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Efficient algorithms are needed for computing the digest of a Resource 
Description Framework (RDF) graph. These may be used to assign 
unique content-dependent identifiers and for use in digital signatures, 
allowing a recipient to verify that RDF was generated by a particular 
individual and/or has not been altered in transit. Ideally the digest 
algorithms should still permit verification of the RDF graph even when it 
has been transported via intermediaries who may serialize in different 
formats and alter the blank node identifiers.  

In an advance over previous work, we show that the use of a set hash 
allows the digest of an RDF graph to be computed in O(N) time. 
Furthermore, our algorithm allows for incremental updates to the graph, 
so the time to recompute the digest to account for additional statements is 
proportional to the number of new statements being added. 

The security of the algorithm depends on the number of statements and 
the choice of the combining and hashing algorithms used for the set hash. 
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1 Introduction

Imagine that you wish to transmit a document and later allow a recipient
to verify that they received exactly what you sent.

If you are concerned only with detecting hardware failures then providing
the recipient with a simple checksum might suffice. However, if you are
concerned about detecting an adversary who may deliberately try to send a
fake file, then you need something more sophisticated. That something is a
“message digest”.

A “digest” is a kind of digital fingerprint for a message or document [18, 11].
Formally, it has the properties that:

• It is typically much smaller than the original document.

• It is relatively easy to compute.

• It is “one-way”. That is, given a digest it is infeasible to find the
original document.

• It is “collision-resistant”. That is, given a digest and a document it is
very difficult to find a different document that has the same digest.

A common use of digests is for signing documents [16]. Computing a digital
signature is usually expensive. So it is common to compute a message digest
and then sign that instead of the original message [1]. The message digest
has the property that it is computationally very difficult to find a different
message that generates the same digest. Thus, a recipient can extract the
digest from the signature and compare it to the computed digest of the
received message to verify authenticity.

Digests have other interesting uses as well. For example, you can compare
digests computed at different times to see if a document has changed and
the digest can also serve as a convenient content-based identifier [7, 17].

In addition, if the digest may be computed incrementally then you can add
information to a document and generate an updated digest even if you don’t
know all the content of the original document.

There are already a number of well-known digest algorithms that operate on
serialized data. For example, MD5 and SHA-1 both take inputs of arbitrary
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length and generate digests with fixed lengths of 128 and 160 bits respec-
tively [15, 8]. Since the computation must be repeatable for both sender and
recipient, it is usual to construct a canonical serialization of the input data
and then apply the digest function. This works well for text documents, or
tree-like structures (such as XML) which have a well-defined ordering.

In the case of graphs, the ordering of their arcs or nodes may be undefined
and so the creation of a canonical serialization is non-trivial. Indeed it has
been shown that any solution for creating a canonical serialization would
also provide a solution to the known-hard graph isomorphism problem [5].

In this paper we examine the particular case of a graph containing state-
ments expressed in the Resource Description Framework (RDF) (see Sec-
tion 1.1). By carefully avoiding the need for an intermediate canonical
serialization we are able to efficiently compute a digest for such graphs.

1.1 An RDF Graph

The Resource Description Framework (RDF) [12, 10, 14] provides a means to
make statements about resources. An RDF graph is a set of such statements.
Figure 1 shows an example graph.

http://example.com/book45

“John Smith”

http://example.com/subject

http://example.com/name
http://example.com/wrote

“John Smith Autobiography”

http://example.com/title

Figure 1: An example of an RDF graph containing statements about an
autobiography and its author.

In this case, the graph encodes statements about an autobiography and its
author. There are two literal nodes to represent the title of the book and
the name of the author. The node representing the book itself is labeled
with a Universal Resource Identifier (URI); while the node representing the
author is a “blank node”. Blank nodes like this are common in RDF graphs
and may be used in cases where a universal identifier is either unnecessary
or unknown. Notice also that the graph contains a cycle, since the subject
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of this autobiographical book is naturally also its author.

To transport the graph between machines we first need to serialize it. In
the case of RDF there are a number of different serialization schemes, but
they all have two properties in common:

• The ordering of statements is undefined and may vary.

• Any blank nodes may be assigned arbitrary labels and those need not
be maintained.

For example, if the graph in Figure 1 were serialized in an abbreviated
format it might look like this on one machine1:

book45 title ‘‘John Smith Autobiography’’ .

book45 subject 1 .

1 wrote book45 .

1 name ‘‘John Smith’’ .

If that were loaded into another machine and then again serialized the result
might look like this:

451 wrote book45 .

book45 title ‘‘John Smith Autobiography’’ .

451 name ‘‘John Smith’’ .

book45 subject 451 .

Naturally this reordering of statements and relabeling of blank nodes com-
plicates computation of the digest.

1.2 Background

If we were simply sending a graph directly from one agent to another then
we can serialize the graph in a message and then compute a digest and
signature for that message using conventional means. This has been used
successfully in the past [2] for serialized RDF messages and works well for di-
rect communication where it is sufficient to sign a particular message rather
than the graph itself. The difficulty with this approach is that the digest

1For brevity we have used the N-triples syntax but have abbreviated the URIs by
removing the “http://example.com/”
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only applies to that particular message. Thus, to permit later verification
of the digest you must have access to the original message.

Previous approaches to the problem of computing the digest for a graph
(rather than a message containing a graph) have broken it into two parts,
first creating a canonical representation and then computing the hash of
that. As noted earlier, this is complicated by the order-independence of the
RDF statements and the presence of blank nodes.

In [13] they take the hash of each statement, sort those and append them.
Then they compute the digest of the result. This gives an algorithm that
takes O(N log(N)) time and apparently does not consider blank nodes.

In [5] they make a canonical serialization using a sorting algorithm and then
compute the digest of that. Their algorithm is more sophisticated since it
does handle blank nodes but it still takes O(N log(N)) time due to the sort.

In our algorithm, we compute the digest without doing any intermediate
canonical serialization. The key to this approach is recognizing the appli-
cability of incremental cryptographic functions. These were introduced by
Bellare et. al. [3, 4] and are similar to the Set Hash described much earlier
by Zobrist [21]. The idea is to compute a digest not by working on an en-
tire message at once, but instead break the message into pieces, pass each
through a randomizing function and then combine the results.

2 Definitions

An RDF graph is a set of statements. Each statement describes an arc
between two nodes of the graph and may be represented by a triple:

subject predicate object .

where the arc goes from the subject node to the object node and is labeled
by the predicate.

Let S be the set of statements in a graph. Each set contains N triples
t1, t2, . . . tN and each triple, ti, consists of a subject si, predicate pi and
object oi.
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Our goal is to find a digest function, D, which generates:

d = D(S)

and is:

• Compact. d is typically much smaller than S.

• One-way. That is, given a digest it is infeasible to find the original
graph. If an adversary knows d it is very difficult for them to determine
S.

• Collision-resistant. That is, given a digest and a graph it is very diffi-
cult to find a different graph that has the same digest. If an adversary
knows D and S it is very difficult to find a set of statements T such
that:

D(S) ≡ D(T ) when S 6≡ T

• Incremental. Given D(S) and a new triple tN+1 it should be possible
to compute D(S∪tN+1) in constant time (assuming some upper bound
on the size of resources and literals in the triple).

In addition, we desire the digest algorithm to be independent of statement
ordering and require it to be invariant to changes in the blank node labels.

We also need the algorithm to perform gracefully in the presence of du-
plicate statements. Since the RDF graph is a set of statements, then by
definition a properly constructed graph should not contain any duplicates.
However, an error or deliberate adversary could cause us to receive a mes-
sage which did contain duplicates. Accordingly, we require the graph digest
to produce a different answer if there are any duplicate statements present
and we require it to still maintain all the other required properties (one-way,
collision-resistant, incremental) even in that case.

5



3 Incremental Cryptography

In [4] they suggest using a function defined as follows:

Given a message X, consisting of N ordered message blocks: x1 . . . xN , they
compute a digest of that message:

D(X) =
N⊙

i=1

h(<i> .xi)

Where:

• � is a combining operation which is both associative and commutative
to support incremental operation (see Section 6.2 for a discussion of
suitable functions).

• h() is the randomizing function. This takes an input of arbitrary
length and generates an n bit output (they recommend a keyed version
derived from a known hashing algorithm [8]).

• <i> is an index used to ensure the order-dependence of the message
blocks.

In our case, with RDF statements, we can treat each individual statement as
one block of the message and we specifically want the message digest to be
independent of the statement order. Accordingly, we remove the indexing
term <i> to give:

D(X) =
N⊙

i=1

h(xi)

Applying this to our RDF triples gives:

D(S) =
N⊙

i=1

h(serialization(ti))

Where:

• serialization() may be done using a subset of any of the RDF serial-
ization syntaxes. The only special requirements are that it must not
allow any optional characters, must be repeatable, operate one state-
ment at a time and must include an identifier for each blank node. We
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find it convenient to use a subset of the N-triples syntax [9] with no
optional whitespace.

To further enhance the digest we can add additional information into the
digest:

D(X) =

(
N⊙

i=1

h(serialization(ti)), Ex

)
Where Ex is an extra piece of information, derived from X. While there
are many choices for Ex, one simple example is to use N the number of
statements in the RDF graph. This means that an adversary who wanted to
beat the digest would need to find another RDF graph which had exactly the
same number of statements and generated the same set hash. It should be
noted that while this seems obviously more difficult, it does not necessarily
make the algorithm more secure.

4 Message digest without blank nodes

Assume for now that we have an RDF graph containing no blank nodes.

Person A has such a graph comprising a set of statements, S to send to B.
To compute D(S) Person A uses the algorithm:

1. Compute a set hash over all the triples in S:

H =
N⊙

i=1

h(serialization(ti))

2. Construct a digest:
digest = (H,N)

3. sign the digest and send to B.

To verify the received message is correct, B does:

1. Retrieve the graph, S′ containing triples t′1 . . . t′N ′ sent by A and com-
pute the set hash:

H ′ =
N ′⊙
i=1

h(serialization(t′i))
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2. Retrieve the digest sent by A and extract the expected set hash H and
extra information N .

3. The graph is verified if:

H ≡ H ′andN ≡ N ′

4.1 Incrementality

It should be clear that, given a digest, we can extract the H and N and
then add an additional triple, tN+1 with:

H ′ = H � h(serialization(tN+1))

digest ′ =
(
H ′, N + 1

)
In addition, if � is invertible then we can also remove triples incrementally.

The incrementality also provides for some interesting applications. For ex-
ample you can add or remove statements and recompute the digest for a
graph without needing to know the whole graph 2. The potential for sep-
aration of knowledge is also valuable. For example, if two services offered
computation of incremental digests, you could send half the graph to each
service and then combine the results.

5 Consideration for blank nodes

The use of blank node identifiers is optional in some serialization schemes.
Even in cases where names are specified, they are only guaranteed to be
unique within a particular graph. For example several different machines
could all generate RDF graphs which used the blank node identifier “ :1”.
As a result, some implementations routinely rename incoming blank nodes,
assigning each a new unique local identifier. This renaming does not change
the meaning of the graph and it can assist in later processing (avoiding
conflicts when merging graphs, for example). Unfortunately it also means
that a statement which is serialized on one machine need not be identical

2You do however need to know enough to be able to safely avoid accidentally introduc-
ing duplicate statements
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(on a character-by-character basis) to an equivalent statement on another
machine even when both machines use identical serialization syntaxes.

We deal with this in two ways:

5.1 Rely on consistent interpretation

In rare cases, the sender may know that the serializations used on the send-
ing machine and any intermediary machines maintain blank node identity
and that that identity is preserved at the recipient for long enough to com-
pute the hash. This is possible, for example, if the sender uses the N-triples
syntax, the serialization is not altered in transit, and the recipient can ex-
tract and use the blank node identities from the received serialization for
verifying the hash.

In this special case, one can use the presented algorithm without change.

5.2 Add additional statements

In the more general case, the graph from machine A may be serialized and
deserialized multiple times before it reaches B and there is no guarantee
that the arbitrary labels assigned to blank nodes on machine A will be
maintained.

The solution is to add additional statements to the graph to capture the
arbitrary labels assigned to the blank nodes. This is similar to the technique
of Carroll [5] and they provide some nice formal semantics which are equally
applicable here. The algorithms used are different however. While they use a
sophisticated algorithm to add as few labels as possible, we take the opposite
approach and simply add a label for every blank node.

Specifically, on machine A, compute the hash as above, and then for every
blank node, b, which is serialized with internal label L, add a new state-
ment:

b hasLabel L .

Then A sends to B the modified graph (including the blank node label
statements) and the signature of the modified graph.

On machine B, extract the blank node label statements and use those to
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temporarily relabel the blank nodes so the internal labels on B match those
used on A. Now verify the hash using the same algorithm as above.

If machine B forwards the graph on to another machine without modifying
it then no special accommodation for blank nodes is necessary (the ulti-
mate receiving machine can do the relabeling if it needs to recompute the
digest). However, if B does choose to modify the graph and it wishes to
recompute the digest incrementally then it must perform the modifications
on the relabeled graph and maintain those blank node labels.

6 Choosing combining and randomizing functions

In applying the algorithm we have two main knobs we can turn to alter
performance and security. These are the choices for the randomizing and
combining functions.

6.1 The randomizing function

There are a number of existing hashing functions which are suitable choices
for h(), the randomizing function that takes an input of arbitrary length
and generates an output with n bits.

As always, there is a trade-off between performance and security. For prac-
tical use the existing SHA-1 algorithm appears a good choice [8, 18]. It
generates an output with 160 bits and implementations are readily avail-
able.

More sophisticated randomizing functions, such as those which require a key
or those which generate much longer outputs, may be constructed using the
SHA-1 algorithm as a building block (see [4]).

We note that the graph digest algorithm does not depend on any particular
randomizing function and as better hash functions are developed they may
naturally be incorporated.
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6.2 The combining function

The combining function, �, must obviously be associative and commutative,
but in addition it also needs to meet some cryptographic requirements. In
this section we consider three different choices.

6.2.1 XOR

Using XOR as the combining function is an efficient, but very poor choice.
As noted above, we require the graph digest to cope gracefully with duplicate
statements (even though the definition of the graph precludes duplicates,
we cannot rely on an adversary complying with those rules). XOR does
not behave well in the presence of duplicate statements. Thus it is not an
appropriate choice.

Even if we could guarantee there were no duplicate statements, XOR would
still be a poor choice since there are known efficient algorithms for finding
collisions [4].

6.2.2 Multiplication

If the combining function, � is multiplication mod some suitably-large prime
P then the security is expected to be very good (see [4]) but the operations
are relatively expensive.

6.2.3 Addition

Provided that a very high level of security is not required, then addition
modulo a suitably-large number M offers a good compromise between speed
and security. This is based on the “AdHash” algorithm of Bellare [4] and is
similar to the “MSET VADD HASH” algorithm recently analyzed by Clarke
et. al. [6]. Note that M must be at least as large as 2n, where n is the number
of bits in the randomizing function. (In practice, if the number of statements
is limited we can dispense with the modulo arithmetic entirely.)

This gives us a digest where the probability of another set of statements
happening by chance to have the same hash is acceptably small. This is
quite sufficient for many practical purposes.
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However, it should be noted that the use of addition and a 160-bit randomiz-
ing function is likely insufficient to guarantee security against a determined
adversary. Recently Wagner [19] has shown an efficient algorithm for finding
a set of numbers which sum to a particular value. That algorithm is most
efficient when the adversary is allowed to choose the number of things to
sum. In particular, for the special case where the number of statements is
exactly 2

√
n−1 they have a solution which runs in O(22

√
n). Without ad-

ditional steps, achieving adequate security against a determined adversary
may require n to be at least 1200 [20].

6.3 Improved security

If a very high security were desired then we can do even better by having a
shared secret between sender and recipient. In particular we could replace
the public hash used for randomizing function h() with a message authen-
tication code (MAC) function [18, 4]. Such functions are like a hash, but
require a secret key to obtain the hash value.

In the specific case of RDF graphs, we note that the task for an adversary is
more complicated than simply finding a collision, since an adversary doesn’t
just have to generate RDF statements that have the same digest, they also
have to generate RDF statements that are similar enough to a true set to fool
a recipient into performing some operation advantageous to the attacker.

7 Time complexity

We first consider a theoretical lower-bound and then analyze the time for
this algorithm.

7.1 A theoretical lower-bound

When computing the digest of an arbitrary RDF graph, the fastest possible
algorithm requires O(N) time. The proof is as follows:

Assume there were an algorithm which ran in a faster time than O(N). That
algorithm can not visit each triple, for doing so would require O(N) time.
Therefore there must be at least one triple that the algorithm does not visit.
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But in that case an adversary could alter that triple to generate a different
graph with the same digest. This violates the collision-resistance property.
Hence there is no algorithm which runs in faster than O(N) time.

A probabilistic algorithm is possible. For example one could probabilisti-
cally choose a subset of the information in the graph for use in the digest
computation. However, for most practical implementations the probability
that any particular piece of information is used must be high (otherwise it
is likely that an attacker could change some content without affecting the
digest). Even if the probability were low, it must still be constant with
respect to the number of statements and hence the algorithm is still O(N).

7.2 Analysis of our algorithm

When dealing with a single statement, and assuming an N-triples serializa-
tion syntax, then the time to generate the serialization and then compute
its hash is dependent on the length of the serialized statement.

If we assume that there is an upper-bound on the length of a statement
then both serialization() and h() take O(1) time. The process of adding
and processing the additional statements for blank node identity takes O(N)
time (since there can’t possibly be more than twice as many blank nodes
as statements). Provided the combining operation may combine two hashed
blocks in O(1) time, then the entire algorithm on both sender and recipient
takes O(N) time.

This offers a better theoretical performance than any existing RDF graph di-
gest algorithm and matches the theoretical lower-bound. However, it should
be noted that, particularly if a high security is desired, the constant in our
O(N) time can be large. Thus it may not always provide the best practical
solution (especially if the number of statements in the graph is not large, or
an application is unable to take advantage of the incremental updates).

We note that in some practical cases it may be possible to use additional
knowledge about the graph content to further improve performance. For ex-
ample, if you knew that only some subset of the information was important,
you could choose to only compute the digest for that subset.
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8 Conclusions

Our task is to take an RDF graph and compute a digest for that graph. The
digest can be used as a content-based identifier for a particular instance of
the graph. We can also sign the digest, and then later use the signature to
verify both that the graph was authored by a particular person and that it
has not been altered.

By computing the digest for a graph (rather than for a particular instance
of a message containing that graph) we allow the digest to be recomputed
later even after the graph has been passed through intermediaries who may
reorder statements, relabel blank nodes, and serialize in different formats.

We have shown that in the general case there is no graph digest algorithm
which can run faster than O(N).

By drawing on the work of others in incremental cryptography and applying
it to RDF graphs, we have created an algorithm which runs in O(N) time
and permits incremental operation.

The security of the algorithm depends on the number of statements, the
choice of the combining and hashing algorithms and the modulo of arith-
metic used. For the case where the hashing function is SHA-1 and combin-
ing is performed using addition modulo 2160 then the resulting digests are
sufficient for content-based identifiers but may be insufficient to guarantee
security against a determined adversary.
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