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In this paper, we describe a resource assignment problem (RAP) for a 
large-scale computing utility, such as an Internet data center. The 
problem is defined as follows: For a given topology of a network 
consisting of switches and servers with varying capabilities, and for a 
given application with a distributed architecture, decide which server 
from the physical network should be assigned to each application 
component, such that the traffic-weighted average inter-server distance is 
minimized, and the application's processing, communication and storage 
requirements are satisfied without exceeding network capacity limits. 
This problem is first formulated as a nonlinear combinatorial 
optimization problem. We then describe three mixed integer 
programming formulations, RAP-LINI, RAP-LINII, and RAP-MCFM, as 
the result of different linearization techniques. These models were 
numerically tested using CPLEX on a number of examples, ranging from 
a 125-server utility data center to a set of hypothetical data centers with 
increasing size. In all cases and for all three models, the CPELX solver 
was able to find an optimal solution within reasonable amount of time. 
RAP-LINII is the most efficient and required the minimum solution time. 
RAP-MCFM has the highest complexity but is the most general in terms 
of its applicability to any network topology. 
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Abstract 
 
In this paper, we describe a resource assignment problem 
(RAP) for a large-scale computing utility, such as an 
Internet data center. The problem is defined as follows: 
For a given topology of a network consisting of switches 
and servers with varying capabilities, and for a given 
application with a distributed architecture, decide which 
server from the physical network should be assigned to 
each application component, such that the traffic-
weighted average inter-server distance is minimized, and 
the application’s processing, communication and storage 
requirements are satisfied without exceeding network 
capacity limits. This problem is first formulated as a 
nonlinear combinatorial optimization problem. We then 
describe three mixed integer programming formulations, 
RAP-LINI, RAP-LINII, and RAP-MCFM, as the result of 
different linearization techniques. These models were 
numerically tested using CPLEX on a number of 
examples, ranging from a 125-server utility data center to 
a set of hypothetical data centers with increasing size. In 
all cases and for all three models, the CPELX solver was 
able to find an optimal solution within reasonable amount 
of time. RAP-LINII is the most efficient and required the 
minimum solution time. RAP-MCFM has the highest 
complexity but is the most general in terms of its 
applicability to any network topology.  
 
Keywords: utility computing, resource assignment, 
storage area networks, mixed integer programming 

1. Introduction 

1.1 Motivation and background 

Although utility computing is viewed by many as the 
model of computing for the future, the vision has been 
around for decades. The MULTICS project in the 1960s 
[6] had the goal of developing “a new computer system 
specifically organized as a prototype of a computer 
utility,” with one of its requirements being “continuous 
operation analogous to that of the electric power and 

telephone companies.” In a computing utility, computing 
resources and capabilities are provided to people and 
businesses as a service. One example of a computing 
utility that exists today is the Grid [9], which offers spare 
compute cycles to scientific and engineering applications. 
Another example is data center, where a large pool of IT 
resources are centrally managed to meet the needs of 
business critical enterprise applications such as enterprise 
resource planning applications, database applications, 
customer relationship management applications, and 
general e-commerce applications. There has been a wave 
of industrial initiatives to provide infrastructure and 
management support for such utilities, including On 
Demand Computing [11], HP’s Utility Data Center (UDC) 
[22], Sun’s N1 initiative [21], Microsoft’s Dynamic 
Systems Initiative [14], and many others.  
 

 
 

Figure 1. Architecture of a computing utility 
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servers and storage devices connected through a shared 
high speed network fabric. The goal is to offer 
“infrastructure on demand,” which means compute, 
networking, and storage resources are provided to 
applications as they need them.  Most of the resources will 
be virtualized and shared across multiple applications to 
achieve economies of scale and increase return on 
investment. The complexity of managing such an 
infrastructure and applications simultaneously is 
enormous. Automation is needed to lower operation cost 
and reduce human error. Well-informed capacity planning 
and resource provisioning are required to increase asset 
utilization and meet service level objectives.  

When an application is deployed in a computing utility, 
it is allocated a partition of resources in a virtual 
application environment [16] to meet the specific needs of 
the application. As each application’s real time workload 
varies over time, resources can be dynamically re-
allocated and re-distributed among all running 
applications to achieve high resource utilization. In most 
cases, the physical identities of the allocated resources are 
transparent to the application due to virtualization of 
resources. And it is the utility provider’s job to choose the 
right set of physical resources for each application and its 
components to satisfy the application’s configuration and 
performance requirements, to avoid resource bottlenecks 
in the infrastructure, to achieve certain goals or enforce 
certain policies. We refer to this decision making process 
as resource assignment. Techniques for dealing with this 
process are an integral part of a resource access 
management framework [20] that controls the complete 
lifecycle of applications’ access to resources in a 
computing utility.  

In today’s data centers, resource assignment is typically 
done by human operators, which is slow, expensive, and 
error prone. As the size of future computing utilities 
grows into the magnitude of tens of thousands of 
resources, the number of possibilities to provision a given 
application goes far beyond the tracking ability of any 
human. This calls for a more systematic approach for 
resource assignment so that it can be automated to 
significantly shorten application deployment cycles and 
minimize operator overhead. In general, a naïve scheme 
such as random selection or first-come-first-served may 
not work because there are too many consequences to any 
particular solution that is chosen. For instance, the 
compute requirements of the application may not be met 
by some of the servers, the latency of the application can 
be poor, or the cost involved may be too high, etc. In 
particular, since networking resources are shared among 
different applications and their components, it is highly 
likely for a network link to become a bottleneck thus 
degrading the performance of the applications that share 
this link. This, of course, has the assumption that network 
resources are not over-provisioned, and relatively high 

utilization on these resources is desired. We believe this is 
reasonable to assume given the current economic pressure 
to reduce IT cost and to increase return on investment. 
Therefore, resource assignment is a highly complex 
problem that requires more intelligent solution techniques. 

Every application to be deployed in a computing utility 
has high-level metrics such as number of concurrent users, 
number of transactions per second and infrastructure cost. 
Usually the mapping between these requirements and the 
specific identities of the resources that are used to host the 
application is not straightforward.  We believe that a two-
step process is the most efficient to perform this mapping, 
which is shown in Figure 2. A step that we refer to as 
“Grounding” translates the application’s high-level 
requirements into a “grounded application model” that 
represents the low-level processing, communication and 
storage requirements on the physical resources. This step 
requires a great deal of domain knowledge and experience 
with the specific application, and typically involves 
benchmarking exercises. “Resource assignment” chooses 
the specific instances of resources from the infrastructure. 
This step requires knowledge and data on the physical 
resources. This paper deals with the second step. 
Although how to do grounding effectively is an interesting 
research question in itself, it is not addressed here.  

 

 
 

Figure 2. Application requirement mapping process 
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In this paper, we specifically study the following 
resource assignment problem (RAP): For a given 
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server from the physical network should be assigned to 
each application component, such that the traffic-
weighted average inter-server distance is minimized, and 
the application requirements are satisfied without 
exceeding network capacity limits. 

This problem is first formulated as a nonlinear 
combinatorial problem. Shahoumian proved that it is NP-
hard [19] by showing that the problem of Minimum Cut 
into Bounded Sets, a well-known NP-complete problem 
[8], can be reduced to RAP in polynomial time. There are 
potentially many algorithms for tackling this kind of 
problem, including simple heuristics such as greedy 
algorithms, and more evolved meta-heuristics such as 
Tabu search, genetic algorithms, and simulated annealing 
[13]. We chose mathematical programming (MP) [23] for 
the following reasons. First, MP is a common and flexible 
framework for modeling a large class of optimization 
problems. Second, there are commercially available MP 
solvers that have been tested extensively by both 
academia and industry, such as CPLEX [10]. This gives us 
the ability to separate models from solution techniques. 
We can focus on developing representative models for 
real systems, improve efficiency of problem formulations, 
and revise the models as assumptions change. Third, MP 
is a powerful tool for handling a large number of hard 
capacity constraints, a characteristic of the RAP problem, 
which is difficult to deal with using meta-heuristic type of 
methods. Finally, the algorithms used by CPLEX for 
solving MP problems, such as the branch and bound 
algorithm for integer programming (IP), have provable 
global optimality. And for any given period of 
computation time, bounds on the optimal objective 
function value can be provided as an indicator of the 
solution quality. On the other hand, one major drawback 
of the MP approach is that it requires someone who is 
well-versed in the MP language to develop a good MP 
model for a given problem. The solution time often 
depends on the efficiency of the particular formulation.  

The main contribution of this paper is the formalization 
of resource assignment in a computing utility as a 
mathematical optimization problem. In addition, 
reformulating the problem as various mixed integer 
programming (MIP) problems enables us to use an off-
the-shelf solver such as CPLEX for finding optimal 
solutions. Finally, the multicommodity flow formulation 
of RAP makes it applicable to resource assignment in 
networks with arbitrary topology. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 describes the 
mathematical model for the application. Section 4 
describes the resource model for a computing utility. 
Section 5 presents the complete optimization problem for 
RAP. In Section 6, we present three MIP formulations for 
the original nonlinear combinatorial problem. Section 7 
describes numerical experiments on a set of examples. 

The results are presented to demonstrate the efficiency of 
the solution techniques and the complexity of the three 
models. Section 8 offers conclusion and future directions. 
 
2. Related Work 
 

There is a rich literature on resource assignment 
problems in a wide range of computer systems or 
networking systems. The terminology comes in many 
forms, such as “device selection,” “application 
placement,” “node placement”, etc., which all refer to the 
process of choosing the right physical resources for 
hosting certain computing tasks. Each piece of work may 
differ from ours in certain aspects. For example, it may be 
assigning different kinds of resources in a different 
environment, such as nodes in a supercomputer cluster or 
spare workstations in a grid. In addition, it may focus on 
applications/jobs of different nature with different 
characteristics in their resource requirements, such as 
short-lived batch processing jobs. The optimization 
criterion could range from application performance, 
economic concerns, to certain utility functions. Finally, 
the solution techniques can vary significantly. 

A large amount of prior work in this area dealt with 
uncapacitated networks. This applies to the well-known 
facility location problem [3], a widely studied quadratic 
assignment problem, where n facilities are assigned onto n 
sites such that the average transportation cost between 
sites is minimized. Another example is the conventional 
node placement optimization (NPO) [4], where the job is 
to allocate traffic matrix source/destinations to nodes in a 
multi-processor interconnection architecture such that the 
mean traffic-weighted inter-nodal distance is minimized. 
Both problems are difficult to solve optimally, and many 
heuristic approaches have been exploited to find near-
optimal solutions. Our RAP problem involves a similar 
decision problem and has essentially the same objective 
function, but is even harder in that any assignment 
solution has to satisfy a set of capacity constraints.  

The resource allocation problem studied in [12] does 
consider a capacitated network. The problem is: given a 
set of jobs that require computing and bandwidth 
resources and generate profits, select the feasible subset of 
jobs that maximizes profits and decide placement of these 
jobs onto a network of compute nodes. This paper 
contributes to the current grid-computing or peer-to-peer 
systems research in providing “bandwidth guarantee” in 
resource allocation or job scheduling. However, it is more 
suitable for large scientific and engineering jobs that can 
rely on aggregated resources from multiple nodes to fulfill 
a single task. It is not a model with sufficient information 
for more complex enterprise applications. 

The resource assignment problem was originally 
defined in [24], where the task was to assign physical 
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servers in a tree network to logical servers in a multi-tier 
application architecture. In [17,18] the same problem was 
reformulated as a series of MIP and quadratic 
programming (QP) problems that were solved using 
commercial solvers. The solution technique proved more 
scalable than the enumerative approach used in [24]. The 
RAP problem defined in this paper differs from the above 
in the following aspects. First, we now deal with more 
general distributed applications whose component 
architecture can be an arbitrary graph. Second, the utility 
infrastructure we study here includes a storage area 
network (SAN), which has become increasingly important 
in modern data centers, but was not present in the earlier 
work. This addition allows our work to be applied to 
applications that access data in centralized storage devices 
through a SAN. Third, the tree network in the earlier 
problem has a hierarchical structure, where servers only 
appear at the bottom layer. This restrictive assumption has 
been removed. Furthermore, the multicommodity flow 
model in this paper allows the LAN topology to be an 
arbitrary graph as well.  

A decision related to server assignment is application 
data placement in storage devices, commonly known as 
the file assignment problem (FAP). This problem has been 
studied in depth using optimization approaches. Dowdy 
and Foster gave a unified view of various models people 
had developed for FAP and provided detailed comparison 
of their respective contributions and suitable solution 
techniques [7]. However, none of these models had the 
concept of separated compute nodes and storage nodes 
and the notion of a storage area network with capacity 
limits. One piece of more recent work in this area is the 
Ergastulum project [2] at HP Labs. For a given storage 
access workload, Ergastulum solves the data placement 
problem as well as the storage system configuration 
problem at the same time. Compared to the storage related 
models in our RAP formulation, Ergastulum uses a more 
sophisticated storage workload description and contains a 
more detailed view of each storage device. However, 
Ergastulum does not take into account capacity constraints 
in the SAN when it heuristically searches for optimal file 
mapping onto disk arrays. Therefore, Ergastulum does a 
better job optimizing the performance of storage devices 
but ignores the storage network performance. The latter, 
we believe, is a practical concern for many storage 
systems. A full blown optimization problem encompassing 
file placement and server assignment seems appealing, but 
is likely to be computationally intractable. As a first step, 
we choose to separate these two problems. We can use 
Ergastulum or any other FAP solver to generate a near-
optimal file placement decision for a given application 
workload. It can then be provided as an input to our 
resource assignment problem, where we focus on optimal 
server selection while meeting SAN capacity constraints. 
 

3. The Application Model 
 

This section describes the mathematical model for the 
application architecture obtained in the grounding 
process, which serves as an input to the resource 
assignment problem.  

3.1 A component-graph based model 

An application can be characterized by a set of 
components that communicate with one another in a 
certain way. It can be represented by a directed graph 
G(C, L), where each node Cc ∈  represents an application 
component, and each directed edge Lccl ∈= )',(  is an 
ordered pair of component nodes, representing 
communication from component c to component c’. The 
matrix T is defined to characterize the traffic pattern of the 
application. Each element 'ccT  represents the maximum 
amount of traffic going from component c to component 
c’. 0' ====ccT  if an edge (c,c’) does not exist, indicating no 
traffic flows from component c to component c’. The 
component-graph based application architecture is 
illustrated in Figure 3. 

 
 

Figure 3. Component-graph based application model 
 
Each application component has requirements on the 

type of servers on which it can be hosted. Let P to be the 
set of server attributes (or properties) that are of interest to 
a particular application, such as processor type, processor 
speed, number of processors, memory size, disk space, 
and so on. Then for each attribute Pp ∈  and each 
application component Cc ∈ , the requirement is 
characterized by a set cpVREQ , which contains the 
permissible values of attribute p for component c. This set 
may be either discrete or continuous. For example, an 
application component may require a server’s processor 
type to be in {SPARC, PA_RISC}, and its processor 
speed to be in an interval [500, 1000] (in MHz). 

The multi-tier application architecture studied in 
[17,18,24] can be considered a special case of the above 
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component-based model, where a tier consists of multiple 
application components of similar functionality. For a 
given network of compute nodes, instead of assigning the 
right server to each application component, the task there 
is to assign the right set of servers to each tier, which 
results in a smaller problem with fewer variables. When 
the application to be deployed does have a tiered 
structure, we should consider using the multi-tier model so 
that the solution time can be shortened.  

3.2 Model for storage requirements 

Assume that data for an application can be divided into 
a set of “files”. Here we use the abstract notion of a file to 
represent a logically contiguous chunk of data that may be 
accessed by application components. The storage access 
pattern of all the components can be represented by a 
bipartite graph as shown in  

Figure 4. The example illustrates that the mapping 
between an application component and a file is not one-to-
one. More specifically, each component may access 
multiple files, and each file may be accessed by more than 
one component.  

 
Figure 4. Storage access pattern of an application 

 
Remark: The above application model can be used for 

simultaneous assignment of resources to multiple 
applications. A single big graph can be constructed with 
all the components from all the applications, where each 
application is represented by a sub-graph. Two sub-graphs 
are disconnected if the two corresponding applications do 
not communicate with each other. The same idea can be 
applied to the storage access graph. 

To summarize, the application model contains the 
following sets and parameters: 
Sets and indices 

Cc ∈∈∈∈  : Set of application components. 
Ff ∈∈∈∈ : Set of files to be placed on storage devices. 

Ll ∈  : Set of directed links in the application 
architecture graph. 

cNc ∈′ : Set of components that communicate with 
component c, i.e., })',(:{ LccCcN c ∈∈′= . 
Parameters: 
T: |||| CC ×××× -dim matrix. ccT ′  is the amount of traffic 
from component c to component c’. 

TCF: |||| FC ×××× -dim matrix. cfTCF  is the amount of 
write traffic from component c to file f. 
TFC: |||| CF ×××× -dim matrix. fcTFC  is the amount of 
read traffic from file f to component c.  
TO: || C -dim vector.  �

∈
=

cNc
ccc TTO

'
'  is the total amount 

of LAN traffic originating from component c. 
TI: || C -dim vector.  �

∈
=

cNc
ccc TTI

'
'  is the total amount 

of LAN traffic received by component c. 

4. The Resource Model 

This section describes the mathematical models for the 
processing, networking and storage resources in a 
computing utility. The collection of resources as a whole 
is referred to as the “utility fabric”, which includes servers 
that can be assigned to applications, the Ethernet (LAN) 
fabric that connects the servers to each other, and the 
storage area network (SAN) fabric that connects the 
servers to the centralized storage devices. 

4.1 Server attributes 

Let S be the set of servers in the physical network. 
Similar to the application component model, a server’s 
processing capability is characterized by a set of 
attributes. The value for each attribute may be fixed, or 
configurable. For example, a server may have a CPU 
speed of 550 MHZ, but its memory size is changeable 
between 4 and 8 MB. For each server Ss ∈ , we use the 
set spV  to represent its possible values for attribute 

Pp ∈ . Note that the notion of a “server” here is not 
restricted to a compute server. It can be a firewall, a load 
balancer, a network attached storage (NAS) device, a 
VPN gateway, or any other device an application may 
need as a component. A server attribute “server type” can 
be used to distinguish between different kinds of servers. 

4.2 Common networking assumptions 

Before describing the mathematical models for the 
networking fabric, we first present a common set of 
networking assumptions we made to simply the models. 

• We assume that all the network links are duplex links 
and traffic can flow in either direction. In addition, 
link capacities for the two directions can be different. 

• For any physical link in any direction, its “link 
capacity” is indeed the minimum of the bandwidth 
capacities of the link, the source port and the 
destination port. 

C1 C3 C4 C5 C2 C7 

F1 F3 F2 F4 F5 F6 F7 F8 
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• Multiple physical links between two devices that are 
all active and load balanced are combined into one 
logical link with aggregated capacity. For example, 
four 1 Gbit/sec physical links can be combined to form 
one 4 Gbit/sec link in the logical topology. This 
simplification is valid when the combined links have 
equal bandwidth and share approximately equal load, 
which is typically true. It also comes naturally if 
trunking technology is applied on the links [5]. 

• If two switches appear in a redundant pair to avoid 
single point of failure, then redundant paths exist 
between at least one pair of devices in the physical 
topology. This can be simplified in different ways 
depending on the network protocol the switches 
implement. For example, in the LAN fabric, the 
spanning tree protocol [15] may be enforced, resulting 
in all the redundant paths between two network 
devices being blocked except one. If two switches in a 
redundant pair are both active and being load 
balanced, then we can partition the switches or servers 
that are connected to these two switches into two sets, 
one under each switch. And the cross links will be 
blocked. On the other hand, the SAN fabric may 
implement the Fabric Shortest Path First (FSPF) 
protocol [5], which assures uniform traffic load 
sharing over equivalent paths. Moreover, the two links 
in the same segment of the two paths usually have the 
same bandwidth. As a consequence, we can merge a 
pair of redundant switches into one switch. 
Corresponding links will also be merged to form a 
bigger link with aggregated bandwidth. 

These simplifying assumptions are applied to both the 
LAN and the SAN fabrics as they are represented using 
mathematical models, and will not be repeated later on. 

4.3 The LAN fabric 

We assume that the logical topology of the LAN fabric 
in the computing utility is a tree. This is a reasonable 
assumption given that a layer-two switched network often 
implements the spanning tree protocol [15], guaranteeing 
that there is one and only one active path between two 
network devices. The tree network topology significantly 
simplifies the formulation of our problem later on. 

Figure 5 shows an example of the LAN fabric topology. 
At the top is a switching/routing device that connects the 
utility fabric to the Internet or other utility fabrics. It is 
referred to as a root switch. Below the root switch is a set 
of edge switches, and below the edge switches is a set of 
rack switches. Servers are directly connected to either an 
edge switch or a rack switch. As the figure shows, an edge 
switch can be connected to a set of rack switches, a set of 
servers, or a combination of both. Note that this topology 
is more general than the one studied in [17,18,24], where 
all the servers connect to the rack switches only. The 

three-layer network shown here is chosen for 
demonstration purpose. It is straightforward to apply the 
methodology in this paper to a tree network with fewer or 
more layers. 

 
 

Figure 5. An example of the LAN fabric tree topology 
 
The mathematical model contains the following sets and 

parameters: 
Sets and Indices 

Ss ∈ : Set of servers.  
Rr ∈ : Set of rack switches.  
Ee ∈ : Set of edge switches.  

RRe ⊂ : Set of rack switches connected to edge switch e. 
SSRr ⊂ : Set of servers connected to rack switch r. 
SSEe ⊂ : Set of servers connected (directly or indirectly) 

under edge switch e. 
Parameters: 

sBSI :  The incoming bandwidth of server s. 

sBSO : The outgoing bandwidth of server s. 

rBRI : The incoming bandwidth of rack switch r. 

rBRO : The outgoing bandwidth of rack switch r. 

eBEI :  The incoming bandwidth of edge switch e. 

eBEO : The outgoing bandwidth of edge switch e.  
For easy indexing, each logical link in the network is 

associated with the device it can be uniquely identified 
with. For example, the link that connects server s to a rack 
or edge switch is associated with that server and its 
downstream/upstream bandwidth is referred to as the 
incoming/outgoing bandwidth of server s. The same rule 
applies to the links at the upper layers.  

4.4 The SAN fabric 

Various SAN topologies have been used in practice. 
The popular ones include ring, cascade, mesh, and 
core/edge topologies. Among these, the core/edge 
topology provides better resiliency, scalability, flexibility 
and throughput [5], and is adopted by many vendors and 
SAN designers. Therefore, we assume that the SAN fabric 
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in a computing utility has a core/edge topology. Figure 6 
exemplifies a SAN with this topology. 

 

 

Figure 6. An example of the core/edge SAN topology 

 
The core/edge topology contains two layers of switches. 

The core layer consists of at least one pair of redundant 
switches that are typically the most powerful. All the other 
switches connected to the core switches are referred to as 
edge switches. The centralized storage devices, such as 
disk arrays, are attached directly to the core switches, and 
the servers are attached directly to the edge switches. The 
above topology ensures that every storage device is 
accessible by any server in the SAN. Note that this logical 
topology is a simplification from the physical topology 
with redundancies in network devices and links.  

It is worth pointing out that the servers in the this figure 
are exactly the same as those in Figure 5. The LAN 
network in Figure 5 carries communication traffic 
between these servers, and the SAN network in Figure 6 
carries I/O traffic between the servers and the storage 
devices.  

The mathematical model for the SAN contains the 
following sets and parameters. 
Sets and indices: 

Ss ∈ : Set of servers. 
Dd ∈ : Set of storage devices. 
Kk ∈ : Set of FC core switches in the SAN. 
Gg ∈ : Set of FC edge switches in the SAN. 

SSEDg ⊂ : Set of servers connected to FC edge switch 
g. 

SSCOk ⊂ : Set of servers (indirectly) connected to FC 
core switch k. 
Parameters: 
BDC: |||| KD ×××× -dim matrix. dkBDC  is the bandwidth of 
the FC link going from storage device d to core switch k. 
BCD: |||| DK ×××× -dim matrix. kdBCD  is the bandwidth of 
the FC link going from core switch k to storage device d. 

BCE: |G|-dim vector. gBCE  is the bandwidth of the FC 
link going from a core switch to edge switch g. 
BEC: |G|-dim vector. gBEC  is the bandwidth of the FC 
link going from edge switch g to a core switch. 
BES: |S|-dim vector. sBES  is the bandwidth of the FC 
link going from an edge switch to server s. 
BSE: |S|-dim vector. sBSE  is the bandwidth of the FC link 
going from server s to an edge switch. 

Note that the complete topology of the utility fabric 
should be a combination of Figure 5 and Figure 6. It will 
not be shown here. 
 
5. The Optimization Problem 
 

This section describes the formulation of the 
mathematical optimization problem associated with RAP. 

5.1 The decision variable 

The resource assignment problem in this paper concerns 
selecting the right server in the utility fabric for each 
application component, represented by the following 
matrix of binary variables: For all Cc ∈  and Ss ∈ , 

�
�
�

=
otherwise.0

c;component  toassignedsserver1
csx  

In addition, the following two matrices of binary 
variables are defined. For all Cc ∈ , Rr ∈ , and Ee ∈ , 

�
�
�

=
otherwise.0

c;componenttoassignedr switchrack 1
crzr  

�
�
�

=
otherwise.0

c;componenttoassigned eswitch edge1
ceze  

Here we say a switch is assigned to a component if at least 
one server connected (directly or indirectly) under the 
switch is assigned to that component. Note that these two 
variables are redundant to the variables csx . They are 
only introduced to help express the Ethernet bandwidth 
constraints in a more succinct way, and to make solving of 
the problem more efficient, as shown in later sections. 

5.2 The objective function 

Resources in a computing utility can be assigned to 
application components based on many criteria, such as 
application performance, resource utilization, operator 
policies, or economic concerns.  These can be associated 
with different objective functions of the optimization 
problem. In this paper, we choose the objective function 
used in the node placement optimization problem [4], 
which minimizes the traffic-weighted average inter-server 
distance where distance is measured in terms of network 
hop count. Let 'ssDIST  be the distance between two 

S10 S9S8 S7 S6 S5 S4 S3 S2 S1 

Co1 

Ed1 Ed2 

D1 D2 

Co2 

Ed3
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servers s and s’, and 'ssTSS  be the amount of LAN traffic 
from server s to server s’ as a result of server assignment. 
Then the objective function is  

�
∈

∗=
Sss

ssss TSSDISTJ
',

'' 1Min    . 

As we can see, ��
∈ ∈

=
Cc Nc

sccccsss
c

xTxTSS
'

'''' . The value of 

'ssDIST  depends on the relative location of server s and 
s’. For example, 2' ====ssDIST if both servers are directly 
connected to the same switch, which is a preferred 
situation if these two servers communicate heavily. 

By dividing the set of all server pairs into a number of 
subsets, each with a different 'ssDIST  value, then 
calculating the summation on each subset and adding them 
up, we get 

�� ��� �

���

∈ ∈ ∈∈ ∈ ∈

∈ ∈∈

−−

+++=

Ee Cc Ncc
ecccce

Rr Cc Nc
rccccr

Rr Cc
cccr

Cc
cc

zeTzezrTzr

TITOzrTITOJ

c '
''

'
'' 22

)()(21             

 

The first term is the total amount of traffic originated from 
and received by all the components, which is a constant. 
Therefore, an equivalent objective function follows: 

�� ��� �

��

∈ ∈ ∈∈ ∈ ∈

∈ ∈

−−

+=

Ee Cc Ncc
ecccce

Rr Cc Nc
rccccr

Rr Cc
cccr

zeTzezrTzr

TITOzrJ

c '
''

'
'' 22

)(2Min                

 

This is a quadratic function of the binary variables crzr  
and ceze . The first term represents the total amount of 
traffic originated and received under all the rack switches. 
A similar term for all the edge switches, 

��
∈ ∈

+
Ee Cc

ccce TITOze )( , would have been present, but 

was removed as part of the constant term. The second and 
third terms together capture the total amount of intra-
switch traffic at all the switches. Here we define “intra-
switch traffic” as the traffic flows whose source and 
destination nodes are servers under the same switch. The 
intuition is, as components that communicate heavily are 
placed close to each other in the network, the amount of 
intra-switch traffic is increased, which in turn results in 
smaller value for the objective function. In general, this 
leads to lower communication delay between application 
components inside the LAN fabric. 

We choose not to include SAN latency in the objective 
function for the following two reasons. First, the SAN 
topology in our problem has the property that the number 
of hops for each data flow is fixed at 3 because any server 
and storage device pair is connected through two FC 
switches. This means, any server assignment solution 
results in the same SAN latency measure. Second, storage 
systems latency is dominated by I/O access at the storage 

device, which is typically several orders of magnitude 
larger than the SAN latency. Therefore, even if we could 
reduce the number of hops between a server and a storage 
device, it is inconsequential with respect to storage access 
latency. On the other hand, link capacity in the SAN is 
usually a concern in storage systems performance. Given 
the high cost of SAN switches, grossly over-provisioning 
may not be preferred, while at the same time we do not 
want the SAN fabric to be easily saturated. With this 
observation, we choose to deal with SAN link capacity in 
RAP without adding any new objective function. The rest 
of this section describes constraints in the problem that 
limit the search space for optimal server assignment 
solutions. 

5.3 Preprocessing server feasibility 

Before we start describing constraints in our problem, 
we need to define a server feasibility matrix FS, where 

��

�
�

�
=

otherwise.0
c;component of tsrequiremenI/O and

 ,networking ,processing  themeets sswitch
1

csFS  

More specifically, 1=csFS if and only if 
(a) PpVREQV cpsp ∈∀≠∩     ,φ , 
(b) s

Nc
ccs

Nc
cc BSOTBSIT

cc

≤≤ ��
∈∈ '

'
'

'   and  , 

(c) s
Ff

cfs
Ff

cf BESTFCBSETCF ≤≤ ��
∈∈

  and  . 

Condition (a) ensures that server s matches the server 
attribute requirement by component c. Condition (b) 
ensures that the aggregate LAN traffic at each component 
c does not exceed the link bandwidth of server s in either 
direction. And condition (c) guarantees that the total 
amount of SAN traffic at each component c does not 
exceed the I/O bandwidth of server s in either direction.  

The server feasibility matrix can be pre-computed 
before the optimization problem is solved. When the 
matrix FS is sparse, the search space for the optimization 
problem can be significantly reduced. 

In the same spirit, we can define feasibility matrices FR 
and FE for rack and edge switches, respectively, where 

1=crFR  if there is at least one feasible server under rack 
switch r for component c, 1=ceFE  if there is at least one 
feasible server under edge switch e for component c. 
These two matrices can also be pre-computed. 

5.4 The constraints 

The constraints on the decision variables are as follows. 
Normality constraints:  
1) One and only one server is assigned to each application 
component. 
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�
∈

∈∀=
Ss

cs Ccx     ,1  

2) Each server can be assigned to at most one component.1 

�
∈

∈∀≤
Cc

cs Ssx     ,1  

Variable relationship constraints: 
3) A rack switch is assigned to a component if and only if 
a server under this rack switch is assigned to this 
component.  

�
∈

∈∈∀=
rSRs

crcs RrCczrx  ,   ,  

4) An edge switch is assigned to a component if and only 
if a server under this edge switch is assigned to this 
component.  

�
∈

∈∈∀=
eSEs

cecs EeCczex  ,   ,  

LAN fabric constraints:   
5) The LAN traffic going out of each rack switch to an 
edge switch does not exceed the link capacity.  

RrBROzrTzrzrTO r
Cc Cc Nc

rccccrcrc
c

∈∀≤−� � �
∈ ∈ ∈

   ,
'

''  

Remember that cTO  is the total amount of LAN traffic 
originating from component c. On the left hand side, the 
first item represents the total amount of traffic originating 
under rack switch r, and the second item represents the 
amount of intra-switch traffic at this switch. Hence, the 
left hand side represents the amount of traffic passing 
through switch r, which should be bounded by the 
outgoing link bandwidth at the switch.  

The derivation of the following three constraints is 
similar, therefore will be omitted. 
6) The LAN traffic coming into each rack switch from an 
edge switch does not exceed the link capacity.  

RrBRIzrTzrzrTI r
Cc Cc Nc

rccccrcrc
c

∈∀≤−� � �
∈ ∈ ∈

   ,
'

''  

Remember that cTI  is the total amount of LAN traffic 
received by component c. 
7) The LAN traffic going out of each edge switch to the 
root switch does not exceed the link capacity.  

EeBEOzeTzezeTO e
Cc Cc Ncc

ecccceecc ∈∀≤−� ��
∈ ∈ ∈

   ,
'

'',  

8) The LAN traffic coming into each edge switch from the 
root switch does not exceed the link capacity.  

EeBEIzeTzezeTI e
Cc Cc Ncc

eccccecec ∈∀≤−� ��
∈ ∈ ∈

   ,
'

''  

 

                                                 
1 To allow a server to be shared by multiple application 
components, constraint 2) can be replaced by a constraint 
on the total amount of processing capacity required by all 
the components co-locating on that server.  

SAN fabric constraints: 
9) The SAN traffic going out of each FC edge switch to a 
core switch does not exceed the link capacity. 

GgBECxTCF g
SEDs Ff Cc

cscf
g

∈∀≤� ��
∈ ∈ ∈

    ,  

10) The SAN traffic coming into each FC edge switch 
from a core switch does not exceed the link capacity. 

GgBCExTFC g
SEDs Ff Cc

csfc
g

∈∀≤� ��
∈ ∈ ∈

    ,  

11) The SAN traffic from an FC core switch to a storage 
device does not exceed the link capacity. 

DdKkBCDYxTCF kd
SCOs Ff Cc

fdcscf
k

∈∈∀≤� ��
∈ ∈ ∈

  ,    ,  

Here fdY  is a binary parameter, where 1=fdY  if and 
only if file f is placed on storage device d. As was 
discussed in Section 2, we choose to separate the file 
placement problem from the server assignment problem. 
The former has fdY  as its decision variable. The solution 
is fed into our RAP problem as an input.  
12) The SAN traffic from a storage device to an FC core 
switch does not exceed the link capacity. 

DdKkBDCYxTFC dk
SCOs Ff Cc

fdcsfc
k

∈∈∀≤� ��
∈ ∈ ∈

  ,    ,  

 
Feasibility constraints: 
13) All the variables are binary, and all the assigned 
servers, rack switches, and edge switches are feasible. 

{ } { } { }cececrcrcscs FEzeFRzrFSx ,0,,0,,0 ∈∈∈  

5.5 Summary 

In summary, the complete formulation of the 
optimization problem for RAP follows. 

�� ��� �

��

∈ ∈ ∈∈ ∈ ∈

∈ ∈

−−

+=

Ee Cc Ncc
ecccce

Rr Cc Nc
rccccr

Rr Cc
cccr

zeTzezrTzr

TITOzrJ

c '
''

'
'' 22

)(2Min                

 

      s.t.          �
∈

∈∀=
Ss

cs Ccx     ,1         (1) 

�
∈

∈∀≤
Cc

cs Ssx     ,1     (2) 

�
∈

∈∈∀=
rSRs

crcs RrCczrx  ,   ,  (3) 

�
∈

∈∈∀=
eSEs

cecs EeCczex  ,   ,  (4) 

RrBROzrTzrzrTO r
Cc Cc Nc

rccccrcrc
c

∈∀≤−� � �
∈ ∈ ∈

  ,
'

''   (5) 

RrBRIzrTzrzrTI r
Cc Cc Nc

rccccrcrc
c

∈∀≤−� � �
∈ ∈ ∈

 ,
'

''   (6) 
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EeBEOzeTzezeTO e
Cc Cc Ncc

ecccceecc ∈∀≤−� � �
∈ ∈ ∈

,
'

'', (7) 

EeBEIzeTzezeTI e
Cc Cc Ncc

eccccecec ∈∀≤−� � �
∈ ∈ ∈

  ,
'

''   (8) 

GgBECxTCF g
SEDs Ff Cc

cscf
g

∈∀≤� ��
∈ ∈ ∈

    ,  (9) 

GgBCExTFC g
SEDs Ff Cc

csfc
g

∈∀≤� ��
∈ ∈ ∈

    ,  (10) 

DdKkBCDYxTCF kd
SCOs Ff Cc

fdcscf
k

∈∈∀≤� ��
∈ ∈ ∈

  ,    ,  (11) 

DdKkBDCYxTFC dk
SCOs Ff Cc

fdcsfc
k

∈∈∀≤� ��
∈ ∈ ∈

  ,    ,  (12) 

{ } SsCcFSx cscs ∈∈∀∈ ,    ,,0  
{ } { } EeRrCcFEzeFRzr cececrcr ∈∈∈∀∈∈ ,,    ,,0,,0

 
The above is a nonlinear combinatorial optimization 

problem, which has been proven as NP-hard [19]. This 
problem is referred to as the original formulation of RAP 
and labeled as RAP0.  

The problem formulation we described above can be 
applied to a number of different use cases.  
a. Green-field assignment: This occurs when the first 

application is initially deployed in an empty utility. 
b. Subsequent assignment: This occurs when there are 

existing applications running in the utility, and 
resources are assigned to the next application. In this 
case, the same application and resource models can be 
used, except that parameters in the resource model 
should reflect the remaining resource capacity.  

c. Multiple applications assignment: This occurs when 
resources need to be assigned to more than one 
application at the same time. As discussed in Section 3, 
a larger application model with components from 
multiple applications can be used for this purpose. 

d. Dynamic assignment: This occurs when an existing 
application requests for more resources as its real time 
workload intensity changes. In this case, a new 
application model will be submitted containing the 
additional requirement. Then depending on the 
application’s ability to accommodate server migration, 
we can resolve the problem with or without fixing the 
existing server assignment. 

e. Automatic fail over: This occurs when a server 
without high-availability configuration fails and needs 
replacement. We can find the best server to use from 
the pool of available servers using a similar RAP 
formulation. 
The first three use cases only happen at application 

deployment time, while the last two use cases are useful at 
run time. Therefore, the former is at a time scale of days 
or longer, while the latter may be at a shorter time scale of 
minutes or hours. 

The number of binary variables in RAP0 is 
|)||||(||| ERSC ++× , which is dominated by |||| SC × , 

the number of application components times the number 
of servers in the utility. It is conceivable that the problem 
becomes computationally more challenging as the 
infrastructure size or application size grows. Any heuristic 
search algorithms are not guaranteed to find a feasible 
and optimal solution. The next section presents three 
linearized formulations as mixed integer programming 
problems, which can be solved directly using a 
commercial solver, such as CPLEX. 

 
6. Three Linearized Models 

6.1 RAP-LINI 

As we can see from the previous section, the original 
formulation RAP0 is nonlinear because the objective 
function and the LAN fabric constraints (5)-(8) are 
quadratic in binary variables crzr  and ceze . This type of 
nonlinearity can be removed using a standard substitution 
technique with the observation that the product of binary 
variables is also binary. Let us define the following set of 
binary variables, rccrrcc zrzryr '' ====  and 

ecceecc zezeye '' ==== , for all Ccc ∈∈∈∈', , Rr ∈∈∈∈ , Ee ∈∈∈∈ . 
With these new variables, the objective function can be 

rewritten as 

�� ��� �

��

∈ ∈ ∈∈ ∈ ∈

∈ ∈

−−

+=

Ee Cc Ncc
ecccc

Rr Cc Ncc
rcccc

Rr Cc
cccr

yeTyrT

TITOzrJ

'
''

'
'' 22

)(2Min              

. 

This is a linear combination of all the crzr , rccyr '  and 

eccye '  variables. Similarly, constraints (5) and (8) in 
RAP0 can be rewritten as linear constraints as follows: 

RrBROyrTzrTO r
Cc Cc Ncc

rcccccrc ∈∀≤−� � �
∈ ∈ ∈

    ,
'

''  (5I) 

RrBRIyrTzrTI r
Cc Cc Ncc

rcccccrc ∈∀≤−� ��
∈ ∈ ∈

    ,
'

''  (6I) 

EeBEOyeTzeTO e
Cc Cc Ncc

ecccccec ∈∀≤−� ��
∈ ∈ ∈

    ,
'

''  (7I) 

EeBEIyeTzeTI e
Cc Cc Ncc

ecccccec ∈∀≤−� ��
∈ ∈ ∈

    ,
'

''  (8I) 

Additional constraints are needed to ensure that the 
rccyr '  variables behave as the product of binary variables. 

First, to ensure that 00or  0 '' ====����======== rccrccr yrzrzr , 
we need  

RrCccyrzryrzr rccrcrcccr ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥≥≥≥≥ ,',        , ''' .    (13I) 
Second, to guarantee 11 and1 '' =�== rccrccr yrzrzr , 
we would need 
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RrCccyrzrzr rccrccr ∈∈∈∈∈∈∈∈∀∀∀∀≤≤≤≤−−−−++++   ,',1'' . 
However, since the objective function is to maximize a 
summation of the rccyr '  variables with non-negative 
coefficients, the second set of constraints are implied by 
the first set of constraints at optimality, and therefore are 
not required. Similarly, the following set of constraints 
should be imposed on the new eccye '  variables. 

EeCccyezeyeze eccececcce ∈∈∈∈∈∈∈∈∀∀∀∀≥≥≥≥≥≥≥≥ ,',        , ''' ,    (14I) 
Note that the new rccyr '  and eccye '  variables only need 

to be continuous in the interval [0,1] instead of being 
binary. Let us take rccyr '  as an example. Based on the 
above discussion, constraint (13I) and the maximization 
nature of the objective function together ensure that rccyr '  
behaves exactly as the product of crzr  and rczr ' . Since 

crzr  and rczr '  are both binary, rccyr '  never really takes a 
fractional value between 0 and 1. 

Remarks: The above substitution of variables results in 
a linear optimization problem with some integer variables 
and some continuous variables, thus a mixed integer 
programming problem. It is referred to as RAP-LINI, to 
be distinguished from the original nonlinear formulation 
RAP0. See Appendix I for the complete formulation of 
RAP-LINI. The main issue with this formulation is that 
the number of variables may be significantly higher than 
that of RAP0 with the introduction of 

|)||(||||| ERCC ++++××××××××  continuous variables. There are a 
number of ways to improve the efficiency in solving the 
problem. 
1. The number of rccyr '  and eccye '  variables can be 

reduced in the following way: 
• rccyr '  is defined if and only if 

1 and ,1 ,1 '' === ccrccr TFRFR . 
• eccye '  is defined if and only if 

 1 and ,1 ,1 '' === ccecce TFEFE . 
In all the other cases, the rccyr '  and eccye '  variables 
are not needed in the formulation. This implies that, 
in the worst case where all the rack and edge switches 
are feasible for all the components, the number of 
extra variables in RAP-LINI is |)||(||| ERL +× , i.e., 
the number of communication links in the application 
graph times the total number of LAN switches. 

2. Since the number of crzr  and ceze  variables 
( |)||(||| ERC +× ) is usually significantly less than 
the number of csx  variables |||| SC × , we can 
increase the efficiency of the branch and bound 
algorithm in the MIP solver by assigning higher 
priority to branching on variables ceze and crzr . 

 

6.2 RAP-LINII 

The previous subsection described a linearization 
technique that is straightforward and that resulted in a 
MIP formulation with |)||(||| ERL ++++××××  additional 
continuous variables than RAP0. This subsection 
describes a relatively more sophisticated linearization 
scheme, which leads to another MIP formulation with 
possibly fewer extra variables.  

When looking at the LAN traffic flowing through each 
rack switch, we have the following intuition. For all 

Cc ∈∈∈∈  and Rr ∈∈∈∈ , ccrTOzr  is the amount of traffic 
originating from component c under switch r, and 

�
∈ cNc

ccrc Tzr
'

''  is the amount of traffic originating from 

component c and received under switch r. Now let us 
define a new variable,  

�
∈

−=
cNc

ccrccrccrcr TzrzrTOzrtro
'

'' , 

which captures the amount of traffic that originated from 
component c under switch r and leaves switch r.

  By definition of crzr , we have 

��

�
�

�

=

=−
=

�
∈

.0  if        ,0

;1  if        ,
'

''

cr

cr
Nc

ccrcccr
cr

zr

zrTzrTOzr
tro

c
 

Therefore, we can equivalently define crtro  as,  

��

�
�
�

��

�
�
�

−= �
∈

0 ,max
'

''
cNc

ccrcccrcr TzrTOzrtro .  

Since crtro  represents the amount of outgoing traffic 
from component c that passes through rack switch r, and 
the objective function tends to reduce the amount of 
traffic that passes through switches, the above definition 
can be enforced using the following two linear constraints: 

0  and  
'

'' ≥−≥ �
∈

cr
Nc

ccrcccrcr troTzrTOzrtro
c

.   (13II) 

That is, these constraints will be binding at optimality.  
Using the new variables crtro , the rack switch outgoing 

bandwidth constraint (5) in RAP0, 

r
Cc Nc

ccrccrccr BROTzrzrTOzr
c

≤−� �
∈ ∈

)(
'

'' , can be rewritten 

as  
RrBROtro r

Cc
cr ∈∀≤�

∈
    , . (5II) 

Similarly, we can represent the amount of LAN traffic 
originating from component c that leaves edge switch e 
using the following new variable: 

�
∈

−=
cNc

ccecceccece TzezeTOzeteo
'

'' . 

This would be enforced by the following constraints: 
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0  and  
'

'' ≥−≥ �
∈

ce
Nc

ccecccece teoTzeTOzeteo
c

.    (15II) 

Then constraint (7) of RAP0 can be rewritten as  
EeBEOteo e

Cc
ce ∈∀≤�

∈
    , . (7II) 

Analogous variables crtri  ( cetei ) representing the 
amount of incoming traffic to component c under rack 
switch r (edge switch e) from components outside the 
switch can be defined, with the following additional 
constraints: 

0  and  
'

'' ≥−≥ �
∈

cr
Nc

ccrcccrcr triTzrTIzrtri
c

        (14II) 

0  and  ,
'

'' ≥−≥ �
∈

ec
Nc

ccecccece teiTzeTIzetei
c

  (16II) 

Then constraints (6) and (8) of RAP0 can be rewritten as  
RrBRItri r

Cc
cr ∈∀≤�

∈
   , . (6II) 

EeBRItei e
Cc

ce ∈∀≤�
∈

   ,  . (8II) 

By comparing the definition of the new variables with 
the objective function J2 in RAP0, it is easy to see that, 

)(      

)()(2

c
Ee Cc

cce

Ee Cc
cece

Rr Cc
crcr

TITOze

teiteotritroJ

+−

+++=

��

����

∈ ∈

∈ ∈∈ ∈  

Since ���
∈∈ ∈

+=+
Cc

cc
Ee Cc

ccce TITOTITOze )()(  is a 

constant, an equivalent objective function is the following. 

����
∈ ∈∈ ∈

+++=
Ee Cc

cece
Rr Cc

crcr teiteotritroJ )()(3Min     

The interpretation of the objective function follows. To 
minimize the traffic-weighted average inter-server 
distance, it is equivalent to minimize the total amount of 
traffic flowing on all the Ethernet links. Because the total 
amount of traffic originating from and received by all the 
application components is a constant, the total amount of 
traffic flowing on all the server-to-switch links is a 
constant. Therefore, an equivalent objective function is to 
minimize the total amount of inter-switch traffic, which is 
exactly what J3 is. The term “inter-switch traffic” refers to 
the traffic flowing on a link that connects two switches. 
These links are typically more expensive. And they are 
more likely to get saturated because they are often shared 
by multiple components, or even multiple applications. By 
minimizing the utilization of these shared links by a single 
application, we reduce the likelihood of creating 
bottlenecks in the LAN fabric.  

Remarks: This MIP formulation of the resource 
assignment problem is referred to as RAP-LINII. Its 
complete formulation is shown in Appendix II. In this 
case, a total number of |)||(|||2 ERC +× new continuous 

variables are introduced. This approach involves fewer 
extra variables than the RAP-LINI approach if 

||||2 LC < , i.e., if each application component has, on 
average, more than 2 incident links. 

6.3 RAP-MCFM 

This section presents the same resource assignment 
problem formulated using a multicommodity flow model 
(MCFM) [1]. The approach is quite different from the 
previous two formulations. A multicommodity flow model 
contains multiple commodities, each going from its source 
to its sink in the form of network flows. The flows have to 
obey the flow conservation law at each node for each 
commodity. The capacity of each network link is shared 
by the flows it carries, possibly from multiple 
commodities, and the capacity limit is enforced.  

We need to define two new sets and a new parameter.  
• Nn ∈ : Set of all nodes in the LAN fabric topology, 

including servers, rack switches and edge switches, 
i.e., ERSN ∪∪= . 

• Aa ∈ : Set of arcs in the LAN fabric topology. Each 
arc a is an ordered pair (m,n) of nodes in N.  

• aB  or mnB :  Link bandwidth of arc Anma ∈= ),( .  
As mentioned in Section 4, the order of nodes in an arc 

matters. For example, for a=(m,n) and a’=(n,m) where 
Nnm ∈, , the values of aB  and 'aB  could be different.  

The application model stays the same. Although in this 
formulation, each ordered pair of application components 
(c,c’) for which 0', >ccT  represents a commodity. Thus, 
there is a commodity corresponding to each link 

Lccl ∈= )',(  in the application architecture graph. 
The binary server assignment decision variables csx  are 

still needed. In addition, for each commodity Lcc ∈)',(  
and each arc Anm ∈),( , we define the continuous 
nonnegative flow variables mnccw '  to represent the flow 
along arc Anm ∈),( , in the direction from m to n, that 
originated from component c and is destined to 
component c’. 

The previous objective of minimizing the traffic-
weighted average inter-server distance can be 
accomplished by minimizing the total amount of traffic on 
all the network arcs used by all the commodities: 

� �
∈ ∈

=
Lcc Anm

mnccwJ
)',( ),(

'1Min       

The constraints of RAP-MCFM are the following: 
1)-2) Normality constraints (1) and (2) on the csx  
variables are still valid. 
3) Link capacity constraints for all arcs Anm ∈),(  in the 
LAN. 
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mn
Lcc

mncc Bw ≤�
∈)',(

' . (3III) 

4) Flow conservation for each commodity Lcc ∈)',( and 
each node Nn ∈ . 
a) For each switch ERn ∪∈ , we have 

��
∈∈∈∈

=
ApnNp

npcc
AnmNm

mncc ww
),(:

'
),(:

' . (4III) 

b) For each server node Sn ∈ , 

'
),(:

'''
),(:

' cccn
ApnNp

npccccnc
AnmNm

mncc TxwTxw −=− ��
∈∈∈∈

. 

In general, the flow conservation law at a node requires 
that, for each commodity, the total amount of incoming 
flows at node n, minus the demand of the commodity at 
the node, should equal to the total mount of outgoing 
flows at node n, minus the supply of the commodity at the 
node. Since the switches do not produce or consume 
traffic, and they simply forward the traffic, the supply and 
demand terms become zero for the switch nodes.  

For the server nodes, equation b) is conceptually 
correct. However, consider the follow fact. Since a server 
cannot be assigned to more than one component, for each 
commodity Lcc ∈)',( , a server cannot be the source and 
the sink at the same time. This means, in equation 4b), 
either the left-hand-side or the right-hand-side is zero for 
any commodity. Therefore, we can get tighter constraints 
by splitting equation b) into the following two equations. 
i) Total amount of incoming flows equals demand: 

''
),(:

' ccsc
AsmNm

mscc Txw =�
∈∈

. (5III) 

ii) Total amount of outgoing flows equals supply: 

'
),(:

' cccs
ApsNp

spcc Txw =�
∈∈

. (6III) 

5) SAN link capacity constraints (9)-(12) in RAP0 remain 
the same as long as the core/edge topology assumption on 
the SAN is valid. If we allow the SAN to have an arbitrary 
topology, the similar idea of using MCFM can be applied.  
6) A feasibility matrix FN between components and nodes 
can be obtained the same way we computed FS, FR and 
FE for RAP0. For each component Cc ∈  and each node 

Nn ∈ , 1=cnFN  means node n is feasible for component 
c. Note that the node can be a server, a rack switch or an 
edge switch. Then, the following feasibility constraints 
hold. 
a) For the server assignment variables: 

{ } SsCcFNx cscs ∈∀∈∀∈   ,    ,,0  
b) For the flow variables mnccw ' : 

ApnNnLccFNTw cnccnpcc ∈∈∀∈∀≤≤ ),(,,)',(,0 ''      

AnmNnLccFNTw ncccmncc ∈∈∀∈∀≤≤ ),(,  ,)',(   ,0 '''  
Remarks: This model is referred to as RAP-MCFM. It 

again contains a linear MIP problem. The complete 

formulation of RAP-MCFM is in Appendix III. The 
number of binary variables in this model is in the order of 

|||| SC × . And the number of continuous flow variables 
is in the order of |||| AL × , the total number of links in 
the application architecture times the total number of arcs 
in the LAN fabric topology. If the LAN topology is a tree, 
the number of arcs |A| is simply )1|(|2 −N , where 

|||||||| ERSN ++= . Compared to RAP-LINI and RAP-
LINII, RAP-MCFM involves many more continuous 
variables and slightly fewer binary variables. The 
complexity comparison of the three linearized models in 
terms of number of variables is summarized in Table 1. 

 
Table 1. Comparison of three linearized models 

Model RAP-LINI RAP-LINII RAP-
MCFM 

#Bin. |||| NC ×  |||| NC ×  |||| SC ×  

#Cont. |)||(||| ERL +×
 

|)||(|||2 ERC +×
 

|||| AL ×
 

 
When the topology of the LAN fabric is a tree, there is a 

unique path between every pair of servers. This means the 
flows will not be split, i.e., mnccw '  will be either zero or 

',ccT . Among the three linearized models, the RAP-
MCFM model may not be the most efficient in this case 
since it involves a much larger MIP problem. However, if 
we do allow flow splitting, the RAP-MCFM formulation 
could be applied to a generalized network topology such 
as an arbitrary graph, which cannot be handled by the first 
two linear models. Along with the fact that the application 
architecture is also an arbitrary graph, RAP-MCFM is a 
fairly general formulation of the resource assignment 
problem, which can be applied to more general utility 
computing environments such as the Grid.  
 
7. Case Studies 
 

This section presents computation results from the three 
MIP formulations on a set of numerical examples. 
 
7.1 Example 1: A UDC with a 4-tier e-commerce 
application 

The first example involves a utility data center and a 
multi-tiered Web application. The LAN fabric contains 
one edge switch, 2 rack switches, a total of 125 servers, 
with 64 of them connected to rack switches and 61 of 
them, including 4 firewalls, connected directly to the edge 
switch. The SAN fabric contains 44 FC edge switches, 7 
FC core switches and 2 large disk arrays.  The compute 
servers can be classified into 6 different types with 
varying levels of processing power. The application we 
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chose is an e-commerce application with 4 tiers: one 
firewall, 10 Web servers, 18 application servers and 2 
database servers. The storage requirements of the 
application were not available to us. So we assumed that 
there are a total of 30 files that have been pre-allocated to 
the two disk arrays. The problem was solved using 
CPLEX 7.5 on an HP J6000 UNIX workstation with dual 
processors of 552MHz. 

The solver was able to find the optimal solution with all 
three MIP formulations. The optimal objective function 
(O.F.) values are consistent from the three models, as 
shown in Table 2. It also shows the solution time in each 
case and the complexity of each model in terms of number 
of variables (binary and continuous), number of equations, 
and number of non-zero coefficients in the equations. As 
we can see, for this particular example, the first two linear 
formulations have roughly the same complexity and used 
the same amount of solution time. The RAP-MCFM 
formulation involves a much larger MIP problem and 
required much more time to solve, which is consistent 
with our expectation. 
 
Table 2. Solution time and complexity of three models 

for example 1 
Model RAP-

LINI 
RAP-
LINII 

RAP-
MCFM 

Solution Time  2.6 sec 2.6 sec 85 sec 
# Binary 2197 2197 2073 

# Continuous 4362 4220 121,427 
# Equations 1584 990 116,268 

# Coefficients 31,900 34,062 497,618 
Optimal O.F. -7,680 0 7,680 
Optimal J3 0 0 0 

 
7.2 Example 2: A hypothetical 500-server data 
center with a 19-component application 
 

To test the performance of the RAP formulations with 
respect to their application to a larger computing utility, 
we also experimented with a hypothetical utility fabric 
with 500 servers. The LAN fabric contains 5 edge 
switches and 25 rack switches. The SAN fabric contains 
20 FC edge switches, 2 FC core switches, and 2 disk 
arrays. The hypothetical application has 19 components 
and 20 files.  All the parameters for both the utility fabric 
and the application were synthetically generated based on 
data from real data centers and applications. 

Again optimal solutions were found using all three MIP 
formulations. Their respective performance and 
complexity on a problem instance are shown in Table 3. 
In this case, the RAP-LINII is the most efficient with 
minimum complexity and took the least amount of 
solution time. The RAP-MCFM model is again a much 
larger model and took more than 5 minutes to solve, 

although during this time only 99.5 seconds was spent on 
computation and the rest was spent on model generation. 
This means there is room to improve the performance by 
more efficient model handling. 
 
Table 3. Solution time and complexity of three models 

for example 2 
Model RAP-

LINI 
RAP-
LINII 

RAP-
MCFM 

Solution Time 52 sec 12 sec 319 sec 
# Binary 5490 5490 5015 

# Continuous 12,631 11,211 196,156 
# Equations 7288 3308 183,149 

# Coefficients 100,786 96,371 822,096 
Optimal O.F. -59.4 6 71.4 
Optimal J3 6 6 6 

 
7.3 Numerical scalability test  

To see how the solution times of the RAP formulations 
scale with the size of the utility infrastructure, we 
performed a numerical experiment where we used the 
same application as in example 2, scaled up the number of 
servers from 100, 200, 300, 400 to 500, and solved each 
problem instance with the three models. In all cases the 
CPLEX engine was able to find an optimal solution. The 
total solution time (in seconds) for each case is shown in 
Table 4. 

 
Table 4. Solution time (sec) comparison on 5 examples 

# servers RAP-
LINI 

RAP-
LINII 

RAP-
MCFM 

100  10.1 9.5 247 
200 10.6 10.1 259 
300 11.3 10.4 273 
400 30.8 10.9 289 
500 52 12 319 

 
As we can see the RAP-LINII formulation is the most 

scalable among the three, for which the solution time 
remains fairly constant throughout the examples. For the 
RAP-LINI model, the solution time is similar to that of 
RAP-LINII until the 400-server example, where we see a 
jump in solution time. The reason for this jump is that, the 
LP relaxation was able to find the integer optimum 
solution immediately for the first three examples, while 
the last two examples required a branch and bound routine 
to find the optimum solution to the MIP problem. The 
RAP-MCFM model took much longer to solve compared 
to other two. However, the growth in computation time as 
the problem becomes larger is fairly moderate. 

Other examples of varying sizes were tested and the 
results are quite similar, therefore will not be presented 
here. Note that a computing utility with 500 servers is a 
reasonably large one. Even though the longest solution 
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time with RAP-MCFM is over 5 minutes, it is quite 
negligible compared to the lifetime of the application, 
assuming that we are primarily interested in continuously 
running applications, such as enterprise business 
applications. Although the time varying nature of the 
application workload may require re-assignment of 
computing resources from time to time, we expect such 
updates to be implemented at a time scale of at least an 
hour, not minutes.   
 
8. Conclusions and Future Work 
 

This paper presented a resource assignment problem for 
a computing utility as a mathematical optimization 
problem. The original nonlinear problem was transformed 
into three MIP formulations that can be solved directly 
using CPLEX. Their respective computation complexity 
was demonstrated through a number of examples. In all 
cases, the RAP-LINII formulation was the most efficient 
and the RAP-MCFM, a multicommodity flow 
formulation, required the most computation time. 
However, the first two formulations assume that the LAN 
fabric of the utility infrastructure has a tree topology, 
while the RAP-MCFM formulation allows the LAN 
topology to be an arbitrary graph. Along with the general 
component-graph based application architecture, the 
RAP-MCFM formulation is fairly generic and can be 
applied to resource assignment for distributed applications 
in any network environment. 

The scalability test we presented in this paper is quite 
preliminary. As ongoing work, we are conducting 
numerical experiments involving other parameters and 
many more examples. At the same time, we are searching 
for opportunities to implement the resource assignment 
techniques we developed in a real system to validate the 
effectiveness of our approach.  

Future work on this problem includes performing 
sensitivity analysis on how variation in parameter values 
impact the solution quality, investigating techniques for 
resource pool de-fragmentation such as re-assignment and 
server migration, exploring an integrated optimization 
framework for both server assignment and storage 
placement, as well as studying policy management related 
to resource assignment.  
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Appendix I.  
Complete Formulation of RAP-LINI 
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Appendix II.  
Complete Formulation of RAP-LINII 
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Appendix III.  
Complete Formulation of RAP-MCFM 
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