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Bound entangled states are states that are entangled but from which no entanglement can be
distilled if all parties are allowed only local operations and classical communication. However, in
creating these states one needs nonzero entanglement to start with. To date, no analytic results
reveal the entanglement content of these strange states. Here, the entanglement of two distinct
multipartite bound entangled states is determined analytically in terms of geometric measure of
entanglement and a related quantity. The results are compared with those for the relative entropy
of entanglement and the negativity, and plausible lower bounds on the entanglement of formation are
given. Along the way, an intriguing example emerges, in which a bipartite mixed state, associated
with Smolin’s bound entangled state, can be reversibly converted into a bipartite Bell state, and
vice versa. Furthermore, for any N-qubit state that is PPT for all bipartite partitionings, there is
no violation of the two-setting, three-setting, and functional Bell inequalities.
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Introduction: We are motivated to study the quantifica-
tion of entanglement for the basic reason that entangle-
ment has been identified as a resource central to much of
quantum information processing (see, e.g., Ref. [1]). To
date, progress in the quantification of entanglement for
mixed states has resided primarily in the domain of bi-
partite systems [2]. For multipartite systems in pure and
mixed states, the characterization and quantification of
entanglement presents even greater challenges.

As there are ambiguities in the generalizing of the en-
tanglement of distillation (ED) and formation (EF) to
multipartite systems [3], the study of other measures,
such as the relative entropy of entanglement (ER), is
thus relevant to understanding multipartite entangle-
ment. Recently, a multipartite entanglement measure
based on the geometry of Hilbert space has been pro-
posed [4], and has been applied to several bipartite and
multipartite cases. The merit of this measure is that
it is suited for any-partite systems with any dimension,
although determining it analytically for generic states re-
mains a challenge.

One of the many test beds for entanglement measures
includes a peculiar set of states: bound entangled states.
These are states that are entangled, but from which no
pure entangled state can be distilled if all parties are al-
lowed only local operations and classical communication
(LOCC). The entanglement of distillation (under LOCC)
for these states is thus zero. Bound entangled states can
be either bipartite or multipartite, the latter possibly ex-
hibiting more features than the former. However, it does
take nonzero amount of entanglement to create bound
entangled states. It is thus desirable to see how much
entanglement (e.g., EF) is needed to create them. So
far, no analytic results on nontrivial entanglement mea-
sures for these states have been reported. Yet, as the two

important measures—entanglement of distillation and of
formation—have so far been limited to bipartite settings,
in order to explore multipartite settings, it is, on the
one hand, necessary to lay down bounds on the entangle-
ment content for distillation and formation. On the other
hand, applying other measures to multipartite states may
prove helpful in understanding entanglement.

In this Letter, we study two distinct bound entangled
states: Smolin’s four-party unlockable bound entangled
state [5, 6] and Dür’s N -party Bell-inequality-violating
bound entangled states [7]. For each, we determine an-
alytically their geometric measure of entanglement, as
well as a related quantity. These give lower bounds on
their EF. In addition, we make conjectures on their rela-
tive entropies of entanglement. We have also found that
when Smolin’s state is partitioned 1:234, it has bipartite
EF = 1, equal to that of a Bell state. Moreover, this
bipartite mixed state can be reversibly transformed into
a bipartite Bell state, and vice versa, even though they
have different system entropies.
Geometric measure of entanglement : We begin by briefly
reviewing the formulation of this measure. Consider
a general, n-partite, pure state (expanded in the local
bases {|e(i)pi }): |ψ〉 =

∑
p1···pn

χp1p2···pn |e
(1)
p1 e

(2)
p2 · · · e

(n)
pn 〉.

As shown in Ref. [4], the closest separable pure state,

|φ〉 ≡ ⊗ni=1|φ(i)〉 = ⊗ni=1

(∑
pi

c(i)pi
|e(i)pi

〉
)
, (1)

satisfies the stationarity condition∑
p1···p̂i···pn

χ∗p1p2···pn
c(1)p1 · · · ĉ

(i)
pi · · · c(n)

pn
= Λ c(i)pi

∗
, (2a)

(with i = 1, . . . , n) and its complex conjugate, where the
eigenvalue Λ ∈ [−1, 1] is associated with the Lagrange
multiplier enforcing 〈φ|φ〉=1, and the symbol ̂ denotes
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exclusion. Moreover, the eigenvalue Λ is the cosine of the
angle between |ψ〉 and |φ〉; the largest one, Λmax, which
we call the entanglement eigenvalue, corresponds to the
closest separable state, and is the maximal overlap:

Λmax(|ψ〉) = max
φ
|〈φ|ψ〉|, (3)

where |φ〉 is separable but otherwise arbitrary pure state.
In Ref. [4], Esin2 ≡ 1 − Λ2

max(|ψ〉) was defined to be the
geometric measure of entanglement for any pure state
|ψ〉. In Ref. [8], Elog(|ψ〉) ≡ −2 log Λmax(|ψ〉) was shown
to be a lower bound on ER of |ψ〉.

The extension to mixed states can be built upon the
pure-state theory, and is made via the use of the convex
hull construction (indicated by “co”), as was done for
EF [2]. The essence is a minimization over all decompo-
sitions ρ =

∑
i pi |ψi〉〈ψi| into pure states:

Esin2(ρ) ≡ (coEsin2)(ρ) ≡ min
{pi,ψi}

∑
i
piEsin2(|ψi〉), (4a)

Elog(ρ) ≡ (coElog)(ρ) ≡ min
{pi,ψi}

∑
i
piElog(|ψi〉). (4b)

This convex hull construction ensures that the measure
gives zero for separable states; however, it also compli-
cates the task of determining mixed-state entanglement.
Esin2 is an entanglement monotone [4] and although it
remains to see whether Elog is also, it does, e.g., have
the additive property:

Elog

(
|ψ12〉 ⊗ |φ34〉

)
= Elog

(
|ψ12〉

)
+ Elog

(
|φ34〉

)
.

Moreover, if the relationship among the two measures—
the relative entropy of entanglement (ER) and the entan-
glement of formation (EF)—still holds for any multipar-
tite pure state: ER ≤ EF, and if EF for mixed states is
still constructed by the convex hull, then we have a lower
bound on the entanglement of formation:

Elog(ρ) ≤ EF(ρ). (5)

Using the inequality −2 log x ≥ 1− x2 (with 0 ≤ x ≤ 1)
for both base-2 and base-e, one further has

Esin2(ρ) ≤ Elog(ρ). (6)

We shall calculate analytically Esin2 and Elog for the two
bound entangled states, Smolin’s and Dür’s.
Smolin’s four-party unlockable bound entangled state:
This is a four-qubit mixed state

ρABCD ≡ 1
4

3∑
i=0

(
|Ψi〉〈Ψi|

)
AB

⊗
(
|Ψi〉〈Ψi|

)
CD
, (7)

where the |Ψ〉’s are the four Bell states: (|00〉± |11〉)/
√

2
and (|01〉 ± |10〉)/

√
2. Now, the state ρABCD can be

conveniently rewritten as

ρABCD =
1
4

3∑
i=0

|Xi〉〈Xi|, (8)

where the |Xi〉’s are four orthogonal GHZ-like states:

|X0〉≡
1√
2

(
|0000〉+|1111〉

)
, |X1〉≡

1√
2

(
|0011〉+|1100〉

)
,

|X2〉≡
1√
2

(
|0101〉+|1010〉

)
, |X3〉≡

1√
2

(
|0110〉+|1001〉

)
.

The most general decomposition of an arbitrary mixed
state ρ into pure states can be expressed as

ρ =
M∑
k=1

|ϕ̃k〉〈ϕ̃k|, with |ϕ̃k〉 =
n∑
i=1

Uki
√
λi |ξi〉 (10)

where M is an integer not smaller than n, the number
of orthonormal eigenvectors {|ξi〉}(with nonzero eigen-
values {λi}) of ρ, |ϕ̃〉’s are un-normalized , and U sat-
isfies

∑M
k=1 Uki U∗kj = δij . Thus, the most general (un-

normalized) pure state that appears in the decomposition
of Smolin’s state is

|ϕ̃k〉 =
3∑
i=0

1
2
Uki|Xi〉. (11)

Our goal is to minimize
∑
k pk Epure

(
|ϕk〉

)
over all possi-

ble U ’s, where Epure is some pure-state entanglement (ei-
ther Esin2 or Elog in our considerations), pk ≡ 〈ϕ̃k|ϕ̃k〉,
and |ϕk〉 is the normalized state |ϕk〉 ≡ |ϕ̃k〉/

√
pk. Mak-

ing a general minimization for an arbitrary mixed state is
extremely difficult. However, for the mixed state ρABCD

we shall show that the decomposition in Eq. (8) does
indeed minimize the average entanglement over pure-
state decompositions. As in Eq. (11), |ϕ〉 can be ex-
plicitly written as |ϕ〉 =

∑3
i=0

√
qi e

i φi |Xi〉, where the
q’s are non-negative, satisfying

∑
i qi = 1, and the φ’s

are phases. For fixed q’s, the state has a maximal entan-
glement eigenvalue when all phases are zero. We shall
show shortly that its maximal entanglement eigenvalue
is 1/

√
2, which is achieved by the |X〉’s.

The entanglement eigenvalue of the state |ϕ〉 =∑3
i=0

√
qi |Xi〉 is the maximal overlap with the separa-

ble state |Φ〉 = ⊗4
i=1

(
ci|0〉+ si|1〉

)
, where ci ≡ cos θi and

si ≡ sin θi with 0 ≤ θi ≤ π/2. Thus

〈Φ|ϕ〉 =
√
q0/2 (c1c2c3c4 + s1s2s3s4) +

√
q1/2 (c1c2s3s4

+s1s2c3c4) +
√
q2/2 (c1s2c3s4 + s1c2s3c4)

+
√
q3/2 (c1s2s3c4 + s1c2c3s4),

which has maximum 1/
√

2. To see this, use the Schwarz
inequality, treating

{√
q0/2,

√
q1/2,

√
q2/2,

√
q3/2

}
as

one vector (whose modulus is 1/
√

2 ), and the corre-
sponding coefficients as another vector (whose modulus
can be shown to be no greater than 1). The states |Xi〉
clearly saturate this bound; hence:

Esin2(ρABCD) = 1/2, Elog(ρABCD) = log 2. (12)
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We conjecture that the relative entropy of entanglement
ER for this state is log 2 and that one of the closest sep-
arable mixed states is the state

1
8
(
|0000〉〈0000|+|1111〉〈1111|+|0011〉〈0011|+|1100〉〈1100|

+|0101〉〈0101|+|1010〉〈1010|+|0110〉〈0110|+|1001〉〈1001|
)
.

We remark that the negativity N (defined as twice
the absolute sum of negative eigenvalues of the partial
transpose (PT) of the density matrix with respect to
some bipartite partitioning) is zero for any 2/2 parti-
tioning, e.g., {AB : CD}, but nonzero for 1/3 parti-
tioning, e.g.,{A:BCD}. Specifically, NA:BCD = 1 but
NAB:CD = 0.
Dür’s N -party bound entangled state: Dür [7] found that
for N ≥ 4 the following state has bound entanglement:

ρN ≡ 1
N + 1

(
|ΨG〉〈ΨG|+

1
2

N∑
k=1

(
Pk + P̄k

))
, (13)

where Pk ≡ |uk〉〈uk| is a projector onto the state
|uk〉 ≡ |0〉1|0〉2 · · · |1〉k · · · |0〉N , P̄k ≡ |vk〉〈vk| projects
onto |vk〉 ≡ |1〉1|1〉2 · · · |0〉k · · · |1〉N , and

|ΨG〉 ≡
(
|0⊗N 〉+ eiαN |1⊗N 〉

)
/
√

2. (14)

For N ≥ 8 this state violates the Mermin-Klyshko-Bell
inequality for N ≥ 8 [7]; violation was pushed down to
N ≥ 7 by Kaszlikowski et al. [9] for a three-setting Bell
inequality; it was pushed further down to N ≥ 6 by Sen
et al. [10] for a functional Bell inequality. The phase αN
in |ΨG〉 can be eliminated by local unitary transforma-
tions, and hence we shall take αN = 0 in the following
discussion.

In fact, if we consider the family of states

ρN (x) ≡ x|ΨG〉〈ΨG|+
1− x

2N

N∑
k=1

(
Pk + P̄k

)
, (15)

we find that for N ≥ 4 the state is bound entangled if
0 < x ≤ 1/(N + 1) and NPT entangled if x > 1/(N + 1).
This can be seen from the fact that the negativities of the
state ρN (x) with respect to the two different partitions
(1 : 2 · · ·N) and (12 : 3 · · ·N) are

N1:2···N
(
ρN (x)

)
= max {0, [(N+1)x− 1 ]/N } , (16a)

N12:3···N
(
ρN (x)

)
= x. (16b)

By applying arguments similar to those used to calcu-
late entanglement for Smolin’s state, we have that the
general pure state in the decomposition of ρN (x) has the
form

√
y eiφ0 |ΨG〉+

√
1−y

N∑
k=1

(√
qke

iφi |ui〉+
√
rke

iφ′i |vi〉
)
,

where q’s and r’s are non-negative and satisfy
∑
k(qk +

rk) = 1. In this family, the state with the least entangle-
ment (or maximum Λmax) for fixed {y, qk, rk} is the one
with all phase factors zero:

|Ψ
(
y, {q, r}

)
〉 ≡ √

y|ΨG〉+
√

1−y
N∑
k=1

(√
qk|ui〉+

√
rk|vi〉

)
.

Next, we ask: For fixed y, what is the least entanglement
that the above state can have? Take a separable state
of the form |Φ〉 = ⊗Ni=1

(
ci|0〉 + si|1〉

)
; its overlap with

|Ψ
(
y, {q, r}

)
〉 is then

〈Ψ|Φ〉 =
√
y/2 (c1 · · · cN + s1 · · · sN )

+
√

1−y
N∑
k=1

(
√
qk c1 · · · sk · · · cN+

√
rk s1 · · · ck · · · sN ).

This can be shown to no greater than
√

(2− y)/2, again
by a Schwarz inequality, taking{√

y/2,
{√

(1− y)qk
}
,
{√

(1− y)rk
}}

as the first (2N +1)-component vector (with modulus√
(2−y)/2) and the corresponding coefficients as the sec-

ond one (the modulus of which can be shown to be no
greater than 1 for N ≥ 4). The bound can be saturated,
e.g., by

|ψ±,u,k(y)〉 ≡
√
y|ΨG〉 ±

√
1− y|uk〉, (17a)

|ψ±,v,k(y)〉 ≡
√
y|ΨG〉 ±

√
1− y|vk〉, (17b)

for which Λmax(y) =
√

(2− y)/2 [11]. As 1− Λ2
max(y) is

linear in y and −2 log Λmax(y) is convex in y, one imme-
diately gets

Esin2(ρN (x)) =
x

2
, Elog(ρN (x)) = log

2
2− x

, (18)

and one of the optimal decompositions is

ρN (x) =
1

4N

N∑
k=1

∑
α=±

∑
β=u,v

|ψα,β,k(x)〉〈ψα,β,k(x)|. (19)

We conjecture that, for N ≥ 4, ρN (x) has ER(x) =
x log 2, with one closest separable mixed state being

x

2
(
|0..0〉〈0..0|+ |1..1〉〈1..1|

)
+

1− x

2N

N∑
k=1

(
Pk + P̄k

)
.

The Mermin-Klyshko-Bell inequality, Tr
(
BNρ

)
≤ 1 for

local hidden variable theory, can be violated by ρN (x) for
certain values of x and N as Tr

(
BNρN (x)

)
= 2(N−1)/2x.

Similar results can be obtained for two other inequali-
ties [9, 10].
Concluding remarks: We have analytically determined
the geometric measure of entanglement and a related
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logrithmic quantity for two bound entangled states.
These two quantities provide lower bounds on entangle-
ment of formation. We have also made conjecture on
their relative entropies of entanglement (which are at
least upper bounds). Assuming ED ≤ ER holds, we then
also have upper bounds on distillable entanglement for
these states.

For Smolin’s bound entangled state, we can establish
its entanglement of formation for certain bipartite parti-
tionings. For example, if we group the four parties ABCD
in two, A:BCD, we can write the state as

ρA:BCD =
1
4

3∑
i=0

|X̄i〉〈X̄i|, (20)

with the 3-qubit states of BCD mapped on to the 8-level
system (000 → 0, 001 → 1, ..., 111 → 7) and arrive at the
locally convertible states (by BCD)

|X̄0〉 =
(
|00〉+|17〉

)
/
√

2, |X̄1〉 =
(
|03〉+|14〉

)
/
√

2,

|X̄2〉 =
(
|05〉+|12〉

)
/
√

2, |X̄3〉 =
(
|06〉+|11〉

)
/
√

2.

In order to find the entanglement for this bipartite state
(of C2 ⊗ C8), we need to consider the entanglement of
the general pure state (properly normalized)

|ψ〉 ≡
∑

i

√
xi e

iφi |X̄i〉

that appears in the pure-state decompositions. In fact,
regardless of the values of the xi’s, this pure state has
a reduced density matrix (when tracing over BCD) of
the form (|0〉〈0|+ |1〉〈1|) /2. This shows that the mixed
state ρA:BCD has EF = 1, Esin2 = 1/2, and Elog = 1. In
fact, this is a general result for C2⊗C2m states that are
derived from mixing Bell-like states

|Ψ±
k 〉 ≡ (|0, k〉 ± |1, 2m− k − 1〉)/

√
2, (22)

having distinct k’s, where k = 0, 1, · · · ,m− 1.
The above considerations indicate that the bipartite

state ρA:BCD can be created by starting with an ebit
shared between A and BCD. Suppose that they start in a
bipartite state |X̄0〉. The party BCD sends the state |X̄0〉
into a local apparatus thatleaves the state unchanged
(with probablity 1/4), or locally transforms |X̄0〉 to |X̄1〉
(via 0 → 3, 7 → 4, etc.), |X̄2〉, and |X̄3〉 (with proba-
blities 1/4 each) respectively. This protocol achieves the
mixed state ρA:BCD from a bipartite ebit. On the other
hand, the two parties can distill a bipartite Bell state us-
ing the protocol proposed by Smolin [5, 6], in which CD
(as BCD are now in the same party) make a Bell mea-
surement and pass the result to A and B such that they
establish a Bell state. Thus we have found a bipartite
mixed state that can be reversibly converted into a Bell
state, even though their system entropies are different.

Although Dür’s bound entangled state violates a Bell
inequality, it has nonzero negativity under certain parti-
tionings. One may raise the question: Does there exist

a bound entangled state that is PPT under all partition-
ings but that still violates a Bell’s inequality? For ex-
ample, does a UPB bound entangled state [12] violate a
Bell inequality? We shall see shortly that the answer
is “No”, at least for the three different Bell inequali-
ties [7, 9, 10] mentioned earlier. Aćın has shown [13]
that if an N -qubit state violates a two-setting Bell in-
equality then it is distillable under certain bipartite par-
titioning. Using the results of Ref. [14] regarding distil-
lability, one can repeat the same analysis for the other
two Bell inequalities [9, 10] and obtain the same conclu-
sion. This bipartite distillability then implies a negative
partial transpose (NPT) under that bipartite partition-
ing according to Horodecki et al. [15] Hence, violating
these Bell inequalities implies NPT under certain bipar-
tite partitioning. Said equivalently, if a state has positive
partial transpose (PPT) under all bipartite partitionings
then the state never violates these Bell inequalities.

So far, the smallest N for which Dür’s bound entan-
gled state violates a Bell inequality is N = 6. Can the
number be further pushed down to 4 by some other forms
of inequalities? If so, can Dür’s N = 4 and N = 5 bound
entangled states be distillable under some bipartite par-
titioning? These questions remain open.
Acknowledgments: We thank M. Ericsson, P. Kwiat,
S. Mukhopadhyay and especially W. Dür for discussions.
This work was supported by NSF EIA01-21568 and DOE
DEFG02-91ER45439. TCW acknowledges a Harry G.
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Appendix A: In this Appendix we sketch proofs of two
useful inequalities and describe the deriviation of the en-
tanglement eigenvalue for the states in Eqs. (17). We
start with the first sought inequality:

(c1c2c3c4 + s1s2s3s4)2 + (c1c2s3s4 + s1s2c3c4)2

+(c1s2c3s4 + s1c2s3s4)2 + (c1s2s3c4 + s1c2c3s4)2 ≤ 1.

We have simplified the notation by using ci ≡ cos θi and
si ≡ sin θi. By subtracting the left-hand side from 1 and
making some algebraic manipulation, we arrive at the
non-negative expression (hence the sought result):

(c1c2c3s4 − s1s2s3c4)2 + (c1c2s3s4 − s1s2c3s4)2 +
(c1s2c3c4 − s1c2s3s4)2 + (s1c2c3c4 − c1s2s3s4)2.

The next sought inequality is (for N ≥ 4):

fN ≡
(
c1 · · · cN + s1 · · · sN

)2 +
N∑
k=1

{
(c1 · · · sk · · · cN )2 + (s1 · · · ck · · · sN )2

}
≤ 1.

First, making similar arguments, one can show that
f4 ≤ 1. One can also show that fN+1 ≤ fN . Thus
by induction, we have the sought result.

We now discuss why
√
y|ΨG〉 ±

√
1− y|uk〉 and√

y|ΨG〉±
√

1− y|vk〉 have as their maximal entanglement
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eigenvalue Λmax(y) =
√

(2− y)/2. As one can make local
relative phase shifts to transform

√
y|ΨG〉 +

√
1− y|uk〉

to
√
y|ΨG〉 −

√
1− y|uk〉, they have the same entan-

glement. The change from
√
y|ΨG〉 ±

√
1− y|uk〉 to√

y|ΨG〉 ±
√

1− y|vk〉 is simply a flipping of 0 to 1, and
vice versa. The mapping from k to k′ is just a relabelling
of parties. Thus, we need only consider the state√

y/2 (|00 · · · 0〉+ |11 · · · 1〉) +
√

1− y|10 · · · 0〉.

As this state is invariant under permutation of all par-
ties except the first one, and as the coefficients are non-
negative, in order to find the maximal overlap we can
make the hypothesis that the closest separable state is of
the form(√

p|0〉+
√

1− p|1〉
)
⊗ (

√
q|0〉+

√
1− q|1〉)⊗N−1.

We further see that in order for the overlap to be max-
imal, q must be either 1 or 0. For the former case, we
can further maximize the overlap to get

√
(2− y)/2. For

the latter case, the maximum overlap is
√
y/2, which is

less than
√

(2− y)/2 (as 0 ≤ y ≤ 1). Hence, the state√
y|ΨG〉 ±

√
1− y|uk〉 has the entanglement eigenvalue√

(2− y)/2.
Appendix B: In this Appendix we analyze the connection
between violation of three Bell inequalities and bipartite
distillability as was done in Ref. [13] for the two-setting
inequality. It was shown by Dür and Cirac [16] that an
arbitrary N -qubit state ρ can be locally depolarized into
the form

ρN = λ+
0 |Ψ

+
0 〉〈Ψ

+
0 |+ λ−0 |Ψ

−
0 〉〈Ψ

−
0 |

+
2N−1−1∑
j=1

λj
(
|Ψ+
j 〉〈Ψ

+
j |+ |Ψ−

j 〉〈Ψ
−
j |
)
,

while preserving λ±0 = 〈Ψ±
0 |ρ|Ψ

±
0 〉 and λj = 〈Ψ+

j |ρ|Ψ
+
j 〉+

〈Ψ−
j |ρ|Ψ

−
j 〉, where |Ψ±

0 〉 ≡ (|0⊗N 〉 ± |1⊗N 〉)/
√

2, and the
|Ψ±
j 〉’s are GHZ-like states, i.e., the states in (22), un-

folded into qubit notation. Normalization gives the con-
dition

λ+
0 + λ−0 + 2

∑
j

λj = 1.

Now define ∆ ≡ λ+
0 − λ−0 , which we assume to be non-

negative (w.l.o.g). The condition that there is no bipar-
tite distillability for some bipartite partitioning Pj is [14]

2λj ≥ ∆.

Assuming non-distillability for all bipartite splittings, we
have

2
∑
j

λj = 1− (λ+
0 + λ−0 ) ≥ (2N−1 − 1)∆.

As λ+
0 + λ−0 ≥ ∆, we have further that

1−∆ ≥ (2N−1 − 1)∆. (23)

For the two-setting Bell inequality considered by
Aćın [13], violation implies

∆ > 1/2(N−1)/2.

For the three-setting Bell inequality considered in [9],
violation implies

∆ >
√

3 (2N/3N ).

For the functional Bell inequality in [10], violation implies

∆ > 2 (2N/πN ).

One can easily check that the three Bell inequalities con-
sidered are inconsistent with non-bipartite-distillability
condition, Eq. (23). Hence, the violating of these three
Bell inequalities implies the existence of some bipartite
distillability.
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