A

invent

Strict Linearizability and the Power of Aborting

Marcos K. Aguilera, Svend Frelund
Internet Systems and Storage L aboratory
HP Laboratories Palo Alto
HPL-2003-241

November 21% |, 2003*

E-mail: marcos.aguilera@hp.com svend.frolund@hp.com

shared objects, Linearizability is a popular way to define the concurrent behavior of
concurrency, shared objects. However, linearizability alows operations that crash
linearizability, to take effect at any time in the future. This can be disruptive to
aborting, systems where crashes are externally visible. In such systems, an
correctness operation that crashes should either not happen or happen within
condition, some limited time frame—preferably before the process crashes.
specification We define strict linearizability to achieve this semantics.

Strict linearizability and wait-freedom are difficult to achieve
simultaneously. For example, we show that it is impossible to
obtain a strictly- linearizable wait-free implementation of objects as
simple as multi-reader registers from single-reader ones. To address
this problem, we augment our shared objects by allowing them to
abort their operations in the presence of concurrency. An aborted
operation behaves like an operation that crashes: it may or may not
take effect (but if it does, it does before the abort). We show that
with abortable operations, there are strictly-linearizable wait-free
implementations of consensus and hence of any object.

* Internal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2003

Strict Linearizability and the Power of Aborting

Marcos K. Aguileraand Svend Frglurid
HP Labs, Palo Alto, CA 94304

21 November 2003

Abstract—Linearizability is a popular way to defindying objects’ operations are instantaneous, then the
the concurrent behavior of shared objects. Howevarplementation remains linearizable when its under-
linearizability allows operations that crash to take dfing objects are replaced with linearizable imple-
fect at any time in the future. This can be disruptivaeentations. This property allows to build complex
to systems where crashes are externally visible. lilrearizable objects from simpler ones in a modular
such systems, an operation that crashes shouldfashion.
ther not happen or happen within some limited time Another attractive feature of linearizabilityweak
frame—preferably before the process crashes. Nvhited effect, which means that an operation can
definestrict linearizability to achieve this semanticsonly take effect within a limited amount of time
Strict linearizability and wait-freedom are difficultvhen its caller completes. For example, consider
to achieve simultaneously. For example, we shawshared register with two operationsead and
that it is impossible to obtain a strictly-linearizablerite(v), with the usual semantics. If a process
wait-free implementation of objects as simple #@®/okeswrite(v) and does not crash, then weak lim-
multi-reader registers from single-reader ones. ifed effect guarantees that theite can take effect
address this problem, we augment our shared ohly until the timep returns from thewrite's invoca-
jects by allowing them tabort their operationdn tion. This is in contrast to, for example, sequential
the presence of concurrency. An aborted operationconsistency [8], in which therite can take effect at
behaves like an operation that crashes: it mayamy arbitrary time in the future (as long as local order
may not take effect (but if it does, it does before therespected).
abort). We show that with abortable operations, thereLimited effect is an important property, because it
are strictly-linearizable wait-free implementations ptevents old operation instances from suddenly ap-
consensus and hence of any object. pearing mysteriously. For example, suppose that a
client withdraws money from the bank in an auto-
. mated teller machine, but the machine crashes dur-
1 Introduction ing the transaction and does not debit the client’s ac-
count. The client will be annoyed if, years later, the

Linearizability [7] has been widely used as the COdebit suddenly appears when the client has insuffi-

rectness cpndition for concurrer_n impleme_zntat'i(_)nsc%m funds. Or suppose that a military officer presses
Sh?"ed objects. R°“9h'y speaking, Ilnearlzabn!ty '€ button to launch a missile during war, but the mis-
quires that an operation appear to take place insigfl; 4,6 ot come out. It might be catastrophic if the

taneously at some time between its invocation ar'?ﬁ?ssile is suddenly launched years later after the war

response. This simple requirement has many attracs or

tiV? featurgs, from both qc_:onceptual and _apragmati%nfortunately, linearizability does not always en-
point of V|'ew:.Composab|'I|ty means that if an M- re limited effect—hence the tenweak limited ef-
plementation is proven linearizable when its und%’ct. In fact, it only does so if the caller does not

*Email: marcos.aguilera@hp.com crash: if the caller crashes, then the operation may
TEmail: svend.frolund@hp.com take effect at any arbitrary time in the future. These

pending operation instances can be quite disruptive. time

For example, a pending write can destroy the value

of a register unpredictably at any time in the futureﬁneamlbility p crash
In fact, one can find linearizable implementations

such that, if a process crashes while executing an I

operation, then another procesmay cause’s op- invocation

eration to take effect long in the future, even after

other processes have executed many operations (e.g.,

op

in [11]). ﬁgécz;rizabnity uﬁ "
We would like to limit the effect of an operation o |

by the time that the caller completes or crashes. Do- invocation |

ing so results in what we ca#itrict linearizability. d‘ead"ne

Intuitively, strict linearizability prohibits pending op-

eration instances, by requiring an operation to emﬁ{;ure 1: Difference between traditional and strict

take effect before a crash, or never take effect. I:ﬁlfearizability. With linearizability, the operation in-

ure 1 illustrates this idea. More precisely, strict "%'tanceop may take effect at an arbitrary point after

earlz_ablllty IS a strgngthenmg of Imear|zab|||ty th { crashes. With strict linearizabilitpp cannot take
requires an operation to take effect at some time & ct after the deadline created by crash
tween its invocation and either its response (if it does '

not crash) or its crash (if it does).

Given that crashes are not observable eventsraedom and linearizability, to simultaneously pro-
asynchronous systems, strict linearizability raiseisle strong fault-tolerance and strong consistency.
two important questions: (1) does it really make But what about wait-freedom arsfrict lineariz-
sense to use these unobservable crashes to restriciiifigy? It turns out to be very difficult to achieve
behavior of operations? (2) Is strict linearizabilityoth properties simultaneously. To see why, let us
implementable at all? consider a hypothetical implementation of a shared

We believe the answer to the first question riggister. Consider two scenarios. In the first one,
“‘yes”, because crashes are often visible eventssappose that procegsnvokeswrite(v) and crashes
higher levels in the application. In fact, in practideefore its response. Further suppose that a subse-
crashes need to be eventually fixed, and hence thagntread by process; returns the old value of the
need to be either observable or forced upon the ssgister. Then, if the implementation is strictly lin-
tem. In those cases, with strict linearizability, thearizable, thevrite can never take effect: it cannot
higher levels in the application can be assured tkgite effect before the crash becausertsel returns
an operation that does not take effect before thetise old value, and it cannot take effect after the crash

suer crashes will never take effect. due to strict linearizability. Now consider a second
The answer to the second question is “it dependstenario, which is similar to the first except that
as we now explain. does not crash, but only becomes very slow. The

Wait-freedom. One difficulty with strict lineariz- execution is indistinguishable @ and so theread
ability is that it clashes with wait-freedom. Roughl§eturns the old value. Therefore, theite can only
speaking, wait-freedom [5] guarantees that a proctae effect after theead. By introducing subsequent
completes the execution of an operation in a finitgad's by ¢ in a similar fashion, it is possible to build
number of its steps, regardless of the behavior @fun where thewrite never takes effect, and hence
other processes. Wait-freedom is attractive becalgger returns. This violates wait-freedom.
it provides a very strong form of fault-tolerance, by This intuitive argument can be formalized into im-
ensuring progress of a process even if all other ppmssibility results of many constructions that are con-
cesses in the system stop. Many implementatiagidered basic for linearizability. For example, we
in the literature have aspired to achieve both waitn show that it is impossible to have a strictly-

2

linearizable wait-free implementation of an object atementany object from registers. Our implementa-
simple as a multi-reader register using single-reatiens never abort in solo executions, i.e., they satisfy

registers. strong progress.
This negative result seems to limit the applicability These results show that the strict linearizability
of strict linearizability. (with aborts) can be achieved.

Abortable operations and liveness. To circum- Contributions. In summary, we make the follow-
vent the impossibility result above, we allow opetg contributions:
ations toabort their execution under certain condi-
tions. When an operation instance aborts, the caller We define strict linearizability as a modification
receives a specially-designated response denoted of linearizability to enforce limited effect and al-
which indicates that the operation instance may or low operations to abort their execution. We show
may not have taken effect. And if it has taken effect, that strict linearizability implies linearizability,
it did between the operation’s invocation and abort. and we show that strict linearizability is a local
An aborted operation instance is similar to an oper- property.
ation instance whose caller crashes. The differencg \ye ;se natural deduction rules as a precise way
is that abort is intentionally initiated by an object,
whereas a crash is not. _ _ _ _ _ _
Itis undesirable for an operation instance to aborf e consider strictly-linearizable wait-free im-
because it can be detrimental to liveness. Therefore plementat|9n§ _Of obje_cts. Wlthout abort, we
we introduce various progress conditions to limit SNOW that it is impossible to implement multi-
the occurrence of aborts. TI&rong progress con- reader register from single-reader registers.
dition requires that a solo execution of an operas With abort, we give a strictly-linearizable wait-
tion never abort. With strong progress, liveness is free implementation for any object (universal
achieved in the absence of concurrency. In the pres- construction) using single-writer single-reader
ence of concurrency, executions of operations may registers only. To do so, we start with single-
abort. However, since an aborted operation instead writer single-reader registers and implement
returns a special value, processes are aware of themulti-writer multi-reader registers. We then use
problem, and they can react appropriately. For ex- these registers to implement consensus. Finally,
ample, processes can retry the operation after somewe use consensus and registers to implement any
exponentially backed-off delay. This heuristic guar- object.
antees liveness with high probability in the presence

of some weak form of system synchrony. Roadmap. We define our distributed system
Achieving strict linearizability with aborts. model in Section 2, and we define strict linearizabil-
When aborting is allowed, we show that some pf as a correctness condition relative to this model
the basic constructions that apply to linearizabjh Section 3. In Section 4 we introduce progress
ity also apply to strictly linearizability. For exameconditions that limit the situations under which an
ple, we show how to construct a multi-writer multioperation may abort its execution. We prove some
reader register from single-writer single-reader regteresting properties of strict linearizability in Sec-
isters. The construction is similar to, but differemion 5, including locality. In Section 6, we show
from, the one for linearizability. Our implementathat without aborts there is no strictly-linearizable
tions all satisfy strong progress. wait-free implementation of a multi-reader atomic
Furthermore, we show that even some construiegister from single-reader ones. In Section 7,
tions that are known to be impossible with linearizve assume that operations may abort and we pro-
ability become actually possible with strict linearizside strictly-linearizable wait-free implementations
ability (and aborts). In fact, we show some surprisf atomic registers and of consensus. We then show
ing results: (1) it is possible to implement consenslisw to get a strictly-linearizable wait-free implemen-
from registers and, in fact, (2) it is possible to intation of any object. Finally, in Section 8, we discuss

to formally specify strict linearizability.

3

related work. In the appendix, we give all the de- Intuitively, a history isstrictly linearizable if there

tails of our register implementation, and we prove isa sequential history that is consistent with it from

correctness. the point of view of the higher levels of the system
and that complies with the sequential specification
of all objects. We provide a precise definition in Sec-

2 Modd tion 3.5.

We consider a distributed system withprocesses: .]
p1,--- ,Pn. Processes may fail by crashing; When‘?al Events and Histories

process crashes, it simply ceases to execute its a{%'represent a system execution (also called a run)
rithm (we do not consider Byzantine failures). Wgg ahistory. Roughly speaking, a history repre-
explicitly represent a crash through a sped@sh gents the ordering ofvents in the distributed sys-
event. A correct process in a run is one for whichy, more precisely, a history is a finite or infinite
there are not crash events in the run. Crash eveni§ ence of events. Intuitively, events are triggered
are not visible to processes (but they may be Visil¢ i ocations and returns of operations and by the

to higher levels in the application). - ~ crash of processes. More precisely, there are three
Processes communicate by invoking operationsiBes of events:

shared objects. The shared objects are always avall-

able and do not fail. The s€tbject contains all pos- 4 An invocation event, denotedinu(op, v)3, repre-

sibleobjects. Informally, each object has a setag- sents the act of procegsinvoking operationop
erations, where each operation takesalue as input on objecto with paramete.

and returns a value as output. Values are taken from
an infinite setValue. e A return event, denotedret(opjv)g, represents

h the act of processgreceiving a response contain-

We consider an asynchronous system, in which ’)
ing valuewv for operationop of objecto.

there is no bound on the time it takes a process to ex-
ecute its instructions, including instructions that ace A crash event, denotedrash,, represents the act
cess shared objects. of procesw failing.

. . . . To represent an abort of execution, we use a return
3 Strict Linearizabil ity event with a specially designated value- L, which

! .) __is not part ofValue. We call such a return event an
We first define, in Section 3.1, our representation a%ort event

system executions astestory, which is a sequence The setHistory contains all histories. Throughout

of invocation, return, and crash events. Invocati e paper, the letteHl (sometimes subscripted) de-
and return events happen as processes access s %{gp an element dflistory. We use the following

object_s. We m_ake _some stgndarq weII-f_ormed %%'ntax for histories:
sumptions on histories, explained in Section 3.2.
particular, we assume that each process has at most

one outstanding invocation at a time, so that there is H := H -Hy ...-H, |
no concurrencyvithin a process; concurrent accesses inv(op,v)5 |
by different processes is allowed. ret(op,v)S ‘

Objects are defined throughseguential specifica- crash,, |
tion (Section 3.4), which specifies the behavior of an A

object in the absence of concurrency, that is, se-a

guential history (Section 3.3). For example,ragiss where*” denotes sequence concatenation arak-

ter object withread andwrite operations is specifiedhotes the empty sequence. In the following, we also
through the requirement that in a sequential historyse the notation¢” and “¢” to test whether an event
read return the most recently written value. appears in a history.

Theprojection of a history H onto a process p, de- events. The s&eqHistory denotes all sequential his-
noted H |p, is the history obtained froni/ by drop- tories. Throughout the paper, the lette(sometimes
ping all events except those pf Theprojection of a subscripted) denotes an elemenSe§History. The
history H onto an object o, denotedH |o, is the his- syntax for sequential histories is the following:
tory obtained fromH by dropping all events except
those ofo and crash events.

For any finite historyd and any process, we de- S = _Sl 52 e Sn e |
finelast,(H) to be the last event it |p, or \ if H|p ;””(Opvv)p -ret(op,v)y |

is the empty history.

. wherev, v’ # L.
3.2 Waell-Formedness Assumptions

We assume that each process has at most one 84- Sequential Specification
standing invocation at a time, that is, there is no con- _ _ -~
currencywithin a process (but there can be concuf{€ @ssume that each object has a sequential specifi-
rencyacross processes). More precisely, f:qtlo_n that ca_ptures the semantics of the object when
it is invoked in a non-concurrent manner. We use
the same notion of sequential specification as [7]:
H = Hy - inv(op,v), - Ha - z’nv(op’,v’)g' -H3 = the sequential specification for an object is a set of
ret(op,v")% € Hy sequential histories; each history in the sequential
specification captures a particular “correct” interac-
Every return event must have a matching invoagen between the object and a number of processes
tion. More precisely, that invoke it in a purely sequential manner. For any
objecto, we useSeqSpec, to denoteo’s sequential
specification. We assume that the empty history is

H =H; - ret(op,v)) - Hy = . ,
1 ret(op,v)y - Hp always part of an object’s sequential specification:

inv(op,v')y € Hy Vo € Object : A € SeqSpec,.
H = H, - ret(op,v), - Ha - ret(op',v’)zl -Hg =
mv(opgv“)g’ c Hy 3.5 History Transformation

A process crashes at most once, and afterNtgeneral, a history contains concurrent operation
crashes, it has no more events. More precisely instances, partial operation instances, crashes, and
aborted operation instances. However, when reason-

ing about correctness, we would like to deal with
H =H; - crashy, - Hy = simpler histories. We define a relatien to derive
crashy, ¢ Hy A Halp = simpler histories from more complicated ones, while
maintaining plausibility of execution. Intuitively, if
Fihally, L can only be part of return events. Mor¢; . 7 then (1) H' is “consistent” with H from
precisely, point of view of higher levels in the system, and (2)
H' is simpler thanH in the sense thall’ has fewer
concurrent operation instances, fewer crash events,
fewer aborted operations, or fewer partial operation
))) instances thaii/. Note that— is not symmetric.
3.3 Sequential Histories We define— in Figures 2, 3, 4 and 5. Rule (1)
A sequential history is an alternating sequence of irflefines— to be reflexive, and Rule (2) defines to
vocation and return events that starts with an inJeg transitive.

cation event, a_nd qoesl not end with an invocation:royghly speaking, an operation instance is an invocation
event. Sequential histories do not have crash or alart matching return event. This is defined in Section 4.1.

inv(op,v)y € H=v# 1

5

H— H 1)
H{ — Hy Hy — Hj

H1 — H3 (2)
Figure 2: Reflexive and transitive rules
P#q 3)
Hy - inv(op,v)g - ret(op’,v")g - Hy — Hy - ret(op’,v')q - inv(op,v) - Ha
Hy - inv(op,v), - inv(op',’u')g, -Hy — Hj - inv(op',v’)g/ ~inv(op,v)y - Ha 4
Hy - ret(op,v)p - ret(op’,v/)gl -Hy — Hj - ret(op’,v’)g/ - ret(op,v), - Ho (5)
last,,(H1) = ret(op,v)y V lasty(H1) = A ©)
Hy - crashy, - Hy — Hy - Ho
last,(H2) = A @
Hy - inv(op,v)§ - Ha - crashy, - Hy — Hy - Hy - Hj
last, (H2) = A v € Value ®)
Hy - inv(op,v')s - Ha - crashy, - Hy — Hy - inv(op,v')s - Ha - ret(op,v)s - H3
Figure 3: Basic rules for reordering and dealing with crashes
Hy - inv(op,v)§ - Hy — Hy - Ho
Hy - inv(op,v)§ - Ha - Hy — Hy - inv(op,v)S - Ha - ret(op,v') - H3
Figure 4: Rules for dealing with operation instances that execute forever
last,(Hz) = A (1)
Hy - inv(op,v)s - Hy - ret(op, L)9 - Hy — Hy - Hy - Hj
last, (H2) = A v € Value (12)

Hy - inv(op, ')y - Hy - ret(op,)9 - Hy — Hy - inv(op,v')g - Ha - ret(op,v)s - H3

Figure 5: Rules for dealing with aborts

Rules (3)—(5) allow the introduction of ordein “good” circumstances. These are callggress
among concurrent operation instances. Rule (6) eanditions. In this paper we focus on a progress con-
ables removal of a crash event of a procesghen dition that we callstrong progress. Roughly speak-
no operations op are “active”. Rules (7) and (8)ing, strong progress guarantees that if an operation
deal with partial operation instances, which may imstance runs solo then it does not abort. Here, “solo”
may not take effect nondeterministically. Rules (& with respect to operations of the same object. We
and (10) deal with invocations without responsasyw make this more precise.
which occur when a process executes forever with-
put returning from an mvocaU_on (this could occué{.l Operation Instances
in some lock-free implementations). These rules aré

not needed for or applicable to histories in which egpughly speaking, an operation instance represents

ery invocation is followed by a matching return or gye execution of an operation within a histay Un-

crash. Finally, Rules (11) and (12) deal with abort@ge the events irl, operation instances i are not

operations: these are essentially treated like crashggmic: they begin at an invocation event, and end in
either a return of non- (successful), a return of

3.6 Definition of Strict Linearizability (aborted), or a crash (partial). Or perhaps it never

))] ~ends (infinite).

We say that a well-formed historff is strictly lin- 0.0 precisely, we say that dnvocation event

earizable if it can be transformed, unders, to a . e /

sequential history where all object sub-histories qeg;_ M(Op/’v)g rT/latchesevente if e” = ret(op, ')}

somev’, or ¢’ = crash,. Given an invocation

in the sequential specification of the respective O&iente in H and an event/ in H, we say that

jects? matches ¢’ in H if ¢ is the first event inH aftere
such that matches’.

Let e ande’ be elements of a sequenée We say
that the pairle, ¢') is anoperation instance in H if e
matches’ in H. We also say that the pafe, co) is

35 € SeqHistory, Vo € Object : operation instance i#f if there is no event’ in H
H — S A S|o € SeqSpec, (13) such that matches” in H (in this latter case, note
thatoo is not an event irff). If e = inv(op,v); we
We say that an implementation is strictly linearizab$gy thato is the object of operation instance (e, €)
if all histories that it produces are strictly linearizandp is theprocess of operation instance (e, ¢).
able. We say that an operation instan¢e ¢) is suc-
cessful if ¢ is a return event whose value is nat
i We say that(e, ¢/) is aborted if ¢’ is an abort event.
4 Restricting the Occurrence And (e, €’) is complete if it is either successful or
of Aborts aborted. We saye, ¢') is partial if ¢ is a crash event.
We say(e, ¢') is finiteif it is partial or complete. We
An object should not be allowed to always abort iﬁy(& ¢') isinfinite if it is not finite (i.e.,d = cc).
operations, else it would be useless. Thus, we need tan evente happens during an operation instance
define properties that prevent objects from aborti@g,e//> in H if e happens afte¢’ in H and either

>This definition If for a finite historyld . If H is infinite, the ¢ — O° OF ¢ i an event that happens aftein H.
situation is more complex and beyond the scope of this paper.JWO Operation instancesp; and op, are concur-
One possibility is to definéf to be strictly linearizable iff there rent in H if either op,’s invocation event happens
exists an infinite sequential histoyy such that (1) for every, during 0p, in H orif op; 's invocation event happens

there exists a historg% such thatd — P;(S) - G, whereP;(.S) : . L . .
is the history with the first events ofS, and (2)Vo € Object : during op; in . An operation instancep; in I is

Slo € SeqSpec,. Our implementation correctness proofs affol0 N H if the_re is no operation instaneg; such
assume is finite. that (1) the objects ofp; andop; are the same, and

Definition 1

Hisdtrictly linearizable <

(2) op; andop; are concurrent irH. To allow the comparison between traditional and
strict linearizability, we introduce some of the for-
4.2 ProgressConditions malism used to define traditional linearizability. We
only provide a summary of the various concepts; for
Formally, aprogress condition is a setlegalAborts 45 complete definition the reader should consult [7].
of histories. An implementation of an objegsatis- ased on the total order for events in a finite his-
fies a progress condition if for all historig$ of the tory, we introduce a partial order on the success-

implementation /7o is in LegalAborts. ful operation instances in the history. We say that
S_ome example of progre;s conditions are the fgls,,ccessful operation instaneg; happens before
lowing, ordered by decreasing strength: another successful operation instange in a his-

tory H if the return event forop, occurs before the
invocation event forop; in H. We write this as
2. For every procesg, if there are infinitely many op; <m op;, and use<y to refer to the set of op-
solo operation instances pthen infinitely many eration pairs that satisfy this relation.
of those do not abort. For any two historie$! andH’, we say tha#{ and

3. If there are infinitely many solo operation inH' areequivalent if, for any procesg, H|p = H'|p.

stances then infinitely many of those do ndforeover, for any historyH, complete(H) is the
abort. maximal subsequence &f consisting of only invo-

cation events and matching return events. We say
.tthat a historyH is complete if H = complete(H).
I\?Ve can now define (traditional) linearizability [7]:

1. A solo operation instance does not abort.

4. For every procesg, if eventually onlyp has op-
eration instances then there is a time after wh
operation instances do not abort.

[efinition 2 Afinite history H without crash events

In this paper, we focus on progress condition = M ;)))
and abortsis linearizable if there exists a sequential

which we callstrong progress.

history S and return events ey, . . . , e,, (n > 0) such
that:
5 Properties of Strict Lineariz-
ability e complete(H -eg- ... e,)iSequivalentto S.
o <pyC<yg.

We now prove some interesting properties about oo
strict linearizability. We first show that strict lineariz- * Vo € Object : Sjo € SeqSpec,.
ab!llty_lmpl!es I_|r_1ea_1r|zab|I|ty. we then_ Sh.OW that We now proceed to prove that strict linearizability
strict linearizability is a local property, like lineariz: . . i

- , : . : implies linearizability.
ability. (This result isnot an immediate corollary of

the first result.) Lemma3 Let H be a finite history without aborts.
_ _ o _ _ ~Ifahistory H' satisfies H — H’, then <y C<p.
5.1 Strict Linearizability Implies Lineariz-
ability PROOF. Let H be a finite history without aborts and

We relate strict linearizability to traditional linearizlét 7’ be a history such thal — H'. Consider a
ability [7], and prove that strict linearizability im-Singlé application of Rules (3)—(10) (we do not con-
plies traditional linearizability for histories withoufider Rules (11)—(12) becaugé does not contain

aborts. We exclude aborts because linearizabift§orts)- Leti; be the history on the left-hand side,
does not have this notich. and letH, be the history on the right-hand side, in
one of these single applications.

31+ . .
It is worth noting that our result holds for each history, that
is, even if some implementation can sometimes abort, if it pro- In Rule (3)’ we have thatng<HT because the

duces a strictly-linearizable history without aborts then we shéi€ ordersop’ beforeop. In Rules (4) and (5), we
that the history is also linearizable. have thak z,=<g,. For Rule (6), we also have that

<m,=<m, because removing a crash event does tjp = complete(H.s)|p, and we can again con-
change the operation instance ordering. For Rule $&uct H’ by adding zero return events #d.;. Fi-
and (10), we have thaty, C<p, because adding anally, if we apply Rule (9), we remove the invoca-
return event introduces a new successful operatimm event of an infinite operation instance. In this
instance in the history, and may thus add to the opesise, we have thaf|p = complete(H)|p. More-
ation instance order. Rule (7) and (9) do not changeer, because does not crash, we also have that
the operation instance order becads@nd, con- complete(H)|p = complete(H.s)|p, and we can
tain the same successful operation instances, an@gain construct?’ by adding zero return events to
events have been reordered. All in all, we have thdt;.
every single application of Rules (3)-(10) satisfiesConsider now a transformation &f|p to S|p by
the constraint<y, C<p,. We can now prove theRule (8) or Rule (10). If we apply Rule (8), we re-
lemma by straight-forward induction on the numberove a crash event and add a return evetat H |p.
of applications of these rules that is required to trams-this case we have thatp = (H - e)|p, which is
form H to H'. m a complete history because the last event before the
crash event irf{|p is an invocation event. Thus, we
can constructd’ be addinge to H.;. If we apply

Theorem 4 Let H be a finite history without aborts RUle (10), we add a return everitto H|p, and have

and let H,; be the history obtained from H by re- thatS|p = (H - ¢’)|p, which is complete becauge

moving all crash events. If H is strictly linearizable does not crash and becauges well-formed. Again,

then H s islinearizable we can construc’ by addinge’ to H.s. Thus,
. .

for any proces® we can construct a historsf’, by

PROOF Let H be a strictly linearizable finite historyaddlng zero/ or more returm events iy, such that
omplete(H’) is equivalent taS.

without aborts. Sinced is strictly linearizable, we © Wi t show that » Ob first that
know that there exists a sequential histSrguch that € hext show thakq,, =<s- serve first tha
<m,=<mu. SinceH has no aborts, and sinéé —

H — S and such tha$|o € SeqS for all objects
o - o €4=PeC : S, we know from Lemma 3 that gC<g. We can
' now conclude that<y, =<y C<g, which proves

We first show that we can add zero or more r%-
the theorem.]

turn events taH s and obtain a history?’ such that
complete(H') is equivalent taS. We show that this
holds for any given procegs SinceH — S, we 52 Grict Linearizability is a Local Prop-
also have that{|p — S|p, and the transformation erty
of H|p to S|p involves application of Rules (6)—(10)
only (transformingH |p to S|p does not change theVe now prove that strict linearizability is a local
ordering of events). Moreover, we can apply at magoperty [7], just like linearizability. For simplicity,
one of these rules: the application of any one of th&¥@ restrict attention to finite histories only.
rules prevents the subsequent application of the same
rule or of another rule. Lemmab Let H be a finite history and S be a se-

If we use Rule (6) to transforrH |p to S|p, we ob- quential history. If I is equivalent to S, and if
tain S|p by removing a crash event frofi|p. Inthis <#C<s.then H — S.
case, we haveS|p = H.s|p. Moreover,H|p is a
complete history because the last eventfp, be- PROOF Assume thatd /4 S. SinceH and S are
fore the crash event, is a return event. Thus, we @uivalent, they contain the same events. Moreover,
constructH’ by adding zero return events .. sincesS is a sequential history, and singeis equiv-
If we use Rule (7), we remove both a crash evealent toH, we know thatH does not contain crash
and the invocation event of a partial operation ievents, aborts, infinite operation instances, or partial
stance fromH |p. Because histories are well-formedyperation instances. Thus, the only difference be-
and from the pre-condition of the rule, we have thateen H and S is the ordering of events. However,

9

because the histories only contain invocation and re- rules apply on a per-object basis. If the pre-
turn events, and because histories are well-formed, condition of a rule is satisfied fal |z then the
we can use Rules (3)—(5) to change the order of any same will be the case fdi.

two events, except if this will change the order of op4 £or Rules (6)—(8), there are two cases to con-
eration instances. Thus, we conclude that there MUSt gider. If we apply Rule (6) to all per-object histo-

be two operation instances; and op; that aré or- jeq (the crash did not result in a partial operation
dered differently ind andS. But this contradicts the instance in any per-object history), then we can
fact that<y C<s. u also apply Rule (6) tdd. Otherwise, there ex-
ists an object: such that we have to apply either
Theorem 6 (Locality) A finite history H is strictly Rule (7) or (8) to replacerash, in H|z. In this
linearizable if and only if, for all objects #, H|z is case we can replacewash, in the same manner
strictly linearizable. in H. The ability to perform the same replace-

_ _ . - mentinH as we do inH |z follows from the fact
PrRoOFR Consider first the “only if” part of the The- a4t it last, (H,) is empty inH|z, then the same

orem. Assume that/ — S for some sequential s trye for H (otherwise H would not be well-
history S, and assume théf|xz € SeqSpec, for all formed).

objectsz. We argue thatf|z — S|x. Consider

a transformation off to S through Rules (3)~(12). From the first observation we know that, for all
Selectively apply the same rules to transfokffi to ghjectsz, there exists a historyi, without crashes,
S|z in the following manner. If a rule involves onlyaports, or infinite operation instances, such that
events fromz (i.e., an invocation ofc or a return f|; —, H, — S,. From the second observation
from z), then apply the rule. If the rule does not inye furthermore know that there exists a histdiy
volve any events iff |z, ignore the rule. If the rulegych thaty — H’ and H, = H'|z. SinceH, is
is Rule (6), then apply the rule. If the rule is Rule (krictly linearizable, and contains no crash events or
or Rule (8), and the invocation event is for object aports, we know from Theorem 4 thAt, is also lin-
then apply the rule, otherwise apply instead Rule &jrizable. Since linearizability is a local property [7],
to remove the crash event. we conclude thatf’ is also linearizable. This means
Consider now that “if” part of the theorem, anghat there exists a sequential histarguch that? is
assume that for all objectsthere exists a sequentiaéquiva|ent taS and such that;;, C<s. Notice that
history S, such thatH |z — S;. H’ does not contain any partial operation instances,
First, observe that there exists a transformatiafty we do not need to extend it in order to obtain a
under —, from Hiz to S, where we first ap- history that is equivalent to sonfe From Lemma 5,
ply Rules (6)-(12) to obtain a histor§f, without \ye can now conclude th&’ — S, which proves the

crashes, aborts, or infinite operation instances, #pfposition sinced — H’ and— is transitive. m
then apply Rules (3)—(5) to reorder the eventgiin

to obtainS,.. This observation follows from the fol-
lowing two facts: 6 Impossibility of Strict Lineariz-

e We can apply Rules (6)-(12) directly t8|z ability without Abort

without reordering any events first. _
If operations are not allowed to abort, we show

* Applﬁ/_lnr? Rules (6)_(;2) doest no;tllmlt tZe Wa¥hat strictly-linearizable wait-free implementations
i which we can reorder events afterwards. — 5re inherently difficult to achieve. More precisely,

Second, observe that for al) the rules that we useVe show that there is no implementation of a multi-
to obtainH,, from H|z can also be applied td: reader register from single-reader ones. The proof
uses a technique that, we believe, can be used to

e For Rules (9)—(12), this follows from the wellshow that other basic constructions are impossible
formedness of histories and the fact that theséhout aborts.

10

To obtain stronger results, we assume that tARROOF. Indeed, procesgs, does not notice the first
given registers are multi-writer single-reader regisxite by p,, (sincep,, is the only process that can do
ters that never abort. Of course, our results hold@). Therefore, from the point of view of, , the run
fortiori if they are instead single-reader single-writep to timet; is identical to a run in which a Write
and or if they may abort. Similarly, we assume thaever occurred. Therefore the Read jy has to
the target register need only be single-writer multeturnnil. =
reader, but our result holds a fortiori for a multi- We now proceed by induction. Suppose thakin
writer multi-reader target register. we have (1) procesg,, has written;j times, where

the last write was to register, and finishes at time
Theorem 7 Consider a system with n. > 3 pro- ¢, (2)p, has not yet finished its Write, (3) after time
cesses. Thereisno strictly—linearizable wait-free im- tj, some process; % Dw has executed a Read that
plementation of a single-writer multi-reader regis- returnsnil.

ter that never aborts from multi-writer single-reader We continueR by lettingp,, resume its execution.

registers that never abort.])
Lemma 10 Process p,, will attempt to write to an-

We prove the theorem by contradiction. Assun§éher register before completing the Write operation
there is one such implementation. To differentidstance.
ate between the operations of the register being ilg1-

ROOF.

plemented and the registers being used, we denote In order to obtain a contradiction, sup-

the former by capitalized words (i.e., “Read” anfese thap,, completes its Write without any further

“Write”) and the latter by non-capitalized words (i.e\.'YrIteS to register. Construct a rul that is ident-

‘read” and “write”). cal to R except that process, crashes right before

Let nil be the initial value of the Register, and Ié;t;{ St?;tcseléss F;ﬁfae?ér;l;hf?g’ frog g]ned%f'r;ec)fi:ézv of
pw be the Writer of the register, and consider a r yp Mo

n- " : .
R in which p,, wishes to Write a value # nil. We lfllngwshable. Now inR, suppose that after the Write
of p,, completes, some procegs# p,, executes a

reach a contradiction by continuing this run in a w K .
that the Write operation instance never completesﬁead' Thery Reads the value Written byp,, since

the Read starts after the Write has completed. We

Lemma 8 Process p, cannot complete its Write NOW Makeg execute its Read i®'. SinceR and R/
w

without writing to at least one register. are indistinguishable by, it follows thatq Reads in
R'. Therefore, inR’ the Write ofp,, is linearized at

some point (rather than being eliminated). However,

PROOF. Indeed, suppose, completes its Write ©~ "~ e) _ e _
without writing to any registers. Then a Reader thsffict linearizability requires the linearization point
e before the crash @f,—and hence beforg;,

executes afterwards cannot distinguish between a%rtl’ its Read. Theref he R ‘ |
prefix Rq in which p,, Writesv and a run prefixk; starts its Read. Therefore, the Reaggimust alsa

in which p,, never Writes anything. But if the Reade_rretum”' This contradicts condition (3) above of the

executes fronR, it has to returry, while from By it nduction hypothesism - _ _
has to returmil. This is impossible.m We continueR by letting p,, continue executing

We now continue our construction . Let pro- until it has written to another registgr (as ensured by
cessp,, execute until the time, whenp,, has com- -€Mma 10). Lety;., be such a register, léj., be
pleted its first write to a register. This is a multi- 1€ time when the write to;,, completes, lep,,
writer single-reader register, so it has a unique pR?—the process allowed to read ., and letp;,,, be
cessp,, that is its reader. Lat,, be a process differ- Process different from,, ., andp,. ,
ent fromp,, andp,,. After timet;, 1, we letp;,, , execute a Read iR.

After time ¢;, p, goes to sleep ang, starts a Lemma 11 TheRead by p,,,, returns nil in R.
Read.
PrROOFE We can construct another rul that is

Lemma9 The Read by p;, returns nil. identical to R, except thaip,, crashes right at time

11

tj, butps, executes its Read as i (it does so be- A simple instantiation of timestamps is a pair
cause it cannot distinguisR and R'). Then, inR’, (counter, process-id), whereprocess-id is used for
we letp,,, , execute its Read. Singg, , cannot global uniqueness and to break tieewTS(ts) re-
readr;1, in R’ it will execute just as inkR. More- turns a counter one greater thials together with the
over, in R’ the Write tov can never be linearized (ipprocess id of the caller.

cannot be linearized by timg because the Read by

ps. that follows it returnsnil, and it cannot be lin- g . .
ee{rized after time; by strict linearizability). There- 7.2 Multi-Writer Multi-Reader Register

fore the Read by, ., returnsnil in R'. Therefore |n this section, we give a strictly-linearizable imple-
the same happens id. = mentation of anulti-writer multi-reader register, that
Therefore inR?, we have (1) procegs, has written s, a shared register that can be written and read by
J + 1times, where the last write was to register; any process in the system. To do so, we assume
and finishes at tim¢; 1, (2) p,, has not yet finishedthe availability of strictly linearizablesingle-writer
its Write, (3) after timef; 1, some procesg,, , has single-reader registers, that is, registers that can be
executed solo a Read that retumks written by a single designated process and can be
This establishes the induction chain. We therefaxead by a (possibly different) designated proéess.
get an infinite runi in which p,, never completes its Our construction use&n? single-writer single-
Write. This is a contradiction. reader registers. The constructed register and the reg-
isters used in the construction have abortable opera-
. tions and provide strong progress.
7 Strict Linearizability with Abort: ajgorithm 1 shows the construction. In what
Everything is Possible follows, we use capitalized words for the Read
and Write operations being implemented, and non-
We how give strictly-linearizable wait-free impleeapitalized words for the read and write operations
mentations for various objects. The implementat the underlying single-writer single-reader regis-
tions may abort execution in the presence of conctars. The underlying registers are organized as two
rency. The first construction in Section 7.2 is formatrices: ord and val. Procesg; is the designated
multi-writer multi-reader register using a collectioreader of the-th row of the matrices and the desig-
of single-writer single-reader registers. The secondted writer of the-th column.
construction in Section 7.3 is for consensus usingWe represent reads and writes to a register im-
single-writer multi-reader atomic registers. We theticitly through variables (e.g., a write is represented
use consensus and registers to provide a univetsedugh assignment to the register variable). At any
construction in Section 7.4. The universal construgme during the execution of a Read or Write, if
tion takes an arbitrary object with a sequential speséme read or write aborts the execution, then the
fication, and provides a strictly-linearizable wait-fredRead or Write will also abort. We do not represent
implementation of the object. All our implementathis abort propagation explicitly in the code (this is
tions satisfy strong progress as long as the undedimilar to exception propagation in modern program-
ing objects also do. ming languages). However, for the interested reader,
we present an unabridged version of the algorithm
in Appendix A (which makes explicit how the abort
propagation works), and we prove its correctness.
Several of our constructions use timestamps, whichfo Write, a procesg; executes four phases. In the
we now describe. Timestamps are taken from a §eat phasep; generates a timestamp for the Write
with a total order represented by and with a small- “These are among the most basic primitives in any dis-
est element denotddwTS. Processes use the prirT‘Fributed system, in Whgich one node can (F:)ommunicate wi)t/h an-

itive neWT_S(tS) to generate globally unique times- qther node. They should be either readily available or easy to
tamp that is greater tham. implement in such systems.

7.1 Timestamps

12

that is higher than any timestamp in reéwef ord. In

the second phase; states its intention to Write us-
ing the timestamp (proceduverite-ord). Intuitively,

this ensures that a write that does not complete is
visible. In the third phasep; performs the actual
writing (procedurewrite-val) by storing the Write's
timestamp and value iftth column ofval. Finally,

in the fourth phasey; checks if there is another pro-
cess that stated its intention to Write, by checking if

Algorithm 1 Multi-writer multi-reader register im-the previously generated timestamp is still the high-
plementation

SHARED VARIABLES:

1: ordl...n,1...n]: single-writer single-reader

2:

10:

12:
13:
14.
15:
16:

17:
18:

19:
20:

21:
22:

registers, initialllow TS

vall...n,1...n]: single-writer single-reader

registers, initially(low TS, nil)

CODE FOR EACH PROCES®;:
procedure Write(v)

new-ts— newTS(max;{ordi, j]})
write-ord new-t9

write-val new-ts v)

if new-ts= max;{ordsi, j]} then return ok
elsereturn L

procedure Read()

new-ts«— newTS(max;{ordi, j]})
write-ord new-tg

(ts, v) — read-latest-vg)

if ts> new-tsthen return L

write-val new-ts v)

if new-ts= max;{ords, j|} thenreturn v
elsereturn L

procedure write-ord ts)

for j — 1ton doordj,i] — ts

procedure write-valts, v)

for j — 1ton dovalj,i] « (ts V)

procedure read-latest-v4]

return vali,] with largestvali, «].ts

est one in therd matrix. If not, p; aborts the Write.

A Read is very similar to a Write. It executes all
the phases of Write plus an additional one: before
storing a value inwrite-val, processp; first deter-
mines what value to store. It does so by reading the
7'th row in val, and picking the value with the highest
timestamp (procedunesad-latest-val). The intuition
is that this is the most recent known value.

In the appendix, we give a proof of correctness
for this algorithm, and show that it satisfies strong
progress. We therefore have the following result:

Theorem 12 Algorithm 1 is a strictly-linearizable
wait-free implementation of a multi-writer multi-
reader register from single-writer single-reader
ones. It satisfies strong progress if the underlying
registers satisfy strong progress.

7.3 Consensus

We now consider consensus. We first give its defi-
nition, and then give a strictly-linearizable wait-free
implementation of it. The definition is in terms of
the properties that the consensus object satisfies in a
concurrent execution. Alternatively, we could have
defined it in terms of a sequential specification and
then derived its properties as a consequence (doing
so is a good exercise for the reader).

7.3.1 Definition

Consensus is defined in terms of an operation,
propose(v), that returns a value or aborts, such that

e |f a value is returned then that value has been
previously proposed.

e If processes; and p; return a value then the
value is the same.

13

We use strong progress to limit the occurrenceafun R in which processes propose values to con-
aborts: if a process executg®pose solo then it doessensus and return values (or abort).
not abort.

Lemma 13 If avalueisreturned then that value has

7.3.2 Implementation been previously proposed.

Algorithm 2 shows a strictly-linearizable wait-fre%ROOP Through a simple induction argument we
implgmentation .of consensus from single-writ(aran easily show that for any process the valli].v
multi-reader registers. Processes share two a”%ays holds eithenil or the value proposed by some

ord and val of single-writer multi-reader registersIorocess The lemma follows because a process re-
The writer of ordfi] andvali] is processp. ordi] ;g the value invalli].v if it is not nil, or its pro-
stores a timestamp, and/i] stores a pair consisting, ,se value if it isnil.

of a timestamp and a value.

Definition 14 We say that a propose operation in-

Algorithm 2 Consensus implementation) aal
stance by some process p; is enactingif p; does not

SHARED VARIABLES: crash during its execution and ts = max;{ordj]}
1: ord1..n]: multi-reader registers, initialllow TS right after the assignment in line 8.
2: vall..n]: multi-reader registers, initially

{lowTS, nil) Note that processp; may return L even if

CODE FOR EACH PROCES®;: its propose operation instance is enacting, since
3: procedure proposév) max;{ordj]} may change between the executions
4: ts— newTS(max;{ordj]}) of lines 8 and 9. However, if there are no enact-
5 ordi] —ts ing proposes then all processes that propose will al-
6: (ts2w) — val«] with largestvalx].ts ways abort (sincenax;{ord[j]} is a monotonically
; '\jaqj[]i]:j’gt;hs; wev increasing value). In this case, correctness is trivial.
9 if ts= max{ord;]} then returnw Thus, h_enceforth we assume that there is at least
100 dsereturn L one enacting propose.

To propose a value, a procesg first obtains a Definition 15 Let £ be the enacting propose in R to
timestamptsby collecting the values of arrayrdand first execute the assignment in line 5° p be the pro-
picking a higher timestamp than any seen. Proc€€ss that executesit, ¢ be the time when pp assigns
pi then stores the picked timestampdrdi], thereby inline8, tsp bethetimestamp in the assignment, and
changing the maximum timestamp to its own. Prgs be the value in the assignment.
cessp; next collects the values of arragal and picks
the entry with the highest timestamp. If the valueemma 16 By time ¢, no processes have yet as-
associated with that entry i8l thenp;, changes thatsigned a larger timestamp than ts- inline 5.
value to its proposed value Next, p; writes to its

entry valli] the timestampts and valuew. Finally, oo Indeed, if by timet» some process had as-

p; collects the values abrd once again. If the max'signed a larger timestamp thdsy in line 5 thenF
imum timestamp is still its own, the process returssuid not be an enacting proposs

w as the decision value. Else, it aborts.

During exe(_:utlon of propose, if any operation nemma 17 From time ¢p, the vals] with largest
any of the registers aborts then the propose opera‘l/opf*] sis always equal to
also aborts immediately after. As before, this abor&tl) ys&q vE-

propagation is not explicit in th_e code.) °By “first execute” we mean the propose whose assignment
We now prove that the algorithm works. Consid@rlinearized first.

14

PrRoOOF Consider the execution of an enactipgp- 7.4 Universal Construction

pose different from F' by some process. If the as\-N how how to get a strictlv-li abl it
signment in line 8 happens before timethen it ir- € now show how'1o get a strictly-linéarizable wart-

relevant for what happens from timg onward. So free implementat?on of any objec_t from consensus
assume it happens after time. If the assignment in and registers (universal construction [5]). To do so,

line 5 happens before tirrtg then by Lemma 16 the Ve implement aratomic list. Intuitively, this object
keeps track of a list of strings, initially empty. There

timestamp used in line 5 is smaller thin (it cannot . " i 4. which (1 d
be equal tatsr because we assume that timestam =xactly one operatiomppend, whic (1) appends

are unigue). Therefore, the assignment in line 8 dt §mr1?] pas:[c,_ed as p?r?ng;[(er t(_)”':he”:lst, ag.]d ,52). re-
not change theallx| with the largest timestamp. tE'ms © entire Irew 'S .dtl ebWIt other objects 1n
Thus, the onlyproposes that can change theal[«] IS paper, we aflovappend to abort.

with the largest timestamp are those in which assign-lt is clear that an atomic list can be used to im-

ments in lines 8 and 5 happen after titpe Consider plement any gtrictly Iinearigable Obj?Ct.’ by using the
the set of all suchproposes. Note that for any of append operation with a string description of the op-
them, the reads in line 6 also happen after timeA eration ofT" to execute; the return value of append is
trivial induction argument shows that thal[x] with then used to recomp ute .the ne_/v statérdfom the
largest timestamp has valug: this is the value reag>€dUeNce of operations in the list. If append aborts,

in line 6, which is used to updatel[i] in line 8. m the pperaﬂon of” also gborté.)]
Figure 3 shows the implementation of an atomic

Corollary 18 If process p; returns a value upon list. It uses a vectoconsensus of consensus ob-
proposing then it returns vg. jects indexed by the natural numbers, and a vector
last of single-writer multi-reader integer registers in-
PrRoOOFE Consider goropose by some procesg. If dexed by process numbers, where the writer of an
p; completes line 5 beforé’ (the first enacting pro-elementlast[i] is process;. As in previous algo-
pose) does then this is not enacting and hence eitlitamns, if during the execution adppend any oper-
aborts or it never completes. Now assume thatation onconsensus|i] or last[i] aborts, then thep-
completes line 5 afteF'. There are two cases. (1pend also aborts immediately after. This is not ex-
If p, completes line 5 before timig:, then the times- plicitly represented in the code. A process also has
tamp assigned in line 5 is smaller th&s (it if were a global local variableeq that stores an integer, ini-
bigger thenF would not be an enacting proposejially O.
Thus, whenp; reaches line 9, it will find a larger To append a string to the list, a procesg needs
timestamp than its own, and it will abort. (2) #f to first obtain the current state of the list. To do
completes line 5 after timg-, then by Lemma 19; so, p; reads each value in vecttast, in some arbi-
will set w to vg in line 6, and sq; either aborts or trary order, and assigns the largest valuenaxl ast.
returnsvy. m If that integer is zero (the initial value) then the
This shows correctness of the algorithm. Waiturrent state of the list is empty. Elsg, obtains
freedom is immediate from the fact that the implé¢he state of the list by reading the decision value
mentation has no loops. And strong progress félem consensus[mazlast]. It does so by proposing
lows from the fact that if process runs solo then a dummy valuenil to this consensus object. (As we
the timestamp assigned in line 5 continues to be the

. . This implementation works f mini sti rations.
largest timestamp in vectoord when p; executes $ implementation works fodeterministic operations
For non-deterministic Operatlons, one can use an extra vector of

line 9. Therefore, when running sojg does not :,nsensus objects to keep the state after each operation. More
abort. We therefore have the following result: precisely, after a process getdia (of operations) fromap-

pend, it sets a variablestate to the initial state ofl’ and then
Theorem 19 Algorithm 2 is a strictly-linearizable fori = 1,... ,len(list), the process (1) executes th¢h op-

wait-free implementation of consensus. It satis- eration in the list starting fronstate, (2) proposes the result to

fies strong progress if the underlying objects satisfy thei-th consensus (if consensus aborts, the operatidh ao
9 prog ying ooj aborts), (3) setstate to the decision value. Once done with all

strong progress. i's, the process returrssate.

15

will show, this consensus object will always havenplementation and lef{ be the resulting history.
previously decided, so thail can never be the defor simplicity, we assume that no two invocations of
cision value.) Process then appends to its local append(s) contain the same string We do not lose
copy of the list, and increments isq variable. This generality in doing so because the exact value of
variable is used, together with the process id, asl@s not really affect the essence of execution (note
unique identifier. Procegs then tries to change thethats is only used in lines 9 and 14).

global state of the list by proposing its local list, to-

gether with the unique identifier, to the next conseDefinition 20 Let M = max;{last[i]}.

sus object. Nextp; updates its entryast[i] of the

last vector. It then checks if the consensus proposa\ote that the value af/ changes with time.
has actually decided on its proposed value or not. If

it has, p; is done and returns the new list. EI$g, | gmma21 M is monotonically nondecreasing.
retries to append to the list in exactly the same way
as before, using the next consensus object. If it faﬂ)lg

once againp; aborts its operation. Else, it returns . OOF. Indeed, a procesp; only updateslast[z.}
the new list. with a value larger than the previous valuel@ft|i]

since thamax in line 6 includesast[i]. m

Algorithm 3 Atomic list implementation
decided some non-nil value, and for j > M,
consensus[j] has not decided nil.

1: consensug..co|: consensus objects

2: last{1..n]: single-writer registers, initially O
CODE FOR EACH PROCES®;: PROOF. The invariant of the lemma holds initially
3: procedure initialization when M = 0, because the first consensus object is
4: seq— 0 consensus([1] and, forj > 0, consensus|[j] has not
decided any value. Moreover, line 8 clearly keeps
5: procedure appends)) . . .
. the invariant because (yazlast < M sinceM is
6: maxlast— max;{lasti]})) : :
) . monotonically nondecreasing, and (2) before line 8 is
7. if maxlast= 0 then list — \)
. executed,consensus[mazlast] has already decided
8 ese(q,x,listy — proposéconsensus

some value that is natil by the invariant. Lines 11
and 16 also maintain the invariant because the pro-
posal value is natil. Finally, lines 12 and 17 may in-
crementM, but the invariant is maintained due to the
propose operation in lines 11 and 16, respectivaly.

[maxlast, nil)
9: nextlist— list- s
10: seq— seg+ 1
11: (j,z, list) < proposéconsensus
[maxlast+ 1], (i, seq nextlist)
12: lasti] < maxlastt 1

13: if i # j orz # seqthen Lemma 23 For every j > M + 2, consensus|j] has

14: nextlist— list - s not decided.

15: seq+— seq+ 1

16: (4, z, listy «— propos¢consensus PROOFE This holds because when a process pro-
[maxlast+ 2], (i, seq nextlisd) poses toconsensus[j], it is always the case that

17: lasti] < maxlastt 2 J<SM+1. m

18: if i £ j orxz # seqgthen return L

19: return list Definition 24 Let N be the index of the highest con-

sensus object that decides.
We now show correctness of this algorithm. First
note that there are no loops, and so the implementamma?25 For all j =1,... , N, consensus[j] de-
tion is wait-free. Now consider a run of the abow&des some non-nil value.

16

PROOF. Let M., be the largest value a¥/ in the line 13 evaluates to false thendoes not abort and

execution. From Lemma 23 < M,,,; + 1. Now S0 append(s) is successful. (2) If théf in line 13

the result follows from Lemma 22a evaluates to true then execution reaches line 16. At
Note that the non-nil values proposed to consenshis time,consensus|[My+2] has not yet decided any

(lines 11 and 16) are of the forix, *, list), where value, sincep is executing solo, and therefore it will

list is a non-empty list. Hence, the decision valudgcide on the proposed value, and soiffie line 18

are also of this form. This motivates the followingvaluates to false. Therefopedoes not abort and so

definition: append(s) is successful.m

Definition 26 For j = 1,..., N, let i; and s; be Lemma 31 If append(s) is successful then it is ef-
such that the decision of consensus|j] is (i;, *, list - fective.

8j>.

PrROOFE Indeed, letp; be the process to execute
append(s). Sincep; does not abort then the propose
in line 11 or 16 returns the proposed value, which is

of the form(x, %, - s). Therefore, the corresponding

PROOF: Indeed, the non-nil propose values are @lgnsensus decides on that value, and se s; for
ways of the form(x, «, list - s) wheres is the param- gome; »

eter toappend. m

Lemma?27 For j = 1,..., N, some process in-
vokes append (s;).

iy " Lemma32 If append(s;) is effective then, when
Lemma28 It j # k then s; # si. append(s;) returns or crashes, M > j — 1.

ProOOF. Recall that we are assuming that no two s oor If append(s;) is effective then during its

vocations toappend(s) have the same. Note that execution, the propose in either line 11 or 16 returns

t<i*’n*7 lfl‘St'SJ'> Zan.on:\% bre p\r/op;o;]edr du”ggbthefr);ecﬂie proposed value. At that point/ > j — 1. The
on of append(s;). (OICOVET SIS Saae = osresc,{.ut follows from Lemma 21m
two such proposes in the execution, and the secon

propose only happens if the first propose does rll%tmmaSB For j # k

decide on th d value. Therefore at most It append(s;) and
ecide on Ihe proposed vaile. Theretore at mos %?ozeoend(sk) are effective, and append(s;) returns or
consensus object can decide(@nx, list - s;). It fol-

) crashes before d isinvoked, then & > 5.
lows that ifj # k thens; # s;,. m append(st,) J

Definition 29 An append(s) operation instance is PROOF Let M; be the value of M when
successfulf it executes without aborting or crash- @Ppend(s;) returns or crashes. By Lemma 32, we

ing. An append (s) operation instance is effectiveif NaveM; > j — 1. Whenappend(s) is later in-
s = s, for some . voked by some process, p; will set mazlast to

a valuel > M;. Since the append qf; is effec-
Intuitively, an effective append is one whose paratfi€, the propose by; to eitherconsensus|l + 1] or

eters has been taken by one of the consensus. ~ consensus[l + 2| returns the proposed value. There-
fore, k = Il +1ork = [+ 2. In either case,

Lemma30 If p executes append(s) solo without & —1 > 1 > M; > j — 1. Thusk > j. Since
crashing then append (s) is successful. j # k by assumption, it follows that > j. =

PROOF. Considerp's execution ofappend(s), and Lemma34 If append(s;) is successful then it re-

let M, be the value ofnaxlast afterp executes line 6.turnsthelist s; - - - s;.

Note that at this timeM = M,. Therefore, by

Lemma 23,consensus[My + 2] has not decided anyPROOF. Using the way in whichnextlist is as-
value. There are now two cases: (1) if tifein signed in lines 9 and 14, we can show through a

17

simple induction ory that consensus[j] decides on H; to Hs). Therefore, by construction, those events

(*,%,s1---s;). The result then followsm also match those if. We conclude thatfs,, = S.
We define define a sequential hista$yusing the Therefore, we have a strictly-linearizable imple-
s;'s as follows: mentation of an atomic list. We already showed that

o the implementation is wait-free. Moreover, it satis-
Definition 35 Let S := fies strong progress because it only aborts an oper-
inv(append, s1)p, - ret(append, s1)p, - ation if the underlying objects abort their operation.
inv(append, sa)p, - ret(append, sy - so)y. - Therefore, we get the following result;

mv(app.end ox)? - ret(append. s -~ sw)? Th.eorem.36 Algorithm 3 is a drictly-linearizable
P Piy ’ Piy wait-free implementation of an atomic list. It sat-
We now show how we can transfordi (recall isfies strong progress if the underlying objects satisfy
that H is the history of some execution of the atomftrong progress.
list implementation) intaS using —. We first use
Rules (7) and (11) of- to remove fromH anynon-
effective operation instancegppend (s) that abort or

crash. We then use Rule 6 to remove all crash events]]]]
that are not part of any operation instance. Egt | N€0rem 37 Any object has a strictly-linearizable

be the resulting history. Since successful operati$fit-frée implementation from single-writer single-
instances i, are always effective (by Lemma 31)/€2der registers. |t satisfies strong progress if the un-
H, is only left with append (s) operation instancesde'Ying registers satisfy strong progress.
that are effective.

We then use Rules (8) and (12) to transform & Related Work

abort event or the remaining crash events into nor-

mal return events, as follows: leppend(s;) be an The general idea that concurrency may prevent suc-
operation instance that aborts or crashes. Replacetgsfyl completion goes as far back as database
abort or crash event withet(append, s; -+~ s;)) . transactions that abort. The “safe” registers of [9]
We do that for all abort and crash events. IEatt;e allow a read that is concurrent with a write to return
the resulting history. an arbitrary value. This is different from our notion
Now consider eveninv (append, 51)10% in Hy. By of abort because with safe registers, a process does
Lemma 33, there are n@t events inH (or in Hy) not know if its read is successful or returns garbage.
before thisnv event. Therefore, by multiple applicawith obstruction-freedom [6], processes are not re-
tions of Rule (4), we can bring forward thev event quired to return from their operations in the presence
to the beginning of the historyl,. Then, by multi- of concurrency. This is in contrast to our work, in
ple applications of Rules (3) and (5), we can bringhich processes instead return an abort indication.
forward theret event that matches thisv event right Lots of prior work has considerespecific prob-
after theinv event. lems or objects with abort (rather than a general
We can repeat this process for all remainagg framework as we do), including consensus in [10, 1]
pend operation instances in order fromppend(s;) or a register variant in [2]. The storage registers
through append(sy). By doing so, we finish with of [4, 3] are examples of strictly linearizable imple-
a sequential historyis,, of alternatinginv andret mentations of registers on top of an asynchronous
events forsy, so,... ,sy in order. Theinv events message-passing system. Abortable consensus [12]
in Hppnq exactly match those it$. As for theret is a problem defined for message-passing systems,
events, by Lemma 34, thret events infj,,; of suc- which resembles the consensus objects in this paper,
cessful operation instances i match those eventdut the conditions for aborting are very different.
in S. As for the otheret events inf,,;, those come The universal construction in our work is similar
from replacing crashes or aborts above (going framthe one in [5], but we do not need its “helping

As we argued before, itis easy to use an atomic list
to build any other object, and so the following holds:

18

mechanism”, whereby one process helps to complgtd P. M. B. Vitanyi and B. Awerbuch. Atomic shared
another process’s operation. These types of helping register access by asynchronous hardwareéEHBE
mechanisms appear frequently in the wait-free liter- Foundations of Computer Science, 1986.
ature, but in general they are quite ad hoc and cda®] Private communication with Wei Chen, March
plicated to design. Finally, our implementation of a 2003.
multi-writer multi-reader register from single-writer
single-re_ader ones is heavily inspired by the one % Constructing an Atomic Register
scribed in [11].
We give the unabridged version of our register con-
Refer ences struction with explicit abort handling. We then
show its correctness, by showing that it is a strictly-
[1] R. Boichat, P. Dutta, S. Frolund, and R. Guerraouinearizable wait-free implementation.
Deconstructing Paxo®\CM SIGACT, 34(1), March
2003. Algorithm 4 Multi-writer multi-reader register im-
[2] P. Dutta, S. Frolund, R. Guerraoui, and B. Pochoplementation
An efficient universal construction for message-

passing systems. Imternational Symposium on
Distributed Computing (DISC), 2002. 1: ord[1...n,1...n]: single-reader, single-writer

[3] S. Frolund, A. Merchant, Y. Saito, S. Spence, and registers, initiallylow TS _ _
A. Veitch. Building storage registers from crash- 2 Valll...n,1...n]: single-reader, single-writer
recovery processes, October 2003. Tech report ~ 'edisters, initially(nil, lowTS)
HPL-SSP-2003-14. CODE FOR EACH PROCES®;:

[4] S. Frolund, A. Merchant, Y. Saito, S. Spence, and3: procedure Write(val)
A. Veitch. Fab: Enterprise storage systems on &: new-ts— generate-ts()
shoestring. InProceedings of the Ninth Workshop 5: if new-ts= L then return L
on Hot Topics in Operating Systems (HOTOS [X). if inc-ord-tspew-ty = L then return L
USENIX, 2003. if write-val(val, new-t§ = | then return L

[5] M. Herlihy. Wait-free synchronizatio’ACM Trans- return checkew-t9
actions on Programming Languages and Systems, procedure Read()
13(1):123-149, January 1991. 10: new-ts« generate_ts()

[6] M. Herlihy, V. Luchangco, and M. Moir. 11: if new-ts= L thenreturn L
Obstruction-free synchronization: double-ended2: if inc-ord-tsew-t§ = L thenreturn L
queues as an example. Proceedings of the 13: val — get-latest-valfew-t9
23rd International Conference on Distributed 14: if val= 1 thenreturn L

SHARED VARIABLES:

Computing, 2003. 15: if write-val(val, new-t9 = L then return L
. . . e 16: if checkpew-tg = ok then return val
[7] M. Herlihy and J. Wing. Linearizability: a correct- . dsereturn |

ness condition for concurrent object&aCM Trans-
actions on Programming Languages and Systems, . .))
12(3):463-492, July 1990. Algorithms 4 and 5 contain the atomic register
construction. In the following, we prove that the al-

[8] L. Lamport. How to make a multiprocessor com- h v imol ltiwri i
puter that correctly executes multiprocess prograngs‘?”t ms correctly implement a multi-writer multi-

|EEE Transactions on Computers, 28(9), September feader atomic register.

1979. To distinguish between operations on the con-
[9] L. Lamport. On interprocess communicatiobis- structed multi-writer multi-reader register and oper-
tributed computing, 1(1):77-101, 1986. ations on the underlying single-writer single-reader

[10] B. Lampson. How to build a highly available SyS_registers, we use Read and Write to refer to the for-
tem using consensus. IRroceedings of the In- Mer and read and write to refer to the latter.

ternational Workshop on Distributed Algorithms, We useWrite(v) to represent a Write operation
Springer-Verlag, LNCS (WDAG), September 1996. instance whose invocation event hasas parame-

19

Algorithm 5 Auxiliary procedures

CODE FOR EACH PROCES®;:

1: proceduregenerate-ts()

2 latest-ts— lowTS

3: forj«< 1tondo

4 ts « ord[i,j].read()
5: if ts= 1 thenreturn L
6 if latest-ts< tsthen
7 latest-ts— ts

8 return newTS(/atest-t3
9

: procedur e inc-ord-ts¢s)
10: forj«— 1tondo
11 if ord[j,i].write(ts) = L then return L
12: return oK

13: procedure get-latest-valfew-t9
14: latest-ts— lowTS
15: forj«— 1tondo

16: v « val[i,j].read()

17: if v=_1thenreturn L

18: (val ts) — v

19: if ts > new-tsthen return L
20: if latest-ts< tsthen

21: latest-ts— ts

22: latest-val— val

23: return latest-val

24: procedure write-val(val, ts)

25: for j «— 1tondo

26: if val[j,i].write((val ts)) = L then
27: return L

28: return oK

29: procedure checkgs)

30: forj« 1tondo

31 ord-ts« ord[i,j].read()

32: if ord-ts= 1 or ord-ts> tsthen return L
33: return oK

ter value. We us®ead(v) to represent a successful
Read operation instance whose return eventhas
parameter value. The valudl (nil € Value) repre-
sents the initial value of the register. To simplify the
presentation, we assume that each value is written at
most once (i.e., we never have two Write operation
instances with the same value). We also assume that
nil is not part of any Write operation instance. We
usewrite,(v) to represent a write operation instance
on a the register, and we useead, (v) to represent
a successful read operation on the register

For any historyH, we extend the orderingy on
successful operation instancesifihto also include
aborted and partial operation instances. For any two
operation instancesp; and op, in H, we say that
op; — op; if op;'s return or crash event precedes
op;'s invocation event in.

For any historyH , we define the following subsets
of Value:

e Writteny is the set of all values in invocation
events for Write operation instancesfh

e Commitedy is the set of all values in invocation
events for successful Write operation instances
in H.

e Readp is the set of all values in return events for
successful Read operation instanceg/in

We also call the sedReady U Commitedy theob-
servable values inH, and define

Obsy = Ready U Commited .

In the following, R is any run of Algorithms 4
and 5, andH refers to any history thak may give
rise to.

A.1 A Sufficiency Condition for Strict Lin-
earizability of our Construction

Intuitively, a conforming total order is a totally-
ordered se{V, <) such that (a)l” contains all the
observable values ifif, and (b) the ordering of val-
ues inV corresponds to the ordering of operation in-
stances ind. More precisely:

Definition 38 A totally ordered set (V, <) isa con-
forming total order for H if Obsy C V C

20

Writtenyy U {nil} and if for all v,v/ € V thefol- instances fronfl, as follows. Let be the parameter
lowing holds: of a Write operation instance. #f € V', use Rule (8),
(10), or (12) to convert the Write operation instance
. , to a successful Write; otherwise, use Rule (6), (7),
nil € V.= mil <v (14) (9) or (11) to remove the Write operation instance.
Write(v) —p Write(v') = v <v" (15) We now have a historyZ/, without crashes, aborts,
Read(v) — g Read(v') = v <o’ (16) and infinite aborted operation instances. Moreover,
Write(v) — g Read(v') = v </ a7 Ho — Hp,. _ _
Read(v) — s Write(t/) We next show thati;, — S. We first claim that
H/, and S contain the same operation instances. To
m Show the claim, note that every successful operation
instance inHo is part of bothHy, andS. Moreover,
Proposition 39 If H has a conforming total order every unsuccessful Read operation instance (i.e., par-
then H isstrictly linearizable. tial, aborted, and infinite Read operation instances)
. _ in Hop are in neitherHy, nor S. An unsuccessful
PROOF Assume that(V, <) is a conforming total \yyite operation instanc@/rite(v) is part ofS if and
order for H. Because strict linearizability is a Iocad,my if v € V. Butif v € V, we convert the unsuc-
property (Theorem 6), we can prove tiéts strictly cessful Write operation instance i to a success-
linearizable by proving that each object sub-histofy| instance infr/, by the above transformation. This
Hlo is strictly linearizable. By assumption, the reghows the claim.
isters inval and ord are strictly linearizable. Thus, Now assume for a contradiction thal, 4 S.
if we useO to refer to the multi-writer multi-readergecayse the histories contain the same set of oper-
object in Algorithms 4 and 5, is sufficient t0 ShoWion instances, and because these are all successful

v<v (18)

that Ho = H|O is strictly linearizable. operation instances, there must be two operation in-
To show thatH,, is strictly linearizable, we CoN-stancesop; and op; that are ordered differently in
struct a sequential history such thatto — 5. H), andS. But this is impossible because the value
For everyv € V, construct a sequenc® as fol- ordering inV obeys the operation instance ordering
lows: in Ho and thereby inffy,. n
g Write(v) - Read; (v) - ... Readi(v) v # nil . .
"= Y Reads (1) - ... - Readx (v) otherwise A-2 Constructing a Conforming Total Or-

der

wherek is the number of successful Read operati@{e show that our algorithm gives rise to a conform-
instances that return in Ho (k > 0). Next, con- jng total order. We construct a conforming total or-
struct$ in the following way: der for values in terms of the timestamps that are
used to store these values in the underlying single-
writer single-reader registers. To define the total or-
der of values, we first introduce two types of internal
wherev; < v9 < ... < v, are the elements df. events related to our algorithm: store events and or-
First observe tha$ belongs to the sequential specler events.
ification of a multi-writer multi-reader register: i, ~ An order evenbrd(v, ts) happens when a process
a Read operation instance always returns the valugwbkes thewrite-val procedure withv andts as pa-
the most recent Write operation instance. rameters. A store evest(v, ts) happens when the
We now show thaflp, — S. To do so, we start check procedure returnsk to a process. The param-
with Hp and successively explain which rules to aptersv and ts are the same as in the ordering event
ply until we obtainS. First, use Rules (6)—(12) to reef the operation instance that invokerseck.
move all partial, aborted, and infinite Read operationWe useOE}, to denote the (possibly empty) set of

S =Sy ... Sy

21

ordering events that happen ihand that have as Lemma42 Each register in val and ord contain
first parameter. IDE} # (), we usets,, to denote the monotonically increasing timestamps.

smallest timestamp that is part of any ordering event

in OE%,.” We similarly defineSE}, as the set of storeProor Consider registeord[i,j]. This register is
events that happen in rul and that have as first only written by procesg;. But each process gener-
parameter. Finally, we defingVx to be the set of ates a monotonically increasing sequence of times-
values that are part of store eventsin tamps, which proves the lemma ford We can ap-

ly a similar reasoning toal. []
Definition 40 The order relation <,y on SVg isde- Py g

fined as follows:

v <va V' & sy < tsy v, €SVR (19) Lemma43 Let v be any value in Obsy. If nil €
Obsg then nil < v.

The <4 relation is a total order because differeffROOF. Assume for a contradiction thatil andv
values are always stored with different timestamge values irObsy, yetv < nil. From Lemma 41,
In the following, we omit the subscript fromy, We know thaw, nil € SVg.
and simply use £”. With this convention, the sym- Let p; be the process at which the store event
bol < is overloaded to order both timestamps ast{v, ts,) happens, and lep,, be the process at

values. which the store event(nil, ts,;) happens.
Since no Write operation instance hag as pa-
Lemma 41 rameter, the store evest(nil, ts,;) must happen

during a Read operation instance. Consider the
readyam, k) ((v, ts)) operation instance that happens
during this Read operation (as part oét-latest-

Commitedy orv € Ready. If v € Commited g then val). We claim t_hat that" = nil andis = !OWTS-
v is the parameter of a successful Write operatiyjSUme otherwise. Since Read returns, get-
instance. The invocation atheck in this instance |at€st-val also retunsnil. So some read opera-
thus returnsk, which means thak contains a storelion On a register irval must return{nil, ts') with
event withv as first parameter, and soc SVp. If ts’ > lowTS. Thls_ means.that there is an ordering
v € Ready thenw is the return value of a succes€ventord(nil, ts) in R. Since get-latest-val does

, .
ful Read operation instance. Again, the invocation 8¢t abort, we know thats' < ts,;, which con-
check within this instance returnsk, and again we tradicts the definition ofts,; and thereby proves
conclude that € SVx. the claim. The Read operation also gives rise to

Now letv € SVz. Consider any store event withVt€ordk,m)(tsni) @S part of theinc-ord-ts proce-
v as first parameter. There are two cases to cGiIe- We know thawriteogy, n, (tsni) is linearized
sider: (a) the event happens during a Read operafl6fPre readvaim,x ({nil,lowTS)) because they are
instance and (b) the event happens during a Wfitkoked by the same process in that order.
operation instance. In case (a)is returned byget- The store _eventt(v, t'sv) happgns during some
|atest-val, which means that is stored in aval regis- R€ad or Write operation. This Read or Write
ter. A simple induction shows that this only happeRgeration invokeswriteval and gives rise to
if v = nil or if v is the parameter of some Writd¥"tevafm k) ({0, tsv)). We claim thatwriteyap, i
operation instance. In case (h)js parameter of a((v; 5v)) i linearized beforevrites gy, m) (5ni). TO

Write operation instance. In either case, we have tREgVe this claim, observe first that, < tsnq.
v € Writteng U {nil}. m Thus, a linearization ofwriteyqy,) (tsni) before

writeyam, 1) ((v, ts,)) would either violate the fact

"Although ts, depends onk we do not parameterizes, that ordm, k| contains monotonically increasing
with that run for brevity. timestamps (Lemma 42), or it would contradict the

Obsy € SVi C Writteng U {nil}.

PrROOF Let v € Obsy. Then eitherv ¢

22

fact thatst(v, ts,) happens inR. This proves the has a timestamps” that is smaller tharts,,. We
claim. We conclude thatrite qy,, 1)((v, ts,)) is lin- claim thatts” > ts. To show the claim, observe first
earized beforeead,,,, 1) ((nil, lowTS)). This con- thatts” # t¢s becausev # v'. Next, assume for
tradicts Lemma 42, and completes the proof. m a contradiction thats” < t¢s. Sincest(v, ts) hap-
pens inR, we know that some procegs success-
fully stores (v, ts) in the registersval[—,i|. More-
over, sincets < ts,,, these store operations happen
before the invocation ajet-latest-val with ts,, as ar-
gument (otherwise, we would contradict Lemma 42).

PROOF Sinceord(u, ts) happens during a Write Op__Thus, this invocation ofjet-latest-val would returnv

, S L -
eration we know thab nil. Assume for a contra-nstead of” becauses” < s, which is a contradic

H /! H /!
diction thatord (v, ts,) happens during a Write oplion- Thus we haves < ", which means thats

eration instance, buts # ts,. Consider now the IS '31” eleml?nttobl“, andtci%ntradlcts the fact that,
eventord(v, ts,). Sincew is written at most once,IS € smaflest element ib. "
this event happens during some Read operation in- .

stance executed by a procgss This Read oper-i‘,emma‘r;‘n46 tlf ;Thd(:;];tetH’ttheﬂ the;ﬁsezlstfna
ation instance will execute thget-latest-val proce- XM 18 st(v, ts) happ uring

dure, which will returnv. Moreover, some registerRead(v) InE.

.) . :) .
in vafi, —] containsv and a timestamps’ that is proor Follows from the algorithm since the Read
smaller thants,. Sincev # nil, some operation IN- gperation invokesheck. -

stance invokes write-val withandts', which means

that R containsord (v, ts'). This contradicts the fact] gqmma 47 If Write(v) isin H and v € Obs, then

tha'F ts, is the smallest timestamp that is part of og—rd(% ts,,) happens during Write(v) in R and there

dering events fop. B exists a timestamp s such that st(v, ts) happens in
R.

Lemma44 For any value v, if the event ord(v, ts)
happens during a Write operation then ts = ts,.

Lemma45 Letv # o' bevaluesin SVj. If st(v, ts) PROOF If v € Commited thenWrite(v) does not
happens in R with ¢s > ts,/, and if st(v/, ts') hap- @bort, and the lemma holds because bwtt{v, ts,)
pensin R, then ts > ts'. andst(v, ts) happen duringVrite(v).

Consider next the case wheve¢ Commitedy;.
Thenv € Ready. Consider a Read operation in-
stanceRead(v) in H. The existence oft(v, ts) fol-
lows from Lemma 46. Assume next thatl (v, ts,)
happens during a Read operation instance. Notice

S = {fs: s > ts Aord(v/, fs) € SER}). thatv # nil becausé/\rite(v) happens irf. Let ts

be the smallest timestamp such tkatv, ts') hap-

Then ts’ is in S. Let ts,, be the smallest el-pens inR. We know from Lemma 44 that (v, ts')
ement inS. There are now two cases to corhappens during a Read operation instance (otherwise
sider: (a)ord(v/, ts,,) happens during Write or (b)ord(v, ts’) would happen during a Write operation
ord(v’, ts;,) happens during Read. In case (a), viestance, which would mean th&at = ts,). Con-
know thatts,, = ts,» by Lemma 44. Sinces > ts,» sider now the Read operation instance that generates
per assumption, we have a contradiction with the faetv, ts’). The get-latest-val procedure must return
that ts,,, is an element ofS' (all elements ofS are v during this operation instance. This means that
greater tharnts. For case (b), thget-latest-val pro- v must have been stored in a registervial with a
cedure must have returnedduring a Read that gentimestampts” that is smaller tharts’. This contra-
eratests,, as timestamp. This means thyst-latest- dicts that fact thats' is the smallest timestamp that
val must have read’ from an element ofval that is part of an ordering event for. |

PROOF Assume for a contradiction that(v/, ¢s’)
happens ink with ts' > ts. Consider the se$' of
timestamps:

23

Lemma48 If oper; —p oper,, thentheeventsgen- From Lemma 47, we know thatd(v, ts,) hap-
erated during oper; have smaller timestamps than pens during/Nrite(v), and thast(v, ts) happens dur-
the events generated during oper,. ing R. Similarly, by Lemma 46,;st(v/, ts’) hap-
pens duringRead(v'). We know thatts, < ts'
PrROOF. Ordering and store events that happen d{i-emma 48). There are now two cases to consider:
ing the same operation instance have the same tinfgyés > ts’ and (b)ts < ts’. For case (a), we have
tamp. Thus, it is sufficient to prove the lemma fdhat ts, < ts’ < ts which contradicts Lemma 45.
ordering events only. Consider two ordering everfter case (b), we have that, < ts, < ts < ts/,
ord(v, ts) andord(v', ts") that happen duringper; Which also contradicts Lemma 45. [
and oper, respectively. Letp; be the process that
executeoper; and p; be the process that executgsemma 52 For all values v, v/ € Obsyy, the follow-
oper,. During opery, p; writes ¢s to ord[j,i], and jng holds;
p; reads this register when it generates From
Lemma 42, we conclude that > ts. n Read(v) —p Write(v') = v < v/

Lemma 49 For all values v, v/ € Obsyy, the follow- PROOF From Lemma 46, we know that(v, ts)

ing holds: happens duringRead(v) for some ts. From
Lemma 47, we know thaird (v, ts,») happens dur-

Write(v) — g Write(v') = v < v/ ing Write(v). Lemma 48 implies thats < ts,,

which proves the lemma becausg < ts by defini-

PROOF From Lemma 47, we know thatd (v, ts,,) tion. u

happens durinVrite(v) and thatord(v/, ts,/) hap-

pens duringWrite(v). From Lemma 48, we con-

clude thatts, < ts,/, which proves the lemma. m Proposition 53 Thetotally ordered set (Obsy, <) is
a conforming total order.

Lemma50 For all valuesv,v/ € Obsy, thefollow- PROOF Follows directly from Lemma 41,
ing holds: Lemma 43, and Lemma 49-52. |

Read(v) — g Read (v’ < _
ead(v) = Read(v)) = v < v A.3 Proving Strong Progress

PROOR. Assume for a contradiction thaProposition 54 A solo operation instance does not
Read(v) — g Read(v'), yetv > v/, abort.

Let st(v, ts) the store event that happens dur-
ing Read(v), and letst(v', ts") be the store eventproor Assume for a contradiction that there is a
that happens durinfRead(v/) (Lemma 46). From solo operation instancep that aborts.
Lemma 48, we know thats < ts'. Sincev > v, Because the registers ual/ andord satisfy strong
we have thats, > ts,/, which implies thatts,, < progress, there are two places whegemay abort:
ts, < ts < ts'. This contradicts Lemma 45. m (a) the “if” statement in Algorithm 5, line 19 or (b)

the “if” statement in Algorithm 5, line 32.

Lemma51 For all values v, v € Obsy, the follow- Consider first case (apew-tsis the timestamp of

ing holds: op, andts is the timestamp of some other operation
instanceop’. Sinceop runs solo, we must have that
Write(v) —p Read(v') = v < ' op’ — op. Sinceop’ writes its timestamp into a reg-
ister inval, it must have executed inc-ord-ts success-
PROOF, Assume for a contradiction thafully. In particular, op’ must have written its times-
Write(v) — g Read(v'), yetv > v'. tamp into one of the registers ord that op reads

24

when it executes generate-ts. However, the value
of this register increases monotonically (Lemma 42),
which contradicts the fact thatew-ts< ts.

Consider next case (bjs is the timestamp obp,
andord-tsis the timestamp of some other operation
instanceop’. As in case (a), we have thap’ —
op. This means thatp’ must storeord-tsin ord[i,j]
before op executes generate-ts. This contradicts the
fact thatord([i,j] contains a monotonically increasing
sequence of timestamps.]

Finally, note that the implementation is clearly
wait-free because all its loops are finite (in fact, they
are bounded by). Therefore, from Propositions 39,
53, and 54, we get the following result:

Theorem 55 Algorithms 4 and 5 is a grictly-
linearizable wait-free implementation of a multi-
writer multi-reader register from single-writer
single-reader ones. It satisfies strong progress if the
underlying registers also satisfy strong progress.

25

