
                                                     

       
Strict Linearizability and the Power of Aborting 
 
Marcos K. Aguilera, Svend Frølund 
Internet Systems and Storage Laboratory  
HP Laboratories Palo Alto 
HPL-2003-241 
November 21st , 2003* 
 
E-mail: marcos.aguilera@hp.com, svend.frolund@hp.com  
 
 
shared objects, 
concurrency, 
linearizability, 
aborting, 
correctness 
condition, 
specification 
 

Linearizability is a popular way to define the concurrent behavior of 
shared objects. However, linearizability allows operations that crash 
to take effect at any time in the future. This can be disruptive to 
systems where crashes are externally visible. In such systems, an 
operation that crashes should either not happen or happen within 
some limited time frame—preferably before the process crashes. 
We define strict linearizability to achieve this semantics. 
 
Strict linearizability and wait- freedom are difficult to achieve 
simultaneously. For example, we show that it is impossible to 
obtain a strictly- linearizable wait-free implementation of objects as 
simple as multi-reader registers from single-reader ones. To address 
this problem, we augment our shared objects by allowing them to 
abort their operations in the presence of concurrency. An aborted 
operation behaves like an operation that crashes: it may or may not 
take effect (but if it does, it does before the abort). We show that 
with abortable operations, there are strictly- linearizable wait- free 
implementations of consensus and hence of any object. 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2003 



Strict Linearizability and the Power of Aborting

Marcos K. Aguilera∗and Svend Frølund†

HP Labs, Palo Alto, CA 94304

21 November 2003

Abstract—Linearizability is a popular way to define
the concurrent behavior of shared objects. However,
linearizability allows operations that crash to take ef-
fect at any time in the future. This can be disruptive
to systems where crashes are externally visible. In
such systems, an operation that crashes should ei-
ther not happen or happen within some limited time
frame—preferably before the process crashes. We
definestrict linearizability to achieve this semantics.

Strict linearizability and wait-freedom are difficult
to achieve simultaneously. For example, we show
that it is impossible to obtain a strictly-linearizable
wait-free implementation of objects as simple as
multi-reader registers from single-reader ones. To
address this problem, we augment our shared ob-
jects by allowing them toabort their operationsin
the presence of concurrency. An aborted operation
behaves like an operation that crashes: it may or
may not take effect (but if it does, it does before the
abort). We show that with abortable operations, there
are strictly-linearizable wait-free implementations of
consensus and hence of any object.

1 Introduction

Linearizability [7] has been widely used as the cor-
rectness condition for concurrent implementations of
shared objects. Roughly speaking, linearizability re-
quires that an operation appear to take place instan-
taneously at some time between its invocation and
response. This simple requirement has many attrac-
tive features, from both a conceptual and a pragmatic
point of view: Composability means that if an im-
plementation is proven linearizable when its under-

∗Email: marcos.aguilera@hp.com
†Email: svend.frolund@hp.com

lying objects’ operations are instantaneous, then the
implementation remains linearizable when its under-
lying objects are replaced with linearizable imple-
mentations. This property allows to build complex
linearizable objects from simpler ones in a modular
fashion.

Another attractive feature of linearizability isweak
limited effect, which means that an operation can
only take effect within a limited amount of time
when its caller completes. For example, consider
a shared register with two operations,read and
write(v), with the usual semantics. If a processp
invokeswrite(v) and does not crash, then weak lim-
ited effect guarantees that thewrite can take effect
only until the timep returns from thewrite’s invoca-
tion. This is in contrast to, for example, sequential
consistency [8], in which thewrite can take effect at
any arbitrary time in the future (as long as local order
is respected).

Limited effect is an important property, because it
prevents old operation instances from suddenly ap-
pearing mysteriously. For example, suppose that a
client withdraws money from the bank in an auto-
mated teller machine, but the machine crashes dur-
ing the transaction and does not debit the client’s ac-
count. The client will be annoyed if, years later, the
debit suddenly appears when the client has insuffi-
cient funds. Or suppose that a military officer presses
a button to launch a missile during war, but the mis-
sile does not come out. It might be catastrophic if the
missile is suddenly launched years later after the war
is over.

Unfortunately, linearizability does not always en-
sure limited effect—hence the termweak limited ef-
fect. In fact, it only does so if the caller does not
crash: if the caller crashes, then the operation may
take effect at any arbitrary time in the future. These

1



pending operation instances can be quite disruptive.
For example, a pending write can destroy the value
of a register unpredictably at any time in the future.

In fact, one can find linearizable implementations
such that, if a processp crashes while executing an
operation, then another processq may causep’s op-
eration to take effect long in the future, even after
other processes have executed many operations (e.g.,
in [11]).

We would like to limit the effect of an operation
by the time that the caller completes or crashes. Do-
ing so results in what we callstrict linearizability.
Intuitively, strict linearizability prohibits pending op-
eration instances, by requiring an operation to either
take effect before a crash, or never take effect. Fig-
ure 1 illustrates this idea. More precisely, strict lin-
earizability is a strengthening of linearizability that
requires an operation to take effect at some time be-
tween its invocation and either its response (if it does
not crash) or its crash (if it does).

Given that crashes are not observable events in
asynchronous systems, strict linearizability raises
two important questions: (1) does it really make
sense to use these unobservable crashes to restrict the
behavior of operations? (2) Is strict linearizability
implementable at all?

We believe the answer to the first question is
“yes”, because crashes are often visible events at
higher levels in the application. In fact, in practice
crashes need to be eventually fixed, and hence they
need to be either observable or forced upon the sys-
tem. In those cases, with strict linearizability, the
higher levels in the application can be assured that
an operation that does not take effect before the is-
suer crashes will never take effect.

The answer to the second question is “it depends”,
as we now explain.

Wait-freedom. One difficulty with strict lineariz-
ability is that it clashes with wait-freedom. Roughly
speaking, wait-freedom [5] guarantees that a process
completes the execution of an operation in a finite
number of its steps, regardless of the behavior of
other processes. Wait-freedom is attractive because
it provides a very strong form of fault-tolerance, by
ensuring progress of a process even if all other pro-
cesses in the system stop. Many implementations
in the literature have aspired to achieve both wait-

crashp

op

invocation 

crashp

op

invocation 

deadline

linearizability

strict
linearizability

time

Figure 1: Difference between traditional and strict
linearizability. With linearizability, the operation in-
stanceop may take effect at an arbitrary point after
p crashes. With strict linearizability,op cannot take
effect after the deadline created byp’s crash.

freedom and linearizability, to simultaneously pro-
vide strong fault-tolerance and strong consistency.

But what about wait-freedom andstrict lineariz-
ability? It turns out to be very difficult to achieve
both properties simultaneously. To see why, let us
consider a hypothetical implementation of a shared
register. Consider two scenarios. In the first one,
suppose that processp invokeswrite(v) and crashes
before its response. Further suppose that a subse-
quentread by processq returns the old value of the
register. Then, if the implementation is strictly lin-
earizable, thewrite can never take effect: it cannot
take effect before the crash because theread returns
the old value, and it cannot take effect after the crash
due to strict linearizability. Now consider a second
scenario, which is similar to the first except thatp
does not crash, but only becomes very slow. The
execution is indistinguishable toq, and so theread
returns the old value. Therefore, thewrite can only
take effect after theread. By introducing subsequent
read’s by q in a similar fashion, it is possible to build
a run where thewrite never takes effect, and hence
never returns. This violates wait-freedom.

This intuitive argument can be formalized into im-
possibility results of many constructions that are con-
sidered basic for linearizability. For example, we
can show that it is impossible to have a strictly-

2



linearizable wait-free implementation of an object as
simple as a multi-reader register using single-reader
registers.

This negative result seems to limit the applicability
of strict linearizability.

Abortable operations and liveness. To circum-
vent the impossibility result above, we allow oper-
ations toabort their execution under certain condi-
tions. When an operation instance aborts, the caller
receives a specially-designated response denoted⊥,
which indicates that the operation instance may or
may not have taken effect. And if it has taken effect,
it did between the operation’s invocation and abort.
An aborted operation instance is similar to an oper-
ation instance whose caller crashes. The difference
is that abort is intentionally initiated by an object,
whereas a crash is not.

It is undesirable for an operation instance to abort,
because it can be detrimental to liveness. Therefore
we introduce various progress conditions to limit
the occurrence of aborts. TheStrong progress con-
dition requires that a solo execution of an opera-
tion never abort. With strong progress, liveness is
achieved in the absence of concurrency. In the pres-
ence of concurrency, executions of operations may
abort. However, since an aborted operation instead
returns a special value, processes are aware of the
problem, and they can react appropriately. For ex-
ample, processes can retry the operation after some
exponentially backed-off delay. This heuristic guar-
antees liveness with high probability in the presence
of some weak form of system synchrony.

Achieving strict linearizability with aborts.
When aborting is allowed, we show that some of
the basic constructions that apply to linearizabil-
ity also apply to strictly linearizability. For exam-
ple, we show how to construct a multi-writer multi-
reader register from single-writer single-reader reg-
isters. The construction is similar to, but different
from, the one for linearizability. Our implementa-
tions all satisfy strong progress.

Furthermore, we show that even some construc-
tions that are known to be impossible with lineariz-
ability become actually possible with strict lineariz-
ability (and aborts). In fact, we show some surpris-
ing results: (1) it is possible to implement consensus
from registers and, in fact, (2) it is possible to im-

plementany object from registers. Our implementa-
tions never abort in solo executions, i.e., they satisfy
strong progress.

These results show that the strict linearizability
(with aborts) can be achieved.

Contributions. In summary, we make the follow-
ing contributions:

• We define strict linearizability as a modification
of linearizability to enforce limited effect and al-
low operations to abort their execution. We show
that strict linearizability implies linearizability,
and we show that strict linearizability is a local
property.

• We use natural deduction rules as a precise way
to formally specify strict linearizability.

• We consider strictly-linearizable wait-free im-
plementations of objects. Without abort, we
show that it is impossible to implement multi-
reader register from single-reader registers.

• With abort, we give a strictly-linearizable wait-
free implementation for any object (universal
construction) using single-writer single-reader
registers only. To do so, we start with single-
writer single-reader registers and implement
multi-writer multi-reader registers. We then use
these registers to implement consensus. Finally,
we use consensus and registers to implement any
object.

Roadmap. We define our distributed system
model in Section 2, and we define strict linearizabil-
ity as a correctness condition relative to this model
in Section 3. In Section 4 we introduce progress
conditions that limit the situations under which an
operation may abort its execution. We prove some
interesting properties of strict linearizability in Sec-
tion 5, including locality. In Section 6, we show
that without aborts there is no strictly-linearizable
wait-free implementation of a multi-reader atomic
register from single-reader ones. In Section 7,
we assume that operations may abort and we pro-
vide strictly-linearizable wait-free implementations
of atomic registers and of consensus. We then show
how to get a strictly-linearizable wait-free implemen-
tation of any object. Finally, in Section 8, we discuss

3



related work. In the appendix, we give all the de-
tails of our register implementation, and we prove its
correctness.

2 Model

We consider a distributed system withn processes:
p1, . . . , pn. Processes may fail by crashing; when a
process crashes, it simply ceases to execute its algo-
rithm (we do not consider Byzantine failures). We
explicitly represent a crash through a specialcrash
event. A correct process in a run is one for which
there are not crash events in the run. Crash events
are not visible to processes (but they may be visible
to higher levels in the application).

Processes communicate by invoking operations on
shared objects. The shared objects are always avail-
able and do not fail. The setObject contains all pos-
sibleobjects. Informally, each object has a set ofop-
erations, where each operation takes avalue as input
and returns a value as output. Values are taken from
an infinite setValue.

We consider an asynchronous system, in which
there is no bound on the time it takes a process to ex-
ecute its instructions, including instructions that ac-
cess shared objects.

3 Strict Linearizability

We first define, in Section 3.1, our representation of
system executions as ahistory, which is a sequence
of invocation, return, and crash events. Invocation
and return events happen as processes access shared
objects. We make some standard well-formed as-
sumptions on histories, explained in Section 3.2. In
particular, we assume that each process has at most
one outstanding invocation at a time, so that there is
no concurrencywithin a process; concurrent accesses
by different processes is allowed.

Objects are defined through asequential specifica-
tion (Section 3.4), which specifies the behavior of an
object in the absence of concurrency, that is, in ase-
quential history (Section 3.3). For example, aregis-
ter object withread andwrite operations is specified
through the requirement that in a sequential history a
read return the most recently written value.

Intuitively, a history isstrictly linearizable if there
is a sequential history that is consistent with it from
the point of view of the higher levels of the system
and that complies with the sequential specification
of all objects. We provide a precise definition in Sec-
tion 3.5.

3.1 Events and Histories

We represent a system execution (also called a run)
as a history. Roughly speaking, a history repre-
sents the ordering ofevents in the distributed sys-
tem. More precisely, a history is a finite or infinite
sequence of events. Intuitively, events are triggered
by invocations and returns of operations and by the
crash of processes. More precisely, there are three
types of events:

• An invocation event, denotedinv(op, v)op, repre-
sents the act of processp invoking operationop
on objecto with parameterv.

• A return event, denotedret(op, v)op, represents
the act of processp receiving a response contain-
ing valuev for operationop of objecto.

• A crash event, denotedcrashp, represents the act
of processp failing.

To represent an abort of execution, we use a return
event with a specially designated valuev = ⊥, which
is not part ofValue. We call such a return event an
abort event.

The setHistory contains all histories. Throughout
the paper, the letterH (sometimes subscripted) de-
notes an element ofHistory. We use the following
syntax for histories:

H ::= H1 ·H2 · . . . ·Hn |
inv(op, v)op |
ret(op, v)op |
crashp |
λ

where“·” denotes sequence concatenation andλ de-
notes the empty sequence. In the following, we also
use the notation “∈” and “/∈” to test whether an event
appears in a history.

4



Theprojection of a history H onto a process p, de-
notedH|p, is the history obtained fromH by drop-
ping all events except those ofp. Theprojection of a
history H onto an object o, denotedH|o, is the his-
tory obtained fromH by dropping all events except
those ofo and crash events.

For any finite historyH and any processp, we de-
fine lastp(H) to be the last event inH|p, or λ if H|p
is the empty history.

3.2 Well-Formedness Assumptions

We assume that each process has at most one out-
standing invocation at a time, that is, there is no con-
currencywithin a process (but there can be concur-
rencyacross processes). More precisely,

H = H1 · inv(op, v)op ·H2 · inv(op ′, v′)o
′

p ·H3 ⇒
ret(op, v′′)op ∈ H2

Every return event must have a matching invoca-
tion. More precisely,

H =H1 · ret(op, v)op ·H2 ⇒
inv(op, v′)op ∈ H1

H = H1 · ret(op, v)op ·H2 · ret(op ′, v′)o
′

p ·H3 ⇒
inv(op ′, v′′)o

′
p ∈ H2

A process crashes at most once, and after it
crashes, it has no more events. More precisely,

H =H1 · crashp ·H2 ⇒
crashp /∈ H1 ∧H2|p = λ

Finally,⊥ can only be part of return events. More
precisely,

inv(op, v)op ∈ H ⇒ v �= ⊥

3.3 Sequential Histories

A sequential history is an alternating sequence of in-
vocation and return events that starts with an invo-
cation event, and does not end with an invocation
event. Sequential histories do not have crash or abort

events. The setSeqHistory denotes all sequential his-
tories. Throughout the paper, the letterS (sometimes
subscripted) denotes an element ofSeqHistory. The
syntax for sequential histories is the following:

S ::= S1 · S2 · . . . · Sn |
inv(op, v)op · ret(op, v′)op |
λ

wherev, v′ �= ⊥.

3.4 Sequential Specification

We assume that each object has a sequential specifi-
cation that captures the semantics of the object when
it is invoked in a non-concurrent manner. We use
the same notion of sequential specification as [7]:
the sequential specification for an object is a set of
sequential histories; each history in the sequential
specification captures a particular “correct” interac-
tion between the object and a number of processes
that invoke it in a purely sequential manner. For any
objecto, we useSeqSpeco to denoteo’s sequential
specification. We assume that the empty history is
always part of an object’s sequential specification:
∀o ∈ Object : λ ∈ SeqSpeco.

3.5 History Transformation

In general, a history contains concurrent operation
instances1, partial operation instances, crashes, and
aborted operation instances. However, when reason-
ing about correctness, we would like to deal with
simpler histories. We define a relation→ to derive
simpler histories from more complicated ones, while
maintaining plausibility of execution. Intuitively, if
H → H ′ then (1)H′ is “consistent” withH from
point of view of higher levels in the system, and (2)
H ′ is simpler thanH in the sense thatH′ has fewer
concurrent operation instances, fewer crash events,
fewer aborted operations, or fewer partial operation
instances thanH. Note that→ is not symmetric.

We define→ in Figures 2, 3, 4 and 5. Rule (1)
defines→ to be reflexive, and Rule (2) defines→ to
be transitive.

1Roughly speaking, an operation instance is an invocation
and matching return event. This is defined in Section 4.1.

5



H → H (1)

H1 → H2 H2 → H3

H1 → H3
(2)

Figure 2: Reflexive and transitive rules

p �= q

H1 · inv(op, v)op · ret(op ′, v′)o′q ·H2 → H1 · ret(op ′, v′)o′q · inv(op, v)op ·H2
(3)

H1 · inv(op, v)op · inv(op ′, v′)o
′

q ·H2 → H1 · inv(op ′, v′)o
′

q · inv(op, v)op ·H2 (4)

H1 · ret(op, v)op · ret(op ′, v′)o
′

q ·H2 → H1 · ret(op ′, v′)o
′

q · ret(op, v)op ·H2 (5)

lastp(H1) = ret(op, v)op ∨ lastp(H1) = λ

H1 · crashp ·H2 → H1 ·H2
(6)

lastp(H2) = λ

H1 · inv(op, v)op ·H2 · crashp ·H3 → H1 ·H2 ·H3
(7)

lastp(H2) = λ v ∈ Value

H1 · inv(op, v′)op ·H2 · crashp ·H3 → H1 · inv(op, v′)op ·H2 · ret(op, v)op ·H3
(8)

Figure 3: Basic rules for reordering and dealing with crashes

H2|p = λ

H1 · inv(op, v)op ·H2 → H1 ·H2
(9)

(H2 ·H3)|p = λ

H1 · inv(op, v)op ·H2 ·H3 → H1 · inv(op, v)op ·H2 · ret(op, v′)op ·H3
(10)

Figure 4: Rules for dealing with operation instances that execute forever

lastp(H2) = λ

H1 · inv(op, v)op ·H2 · ret(op,⊥)op ·H3 → H1 ·H2 ·H3
(11)

lastp(H2) = λ v ∈ Value

H1 · inv(op, v′)op ·H2 · ret(op,⊥)op ·H3 → H1 · inv(op, v′)op ·H2 · ret(op, v)op ·H3
(12)

Figure 5: Rules for dealing with aborts

6



Rules (3)–(5) allow the introduction of order
among concurrent operation instances. Rule (6) en-
ables removal of a crash event of a processp when
no operations ofp are “active”. Rules (7) and (8)
deal with partial operation instances, which may or
may not take effect nondeterministically. Rules (9)
and (10) deal with invocations without responses,
which occur when a process executes forever with-
out returning from an invocation (this could occur
in some lock-free implementations). These rules are
not needed for or applicable to histories in which ev-
ery invocation is followed by a matching return or a
crash. Finally, Rules (11) and (12) deal with aborted
operations: these are essentially treated like crashes.

3.6 Definition of Strict Linearizability

We say that a well-formed historyH is strictly lin-
earizable if it can be transformed, under→, to a
sequential history where all object sub-histories are
in the sequential specification of the respective ob-
jects:2

Definition 1

His strictly linearizable ⇔
∃S ∈ SeqHistory,∀o ∈ Object :

H → S ∧ S|o ∈ SeqSpeco (13)

We say that an implementation is strictly linearizable
if all histories that it produces are strictly lineariz-
able.

4 Restricting the Occurrence
of Aborts

An object should not be allowed to always abort its
operations, else it would be useless. Thus, we need to
define properties that prevent objects from aborting

2This definition if for a finite historyH . If H is infinite, the
situation is more complex and beyond the scope of this paper.
One possibility is to defineH to be strictly linearizable iff there
exists an infinite sequential historyS such that (1) for everyi,
there exists a historyG such thatH → Pi(S) · G, wherePi(S)
is the history with the firsti events ofS, and (2)∀o ∈ Object :
S|o ∈ SeqSpeco. Our implementation correctness proofs all
assumeH is finite.

in “good” circumstances. These are calledprogress
conditions. In this paper we focus on a progress con-
dition that we callstrong progress. Roughly speak-
ing, strong progress guarantees that if an operation
instance runs solo then it does not abort. Here, “solo”
is with respect to operations of the same object. We
now make this more precise.

4.1 Operation Instances

Roughly speaking, an operation instance represents
the execution of an operation within a historyH. Un-
like the events inH, operation instances inH are not
atomic: they begin at an invocation event, and end in
either a return of non-⊥ (successful), a return of⊥
(aborted), or a crash (partial). Or perhaps it never
ends (infinite).

More precisely, we say that aninvocation event
e = inv(op, v)op matches event e′ if e′ = ret(op, v′)op
for somev′, or e′ = crashp. Given an invocation
evente in H and an evente′ in H, we say thate
matches e′ in H if e′ is the first event inH after e
such thate matchese′.

Let e ande′ be elements of a sequenceH. We say
that the pair〈e, e′〉 is anoperation instance in H if e
matchese′ in H. We also say that the pair〈e,∞〉 is
operation instance inH if there is no evente′′ in H
such thate matchese′′ in H (in this latter case, note
that∞ is not an event inH). If e = inv(op, v)op we
say thato is theobject of operation instance 〈e, e′〉
andp is theprocess of operation instance 〈e, e′〉.

We say that an operation instance〈e, e′〉 is suc-
cessful if e′ is a return event whose value is not⊥.
We say that〈e, e′〉 is aborted if e′ is an abort event.
And 〈e, e′〉 is complete if it is either successful or
aborted. We say〈e, e′〉 is partial if e′ is a crash event.
We say〈e, e′〉 is finite if it is partial or complete. We
say〈e, e′〉 is infinite if it is not finite (i.e.,e′ =∞).

An evente happens during an operation instance
〈e′, e′′〉 in H if e happens aftere′ in H and either
e′′ =∞ or e′′ is an event that happens aftere′ in H.

Two operation instancesopi andopj areconcur-
rent in H if either opi’s invocation event happens
duringopj in H or if opj ’s invocation event happens
duringopi in H. An operation instanceopi in H is
solo in H if there is no operation instanceopj such
that (1) the objects ofopi andopj are the same, and

7



(2) opi andopj are concurrent inH.

4.2 Progress Conditions

Formally, aprogress condition is a setLegalAborts
of histories. An implementation of an objecto satis-
fies a progress condition if for all historiesH of the
implementation,H|o is in LegalAborts.

Some example of progress conditions are the fol-
lowing, ordered by decreasing strength:

1. A solo operation instance does not abort.

2. For every processp, if there are infinitely many
solo operation instances ofp then infinitely many
of those do not abort.

3. If there are infinitely many solo operation in-
stances then infinitely many of those do not
abort.

4. For every processp, if eventually onlyp has op-
eration instances then there is a time after which
operation instances do not abort.

In this paper, we focus on progress condition 1,
which we callstrong progress.

5 Properties of Strict Lineariz-
ability

We now prove some interesting properties about
strict linearizability. We first show that strict lineariz-
ability implies linearizability. We then show that
strict linearizability is a local property, like lineariz-
ability. (This result isnot an immediate corollary of
the first result.)

5.1 Strict Linearizability Implies Lineariz-
ability

We relate strict linearizability to traditional lineariz-
ability [7], and prove that strict linearizability im-
plies traditional linearizability for histories without
aborts. We exclude aborts because linearizability
does not have this notion.3

3It is worth noting that our result holds for each history, that
is, even if some implementation can sometimes abort, if it pro-
duces a strictly-linearizable history without aborts then we show
that the history is also linearizable.

To allow the comparison between traditional and
strict linearizability, we introduce some of the for-
malism used to define traditional linearizability. We
only provide a summary of the various concepts; for
a complete definition the reader should consult [7].

Based on the total order for events in a finite his-
tory, we introduce a partial order on the success-
ful operation instances in the history. We say that
a successful operation instanceopi happens before
another successful operation instanceopj in a his-
tory H if the return event foropi occurs before the
invocation event foropj in H. We write this as
opi <H opj, and use<H to refer to the set of op-
eration pairs that satisfy this relation.

For any two historiesH andH′, we say thatH and
H ′ areequivalent if, for any processp, H|p = H′|p.
Moreover, for any historyH, complete(H) is the
maximal subsequence ofH consisting of only invo-
cation events and matching return events. We say
that a historyH is complete if H = complete(H).
We can now define (traditional) linearizability [7]:

Definition 2 A finite history H without crash events
and aborts is linearizable if there exists a sequential
history S and return events e0, . . . , em (n ≥ 0) such
that:

• complete(H · e0 · . . . · em) is equivalent to S.

• <H⊆<S .

• ∀o ∈ Object : S|o ∈ SeqSpeco.

We now proceed to prove that strict linearizability
implies linearizability.

Lemma 3 Let H be a finite history without aborts.
If a history H′ satisfies H → H′, then <H⊆<H′ .

PROOF: Let H be a finite history without aborts and
let H ′ be a history such thatH → H′. Consider a
single application of Rules (3)–(10) (we do not con-
sider Rules (11)–(12) becauseH does not contain
aborts). LetHl be the history on the left-hand side,
and letHr be the history on the right-hand side, in
one of these single applications.

In Rule (3), we have that<Hl
⊆<Hr because the

rule ordersop′ beforeop. In Rules (4) and (5), we
have that<Hl

=<Hr . For Rule (6), we also have that

8



<Hl
=<Hr because removing a crash event does not

change the operation instance ordering. For Rule (8)
and (10), we have that<Hl

⊆<Hr because adding a
return event introduces a new successful operation
instance in the history, and may thus add to the oper-
ation instance order. Rule (7) and (9) do not change
the operation instance order becauseHl andHr con-
tain the same successful operation instances, and no
events have been reordered. All in all, we have that
every single application of Rules (3)–(10) satisfies
the constraint<Hl

⊆<Hr . We can now prove the
lemma by straight-forward induction on the number
of applications of these rules that is required to trans-
form H to H ′.

Theorem 4 Let H be a finite history without aborts
and let Hcf be the history obtained from H by re-
moving all crash events. If H is strictly linearizable
then Hcf is linearizable.

PROOF: LetH be a strictly linearizable finite history
without aborts. SinceH is strictly linearizable, we
know that there exists a sequential historyS such that
H → S and such thatS|o ∈ SeqSpeco for all objects
o.

We first show that we can add zero or more re-
turn events toHcf and obtain a historyH′ such that
complete(H ′) is equivalent toS. We show that this
holds for any given processp. SinceH → S, we
also have thatH|p → S|p, and the transformation
of H|p to S|p involves application of Rules (6)–(10)
only (transformingH|p to S|p does not change the
ordering of events). Moreover, we can apply at most
one of these rules: the application of any one of these
rules prevents the subsequent application of the same
rule or of another rule.

If we use Rule (6) to transformH|p to S|p, we ob-
tainS|p by removing a crash event fromH|p. In this
case, we haveS|p = Hcf |p. Moreover,Hcf |p is a
complete history because the last event inH|p, be-
fore the crash event, is a return event. Thus, we can
constructH′ by adding zero return events toHcf .
If we use Rule (7), we remove both a crash event
and the invocation event of a partial operation in-
stance fromH|p. Because histories are well-formed,
and from the pre-condition of the rule, we have that

S|p = complete(Hcf )|p, and we can again con-
structH′ by adding zero return events toHcf . Fi-
nally, if we apply Rule (9), we remove the invoca-
tion event of an infinite operation instance. In this
case, we have thatS|p = complete(H)|p. More-
over, becausep does not crash, we also have that
complete(H)|p = complete(Hcf )|p, and we can
again constructH′ by adding zero return events to
Hcf .

Consider now a transformation ofH|p to S|p by
Rule (8) or Rule (10). If we apply Rule (8), we re-
move a crash event and add a return evente to H|p.
In this case we have thatS|p = (Hcf · e)|p, which is
a complete history because the last event before the
crash event inH|p is an invocation event. Thus, we
can constructH′ be addinge to Hcf . If we apply
Rule (10), we add a return evente′ to H|p, and have
thatS|p = (H · e′)|p, which is complete becausep
does not crash and becauseH is well-formed. Again,
we can constructH′ by addinge′ to Hcf . Thus,
for any processp we can construct a historyH′, by
adding zero or more return events toHcf , such that
complete(H ′) is equivalent toS.

We next show that<Hcf
⊆<S. Observe first that

<Hcf
=<H . SinceH has no aborts, and sinceH →

S, we know from Lemma 3 that<H⊆<S . We can
now conclude that<Hcf

=<H⊆<S, which proves
the theorem.

5.2 Strict Linearizability is a Local Prop-
erty

We now prove that strict linearizability is a local
property [7], just like linearizability. For simplicity,
we restrict attention to finite histories only.

Lemma 5 Let H be a finite history and S be a se-
quential history. If H is equivalent to S, and if
<H⊆<S , then H → S.

PROOF: Assume thatH �→ S. SinceH andS are
equivalent, they contain the same events. Moreover,
sinceS is a sequential history, and sinceS is equiv-
alent toH, we know thatH does not contain crash
events, aborts, infinite operation instances, or partial
operation instances. Thus, the only difference be-
tweenH andS is the ordering of events. However,

9



because the histories only contain invocation and re-
turn events, and because histories are well-formed,
we can use Rules (3)–(5) to change the order of any
two events, except if this will change the order of op-
eration instances. Thus, we conclude that there must
be two operation instancesopi andopj that are or-
dered differently inH andS. But this contradicts the
fact that<H⊆<S.

Theorem 6 (Locality) A finite history H is strictly
linearizable if and only if, for all objects x, H|x is
strictly linearizable.

PROOF: Consider first the “only if” part of the The-
orem. Assume thatH → S for some sequential
history S, and assume thatS|x ∈ SeqSpecx for all
objectsx. We argue thatH|x → S|x. Consider
a transformation ofH to S through Rules (3)–(12).
Selectively apply the same rules to transformH|x to
S|x in the following manner. If a rule involves only
events fromx (i.e., an invocation ofx or a return
from x), then apply the rule. If the rule does not in-
volve any events inH|x, ignore the rule. If the rule
is Rule (6), then apply the rule. If the rule is Rule (7)
or Rule (8), and the invocation event is for objectx,
then apply the rule, otherwise apply instead Rule (6)
to remove the crash event.

Consider now that “if” part of the theorem, and
assume that for all objectsx there exists a sequential
historySx such thatH|x→ Sx.

First, observe that there exists a transformation,
under →, from H|x to Sx where we first ap-
ply Rules (6)–(12) to obtain a historyHx without
crashes, aborts, or infinite operation instances, and
then apply Rules (3)–(5) to reorder the events inHx

to obtainSx. This observation follows from the fol-
lowing two facts:

• We can apply Rules (6)–(12) directly toH|x
without reordering any events first.

• Applying Rules (6)–(12) does not limit the way
in which we can reorder events afterwards.

Second, observe that for allx, the rules that we use
to obtainHx from H|x can also be applied toH:

• For Rules (9)–(12), this follows from the well-
formedness of histories and the fact that these

rules apply on a per-object basis. If the pre-
condition of a rule is satisfied forH|x then the
same will be the case forH.

• For Rules (6)–(8), there are two cases to con-
sider. If we apply Rule (6) to all per-object histo-
ries (the crash did not result in a partial operation
instance in any per-object history), then we can
also apply Rule (6) toH. Otherwise, there ex-
ists an objectx such that we have to apply either
Rule (7) or (8) to replacecrashp in H|x. In this
case we can replacecrashp in the same manner
in H. The ability to perform the same replace-
ment inH as we do inH|x follows from the fact
that if lastp(H2) is empty inH|x, then the same
is true forH (otherwiseH would not be well-
formed).

From the first observation we know that, for all
objectsx, there exists a historyHx without crashes,
aborts, or infinite operation instances, such that
H|x → Hx → Sx. From the second observation
we furthermore know that there exists a historyH′

such thatH → H′ andHx = H ′|x. SinceHx is
strictly linearizable, and contains no crash events or
aborts, we know from Theorem 4 thatHx is also lin-
earizable. Since linearizability is a local property [7],
we conclude thatH′ is also linearizable. This means
that there exists a sequential historyS such thatH′ is
equivalent toS and such that<H′⊆<S. Notice that
H ′ does not contain any partial operation instances,
so we do not need to extend it in order to obtain a
history that is equivalent to someS. From Lemma 5,
we can now conclude thatH′ → S, which proves the
proposition sinceH → H′ and→ is transitive.

6 Impossibility of Strict Lineariz-
ability without Abort

If operations are not allowed to abort, we show
that strictly-linearizable wait-free implementations
are inherently difficult to achieve. More precisely,
we show that there is no implementation of a multi-
reader register from single-reader ones. The proof
uses a technique that, we believe, can be used to
show that other basic constructions are impossible
without aborts.

10



To obtain stronger results, we assume that the
given registers are multi-writer single-reader regis-
ters that never abort. Of course, our results hold a
fortiori if they are instead single-reader single-writer
and or if they may abort. Similarly, we assume that
the target register need only be single-writer multi-
reader, but our result holds a fortiori for a multi-
writer multi-reader target register.

Theorem 7 Consider a system with n ≥ 3 pro-
cesses. There is no strictly-linearizable wait-free im-
plementation of a single-writer multi-reader regis-
ter that never aborts from multi-writer single-reader
registers that never abort.

We prove the theorem by contradiction. Assume
there is one such implementation. To differenti-
ate between the operations of the register being im-
plemented and the registers being used, we denote
the former by capitalized words (i.e., “Read” and
“Write”) and the latter by non-capitalized words (i.e.,
“read” and “write”).

Let nil be the initial value of the Register, and let
pw be the Writer of the register, and consider a run
R in which pw wishes to Write a valuev �= nil . We
reach a contradiction by continuing this run in a way
that the Write operation instance never completes.

Lemma 8 Process pw cannot complete its Write
without writing to at least one register.

PROOF: Indeed, supposepw completes its Write
without writing to any registers. Then a Reader that
executes afterwards cannot distinguish between a run
prefix R0 in which pw Writesv and a run prefixR1

in whichpw never Writes anything. But if the Reader
executes fromR0 it has to returnv, while fromR1 it
has to returnnil . This is impossible.

We now continue our construction ofR. Let pro-
cesspw execute until the timet1 whenpw has com-
pleted its first write to a registerr1. This is a multi-
writer single-reader register, so it has a unique pro-
cesspr1 that is its reader. Letps1 be a process differ-
ent frompr1 andpw.

After time t1, pw goes to sleep andps1 starts a
Read.

Lemma 9 The Read by ps1 returns nil.

PROOF: Indeed, processps1 does not notice the first
write bypw (sincepr1 is the only process that can do
so). Therefore, from the point of view ofps1, the run
up to timet1 is identical to a run in which a Write
never occurred. Therefore the Read byps1 has to
returnnil.

We now proceed by induction. Suppose that inR,
we have (1) processpw has writtenj times, where
the last write was to registerrj and finishes at time
tj, (2)pw has not yet finished its Write, (3) after time
tj, some processpsj �= pw has executed a Read that
returnsnil.

We continueR by lettingpw resume its execution.

Lemma 10 Process pw will attempt to write to an-
other register before completing the Write operation
instance.

PROOF: In order to obtain a contradiction, sup-
pose thatpw completes its Write without any further
writes to register. Construct a runR′ that is identi-
cal toR except that processpw crashes right before
psj starts its Read. Then, from the point of view of
any process different frompw, R andR′ are indis-
tinguishable. Now inR, suppose that after the Write
of pw completes, some processq �= pw executes a
Read. Thenq Reads the valuev Written bypw, since
the Read starts after the Write has completed. We
now makeq execute its Read inR′. SinceR andR′

are indistinguishable byq, it follows thatq Readsv in
R′. Therefore, inR′ the Write ofpw is linearized at
some point (rather than being eliminated). However,
strict linearizability requires the linearization point
to be before the crash ofpw—and hence beforepsj

starts its Read. Therefore, the Read ofpsj must also
returnv. This contradicts condition (3) above of the
induction hypothesis.

We continueR by letting pw continue executing
until it has written to another register (as ensured by
Lemma 10). Letrj+1 be such a register, lettj+1 be
the time when the write torj+1 completes, letprj+1

be the process allowed to readrj+1, and letpsj+1 be
a process different fromprj+1 andpw.

After time tj+1, we letpsj+1 execute a Read inR.

Lemma 11 The Read by psj+1 returns nil in R.

PROOF: We can construct another runR′ that is
identical toR, except thatpw crashes right at time

11



tj, but psj executes its Read as inR (it does so be-
cause it cannot distinguishR andR′). Then, inR′,
we let psj+1 execute its Read. Sincepsj+1 cannot
readrj+1, in R′ it will execute just as inR. More-
over, inR′ the Write tov can never be linearized (it
cannot be linearized by timetj because the Read by
psj that follows it returnsnil , and it cannot be lin-
earized after timetj by strict linearizability). There-
fore the Read bypsj+1 returnsnil in R′. Therefore
the same happens inR.

Therefore inR, we have (1) processpw has written
j + 1 times, where the last write was to registerrj+1

and finishes at timetj+1, (2) pw has not yet finished
its Write, (3) after timetj+1, some processpsj+1 has
executed solo a Read that returnsnil.

This establishes the induction chain. We therefore
get an infinite runR in whichpw never completes its
Write. This is a contradiction.

7 Strict Linearizability with Abort:
Everything is Possible

We how give strictly-linearizable wait-free imple-
mentations for various objects. The implementa-
tions may abort execution in the presence of concur-
rency. The first construction in Section 7.2 is for a
multi-writer multi-reader register using a collection
of single-writer single-reader registers. The second
construction in Section 7.3 is for consensus using
single-writer multi-reader atomic registers. We then
use consensus and registers to provide a universal
construction in Section 7.4. The universal construc-
tion takes an arbitrary object with a sequential speci-
fication, and provides a strictly-linearizable wait-free
implementation of the object. All our implementa-
tions satisfy strong progress as long as the underly-
ing objects also do.

7.1 Timestamps

Several of our constructions use timestamps, which
we now describe. Timestamps are taken from a set
with a total order represented by<, and with a small-
est element denotedlowTS. Processes use the prim-
itive newTS(ts) to generate aglobally unique times-
tamp that is greater thants .

A simple instantiation of timestamps is a pair
(counter , process-id), whereprocess-id is used for
global uniqueness and to break ties.newTS(ts) re-
turns a counter one greater thants’s together with the
process id of the caller.

7.2 Multi-Writer Multi-Reader Register

In this section, we give a strictly-linearizable imple-
mentation of amulti-writer multi-reader register, that
is, a shared register that can be written and read by
any process in the system. To do so, we assume
the availability of strictly linearizablesingle-writer
single-reader registers, that is, registers that can be
written by a single designated process and can be
read by a (possibly different) designated process.4

Our construction uses2n2 single-writer single-
reader registers. The constructed register and the reg-
isters used in the construction have abortable opera-
tions and provide strong progress.

Algorithm 1 shows the construction. In what
follows, we use capitalized words for the Read
and Write operations being implemented, and non-
capitalized words for the read and write operations
of the underlying single-writer single-reader regis-
ters. The underlying registers are organized as two
matrices:ord andval. Processpi is the designated
reader of thei-th row of the matrices and the desig-
nated writer of thei-th column.

We represent reads and writes to a register im-
plicitly through variables (e.g., a write is represented
through assignment to the register variable). At any
time during the execution of a Read or Write, if
some read or write aborts the execution, then the
Read or Write will also abort. We do not represent
this abort propagation explicitly in the code (this is
similar to exception propagation in modern program-
ming languages). However, for the interested reader,
we present an unabridged version of the algorithm
in Appendix A (which makes explicit how the abort
propagation works), and we prove its correctness.

To Write, a processpi executes four phases. In the
first phase,pi generates a timestamp for the Write

4These are among the most basic primitives in any dis-
tributed system, in which one node can communicate with an-
other node. They should be either readily available or easy to
implement in such systems.

12



Algorithm 1 Multi-writer multi-reader register im-
plementation

SHARED VARIABLES:

1: ord[1 . . . n, 1 . . . n]: single-writer single-reader
registers, initiallylowTS

2: val[1 . . . n, 1 . . . n]: single-writer single-reader
registers, initially〈lowTS,nil〉

CODE FOR EACH PROCESSpi:

3: procedure Write(v)
4: new-ts← newTS(maxj{ord[i, j]})
5: write-ord(new-ts)
6: write-val(new-ts, v)
7: if new-ts= maxj{ord[i, j]} then return OK

8: else return ⊥
9: procedure Read()

10: new-ts← newTS(maxj{ord[i, j]})
11: write-ord(new-ts)
12: 〈ts, v〉 ← read-latest-val()
13: if ts > new-tsthen return ⊥
14: write-val(new-ts, v)
15: if new-ts= maxj{ord[i, j]} then return v
16: else return ⊥

17: procedure write-ord(ts)
18: for j ← 1 to n do ord[j, i]← ts

19: procedure write-val(ts, v)
20: for j ← 1 to n do val[j, i]← 〈ts, v〉
21: procedure read-latest-val()
22: return val[i, ∗] with largestval[i, ∗].ts

that is higher than any timestamp in rowi of ord. In
the second phase,pi states its intention to Write us-
ing the timestamp (procedurewrite-ord). Intuitively,
this ensures that a write that does not complete is
visible. In the third phase,pi performs the actual
writing (procedurewrite-val) by storing the Write’s
timestamp and value ini-th column ofval. Finally,
in the fourth phase,pi checks if there is another pro-
cess that stated its intention to Write, by checking if
the previously generated timestamp is still the high-
est one in theord matrix. If not,pi aborts the Write.

A Read is very similar to a Write. It executes all
the phases of Write plus an additional one: before
storing a value inwrite-val, processpi first deter-
mines what value to store. It does so by reading the
i’th row in val, and picking the value with the highest
timestamp (procedureread-latest-val). The intuition
is that this is the most recent known value.

In the appendix, we give a proof of correctness
for this algorithm, and show that it satisfies strong
progress. We therefore have the following result:

Theorem 12 Algorithm 1 is a strictly-linearizable
wait-free implementation of a multi-writer multi-
reader register from single-writer single-reader
ones. It satisfies strong progress if the underlying
registers satisfy strong progress.

7.3 Consensus

We now consider consensus. We first give its defi-
nition, and then give a strictly-linearizable wait-free
implementation of it. The definition is in terms of
the properties that the consensus object satisfies in a
concurrent execution. Alternatively, we could have
defined it in terms of a sequential specification and
then derived its properties as a consequence (doing
so is a good exercise for the reader).

7.3.1 Definition

Consensus is defined in terms of an operation,
propose(v), that returns a value or aborts, such that

• If a value is returned then that value has been
previously proposed.

• If processespi and pj return a value then the
value is the same.

13



We use strong progress to limit the occurrence of
aborts: if a process executespropose solo then it does
not abort.

7.3.2 Implementation

Algorithm 2 shows a strictly-linearizable wait-free
implementation of consensus from single-writer
multi-reader registers. Processes share two arrays
ord and val of single-writer multi-reader registers.
The writer oford[i] andval[i] is processpi. ord[i]
stores a timestamp, andval[i] stores a pair consisting
of a timestamp and a value.

Algorithm 2 Consensus implementation

SHARED VARIABLES:

1: ord[1..n]: multi-reader registers, initiallylowTS
2: val[1..n]: multi-reader registers, initially

〈lowTS,nil〉
CODE FOR EACH PROCESSpi:

3: procedure propose(v)
4: ts← newTS(maxj{ord[j]})
5: ord[i]← ts
6: 〈ts2, w〉 ← val[∗] with largestval[∗].ts
7: if w = nil then w ← v
8: val[i]← 〈ts, w〉
9: if ts = maxj{ord[j]} then return w

10: else return ⊥

To propose a valuev, a processpi first obtains a
timestamptsby collecting the values of arrayordand
picking a higher timestamp than any seen. Process
pi then stores the picked timestamp inord[i], thereby
changing the maximum timestamp to its own. Pro-
cesspi next collects the values of arrayval and picks
the entry with the highest timestamp. If the value
associated with that entry isnil thenpi changes that
value to its proposed valuev. Next, pi writes to its
entry val[i] the timestampts and valuew. Finally,
pi collects the values oford once again. If the max-
imum timestamp is still its own, the process returns
w as the decision value. Else, it aborts.

During execution of propose, if any operation on
any of the registers aborts then the propose operation
also aborts immediately after. As before, this abort
propagation is not explicit in the code.

We now prove that the algorithm works. Consider

a runR in which processes propose values to con-
sensus and return values (or abort).

Lemma 13 If a value is returned then that value has
been previously proposed.

PROOF: Through a simple induction argument we
can easily show that for any processpi, the val[i].v
always holds eithernil or the value proposed by some
process. The lemma follows because a process re-
turns the value inval[i].v if it is not nil, or its pro-
posed value if it isnil.

Definition 14 We say that a propose operation in-
stance by some process pi is enactingif pi does not
crash during its execution and ts = maxj{ord[j]}
right after the assignment in line 8.

Note that processpi may return ⊥ even if
its propose operation instance is enacting, since
maxj{ord[j]} may change between the executions
of lines 8 and 9. However, if there are no enact-
ing proposes then all processes that propose will al-
ways abort (sincemaxj{ord[j]} is a monotonically
increasing value). In this case, correctness is trivial.

Thus, henceforth we assume that there is at least
one enacting propose.

Definition 15 Let F be the enacting propose in R to
first execute the assignment in line 5,5 pF be the pro-
cess that executes it, tF be the time when pF assigns
in line 8, tsF be the timestamp in the assignment, and
vF be the value in the assignment.

Lemma 16 By time tF , no processes have yet as-
signed a larger timestamp than tsF in line 5.

PROOF: Indeed, if by timetF some process had as-
signed a larger timestamp thantsF in line 5 thenF
would not be an enacting propose.

Lemma 17 From time tF , the val[∗] with largest
val[∗].ts is always equal to vF .

5By “first execute” we mean the propose whose assignment
is linearized first.

14



PROOF: Consider the execution of an enactingpro-
pose different fromF by some process. If the as-
signment in line 8 happens before timetF then it ir-
relevant for what happens from timetF onward. So
assume it happens after timetF . If the assignment in
line 5 happens before timetF then by Lemma 16 the
timestamp used in line 5 is smaller thantsF (it cannot
be equal totsF because we assume that timestamps
are unique). Therefore, the assignment in line 8 does
not change theval[∗] with the largest timestamp.

Thus, the onlyproposes that can change theval[∗]
with the largest timestamp are those in which assign-
ments in lines 8 and 5 happen after timetF . Consider
the set of all suchproposes. Note that for any of
them, the reads in line 6 also happen after timetF . A
trivial induction argument shows that theval[∗] with
largest timestamp has valuevF : this is the value read
in line 6, which is used to updateval[i] in line 8.

Corollary 18 If process pj returns a value upon
proposing then it returns vF .

PROOF: Consider apropose by some processpi. If
pi completes line 5 beforeF (the first enacting pro-
pose) does then this is not enacting and hence either
aborts or it never completes. Now assume thatpi

completes line 5 afterF . There are two cases. (1)
If pi completes line 5 before timetF , then the times-
tamp assigned in line 5 is smaller thantsF (it if were
bigger thenF would not be an enacting propose).
Thus, whenpi reaches line 9, it will find a larger
timestamp than its own, and it will abort. (2) Ifpi

completes line 5 after timetF , then by Lemma 17pi

will set w to vF in line 6, and sopi either aborts or
returnsvF .

This shows correctness of the algorithm. Wait-
freedom is immediate from the fact that the imple-
mentation has no loops. And strong progress fol-
lows from the fact that if processpi runs solo then
the timestamp assigned in line 5 continues to be the
largest timestamp in vectorord when pi executes
line 9. Therefore, when running solopi does not
abort. We therefore have the following result:

Theorem 19 Algorithm 2 is a strictly-linearizable
wait-free implementation of consensus. It satis-
fies strong progress if the underlying objects satisfy
strong progress.

7.4 Universal Construction

We now show how to get a strictly-linearizable wait-
free implementation of any object from consensus
and registers (universal construction [5]). To do so,
we implement anatomic list. Intuitively, this object
keeps track of a list of strings, initially empty. There
is exactly one operation,append, which (1) appends
a string passed as parameter to the list, and (2) re-
turns the entire new list. Like with other objects in
this paper, we allowappend to abort.

It is clear that an atomic list can be used to im-
plement any strictly linearizable object, by using the
append operation with a string description of the op-
eration ofT to execute; the return value of append is
then used to recompute the new state ofT from the
sequence of operations in the list. If append aborts,
the operation ofT also aborts.6

Figure 3 shows the implementation of an atomic
list. It uses a vectorconsensus of consensus ob-
jects indexed by the natural numbers, and a vector
last of single-writer multi-reader integer registers in-
dexed by process numbers, where the writer of an
elementlast [i] is processpi. As in previous algo-
rithms, if during the execution ofappend any oper-
ation onconsensus [i] or last [i] aborts, then theap-
pend also aborts immediately after. This is not ex-
plicitly represented in the code. A process also has
a global local variableseq that stores an integer, ini-
tially 0.

To append a strings to the list, a processpi needs
to first obtain the current state of the list. To do
so,pi reads each value in vectorlast, in some arbi-
trary order, and assigns the largest value tomaxlast.
If that integer is zero (the initial value) then the
current state of the list is empty. Else,pi obtains
the state of the list by reading the decision value
from consensus [maxlast ]. It does so by proposing
a dummy valuenil to this consensus object. (As we

6This implementation works fordeterministic operations.
For non-deterministic operations, one can use an extra vector of
consensus objects to keep the state after each operation. More
precisely, after a process gets alist (of operations) fromap-
pend, it sets a variablestate to the initial state ofT and then
for i = 1, . . . , len(list), the process (1) executes thei-th op-
eration in the list starting fromstate, (2) proposes the result to
the i-th consensus (if consensus aborts, the operation ofT also
aborts), (3) setsstate to the decision value. Once done with all
i’s, the process returnsstate.

15



will show, this consensus object will always have
previously decided, so thatnil can never be the de-
cision value.) Processpi then appendss to its local
copy of the list, and increments itsseq variable. This
variable is used, together with the process id, as a
unique identifier. Processpi then tries to change the
global state of the list by proposing its local list, to-
gether with the unique identifier, to the next consen-
sus object. Next,pi updates its entrylast [i] of the
last vector. It then checks if the consensus proposal
has actually decided on its proposed value or not. If
it has,pi is done and returns the new list. Else,pi

retries to appends to the list in exactly the same way
as before, using the next consensus object. If it fails
once again,pi aborts its operation. Else, it returns
the new list.

Algorithm 3 Atomic list implementation

SHARED VARIABLES:

1: consensus[1..∞]: consensus objects
2: last[1..n]: single-writer registers, initially 0

CODE FOR EACH PROCESSpi:

3: procedure initialization
4: seq← 0

5: procedure append(s)
6: maxlast← maxi{last[i]}
7: if maxlast= 0 then list ← λ
8: else 〈q, x, list〉 ← propose(consensus

[maxlast], nil)
9: nextlist← list · s

10: seq← seq+ 1
11: 〈j, x, list〉 ← propose(consensus

[maxlast+ 1], 〈i, seq, nextlist〉)
12: last[i]← maxlast+ 1
13: if i �= j or x �= seqthen
14: nextlist← list · s
15: seq← seq+ 1
16: 〈j, x, list〉 ← propose(consensus

[maxlast+ 2], 〈i, seq, nextlist〉)
17: last[i]← maxlast+ 2
18: if i �= j or x �= seqthen return ⊥
19: return list

We now show correctness of this algorithm. First
note that there are no loops, and so the implementa-
tion is wait-free. Now consider a run of the above

implementation and letH be the resulting history.
For simplicity, we assume that no two invocations of
append(s) contain the same strings. We do not lose
generality in doing so because the exact value ofs
does not really affect the essence of execution (note
thats is only used in lines 9 and 14).

Definition 20 Let M = maxi{last [i]}.

Note that the value ofM changes with time.

Lemma 21 M is monotonically nondecreasing.

PROOF: Indeed, a processpi only updateslast [i]
with a value larger than the previous value oflast [i]
since themax in line 6 includeslast [i].

Lemma 22 For 1 ≤ j ≤ M , consensus [j] has
decided some non-nil value, and for j > M ,
consensus [j] has not decided nil.

PROOF: The invariant of the lemma holds initially
whenM = 0, because the first consensus object is
consensus [1] and, forj > 0, consensus [j] has not
decided any value. Moreover, line 8 clearly keeps
the invariant because (1)maxlast ≤ M sinceM is
monotonically nondecreasing, and (2) before line 8 is
executed,consensus [maxlast ] has already decided
some value that is notnil by the invariant. Lines 11
and 16 also maintain the invariant because the pro-
posal value is notnil. Finally, lines 12 and 17 may in-
crementM , but the invariant is maintained due to the
propose operation in lines 11 and 16, respectively.

Lemma 23 For every j ≥M +2, consensus [j] has
not decided.

PROOF: This holds because when a process pro-
poses toconsensus [j], it is always the case that
j ≤M + 1.

Definition 24 Let N be the index of the highest con-
sensus object that decides.

Lemma 25 For all j = 1, . . . , N , consensus [j] de-
cides some non-nil value.

16



PROOF: Let Mmax be the largest value ofM in the
execution. From Lemma 23,N ≤Mmax +1. Now
the result follows from Lemma 22.

Note that the non-nil values proposed to consensus
(lines 11 and 16) are of the form〈∗, ∗, list 〉, where
list is a non-empty list. Hence, the decision values
are also of this form. This motivates the following
definition:

Definition 26 For j = 1, . . . , N , let ij and sj be
such that the decision of consensus [j] is 〈ij , ∗, list ·
sj〉.

Lemma 27 For j = 1, . . . , N , some process in-
vokes append(sj).

PROOF: Indeed, the non-nil propose values are al-
ways of the form〈∗, ∗, list · s〉 wheres is the param-
eter toappend .

Lemma 28 If j �= k then sj �= sk.

PROOF: Recall that we are assuming that no two in-
vocations toappend (s) have the sames. Note that
〈∗, ∗, list ·sj〉 can only be proposed during the execu-
tion of append(sj). Moreover, there can be at most
two such proposes in the execution, and the second
propose only happens if the first propose does not
decide on the proposed value. Therefore at most one
consensus object can decide on〈∗, ∗, list ·sj〉. It fol-
lows that ifj �= k thensj �= sk.

Definition 29 An append(s) operation instance is
successfulif it executes without aborting or crash-
ing. An append(s) operation instance is effectiveif
s = sj for some j.

Intuitively, an effective append is one whose param-
eters has been taken by one of the consensus.

Lemma 30 If p executes append (s) solo without
crashing then append(s) is successful.

PROOF: Considerp’s execution ofappend (s), and
let M0 be the value ofmaxlast afterp executes line 6.
Note that at this time,M = M0. Therefore, by
Lemma 23,consensus [M0 + 2] has not decided any
value. There are now two cases: (1) if theif in

line 13 evaluates to false thenp does not abort and
so append(s) is successful. (2) If theif in line 13
evaluates to true then execution reaches line 16. At
this time,consensus [M0+2] has not yet decided any
value, sincep is executing solo, and therefore it will
decide on the proposed value, and so theif in line 18
evaluates to false. Therefore,p does not abort and so
append(s) is successful.

Lemma 31 If append(s) is successful then it is ef-
fective.

PROOF: Indeed, letpi be the process to execute
append(s). Sincepi does not abort then the propose
in line 11 or 16 returns the proposed value, which is
of the form〈∗, ∗, ∗ ·s〉. Therefore, the corresponding
consensus decides on that value, and sos = sj for
somej.

Lemma 32 If append(sj) is effective then, when
append(sj) returns or crashes, M ≥ j − 1.

PROOF: If append (sj) is effective then during its
execution, the propose in either line 11 or 16 returns
the proposed value. At that point,M ≥ j − 1. The
result follows from Lemma 21.

Lemma 33 For j �= k, if append (sj) and
append(sk) are effective, and append (sj) returns or
crashes before append (sk) is invoked, then k > j.

PROOF: Let Mj be the value of M when
append(sj) returns or crashes. By Lemma 32, we
haveMj ≥ j − 1. Whenappend(sk) is later in-
voked by some processpi, pi will set maxlast to
a valuel ≥ Mj . Since the append ofpi is effec-
tive, the propose bypi to eitherconsensus [l + 1] or
consensus [l + 2] returns the proposed value. There-
fore, k = l + 1 or k = l + 2. In either case,
k − 1 ≥ l ≥ Mj ≥ j − 1. Thusk ≥ j. Since
j �= k by assumption, it follows thatk > j.

Lemma 34 If append (sj) is successful then it re-
turns the list s1 · · · sj .

PROOF: Using the way in whichnextlist is as-
signed in lines 9 and 14, we can show through a

17



simple induction onj that consensus [j] decides on
〈∗, ∗, s1 · · · sj〉. The result then follows.

We define define a sequential historyS using the
sj ’s as follows:

Definition 35 Let S :=
inv(append , s1)opi1

· ret(append , s1 )opi1
·

inv(append , s2)opi2
· ret(append , s1 · s2 )opi2

·
...

inv(append , sN )opiN
· ret(append , s1 · · · sN )opiN

We now show how we can transformH (recall
thatH is the history of some execution of the atomic
list implementation) intoS using→. We first use
Rules (7) and (11) of→ to remove fromH anynon-
effective operation instancesappend (s) that abort or
crash. We then use Rule 6 to remove all crash events
that are not part of any operation instance. LetH1

be the resulting history. Since successful operation
instances inH1 are always effective (by Lemma 31),
H1 is only left with append(s) operation instances
that are effective.

We then use Rules (8) and (12) to transform an
abort event or the remaining crash events into nor-
mal return events, as follows: letappend (sj) be an
operation instance that aborts or crashes. Replace the
abort or crash event withret(append , s1 · · · sj )opij

.

We do that for all abort and crash events. LetH2 be
the resulting history.

Now consider eventinv(append , s1)opi1
in H2. By

Lemma 33, there are noret events inH (or in H2)
before thisinv event. Therefore, by multiple applica-
tions of Rule (4), we can bring forward theinv event
to the beginning of the historyH2. Then, by multi-
ple applications of Rules (3) and (5), we can bring
forward theret event that matches thisinv event right
after theinv event.

We can repeat this process for all remainingap-
pend operation instances in order fromappend (s2)
throughappend (sN ). By doing so, we finish with
a sequential historyHfinal of alternatinginv andret
events fors1, s2, . . . , sN in order. Theinv events
in Hfinal exactly match those inS. As for the ret
events, by Lemma 34, theret events inHfinal of suc-
cessful operation instances inH match those events
in S. As for the otherret events inHfinal , those come
from replacing crashes or aborts above (going from

H1 to H2). Therefore, by construction, those events
also match those inS. We conclude thatHfinal = S.

Therefore, we have a strictly-linearizable imple-
mentation of an atomic list. We already showed that
the implementation is wait-free. Moreover, it satis-
fies strong progress because it only aborts an oper-
ation if the underlying objects abort their operation.
Therefore, we get the following result:

Theorem 36 Algorithm 3 is a strictly-linearizable
wait-free implementation of an atomic list. It sat-
isfies strong progress if the underlying objects satisfy
strong progress.

As we argued before, it is easy to use an atomic list
to build any other object, and so the following holds:

Theorem 37 Any object has a strictly-linearizable
wait-free implementation from single-writer single-
reader registers. It satisfies strong progress if the un-
derlying registers satisfy strong progress.

8 Related Work

The general idea that concurrency may prevent suc-
cessful completion goes as far back as database
transactions that abort. The “safe” registers of [9]
allow a read that is concurrent with a write to return
an arbitrary value. This is different from our notion
of abort because with safe registers, a process does
not know if its read is successful or returns garbage.
With obstruction-freedom [6], processes are not re-
quired to return from their operations in the presence
of concurrency. This is in contrast to our work, in
which processes instead return an abort indication.

Lots of prior work has consideredspecific prob-
lems or objects with abort (rather than a general
framework as we do), including consensus in [10, 1]
or a register variant in [2]. The storage registers
of [4, 3] are examples of strictly linearizable imple-
mentations of registers on top of an asynchronous
message-passing system. Abortable consensus [12]
is a problem defined for message-passing systems,
which resembles the consensus objects in this paper,
but the conditions for aborting are very different.

The universal construction in our work is similar
to the one in [5], but we do not need its “helping

18



mechanism”, whereby one process helps to complete
another process’s operation. These types of helping
mechanisms appear frequently in the wait-free liter-
ature, but in general they are quite ad hoc and com-
plicated to design. Finally, our implementation of a
multi-writer multi-reader register from single-writer
single-reader ones is heavily inspired by the one de-
scribed in [11].

References

[1] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui.
Deconstructing Paxos.ACM SIGACT, 34(1), March
2003.

[2] P. Dutta, S. Frolund, R. Guerraoui, and B. Pochon.
An efficient universal construction for message-
passing systems. InInternational Symposium on
Distributed Computing (DISC), 2002.

[3] S. Frolund, A. Merchant, Y. Saito, S. Spence, and
A. Veitch. Building storage registers from crash-
recovery processes, October 2003. Tech report
HPL–SSP–2003–14.

[4] S. Frolund, A. Merchant, Y. Saito, S. Spence, and
A. Veitch. Fab: Enterprise storage systems on a
shoestring. InProceedings of the Ninth Workshop
on Hot Topics in Operating Systems (HOTOS IX).
USENIX, 2003.

[5] M. Herlihy. Wait-free synchronization.ACM Trans-
actions on Programming Languages and Systems,
13(1):123–149, January 1991.

[6] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: double-ended
queues as an example. InProceedings of the
23rd International Conference on Distributed
Computing, 2003.

[7] M. Herlihy and J. Wing. Linearizability: a correct-
ness condition for concurrent objects.ACM Trans-
actions on Programming Languages and Systems,
12(3):463–492, July 1990.

[8] L. Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess programs.
IEEE Transactions on Computers, 28(9), September
1979.

[9] L. Lamport. On interprocess communication.Dis-
tributed computing, 1(1):77–101, 1986.

[10] B. Lampson. How to build a highly available sys-
tem using consensus. InProceedings of the In-
ternational Workshop on Distributed Algorithms,
Springer-Verlag, LNCS (WDAG), September 1996.

[11] P. M. B. Vitanyi and B. Awerbuch. Atomic shared
register access by asynchronous hardware. InIEEE
Foundations of Computer Science, 1986.

[12] Private communication with Wei Chen, March
2003.

A Constructing an Atomic Register

We give the unabridged version of our register con-
struction with explicit abort handling. We then
show its correctness, by showing that it is a strictly-
linearizable wait-free implementation.

Algorithm 4 Multi-writer multi-reader register im-
plementation

SHARED VARIABLES:

1: ord[1 . . . n, 1 . . . n]: single-reader, single-writer
registers, initiallylowTS

2: val[1 . . . n, 1 . . . n]: single-reader, single-writer
registers, initially〈nil , lowTS〉

CODE FOR EACH PROCESSpi:

3: procedure Write(val)
4: new-ts← generate-ts()
5: if new-ts= ⊥ then return ⊥
6: if inc-ord-ts(new-ts) = ⊥ then return ⊥
7: if write-val(val, new-ts) = ⊥ then return⊥
8: return check(new-ts)

9: procedure Read()
10: new-ts← generate-ts()
11: if new-ts= ⊥ then return ⊥
12: if inc-ord-ts(new-ts) = ⊥ then return ⊥
13: val ← get-latest-val(new-ts)
14: if val = ⊥ then return ⊥
15: if write-val(val, new-ts) = ⊥ then return⊥
16: if check(new-ts) = OK then return val
17: else return⊥

Algorithms 4 and 5 contain the atomic register
construction. In the following, we prove that the al-
gorithms correctly implement a multi-writer multi-
reader atomic register.

To distinguish between operations on the con-
structed multi-writer multi-reader register and oper-
ations on the underlying single-writer single-reader
registers, we use Read and Write to refer to the for-
mer and read and write to refer to the latter.

We useWrite(v) to represent a Write operation
instance whose invocation event hasv as parame-

19



Algorithm 5 Auxiliary procedures

CODE FOR EACH PROCESSpi:

1: procedure generate-ts()
2: latest-ts← lowTS
3: for j ← 1 to n do
4: ts← ord[i,j].read()
5: if ts = ⊥ then return⊥
6: if latest-ts< ts then
7: latest-ts← ts
8: return newTS(latest-ts)

9: procedure inc-ord-ts(ts)
10: for j ← 1 to n do
11: if ord[j,i].write(ts) = ⊥ then return⊥
12: return OK

13: procedure get-latest-val(new-ts)
14: latest-ts← lowTS
15: for j ← 1 to n do
16: v ← val[i,j].read()
17: if v = ⊥ then return⊥
18: 〈val, ts〉 ← v
19: if ts > new-tsthen return⊥
20: if latest-ts< ts then
21: latest-ts← ts
22: latest-val← val
23: return latest-val

24: procedure write-val(val, ts)
25: for j ← 1 to n do
26: if val[j,i].write(〈val, ts〉) = ⊥ then
27: return⊥
28: return OK

29: procedure check(ts)
30: for j ← 1 to n do
31: ord-ts← ord[i,j].read()
32: if ord-ts= ⊥ or ord-ts> ts then return⊥
33: return OK

ter value. We useRead(v) to represent a successful
Read operation instance whose return event hasv as
parameter value. The valuenil (nil ∈ Value) repre-
sents the initial value of the register. To simplify the
presentation, we assume that each value is written at
most once (i.e., we never have two Write operation
instances with the same value). We also assume that
nil is not part of any Write operation instance. We
usewriter(v) to represent a write operation instance
on a the registerr, and we usereadr(v) to represent
a successful read operation on the registerr.

For any historyH, we extend the ordering<H on
successful operation instances inH to also include
aborted and partial operation instances. For any two
operation instancesopi andopj in H, we say that
opi → opj if opi’s return or crash event precedes
opj ’s invocation event inH.

For any historyH, we define the following subsets
of Value:

• WrittenH is the set of all values in invocation
events for Write operation instances inH.

• CommitedH is the set of all values in invocation
events for successful Write operation instances
in H.

• ReadH is the set of all values in return events for
successful Read operation instances inH.

We also call the setReadH ∪ CommitedH theob-
servable values inH, and define

ObsH ≡ ReadH ∪ CommitedH .

In the following, R is any run of Algorithms 4
and 5, andH refers to any history thatR may give
rise to.

A.1 A Sufficiency Condition for Strict Lin-
earizability of our Construction

Intuitively, a conforming total order is a totally-
ordered set(V,<) such that (a)V contains all the
observable values inH, and (b) the ordering of val-
ues inV corresponds to the ordering of operation in-
stances inH. More precisely:

Definition 38 A totally ordered set (V,<) is a con-
forming total order for H if ObsH ⊆ V ⊆

20



WrittenH ∪ {nil} and if for all v, v′ ∈ V the fol-
lowing holds:

nil ∈ V ⇒ nil ≤ v (14)

Write(v)→H Write(v′) ⇒ v < v′ (15)

Read(v)→H Read(v′) ⇒ v ≤ v′ (16)

Write(v)→H Read(v′) ⇒ v ≤ v′ (17)

Read(v)→H Write(v′) ⇒ v < v′ (18)

Proposition 39 If H has a conforming total order
then H is strictly linearizable.

PROOF: Assume that(V,<) is a conforming total
order forH. Because strict linearizability is a local
property (Theorem 6), we can prove thatH is strictly
linearizable by proving that each object sub-history
H|o is strictly linearizable. By assumption, the reg-
isters inval andord are strictly linearizable. Thus,
if we useO to refer to the multi-writer multi-reader
object in Algorithms 4 and 5, is sufficient to show
thatHO = H|O is strictly linearizable.

To show thatHO is strictly linearizable, we con-
struct a sequential historyS such thatHO → S.

For everyv ∈ V , construct a sequenceSv as fol-
lows:

Sv =

{
Write(v) · Read1(v) · . . . · Readk(v) v �= nil
Read1(v) · . . . · Readk(v) otherwise

wherek is the number of successful Read operation
instances that returnv in HO (k ≥ 0). Next, con-
structS in the following way:

S = Sv1 · . . . · Svm

wherev1 < v2 < . . . < vm are the elements ofV .
First observe thatS belongs to the sequential spec-

ification of a multi-writer multi-reader register: inS,
a Read operation instance always returns the value of
the most recent Write operation instance.

We now show thatHO → S. To do so, we start
with HO and successively explain which rules to ap-
ply until we obtainS. First, use Rules (6)–(12) to re-
move all partial, aborted, and infinite Read operation

instances fromHO as follows. Letv be the parameter
of a Write operation instance. Ifv ∈ V , use Rule (8),
(10), or (12) to convert the Write operation instance
to a successful Write; otherwise, use Rule (6), (7),
(9), or (11) to remove the Write operation instance.
We now have a historyH′

O without crashes, aborts,
and infinite aborted operation instances. Moreover,
HO → H ′

O.
We next show thatH′

O → S. We first claim that
H ′

O andS contain the same operation instances. To
show the claim, note that every successful operation
instance inHO is part of bothH′

O andS. Moreover,
every unsuccessful Read operation instance (i.e., par-
tial, aborted, and infinite Read operation instances)
in HO are in neitherH′

O nor S. An unsuccessful
Write operation instanceWrite(v) is part ofS if and
only if v ∈ V . But if v ∈ V , we convert the unsuc-
cessful Write operation instance inHO to a success-
ful instance inH′

O by the above transformation. This
shows the claim.

Now, assume for a contradiction thatH′
O �→ S.

Because the histories contain the same set of oper-
ation instances, and because these are all successful
operation instances, there must be two operation in-
stancesopi and opj that are ordered differently in
H ′

O andS. But this is impossible because the value
ordering inV obeys the operation instance ordering
in HO and thereby inH′

O.

A.2 Constructing a Conforming Total Or-
der

We show that our algorithm gives rise to a conform-
ing total order. We construct a conforming total or-
der for values in terms of the timestamps that are
used to store these values in the underlying single-
writer single-reader registers. To define the total or-
der of values, we first introduce two types of internal
events related to our algorithm: store events and or-
der events.

An order eventord(v, ts) happens when a process
invokes thewrite-val procedure withv andts as pa-
rameters. A store eventst(v, ts) happens when the
check procedure returnsOK to a process. The param-
etersv and ts are the same as in the ordering event
of the operation instance that invokescheck.

We useOEv
R to denote the (possibly empty) set of

21



ordering events that happen inR and that havev as
first parameter. IfOEv

R �= ∅, we usetsv to denote the
smallest timestamp that is part of any ordering event
in OEv

R.7 We similarly defineSEv
R as the set of store

events that happen in runR and that havev as first
parameter. Finally, we defineSVR to be the set of
values that are part of store events inR.

Definition 40 The order relation <val on SVR is de-
fined as follows:

v <val v′ ⇔ tsv < tsv′ v, v′ ∈ SVR (19)

The<val relation is a total order because different
values are always stored with different timestamps.
In the following, we omit the subscript from<val,
and simply use “<”. With this convention, the sym-
bol < is overloaded to order both timestamps and
values.

Lemma 41

ObsH ⊆ SVR ⊆WrittenH ∪ {nil}.

PROOF: Let v ∈ ObsH . Then eitherv ∈
CommitedH or v ∈ ReadH . If v ∈ CommitedH then
v is the parameter of a successful Write operation
instance. The invocation ofcheck in this instance
thus returnsOK, which means thatR contains a store
event withv as first parameter, and sov ∈ SVR. If
v ∈ ReadH thenv is the return value of a success-
ful Read operation instance. Again, the invocation of
check within this instance returnsOK, and again we
conclude thatv ∈ SVR.

Now let v ∈ SVR. Consider any store event with
v as first parameter. There are two cases to con-
sider: (a) the event happens during a Read operation
instance and (b) the event happens during a Write
operation instance. In case (a),v is returned byget-
latest-val, which means thatv is stored in aval regis-
ter. A simple induction shows that this only happens
if v = nil or if v is the parameter of some Write
operation instance. In case (b),v is parameter of a
Write operation instance. In either case, we have that
v ∈WrittenH ∪ {nil}.

7Although tsv depends onR we do not parameterizetsv

with that run for brevity.

Lemma 42 Each register in val and ord contain
monotonically increasing timestamps.

PROOF: Consider registerord[i,j]. This register is
only written by processpj. But each process gener-
ates a monotonically increasing sequence of times-
tamps, which proves the lemma forord. We can ap-
ply a similar reasoning toval.

Lemma 43 Let v be any value in ObsH . If nil ∈
ObsH then nil ≤ v.

PROOF: Assume for a contradiction thatnil andv
are values inObsH , yet v < nil . From Lemma 41,
we know thatv,nil ∈ SVR.

Let pk be the process at which the store event
st(v, tsv) happens, and letpm be the process at
which the store eventst(nil , tsnil) happens.

Since no Write operation instance hasnil as pa-
rameter, the store eventst(nil , tsnil ) must happen
during a Read operation instance. Consider the
readval[m,k](〈v, ts〉) operation instance that happens
during this Read operation (as part ofget-latest-
val). We claim that thatv = nil and ts = lowTS.
Assume otherwise. Since Read returnsnil , get-
latest-val also returnsnil . So some read opera-
tion on a register inval must return〈nil , ts′〉 with
ts ′ > lowTS. This means that there is an ordering
eventord(nil , ts ′) in R. Sinceget-latest-val does
not abort, we know thatts′ < tsnil , which con-
tradicts the definition oftsnil and thereby proves
the claim. The Read operation also gives rise to
writeord[k,m](tsnil ) as part of theinc-ord-ts proce-
dure. We know thatwriteord[k,m](tsnil) is linearized
before readval[m,k](〈nil , lowTS〉) because they are
invoked by the same processpm in that order.

The store eventst(v, tsv) happens during some
Read or Write operation. This Read or Write
operation invokes write-val and gives rise to
writeval[m,k](〈v, tsv〉). We claim thatwriteval[m,k]

(〈v, tsv〉) is linearized beforewriteord[k,m](tsnil ). To
prove this claim, observe first thattsv < tsnil .
Thus, a linearization ofwriteord[k,m](tsnil ) before
writeval[m,k](〈v, tsv〉) would either violate the fact
that ord[m,k] contains monotonically increasing
timestamps (Lemma 42), or it would contradict the

22



fact that st(v, tsv) happens inR. This proves the
claim. We conclude thatwriteval[m,k](〈v, tsv〉) is lin-
earized beforereadval[m,k](〈nil , lowTS〉). This con-
tradicts Lemma 42, and completes the proof.

Lemma 44 For any value v, if the event ord(v, ts)
happens during a Write operation then ts = tsv.

PROOF: Sinceord(v, ts) happens during a Write op-
eration we know thatv �= nil . Assume for a contra-
diction thatord(v, tsv) happens during a Write op-
eration instance, butts �= tsv. Consider now the
eventord(v, tsv). Sincev is written at most once,
this event happens during some Read operation in-
stance executed by a processpi. This Read oper-
ation instance will execute theget-latest-val proce-
dure, which will returnv. Moreover, some register
in val[i,−] containsv and a timestampts′ that is
smaller thantsv. Sincev �= nil , some operation in-
stance invokes write-val withv andts′, which means
thatR containsord(v, ts′). This contradicts the fact
that tsv is the smallest timestamp that is part of or-
dering events forv.

Lemma 45 Let v �= v′ be values in SVR. If st(v, ts)
happens in R with ts > tsv′ , and if st(v′, ts ′) hap-
pens in R, then ts > ts′.

PROOF: Assume for a contradiction thatst(v′, ts ′)
happens inR with ts′ > ts . Consider the setS of
timestamps:

S = {t̂s : t̂s > ts ∧ ord(v′, t̂s) ∈ SEv′
R}).

Then ts ′ is in S. Let tsm be the smallest el-
ement in S. There are now two cases to con-
sider: (a)ord(v′, tsm) happens during Write or (b)
ord(v′, tsm) happens during Read. In case (a), we
know thattsm = tsv′ by Lemma 44. Sincets > tsv′

per assumption, we have a contradiction with the fact
that tsm is an element ofS (all elements ofS are
greater thants . For case (b), theget-latest-val pro-
cedure must have returnedv′ during a Read that gen-
eratestsm as timestamp. This means thatget-latest-
val must have readv′ from an element ofval that

has a timestampts′′ that is smaller thantsm. We
claim thatts′′ > ts . To show the claim, observe first
that ts ′′ �= ts becausev �= v′. Next, assume for
a contradiction thatts′′ < ts . Sincest(v, ts) hap-
pens inR, we know that some processpi success-
fully stores〈v, ts〉 in the registersval[−, i]. More-
over, sincets < tsm, these store operations happen
before the invocation ofget-latest-val with tsm as ar-
gument (otherwise, we would contradict Lemma 42).
Thus, this invocation ofget-latest-val would returnv
instead ofv′ becausets′′ < ts , which is a contradic-
tion. Thus we havets < ts′′, which means thatts′′

is an element ofS, and contradicts the fact thattsm
is the smallest element inS.

Lemma 46 If Read(v) ∈ H , then there exists a
timestamp ts such that st(v, ts) happens during
Read(v) in R.

PROOF: Follows from the algorithm since the Read
operation invokescheck.

Lemma 47 If Write(v) is in H and v ∈ ObsH , then
ord(v, tsv) happens during Write(v) in R and there
exists a timestamp ts such that st(v, ts) happens in
R.

PROOF: If v ∈ CommitedH thenWrite(v) does not
abort, and the lemma holds because bothord(v, tsv)
andst(v, ts) happen duringWrite(v).

Consider next the case wherev /∈ CommitedH .
Then v ∈ ReadH . Consider a Read operation in-
stanceRead(v) in H. The existence ofst(v, ts) fol-
lows from Lemma 46. Assume next thatord(v, tsv)
happens during a Read operation instance. Notice
thatv �= nil becauseWrite(v) happens inH. Let ts′

be the smallest timestamp such thatst(v, ts′) hap-
pens inR. We know from Lemma 44 thatst(v, ts′)
happens during a Read operation instance (otherwise
ord(v, ts ′) would happen during a Write operation
instance, which would mean thatts′ = tsv). Con-
sider now the Read operation instance that generates
st(v, ts ′). The get-latest-val procedure must return
v during this operation instance. This means that
v must have been stored in a register inval with a
timestampts ′′ that is smaller thants′. This contra-
dicts that fact thatts′ is the smallest timestamp that
is part of an ordering event forv.

23



Lemma 48 If oper1 →H oper2, then the events gen-
erated during oper1 have smaller timestamps than
the events generated during oper2.

PROOF: Ordering and store events that happen dur-
ing the same operation instance have the same times-
tamp. Thus, it is sufficient to prove the lemma for
ordering events only. Consider two ordering events
ord(v, ts) andord(v′, ts ′) that happen duringoper1
and oper2 respectively. Letpi be the process that
executeoper1 and pj be the process that executes
oper2. During oper1, pi writes ts to ord[j,i], and
pj reads this register when it generatests′. From
Lemma 42, we conclude thatts′ > ts .

Lemma 49 For all values v, v′ ∈ ObsH , the follow-
ing holds:

Write(v)→H Write(v′)⇒ v < v′

PROOF: From Lemma 47, we know thatord(v, tsv)
happens duringWrite(v) and thatord(v′, tsv′) hap-
pens duringWrite(v′). From Lemma 48, we con-
clude thattsv < tsv′ , which proves the lemma.

Lemma 50 For all values v, v′ ∈ ObsH , the follow-
ing holds:

Read(v)→H Read(v′)⇒ v ≤ v′

PROOF: Assume for a contradiction that
Read(v)→H Read(v′), yetv > v′.

Let st(v, ts) the store event that happens dur-
ing Read(v), and let st(v′, ts ′) be the store event
that happens duringRead(v′) (Lemma 46). From
Lemma 48, we know thatts < ts′. Sincev > v′,
we have thattsv > tsv′ , which implies thattsv′ <
tsv < ts < ts ′. This contradicts Lemma 45.

Lemma 51 For all values v, v′ ∈ ObsH , the follow-
ing holds:

Write(v)→H Read(v′)⇒ v ≤ v′

PROOF: Assume for a contradiction that
Write(v)→H Read(v′), yetv > v′.

From Lemma 47, we know thatord(v, tsv) hap-
pens duringWrite(v), and thatst(v, ts) happens dur-
ing R. Similarly, by Lemma 46,st(v′, ts ′) hap-
pens duringRead(v′). We know thattsv < ts ′

(Lemma 48). There are now two cases to consider:
(a) ts > ts ′ and (b)ts < ts′. For case (a), we have
that tsv < ts ′ < ts which contradicts Lemma 45.
For case (b), we have thattsv′ < tsv < ts < ts ′,
which also contradicts Lemma 45.

Lemma 52 For all values v, v′ ∈ ObsH , the follow-
ing holds:

Read(v)→H Write(v′)⇒ v < v′

PROOF: From Lemma 46, we know thatst(v, ts)
happens duringRead(v) for some ts . From
Lemma 47, we know thatord(v′, tsv′) happens dur-
ing Write(v′). Lemma 48 implies thatts < tsv′ ,
which proves the lemma becausetsv < ts by defini-
tion.

Proposition 53 The totally ordered set (ObsH , <) is
a conforming total order.

PROOF: Follows directly from Lemma 41,
Lemma 43, and Lemma 49–52.

A.3 Proving Strong Progress

Proposition 54 A solo operation instance does not
abort.

PROOF: Assume for a contradiction that there is a
solo operation instanceop that aborts.

Because the registers inval andord satisfy strong
progress, there are two places whereop may abort:
(a) the “if” statement in Algorithm 5, line 19 or (b)
the “if” statement in Algorithm 5, line 32.

Consider first case (a).new-tsis the timestamp of
op, andts is the timestamp of some other operation
instanceop′. Sinceop runs solo, we must have that
op′ → op. Sinceop ′ writes its timestamp into a reg-
ister inval, it must have executed inc-ord-ts success-
fully. In particular,op′ must have written its times-
tamp into one of the registers inord that op reads

24



when it executes generate-ts. However, the value
of this register increases monotonically (Lemma 42),
which contradicts the fact thatnew-ts< ts.

Consider next case (b).ts is the timestamp ofop,
andord-ts is the timestamp of some other operation
instanceop′. As in case (a), we have thatop′ →
op. This means thatop′ must storeord-ts in ord[i,j]
beforeop executes generate-ts. This contradicts the
fact thatord[i,j] contains a monotonically increasing
sequence of timestamps.

Finally, note that the implementation is clearly
wait-free because all its loops are finite (in fact, they
are bounded byn). Therefore, from Propositions 39,
53, and 54, we get the following result:

Theorem 55 Algorithms 4 and 5 is a strictly-
linearizable wait-free implementation of a multi-
writer multi-reader register from single-writer
single-reader ones. It satisfies strong progress if the
underlying registers also satisfy strong progress.

25


