with aggregated bandwidth.

These simplifying assumptions are applied to both the
LAN and the SAN fabrics as they are represented using
mathematical models, and will not be repeated later on.

4.3 The LAN fabric

We assume that the logical topology of the LAN fabric
in the computing utility is a tree. This is a reasonable
assumption given that a layer-two switched network often
implements the spanning tree protocol [15], guaranteeing
that there is one and only one active path between two
network devices. The tree network topology significantly
simplifies the formulation of our problem later on.

Figure 5 shows an example of the LAN fabric topology.
At the top is a switching/routing device that connects the
utility fabric to the Internet or other utility fabrics. It is
referred to as a root switch. Below the root switch is a set
of edge switches, and below the edge switches is a set of
rack switches. Servers are directly connected to either an
edge switch or a rack switch. As the figure shows, an edge
switch can be connected to a set of rack switches, a set of
servers, or a combination of both. Note that this topology
is more general than the one studied in [17,18,24], where
all the servers connect to the rack switches only. The

three-layer network shown here is chosen for
demonstration purpose. It is straightforward to apply the
methodology in this paper to a tree network with fewer or
more layers.

Figure 5. An example of the LAN fabric tree topology

The mathematical model contains the following sets and

parameters:
Sets and Indices

Ss ∈ : Set of servers.
Rr ∈ : Set of rack switches.
Ee ∈ : Set of edge switches.

RRe ⊂ : Set of rack switches connected to edge switch e.
SSRr ⊂ : Set of servers connected to rack switch r.
SSEe ⊂ : Set of servers connected (directly or indirectly)

under edge switch e.
Parameters:

sBSI : The incoming bandwidth of server s.

sBSO : The outgoing bandwidth of server s.

rBRI : The incoming bandwidth of rack switch r.

rBRO : The outgoing bandwidth of rack switch r.

eBEI : The incoming bandwidth of edge switch e.

eBEO : The outgoing bandwidth of edge switch e.
For easy indexing, each logical link in the network is

associated with the device it can be uniquely identified
with. For example, the link that connects server s to a rack
or edge switch is associated with that server and its
downstream/upstream bandwidth is referred to as the
incoming/outgoing bandwidth of server s. The same rule
applies to the links at the upper layers.

4.4 The SAN fabric

Various SAN topologies have been used in practice.
The popular ones include ring, cascade, mesh, and
core/edge topologies. Among these, the core/edge
topology provides better resiliency, scalability, flexibility
and throughput [5], and is adopted by many vendors and
SAN designers. Therefore, we assume that the SAN fabric

S10S9 S8 S7 S6 S5 S4 S3 S2 S1

Rack

 Root

Rack Rack

Edge Edge Edge

 7

in a computing utility has a core/edge topology. Figure 6
exemplifies a SAN with this topology.

Figure 6. An example of the core/edge SAN topology

The core/edge topology contains two layers of switches.

The core layer consists of at least one pair of redundant
switches that are typically the most powerful. All the other
switches connected to the core switches are referred to as
edge switches. The centralized storage devices, such as
disk arrays, are attached directly to the core switches, and
the servers are attached directly to the edge switches. The
above topology ensures that every storage device is
accessible by any server in the SAN. Note that this logical
topology is a simplification from the physical topology
with redundancies in network devices and links.

It is worth pointing out that the servers in the this figure
are exactly the same as those in Figure 5. The LAN
network in Figure 5 carries communication traffic
between these servers, and the SAN network in Figure 6
carries I/O traffic between the servers and the storage
devices.

The mathematical model for the SAN contains the
following sets and parameters.
Sets and indices:

Ss ∈ : Set of servers.
Dd ∈ : Set of storage devices.
Kk ∈ : Set of FC core switches in the SAN.
Gg ∈ : Set of FC edge switches in the SAN.

SSEDg ⊂ : Set of servers connected to FC edge switch
g.

SSCOk ⊂ : Set of servers (indirectly) connected to FC
core switch k.
Parameters:
BDC: |||| KD ×××× -dim matrix. dkBDC is the bandwidth of
the FC link going from storage device d to core switch k.
BCD: |||| DK ×××× -dim matrix. kdBCD is the bandwidth of
the FC link going from core switch k to storage device d.

BCE: |G|-dim vector. gBCE is the bandwidth of the FC
link going from a core switch to edge switch g.
BEC: |G|-dim vector. gBEC is the bandwidth of the FC
link going from edge switch g to a core switch.
BES: |S|-dim vector. sBES is the bandwidth of the FC
link going from an edge switch to server s.
BSE: |S|-dim vector. sBSE is the bandwidth of the FC link
going from server s to an edge switch.

Note that the complete topology of the utility fabric
should be a combination of Figure 5 and Figure 6. It will
not be shown here.

5. The Optimization Problem

This section describes the formulation of the
mathematical optimization problem associated with RAP.

5.1 The decision variable

The resource assignment problem in this paper concerns
selecting the right server in the utility fabric for each
application component, represented by the following
matrix of binary variables: For all Cc ∈ and Ss ∈ ,

�
�
�

=
otherwise.0

c;component toassignedsserver1
csx

In addition, the following two matrices of binary
variables are defined. For all Cc ∈ , Rr ∈ , and Ee ∈ ,

�
�
�

=
otherwise.0

c;componenttoassignedr switchrack 1
crzr

�
�
�

=
otherwise.0

c;componenttoassigned eswitch edge1
ceze

Here we say a switch is assigned to a component if at least
one server connected (directly or indirectly) under the
switch is assigned to that component. Note that these two
variables are redundant to the variables csx . They are
only introduced to help express the Ethernet bandwidth
constraints in a more succinct way, and to make solving of
the problem more efficient, as shown in later sections.

5.2 The objective function

Resources in a computing utility can be assigned to
application components based on many criteria, such as
application performance, resource utilization, operator
policies, or economic concerns. These can be associated
with different objective functions of the optimization
problem. In this paper, we choose the objective function
used in the node placement optimization problem [4],
which minimizes the traffic-weighted average inter-server
distance where distance is measured in terms of network
hop count. Let 'ssDIST be the distance between two

S10 S9S8 S7 S6 S5 S4 S3 S2 S1

Co1

Ed1 Ed2

D1 D2

Co2

Ed3

 8

servers s and s’, and 'ssTSS be the amount of LAN traffic
from server s to server s’ as a result of server assignment.
Then the objective function is

�
∈

∗=
Sss

ssss TSSDISTJ
',

'' 1Min .

As we can see, ��
∈ ∈

=
Cc Nc

sccccsss
c

xTxTSS
'

'''' . The value of

'ssDIST depends on the relative location of server s and
s’. For example, 2' ====ssDIST if both servers are directly
connected to the same switch, which is a preferred
situation if these two servers communicate heavily.

By dividing the set of all server pairs into a number of
subsets, each with a different 'ssDIST value, then
calculating the summation on each subset and adding them
up, we get

�� ��� �

���

∈ ∈ ∈∈ ∈ ∈

∈ ∈∈

−−

+++=

Ee Cc Ncc
ecccce

Rr Cc Nc
rccccr

Rr Cc
cccr

Cc
cc

zeTzezrTzr

TITOzrTITOJ

c '
''

'
'' 22

)()(21

The first term is the total amount of traffic originated from
and received by all the components, which is a constant.
Therefore, an equivalent objective function follows:

�� ��� �

��

∈ ∈ ∈∈ ∈ ∈

∈ ∈

−−

+=

Ee Cc Ncc
ecccce

Rr Cc Nc
rccccr

Rr Cc
cccr

zeTzezrTzr

TITOzrJ

c '
''

'
'' 22

)(2Min

This is a quadratic function of the binary variables crzr
and ceze . The first term represents the total amount of
traffic originated and received under all the rack switches.
A similar term for all the edge switches,

��
∈ ∈

+
Ee Cc

ccce TITOze)(, would have been present, but

was removed as part of the constant term. The second and
third terms together capture the total amount of intra-
switch traffic at all the switches. Here we define “intra-
switch traffic” as the traffic flows whose source and
destination nodes are servers under the same switch. The
intuition is, as components that communicate heavily are
placed close to each other in the network, the amount of
intra-switch traffic is increased, which in turn results in
smaller value for the objective function. In general, this
leads to lower communication delay between application
components inside the LAN fabric.

We choose not to include SAN latency in the objective
function for the following two reasons. First, the SAN
topology in our problem has the property that the number
of hops for each data flow is fixed at 3 because any server
and storage device pair is connected through two FC
switches. This means, any server assignment solution
results in the same SAN latency measure. Second, storage
systems latency is dominated by I/O access at the storage

device, which is typically several orders of magnitude
larger than the SAN latency. Therefore, even if we could
reduce the number of hops between a server and a storage
device, it is inconsequential with respect to storage access
latency. On the other hand, link capacity in the SAN is
usually a concern in storage systems performance. Given
the high cost of SAN switches, grossly over-provisioning
may not be preferred, while at the same time we do not
want the SAN fabric to be easily saturated. With this
observation, we choose to deal with SAN link capacity in
RAP without adding any new objective function. The rest
of this section describes constraints in the problem that
limit the search space for optimal server assignment
solutions.

5.3 Preprocessing server feasibility

Before we start describing constraints in our problem,
we need to define a server feasibility matrix FS, where

��

�
�

�
=

otherwise.0
c;component of tsrequiremenI/O and

 ,networking ,processing themeets sswitch
1

csFS

More specifically, 1=csFS if and only if
(a) PpVREQV cpsp ∈∀≠∩ ,φ ,
(b) s

Nc
ccs

Nc
cc BSOTBSIT

cc

≤≤ ��
∈∈ '

'
'

' and ,

(c) s
Ff

cfs
Ff

cf BESTFCBSETCF ≤≤ ��
∈∈

 and .

Condition (a) ensures that server s matches the server
attribute requirement by component c. Condition (b)
ensures that the aggregate LAN traffic at each component
c does not exceed the link bandwidth of server s in either
direction. And condition (c) guarantees that the total
amount of SAN traffic at each component c does not
exceed the I/O bandwidth of server s in either direction.

The server feasibility matrix can be pre-computed
before the optimization problem is solved. When the
matrix FS is sparse, the search space for the optimization
problem can be significantly reduced.

In the same spirit, we can define feasibility matrices FR
and FE for rack and edge switches, respectively, where

1=crFR if there is at least one feasible server under rack
switch r for component c, 1=ceFE if there is at least one
feasible server under edge switch e for component c.
These two matrices can also be pre-computed.

5.4 The constraints

The constraints on the decision variables are as follows.
Normality constraints:
1) One and only one server is assigned to each application
component.

 9

�
∈

∈∀=
Ss

cs Ccx ,1

2) Each server can be assigned to at most one component.1

�
∈

∈∀≤
Cc

cs Ssx ,1

Variable relationship constraints:
3) A rack switch is assigned to a component if and only if
a server under this rack switch is assigned to this
component.

�
∈

∈∈∀=
rSRs

crcs RrCczrx , ,

4) An edge switch is assigned to a component if and only
if a server under this edge switch is assigned to this
component.

�
∈

∈∈∀=
eSEs

cecs EeCczex , ,

LAN fabric constraints:
5) The LAN traffic going out of each rack switch to an
edge switch does not exceed the link capacity.

RrBROzrTzrzrTO r
Cc Cc Nc

rccccrcrc
c

∈∀≤−� � �
∈ ∈ ∈

 ,
'

''

Remember that cTO is the total amount of LAN traffic
originating from component c. On the left hand side, the
first item represents the total amount of traffic originating
under rack switch r, and the second item represents the
amount of intra-switch traffic at this switch. Hence, the
left hand side represents the amount of traffic passing
through switch r, which should be bounded by the
outgoing link bandwidth at the switch.

The derivation of the following three constraints is
similar, therefore will be omitted.
6) The LAN traffic coming into each rack switch from an
edge switch does not exceed the link capacity.

RrBRIzrTzrzrTI r
Cc Cc Nc

rccccrcrc
c

∈∀≤−� � �
∈ ∈ ∈

 ,
'

''

Remember that cTI is the total amount of LAN traffic
received by component c.
7) The LAN traffic going out of each edge switch to the
root switch does not exceed the link capacity.

EeBEOzeTzezeTO e
Cc Cc Ncc

ecccceecc ∈∀≤−� ��
∈ ∈ ∈

 ,
'

'',

8) The LAN traffic coming into each edge switch from the
root switch does not exceed the link capacity.

EeBEIzeTzezeTI e
Cc Cc Ncc

eccccecec ∈∀≤−� ��
∈ ∈ ∈

 ,
'

''

1 To allow a server to be shared by multiple application
components, constraint 2) can be replaced by a constraint
on the total amount of processing capacity required by all
the components co-locating on that server.

SAN fabric constraints:
9) The SAN traffic going out of each FC edge switch to a
core switch does not exceed the link capacity.

GgBECxTCF g
SEDs Ff Cc

cscf
g

∈∀≤� ��
∈ ∈ ∈

 ,

10) The SAN traffic coming into each FC edge switch
from a core switch does not exceed the link capacity.

GgBCExTFC g
SEDs Ff Cc

csfc
g

∈∀≤� ��
∈ ∈ ∈

 ,

11) The SAN traffic from an FC core switch to a storage
device does not exceed the link capacity.

DdKkBCDYxTCF kd
SCOs Ff Cc

fdcscf
k

∈∈∀≤� ��
∈ ∈ ∈

 , ,

Here fdY is a binary parameter, where 1=fdY if and
only if file f is placed on storage device d. As was
discussed in Section 2, we choose to separate the file
placement problem from the server assignment problem.
The former has fdY as its decision variable. The solution
is fed into our RAP problem as an input.
12) The SAN traffic from a storage device to an FC core
switch does not exceed the link capacity.

DdKkBDCYxTFC dk
SCOs Ff Cc

fdcsfc
k

∈∈∀≤� ��
∈ ∈ ∈

 , ,

Feasibility constraints:
13) All the variables are binary, and all the assigned
servers, rack switches, and edge switches are feasible.

{ } { } { }cececrcrcscs FEzeFRzrFSx ,0,,0,,0 ∈∈∈

5.5 Summary

In summary, the complete formulation of the
optimization problem for RAP follows.

�� ��� �

��

∈ ∈ ∈∈ ∈ ∈

∈ ∈

−−

+=

Ee Cc Ncc
ecccce

Rr Cc Nc
rccccr

Rr Cc
cccr

zeTzezrTzr

TITOzrJ

c '
''

'
'' 22

)(2Min

 s.t. �
∈

∈∀=
Ss

cs Ccx ,1 (1)

�
∈

∈∀≤
Cc

cs Ssx ,1 (2)

�
∈

∈∈∀=
rSRs

crcs RrCczrx , , (3)

�
∈

∈∈∀=
eSEs

cecs EeCczex , , (4)

RrBROzrTzrzrTO r
Cc Cc Nc

rccccrcrc
c

∈∀≤−� � �
∈ ∈ ∈

 ,
'

'' (5)

RrBRIzrTzrzrTI r
Cc Cc Nc

rccccrcrc
c

∈∀≤−� � �
∈ ∈ ∈

 ,
'

'' (6)

 10

EeBEOzeTzezeTO e
Cc Cc Ncc

ecccceecc ∈∀≤−� � �
∈ ∈ ∈

,
'

'', (7)

EeBEIzeTzezeTI e
Cc Cc Ncc

eccccecec ∈∀≤−� � �
∈ ∈ ∈

 ,
'

'' (8)

GgBECxTCF g
SEDs Ff Cc

cscf
g

∈∀≤� ��
∈ ∈ ∈

 , (9)

GgBCExTFC g
SEDs Ff Cc

csfc
g

∈∀≤� ��
∈ ∈ ∈

 , (10)

DdKkBCDYxTCF kd
SCOs Ff Cc

fdcscf
k

∈∈∀≤� ��
∈ ∈ ∈

 , , (11)

DdKkBDCYxTFC dk
SCOs Ff Cc

fdcsfc
k

∈∈∀≤� ��
∈ ∈ ∈

 , , (12)

{ } SsCcFSx cscs ∈∈∀∈ , ,,0
{ } { } EeRrCcFEzeFRzr cececrcr ∈∈∈∀∈∈ ,, ,,0,,0

The above is a nonlinear combinatorial optimization

problem, which has been proven as NP-hard [19]. This
problem is referred to as the original formulation of RAP
and labeled as RAP0.

The problem formulation we described above can be
applied to a number of different use cases.
a. Green-field assignment: This occurs when the first

application is initially deployed in an empty utility.
b. Subsequent assignment: This occurs when there are

existing applications running in the utility, and
resources are assigned to the next application. In this
case, the same application and resource models can be
used, except that parameters in the resource model
should reflect the remaining resource capacity.

c. Multiple applications assignment: This occurs when
resources need to be assigned to more than one
application at the same time. As discussed in Section 3,
a larger application model with components from
multiple applications can be used for this purpose.

d. Dynamic assignment: This occurs when an existing
application requests for more resources as its real time
workload intensity changes. In this case, a new
application model will be submitted containing the
additional requirement. Then depending on the
application’s ability to accommodate server migration,
we can resolve the problem with or without fixing the
existing server assignment.

e. Automatic fail over: This occurs when a server
without high-availability configuration fails and needs
replacement. We can find the best server to use from
the pool of available servers using a similar RAP
formulation.
The first three use cases only happen at application

deployment time, while the last two use cases are useful at
run time. Therefore, the former is at a time scale of days
or longer, while the latter may be at a shorter time scale of
minutes or hours.

The number of binary variables in RAP0 is
|)||||(||| ERSC ++× , which is dominated by |||| SC × ,

the number of application components times the number
of servers in the utility. It is conceivable that the problem
becomes computationally more challenging as the
infrastructure size or application size grows. Any heuristic
search algorithms are not guaranteed to find a feasible
and optimal solution. The next section presents three
linearized formulations as mixed integer programming
problems, which can be solved directly using a
commercial solver, such as CPLEX.

6. Three Linearized Models

6.1 RAP-LINI

As we can see from the previous section, the original
formulation RAP0 is nonlinear because the objective
function and the LAN fabric constraints (5)-(8) are
quadratic in binary variables crzr and ceze . This type of
nonlinearity can be removed using a standard substitution
technique with the observation that the product of binary
variables is also binary. Let us define the following set of
binary variables, rccrrcc zrzryr '' ==== and

ecceecc zezeye '' ==== , for all Ccc ∈∈∈∈', , Rr ∈∈∈∈ , Ee ∈∈∈∈ .
With these new variables, the objective function can be

rewritten as

�� ��� �

��

∈ ∈ ∈∈ ∈ ∈

∈ ∈

−−

+=

Ee Cc Ncc
ecccc

Rr Cc Ncc
rcccc

Rr Cc
cccr

yeTyrT

TITOzrJ

'
''

'
'' 22

)(2Min

.

This is a linear combination of all the crzr , rccyr ' and

eccye ' variables. Similarly, constraints (5) and (8) in
RAP0 can be rewritten as linear constraints as follows:

RrBROyrTzrTO r
Cc Cc Ncc

rcccccrc ∈∀≤−� � �
∈ ∈ ∈

 ,
'

'' (5I)

RrBRIyrTzrTI r
Cc Cc Ncc

rcccccrc ∈∀≤−� ��
∈ ∈ ∈

 ,
'

'' (6I)

EeBEOyeTzeTO e
Cc Cc Ncc

ecccccec ∈∀≤−� ��
∈ ∈ ∈

 ,
'

'' (7I)

EeBEIyeTzeTI e
Cc Cc Ncc

ecccccec ∈∀≤−� ��
∈ ∈ ∈

 ,
'

'' (8I)

Additional constraints are needed to ensure that the
rccyr ' variables behave as the product of binary variables.

First, to ensure that 00or 0 '' ====����======== rccrccr yrzrzr ,
we need

RrCccyrzryrzr rccrcrcccr ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥≥≥≥≥ ,', , ''' . (13I)
Second, to guarantee 11 and1 '' =�== rccrccr yrzrzr ,
we would need

 11

RrCccyrzrzr rccrccr ∈∈∈∈∈∈∈∈∀∀∀∀≤≤≤≤−−−−++++ ,',1'' .
However, since the objective function is to maximize a
summation of the rccyr ' variables with non-negative
coefficients, the second set of constraints are implied by
the first set of constraints at optimality, and therefore are
not required. Similarly, the following set of constraints
should be imposed on the new eccye ' variables.

EeCccyezeyeze eccececcce ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥≥≥≥≥ ,', , ''' , (14I)
Note that the new rccyr ' and eccye ' variables only need

to be continuous in the interval [0,1] instead of being
binary. Let us take rccyr ' as an example. Based on the
above discussion, constraint (13I) and the maximization
nature of the objective function together ensure that rccyr '
behaves exactly as the product of crzr and rczr ' . Since

crzr and rczr ' are both binary, rccyr ' never really takes a
fractional value between 0 and 1.

Remarks: The above substitution of variables results in
a linear optimization problem with some integer variables
and some continuous variables, thus a mixed integer
programming problem. It is referred to as RAP-LINI, to
be distinguished from the original nonlinear formulation
RAP0. See Appendix I for the complete formulation of
RAP-LINI. The main issue with this formulation is that
the number of variables may be significantly higher than
that of RAP0 with the introduction of

|)||(||||| ERCC ++++×××××××× continuous variables. There are a
number of ways to improve the efficiency in solving the
problem.
1. The number of rccyr ' and eccye ' variables can be

reduced in the following way:
• rccyr ' is defined if and only if

1 and ,1 ,1 '' === ccrccr TFRFR .
• eccye ' is defined if and only if

 1 and ,1 ,1 '' === ccecce TFEFE .
In all the other cases, the rccyr ' and eccye ' variables
are not needed in the formulation. This implies that,
in the worst case where all the rack and edge switches
are feasible for all the components, the number of
extra variables in RAP-LINI is |)||(||| ERL +× , i.e.,
the number of communication links in the application
graph times the total number of LAN switches.

2. Since the number of crzr and ceze variables
(|)||(||| ERC +×) is usually significantly less than
the number of csx variables |||| SC × , we can
increase the efficiency of the branch and bound
algorithm in the MIP solver by assigning higher
priority to branching on variables ceze and crzr .

6.2 RAP-LINII

The previous subsection described a linearization
technique that is straightforward and that resulted in a
MIP formulation with |)||(||| ERL ++++×××× additional
continuous variables than RAP0. This subsection
describes a relatively more sophisticated linearization
scheme, which leads to another MIP formulation with
possibly fewer extra variables.

When looking at the LAN traffic flowing through each
rack switch, we have the following intuition. For all

Cc ∈∈∈∈ and Rr ∈∈∈∈ , ccrTOzr is the amount of traffic
originating from component c under switch r, and

�
∈ cNc

ccrc Tzr
'

'' is the amount of traffic originating from

component c and received under switch r. Now let us
define a new variable,

�
∈

−=
cNc

ccrccrccrcr TzrzrTOzrtro
'

'' ,

which captures the amount of traffic that originated from
component c under switch r and leaves switch r.

 By definition of crzr , we have

��

�
�

�

=

=−
=

�
∈

.0 if ,0

;1 if ,
'

''

cr

cr
Nc

ccrcccr
cr

zr

zrTzrTOzr
tro

c

Therefore, we can equivalently define crtro as,

��

�
�
�

��

�
�
�

−= �
∈

0 ,max
'

''
cNc

ccrcccrcr TzrTOzrtro .

Since crtro represents the amount of outgoing traffic
from component c that passes through rack switch r, and
the objective function tends to reduce the amount of
traffic that passes through switches, the above definition
can be enforced using the following two linear constraints:

0 and
'

'' ≥−≥ �
∈

cr
Nc

ccrcccrcr troTzrTOzrtro
c

. (13II)

That is, these constraints will be binding at optimality.
Using the new variables crtro , the rack switch outgoing

bandwidth constraint (5) in RAP0,

r
Cc Nc

ccrccrccr BROTzrzrTOzr
c

≤−� �
∈ ∈

)(
'

'' , can be rewritten

as
RrBROtro r

Cc
cr ∈∀≤�

∈
 , . (5II)

Similarly, we can represent the amount of LAN traffic
originating from component c that leaves edge switch e
using the following new variable:

�
∈

−=
cNc

ccecceccece TzezeTOzeteo
'

'' .

This would be enforced by the following constraints:

 12

0 and
'

'' ≥−≥ �
∈

ce
Nc

ccecccece teoTzeTOzeteo
c

. (15II)

Then constraint (7) of RAP0 can be rewritten as
EeBEOteo e

Cc
ce ∈∀≤�

∈
 , . (7II)

Analogous variables crtri (cetei) representing the
amount of incoming traffic to component c under rack
switch r (edge switch e) from components outside the
switch can be defined, with the following additional
constraints:

0 and
'

'' ≥−≥ �
∈

cr
Nc

ccrcccrcr triTzrTIzrtri
c

 (14II)

0 and ,
'

'' ≥−≥ �
∈

ec
Nc

ccecccece teiTzeTIzetei
c

 (16II)

Then constraints (6) and (8) of RAP0 can be rewritten as
RrBRItri r

Cc
cr ∈∀≤�

∈
 , . (6II)

EeBRItei e
Cc

ce ∈∀≤�
∈

 , . (8II)

By comparing the definition of the new variables with
the objective function J2 in RAP0, it is easy to see that,

)(

)()(2

c
Ee Cc

cce

Ee Cc
cece

Rr Cc
crcr

TITOze

teiteotritroJ

+−

+++=

��

����

∈ ∈

∈ ∈∈ ∈

Since ���
∈∈ ∈

+=+
Cc

cc
Ee Cc

ccce TITOTITOze)()(is a

constant, an equivalent objective function is the following.

����
∈ ∈∈ ∈

+++=
Ee Cc

cece
Rr Cc

crcr teiteotritroJ)()(3Min

The interpretation of the objective function follows. To
minimize the traffic-weighted average inter-server
distance, it is equivalent to minimize the total amount of
traffic flowing on all the Ethernet links. Because the total
amount of traffic originating from and received by all the
application components is a constant, the total amount of
traffic flowing on all the server-to-switch links is a
constant. Therefore, an equivalent objective function is to
minimize the total amount of inter-switch traffic, which is
exactly what J3 is. The term “inter-switch traffic” refers to
the traffic flowing on a link that connects two switches.
These links are typically more expensive. And they are
more likely to get saturated because they are often shared
by multiple components, or even multiple applications. By
minimizing the utilization of these shared links by a single
application, we reduce the likelihood of creating
bottlenecks in the LAN fabric.

Remarks: This MIP formulation of the resource
assignment problem is referred to as RAP-LINII. Its
complete formulation is shown in Appendix II. In this
case, a total number of |)||(|||2 ERC +× new continuous

variables are introduced. This approach involves fewer
extra variables than the RAP-LINI approach if

||||2 LC < , i.e., if each application component has, on
average, more than 2 incident links.

6.3 RAP-MCFM

This section presents the same resource assignment
problem formulated using a multicommodity flow model
(MCFM) [1]. The approach is quite different from the
previous two formulations. A multicommodity flow model
contains multiple commodities, each going from its source
to its sink in the form of network flows. The flows have to
obey the flow conservation law at each node for each
commodity. The capacity of each network link is shared
by the flows it carries, possibly from multiple
commodities, and the capacity limit is enforced.

We need to define two new sets and a new parameter.
• Nn ∈ : Set of all nodes in the LAN fabric topology,

including servers, rack switches and edge switches,
i.e., ERSN ∪∪= .

• Aa ∈ : Set of arcs in the LAN fabric topology. Each
arc a is an ordered pair (m,n) of nodes in N.

• aB or mnB : Link bandwidth of arc Anma ∈=),(.
As mentioned in Section 4, the order of nodes in an arc

matters. For example, for a=(m,n) and a’=(n,m) where
Nnm ∈, , the values of aB and 'aB could be different.

The application model stays the same. Although in this
formulation, each ordered pair of application components
(c,c’) for which 0', >ccT represents a commodity. Thus,
there is a commodity corresponding to each link

Lccl ∈=)',(in the application architecture graph.
The binary server assignment decision variables csx are

still needed. In addition, for each commodity Lcc ∈)',(
and each arc Anm ∈),(, we define the continuous
nonnegative flow variables mnccw ' to represent the flow
along arc Anm ∈),(, in the direction from m to n, that
originated from component c and is destined to
component c’.

The previous objective of minimizing the traffic-
weighted average inter-server distance can be
accomplished by minimizing the total amount of traffic on
all the network arcs used by all the commodities:

� �
∈ ∈

=
Lcc Anm

mnccwJ
)',(),(

'1Min

The constraints of RAP-MCFM are the following:
1)-2) Normality constraints (1) and (2) on the csx
variables are still valid.
3) Link capacity constraints for all arcs Anm ∈),(in the
LAN.

 13

mn
Lcc

mncc Bw ≤�
∈)',(

' . (3III)

4) Flow conservation for each commodity Lcc ∈)',(and
each node Nn ∈ .
a) For each switch ERn ∪∈ , we have

��
∈∈∈∈

=
ApnNp

npcc
AnmNm

mncc ww
),(:

'
),(:

' . (4III)

b) For each server node Sn ∈ ,

'
),(:

'''
),(:

' cccn
ApnNp

npccccnc
AnmNm

mncc TxwTxw −=− ��
∈∈∈∈

.

In general, the flow conservation law at a node requires
that, for each commodity, the total amount of incoming
flows at node n, minus the demand of the commodity at
the node, should equal to the total mount of outgoing
flows at node n, minus the supply of the commodity at the
node. Since the switches do not produce or consume
traffic, and they simply forward the traffic, the supply and
demand terms become zero for the switch nodes.

For the server nodes, equation b) is conceptually
correct. However, consider the follow fact. Since a server
cannot be assigned to more than one component, for each
commodity Lcc ∈)',(, a server cannot be the source and
the sink at the same time. This means, in equation 4b),
either the left-hand-side or the right-hand-side is zero for
any commodity. Therefore, we can get tighter constraints
by splitting equation b) into the following two equations.
i) Total amount of incoming flows equals demand:

''
),(:

' ccsc
AsmNm

mscc Txw =�
∈∈

. (5III)

ii) Total amount of outgoing flows equals supply:

'
),(:

' cccs
ApsNp

spcc Txw =�
∈∈

. (6III)

5) SAN link capacity constraints (9)-(12) in RAP0 remain
the same as long as the core/edge topology assumption on
the SAN is valid. If we allow the SAN to have an arbitrary
topology, the similar idea of using MCFM can be applied.
6) A feasibility matrix FN between components and nodes
can be obtained the same way we computed FS, FR and
FE for RAP0. For each component Cc ∈ and each node

Nn ∈ , 1=cnFN means node n is feasible for component
c. Note that the node can be a server, a rack switch or an
edge switch. Then, the following feasibility constraints
hold.
a) For the server assignment variables:

{ } SsCcFNx cscs ∈∀∈∀∈ , ,,0
b) For the flow variables mnccw ' :

ApnNnLccFNTw cnccnpcc ∈∈∀∈∀≤≤),(,,)',(,0 ''

AnmNnLccFNTw ncccmncc ∈∈∀∈∀≤≤),(, ,)',(,0 '''
Remarks: This model is referred to as RAP-MCFM. It

again contains a linear MIP problem. The complete

formulation of RAP-MCFM is in Appendix III. The
number of binary variables in this model is in the order of

|||| SC × . And the number of continuous flow variables
is in the order of |||| AL × , the total number of links in
the application architecture times the total number of arcs
in the LAN fabric topology. If the LAN topology is a tree,
the number of arcs |A| is simply)1|(|2 −N , where

|||||||| ERSN ++= . Compared to RAP-LINI and RAP-
LINII, RAP-MCFM involves many more continuous
variables and slightly fewer binary variables. The
complexity comparison of the three linearized models in
terms of number of variables is summarized in Table 1.

Table 1. Comparison of three linearized models

Model RAP-LINI RAP-LINII RAP-
MCFM

#Bin. |||| NC × |||| NC × |||| SC ×

#Cont. |)||(||| ERL +×

|)||(|||2 ERC +×

|||| AL ×

When the topology of the LAN fabric is a tree, there is a

unique path between every pair of servers. This means the
flows will not be split, i.e., mnccw ' will be either zero or

',ccT . Among the three linearized models, the RAP-
MCFM model may not be the most efficient in this case
since it involves a much larger MIP problem. However, if
we do allow flow splitting, the RAP-MCFM formulation
could be applied to a generalized network topology such
as an arbitrary graph, which cannot be handled by the first
two linear models. Along with the fact that the application
architecture is also an arbitrary graph, RAP-MCFM is a
fairly general formulation of the resource assignment
problem, which can be applied to more general utility
computing environments such as the Grid.

7. Case Studies

This section presents computation results from the three
MIP formulations on a set of numerical examples.

7.1 Example 1: A UDC with a 4-tier e-commerce
application

The first example involves a utility data center and a
multi-tiered Web application. The LAN fabric contains
one edge switch, 2 rack switches, a total of 125 servers,
with 64 of them connected to rack switches and 61 of
them, including 4 firewalls, connected directly to the edge
switch. The SAN fabric contains 44 FC edge switches, 7
FC core switches and 2 large disk arrays. The compute
servers can be classified into 6 different types with
varying levels of processing power. The application we

 14

chose is an e-commerce application with 4 tiers: one
firewall, 10 Web servers, 18 application servers and 2
database servers. The storage requirements of the
application were not available to us. So we assumed that
there are a total of 30 files that have been pre-allocated to
the two disk arrays. The problem was solved using
CPLEX 7.5 on an HP J6000 UNIX workstation with dual
processors of 552MHz.

The solver was able to find the optimal solution with all
three MIP formulations. The optimal objective function
(O.F.) values are consistent from the three models, as
shown in Table 2. It also shows the solution time in each
case and the complexity of each model in terms of number
of variables (binary and continuous), number of equations,
and number of non-zero coefficients in the equations. As
we can see, for this particular example, the first two linear
formulations have roughly the same complexity and used
the same amount of solution time. The RAP-MCFM
formulation involves a much larger MIP problem and
required much more time to solve, which is consistent
with our expectation.

Table 2. Solution time and complexity of three models

for example 1
Model RAP-

LINI
RAP-
LINII

RAP-
MCFM

Solution Time 2.6 sec 2.6 sec 85 sec
Binary 2197 2197 2073

Continuous 4362 4220 121,427
Equations 1584 990 116,268

Coefficients 31,900 34,062 497,618
Optimal O.F. -7,680 0 7,680
Optimal J3 0 0 0

7.2 Example 2: A hypothetical 500-server data
center with a 19-component application

To test the performance of the RAP formulations with
respect to their application to a larger computing utility,
we also experimented with a hypothetical utility fabric
with 500 servers. The LAN fabric contains 5 edge
switches and 25 rack switches. The SAN fabric contains
20 FC edge switches, 2 FC core switches, and 2 disk
arrays. The hypothetical application has 19 components
and 20 files. All the parameters for both the utility fabric
and the application were synthetically generated based on
data from real data centers and applications.

Again optimal solutions were found using all three MIP
formulations. Their respective performance and
complexity on a problem instance are shown in Table 3.
In this case, the RAP-LINII is the most efficient with
minimum complexity and took the least amount of
solution time. The RAP-MCFM model is again a much
larger model and took more than 5 minutes to solve,

although during this time only 99.5 seconds was spent on
computation and the rest was spent on model generation.
This means there is room to improve the performance by
more efficient model handling.

Table 3. Solution time and complexity of three models

for example 2
Model RAP-

LINI
RAP-
LINII

RAP-
MCFM

Solution Time 52 sec 12 sec 319 sec
Binary 5490 5490 5015

Continuous 12,631 11,211 196,156
Equations 7288 3308 183,149

Coefficients 100,786 96,371 822,096
Optimal O.F. -59.4 6 71.4
Optimal J3 6 6 6

7.3 Numerical scalability test

To see how the solution times of the RAP formulations
scale with the size of the utility infrastructure, we
performed a numerical experiment where we used the
same application as in example 2, scaled up the number of
servers from 100, 200, 300, 400 to 500, and solved each
problem instance with the three models. In all cases the
CPLEX engine was able to find an optimal solution. The
total solution time (in seconds) for each case is shown in
Table 4.

Table 4. Solution time (sec) comparison on 5 examples

servers RAP-
LINI

RAP-
LINII

RAP-
MCFM

100 10.1 9.5 247
200 10.6 10.1 259
300 11.3 10.4 273
400 30.8 10.9 289
500 52 12 319

As we can see the RAP-LINII formulation is the most

scalable among the three, for which the solution time
remains fairly constant throughout the examples. For the
RAP-LINI model, the solution time is similar to that of
RAP-LINII until the 400-server example, where we see a
jump in solution time. The reason for this jump is that, the
LP relaxation was able to find the integer optimum
solution immediately for the first three examples, while
the last two examples required a branch and bound routine
to find the optimum solution to the MIP problem. The
RAP-MCFM model took much longer to solve compared
to other two. However, the growth in computation time as
the problem becomes larger is fairly moderate.

Other examples of varying sizes were tested and the
results are quite similar, therefore will not be presented
here. Note that a computing utility with 500 servers is a
reasonably large one. Even though the longest solution

 15

time with RAP-MCFM is over 5 minutes, it is quite
negligible compared to the lifetime of the application,
assuming that we are primarily interested in continuously
running applications, such as enterprise business
applications. Although the time varying nature of the
application workload may require re-assignment of
computing resources from time to time, we expect such
updates to be implemented at a time scale of at least an
hour, not minutes.

8. Conclusions and Future Work

This paper presented a resource assignment problem for
a computing utility as a mathematical optimization
problem. The original nonlinear problem was transformed
into three MIP formulations that can be solved directly
using CPLEX. Their respective computation complexity
was demonstrated through a number of examples. In all
cases, the RAP-LINII formulation was the most efficient
and the RAP-MCFM, a multicommodity flow
formulation, required the most computation time.
However, the first two formulations assume that the LAN
fabric of the utility infrastructure has a tree topology,
while the RAP-MCFM formulation allows the LAN
topology to be an arbitrary graph. Along with the general
component-graph based application architecture, the
RAP-MCFM formulation is fairly generic and can be
applied to resource assignment for distributed applications
in any network environment.

The scalability test we presented in this paper is quite
preliminary. As ongoing work, we are conducting
numerical experiments involving other parameters and
many more examples. At the same time, we are searching
for opportunities to implement the resource assignment
techniques we developed in a real system to validate the
effectiveness of our approach.

Future work on this problem includes performing
sensitivity analysis on how variation in parameter values
impact the solution quality, investigating techniques for
resource pool de-fragmentation such as re-assignment and
server migration, exploring an integrated optimization
framework for both server assignment and storage
placement, as well as studying policy management related
to resource assignment.

Acknowledgements
The authors would like to thank Simge Kucukyavuz for
suggestions that improved the efficiency of the multi-
commodity flow model, as well as Jerry Rolia and Marsha
Duro for helpful discussions on this problem.

References

[1] R.K. Ahuja, T.I Magnanti and J.B. Orlin, Network
Flows, Prentice Hall, Englewood Cliffs, New Jersy, 1993.
[2] E. Anderson, M. Kallahalla, S. Spence, R.
Swaminathan, and Q. Wang, “Ergastulum: quickly finding
near-optimal storage system designs,” submitted to ACM
Transactions on Computer Systems.
[3] G.C. Armour and E.S. Buffa, “A heuristic algorithm
and simulation approach to relative location of facilities,”
Management Science, vol. 9, pp. 294-309, 1963.
[4] S. Banerjee, B. Mukherjee and D. Sarkar, “Heuristic
algorithms for constructing optimized structures in linear
multihop lightwave networks,” IEEE Transactions on
Communications, vol. 42, pp. 1811-1826, 1994.
[5] Brocade Communications Systems, “Designing next-
generation fabrics with Brocade switches,” white paper,
2001.
[6] F.J. Corbato, J.H. Saltzer, and C.T. Clingen,
“MULTICS – the first seven years,” Proceedings of the
AFIPS Spring Joint Computer Conference, 1972.
[7] L.W. Dowdy and D.V. Foster, “Comparative models
of the file assignment problem,” ACM Computer Sueveys,
vol. 14(2), pp. 287-313, 1982.
[8] M.R. Garey and D.S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, Freeman, Oxford, UK, 1979.
[9] The Grid: Buleprint for a New Computing
Infrastructure, edited by Ian Foster and Carl Kesselman,
July 1998.
[10] www.ilog.com
[11] International Business Machines Corporation,
“Living in an on demand world,” white paper, Oct. 2002.
[12] A. Kothari, S. Suri and Y. Zhou, “Bandwidth-
Constrained allocation in Grid computing,” Proceedings
of the 8th Workshop on Algorithms and Data Structures,
July 2003.
[13] D.l. Kreher and D.R. Stinson, “Combinatorial
algorithms: generation, enumeration, and search,” CRC
Press, 1999.
[14] Microsoft Corporation, “Building dynamic data
center,” white paper, May 2003.
[15] R. Perlman, Interconnections: Bridges, Routers,
Switches, and Internetworking Protocols, Addison-
Wesley, 1999.
[16] J. Rolia, S. Singhal and R. Friedrich, “Adaptive
Internet data centers,” Proceedings of SSGRR 2000
Computer and eBusiness Conference, July-Aug. 2000.
[17] C.A. Santos, X. Zhu and H. Crowder, “A
mathematical optimization approach for resource
allocation in large scale data centers,” HP Labs Technical
Report, HPL-2002-64, March 11th, 2002.
[18] C.A. Santos and X. Zhu, “Testing scalability of the
mathematical programming approach for resource

http://www.ilog.com/

 16

allocation in a computing utility,” HP Labs Technical
Report, HPL-2003-1, January 6th, 2003.
[19] Troy Shahoumian, “IDC layout is NP-hard,” internal
document, March 2002.
[20] J. Rolia, X. Zhu and M. Arlitt, “Resource access
management for a utility hosting enterprise applications,”
in Proceedings of the 8th IFIP/IEEE Symposium on
Integrated Network Management (IM), March 2003.
[21] Sun Microsystems, “N1 - Introducing just-in-time
computing,” white paper, 2002.
[22] Vernon Turner, “Utility Data Center: HP’s first proof
point for service-centric computing,” IDC white paper,
November 2001.
[23] L.A. Wolsey, Integer Programming, Wiley, 1998.
[24] X. Zhu and S. Singhal, "Optimal resource assignment
in Internet data centers," Proceedings of the 9th
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems
(Mascots), pp. 61-69, August 2001.

Appendix I.
Complete Formulation of RAP-LINI

�� ��� �

��

∈ ∈ ∈∈ ∈ ∈

∈ ∈

−−

+=

Ee Cc Ncc
ecccc

Rr Cc Ncc
rcccc

Rr Cc
cccr

yeTyrT

TITOzrJ

'
''

'
'' 22

)(2Min

 s.t. �
∈

∈∀=
Ss

cs Ccx ,1 (1)

�
∈

∈∀≤
Cc

cs Ssx ,1 (2)

�
∈

∈∈∀=
rSRs

crcs RrCczrx , , (3)

�
∈

∈∈∀=
eSEs

cecs EeCczex , , (4)

RrBROyrTzrTO r
Cc Cc Ncc

rcccccrc ∈∀≤−� � �
∈ ∈ ∈

 ,
'

'' (5I)

RrBRIyrTzrTI r
Cc Cc Ncc

rcccccrc ∈∀≤−� ��
∈ ∈ ∈

 ,
'

'' (6I)

EeBEOyeTzeTO e
Cc Cc Ncc

ecccccec ∈∀≤−� ��
∈ ∈ ∈

 ,
'

'' (7I)

EeBEIyeTzeTI e
Cc Cc Ncc

ecccccec ∈∀≤−� ��
∈ ∈ ∈

 ,
'

'' (8I)

GgBECxTCF g
SEDs Ff Cc

cscf
g

∈∀≤� ��
∈ ∈ ∈

 , (9)

GgBCExTFC g
SEDs Ff Cc

csfc
g

∈∀≤� ��
∈ ∈ ∈

 , (10)

DdKkBCDYxTCF kd
SCOs Ff Cc

fdcscf
k

∈∈∀≤� ��
∈ ∈ ∈

 , , (11)

DdKkBDCYxTFC dk
SCOs Ff Cc

fdcsfc
k

∈∈∀≤� ��
∈ ∈ ∈

 , , (12)

RrCccyrzryrzr rccrcrcccr ∈∈∀≥≥ ,', , , ''' (13I)
 EeCccyezeyeze eccececcce ∈∈∀≥≥ ,', , , ''' (14I)

{ } SsCcFSx cscs ∈∈∀∈ , ,,0
{ } { } EeRrCcFEzeFRzr cececrcr ∈∈∈∀∈∈ ,, ,,0,,0

EeRrCccyryr eccrcc ∈∈∈∀≥≥ ,,', 0, ,0 ''

 17

Appendix II.
Complete Formulation of RAP-LINII

����
∈ ∈∈ ∈

+++=
Ee Cc

cece
Rr Cc

crcr teiteotritroJ)()(3Min

 s.t. �
∈

∈∀=
Ss

cs Ccx ,1 (1)

�
∈

∈∀≤
Cc

cs Ssx ,1 (2)

�
∈

∈∈∀=
rSRs

crcs RrCczrx , , (3)

�
∈

∈∈∀=
eSEs

cecs EeCczex , , (4)

RrBROtro r
Cc

cr ∈∀≤�
∈

 , (5II)

RrBRItri r
Cc

cr ∈∀≤�
∈

 , (6II)

EeBEOteo e
Cc

ce ∈∀≤�
∈

 , (7II)

EeBRItei e
Cc

ce ∈∀≤�
∈

 , (8II)

GgBECxTCF g
SEDs Ff Cc

cscf
g

∈∀≤� ��
∈ ∈ ∈

 , (9)

GgBCExTFC g
SEDs Ff Cc

csfc
g

∈∀≤� ��
∈ ∈ ∈

 , (10)

DdKkBCDYxTCF kd
SCOs Ff Cc

fdcscf
k

∈∈∀≤� ��
∈ ∈ ∈

 , , (11)

DdKkBDCYxTFC dk
SCOs Ff Cc

fdcsfc
k

∈∈∀≤� ��
∈ ∈ ∈

 , , (12)

RrCctroTzrTOzr cr
Nc

ccrcccr
c

∈∈∀≤− �
∈

, ,
'

'' (13II)

 RrCctriTzrTIzr cr
Nc

ccrcccr
c

∈∈∀≤− �
∈

, ,
'

'' (14II)

EeCcteoTzeTOze ce
Nc

cceccce
c

∈∈∀≤− �
∈

, ,
'

'' (15II)

EeCcteiTzeTIze ce
Nc

cceccce
c

∈∈∀≤− �
∈

, ,
'

'' (16II)

{ } SsCcFSx cscs ∈∈∀∈ , ,,0
{ } { } EeRrCcFEzeFRzr cececrcr ∈∈∈∀∈∈ ,, ,,0,,0

EeRrCcteiteotritro cececrcr ∈∈∈∀≥≥≥≥ ,,0, 0, ,0 ,0

Appendix III.
Complete Formulation of RAP-MCFM

� �
∈ ∈

=
Lcc Anm

mnccwJ
)',(),(

'1Min

 s.t. �
∈

∈∀=
Ss

cs Ccx ,1 (1)

�
∈

∈∀≤
Cc

cs Ssx ,1 (2)

ABw mn
Lcc

mncc ∈∀≤�
∈

n)(m, ,
)',(

' (3III)

ERnLccww
ApnNp

npcc
AnmNm

mncc ∪∈∈∀= ��
∈∈∈∈

 ,)',(,
),(:

'
),(:

'

 (4III)
SsLccTxw ccsc

AsmNm
mscc ∈∈∀=�

∈∈
,)',(,''

),(:
' (5III)

SsLccTxw cccs
ApsNp

spcc ∈∈∀=�
∈∈

,)',(,'
),(:

' (6III)

GgBECxTCF g
SEDs Ff Cc

cscf
g

∈∀≤� ��
∈ ∈ ∈

 , (9)

GgBCExTFC g
SEDs Ff Cc

csfc
g

∈∀≤� ��
∈ ∈ ∈

 , (10)

DdKkBCDYxTCF kd
SCOs Ff Cc

fdcscf
k

∈∈∀≤� ��
∈ ∈ ∈

 , , (11)

DdKkBDCYxTFC dk
SCOs Ff Cc

fdcsfc
k

∈∈∀≤� ��
∈ ∈ ∈

 , , (12)

{ } SsCcFSx cscs ∈∈∀∈ , ,,0
ApnNnLccFSTw cnccnpcc ∈∈∀∈∀≤≤),(, ,)',(,0 ''

AnmNnLccFSTw ncccmncc ∈∈∀∈∀≤≤),(, ,)',(,0 '''

	1. Introduction
	1.1 Motivation and background
	1.2 Problem statement
	3.1 A component-graph based model
	3.2 Model for storage requirements
	
	
	Sets and indices

	4.1 Server attributes
	4.2 Common networking assumptions
	
	
	Sets and Indices

