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Abstract

Currently� Internet hosting centers and content distribution networks leverage statistical multiplexing to meet
the performance requirements of a number of competing hosted network services� Developing e�cient resource
allocation mechanisms for such services requires an understanding of both the short�term and long�term behavior
of client access patterns to these competing services� At the same time� streaming media services are becoming
increasingly popular� presenting new challenges for designers of shared hosting services� These new challenges
result from fundamentally new characteristics of streaming media relative to traditional web objects� principally
di�erent client access patterns and signi�cantly larger computational and bandwidth overhead associated with
a streaming request� To understand the characteristics of these new workloads we use two long�term traces
of streaming media services to develop MediSyn� a publicly available streaming media workload generator� In
summary� this paper makes the following contributions� i� we model the long�term behavior of network services
capturing the process of �le introduction and changing �le popularity� ii� we present a novel generalized Zipf�like
distribution that captures recently�observed popularity of both web objects and streaming media not captured
by existing Zipf�like distributions� and iii� we capture a number of characteristics unique to streaming media
services� including �le duration� encoding bit rate� session duration and non�stationary popularity of media
accesses�

� Introduction

Two recent trends in network services motivate this work� a move toward shared service hosting centers and

the growing popularity of streaming media� Traditionally� service providers over�provision their sites to address

highly bursty client access patterns� These access patterns can vary by an order of magnitude on an average

day �	
� and by three orders of magnitude in the case of �ash crowds� In fact� services are often most valuable

exactly when the unexpected takes place� Consider the example of a news service when an important event takes

place load on CNN reportedly doubled every seven minutes shortly after � AM on September 		� �

	 ����

Thus� we are pursuing a vision where large�scale hosting infrastructures simultaneously provide �resource�

on�demand� capabilities to competing Internet services ��
� ��� The idea is that the system can use statistical

multiplexing and e�cient resource allocation to dynamically satisfy the requirements of services subject to highly

bursty access patterns� For instance� surplus resources resulting from �troughs� in accesses to one service may be

�This work is partially completed while Yun was a summer intern at HP Labs during ����� A� Vahdat and Y� Fu are supported in
part by the National Science Foundation �EIA���������� A� Vahdat is also supported by an NSF CAREER award �CCR����	
����
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reallocated to satisfy the requirements of a second service experiencing a peak� Further� Service Level Agreements

�SLAs� may specify that� under resource constraints� one service should preferentially receive resources over other

services�

A second emerging trend is the growing popularity of streaming media services� Streaming media takes

the form of video and audio clips from news� sports� entertainment� and educational sites� Streaming media is

also gaining momentum in enterprise intranets for training purposes and company broadcasts� These workloads

di�er from traditional web workloads in many respects� presenting a number of challenges to system designers

and media service providers �	�� 	��� For instance� transmitting media �les requires more computing power�

bandwidth and storage and is more sensitive to network jitter than web objects� Further� media access lasts for

a much longer period of time and allows for user interaction �pause� fast forward� rewind� etc���

The long�term goal of our work is to study resource provisioning and resource allocation at the con�uence

of the above two trends� network service hosting infrastructures for next�generation streaming workloads� A

key obstacle to carrying out such a study is the lack of understanding of changing client access patterns over

a long period of time� For both hosting centers and content distribution networks �CDNs�� we require such an

understanding to determine� for example� how to place objects at individual sites �potentially spread across the

network� and how to allocate resources to individual streams and to individual clients�

Thus� we use long�term traces from two streaming media services to construct an open�source media workload

generator called MediSyn� For MediSyn� we develop a number of novel models to capture a broad range of char�

acteristics for network services� We also demonstrate how these models generalize to capture the characteristics

of traditional web services� Overall� this paper makes the following contributions�

� A primary contribution of our work is its focus on the long�term behavior of network services� Among

the features of our synthetic generator is the ability to re�ect the dynamics and evolution of content at

media sites and the change of access rate to this content over time� Existing workload generators assume

that there is a set of active objects �xed at the beginning of the �trace�� Similarly� existing techniques

assume that object popularity remains the same over the entire duration of the experiment� While these

are reasonable assumptions for experiments designed to last for minutes� we are interested in long�term

provisioning and resource allocation� as well as the resource allocation for simultaneous competing services

�consider a CDN simultaneously hosting hundreds of individual services��

� It was observed ��� 	�� that the popularity distribution in media workloads collected over signi�cant period

of time �more than � months� does not follow a Zipf�like distribution� We present a novel generalized

Zipf�like distribution to capture the popularity distribution in such workloads� The traditional Zipf�like

distribution is a special case of the proposed generalized Zipf�like distribution�

� We designed a set of new models to capture a number of characteristics critical to streaming media services�

including �le duration� �le access pre�x duration� non�stationary �le popularity� new �le introduction

process and diurnal access patterns�

The rest of this paper is organized as follows� Section � outlines the workload properties that MediSyn

attempts to capture and the workloads used to develop the models for MediSyn� We present the workload

generation process adopted by MediSyn in Section �� Section � introduces the models used in MediSyn and

discusses their speci�cs� We review previous related work in Section �� Finally� we conclude with a summary

and future work in Section ��
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� Media Workload Properties

Accurate workload characterization is critical for successful generation of realistic workloads� A synthetic media

workload generator can produce traces with targeted� controllable parameters and desired distributions for

performance experiments studying e�ective streaming media delivery architectures and strategies� For such

experiments� the generated workload must not only mimic the highly dynamic resource�utilization patterns

found on today�s media systems but also provide �exible means to generate more intensive� bursty and diverse

workloads for future media systems� Challenges to designing a useful analytical workload generator include�

� identifying essential properties of workloads targeted by synthetic workload generators� and those that

most a�ect the behavior of hosting centers

� designing appropriate mathematical models that closely reproduce the identi�ed workload properties from

real traces�

In this section� we highlight the main properties of streaming media workloads modeled in MediSyn� and explain

why we believe these properties are important� In this analysis� we attempt to summarize the results of earlier

studies �	�� 	�� 	�� �� �	� characterizing streaming media workloads� Throughout this paper� we use two rep�

resentative streaming media server logs� collected over a period of years� to demonstrate the chosen properties

and to validate our mathematical models introduced to re�ect these properties� The streaming media server logs

represent two di�erent media services� HP Corporate Media Solutions Server �HPC� and HPLabs Media Server

�HPL�� We de�ne a session as a client access to a particular �le �� Table 	 brie�y summarizes the workloads�

HPC HPL
Log duration �� months �� months
Number of �les ����� 	��
Number of sessions ���	 �	�	��

Table �� Summary for two media logs used to develop property models in MediSyn�

We partition media workload properties in two groups� static and temporal properties�

� Static properties provide the characteristics of the underlying media �leset� re�ect the aggregate� quanti�

tative properties of client accesses �independent of the access time�� and present the properties of individual

�le accesses� Static properties include�

� �le duration�
� �le encoding bit rate�
� �le access popularity�
� �le access pre�x�

� Temporal properties re�ect the dynamics and evolution of accesses to media content over time� and

determine the ordering and the timing of session arrivals� The temporal properties of media workloads

include�

� new �le introduction process�
� �le life span�
� diurnal access pattern�

Sections ��	 and ��� describe these properties in detail�

�A session may consist of multiple client�s requests re�ecting history of the client�s interactivity� We plan to extend MediSyn to
cover interactivity patterns in our future work�
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��� Static Properties

� File Duration� Di�erent from web� media �les have two dimensions� duration of the �le measured

in time and the corresponding media �le size measured in bytes� a direct product of �le duration and the

corresponding encoding bit rate� Earlier media workload studies report di�erent distributions characterizing

�le durations� However� the duration distribution is largely determined by the nature of the media content

stored at a site� which could be a short �a few minutes� media clip or a long �one to two hours� movie�

Thus� any single distribution� e�g� the heavy�tail distribution used to capture web object size� may fail to

characterize media �le duration� For example� our two logs represent two signi�cantly di�erent �le duration

distributions as shown in Table ��

Duration � �� minutes ����� minutes � �� minutes
HPC Log 	�� �
� 
	�
HPL Log �	� �� ���

Table �� File duration distributions of the HPC and HPL logs� respectively�

The HPC trace has well represented groups of short� medium� and long videos� while the HPL trace is

skewed toward longer videos�

File duration in�uences the duration of playback �download� and how long system resources should be

committed to a particular stream This information is potentially necessary to perform admission control�

While a web object retrieval typically takes less than a few hundred milliseconds� most media �les require

minutes to hours to transmit� Thus� it is important to represent the �le duration distribution accurately�

� File Encoding Bit Rate� The encoding bit rate of a media �le determines the bandwidth and system

resources required to deliver the �le� Typically� there is a set of popular encoding bit rates o�ered by

commercial encoding software �	�� and guided by the bandwidth from di�erent groups of Internet audience�

� File Popularity� File popularity is de�ned as the number of accesses to a �le within a certain period of

time� The popularity of a �le over the entire trace is its global popularity� Recent studies observe highly

uneven �le popularity both in web and streaming media workloads �	�� 	�� ��� implying that most accesses

to a site are concentrated on a relatively small set of �les� Both media workloads used in our study exhibit

strong access locality� 	����
�� of the �les accessed on the server account for �
� of the media sessions

for the HPC�HPL� trace� The uneven �le popularity is one of the major sources of temporal locality�

Traditionally� a Zipf�like distribution is used to capture the global �le popularity for web workloads� How�

ever� several studies ��� 	�� analyzing the properties of media workloads collected over signi�cant periods of

time �more than � months� report that the popularity distribution of these sites does not follow a Zipf�like

distribution� The corresponding global �le popularity distribution curve �on a log�log scale� exhibits a

�circular��shape ��� 	��� One explanation of this phenomenon is that a long�term trace can collect enough

�les with similar popularities� This property is tightly related to the change of rate in �le accesses �or the

change of �le popularity rank� de�ned by a �le life span discussed below� Considering that the life span of

most of these �les is shorter than the trace duration� there must be many �les with equivalent volume of

accesses in the trace� which cannot be captured by a Zipf�like distribution very well� Since the design and

evaluation of caching and content distribution strategies require a proper understanding of �le popularity�

accurately re�ecting these skewed �le popularity distributions is very important�
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� File Access Pre�x� Prior studies �	�� �� show that many clients do not �nish the playback of a full

video�audio clip� Typically� this re�ects the browsing nature of client accesses� client time constraints� or

QoS�related issues� Most incomplete sessions �i�e� terminated by clients before the video is �nished entirely�

access only the initial segments of media �les� In the HPC�HPL� trace� only ����	����� of the accesses

�nish the playback of the �les� �
���
�� of the accesses in the HPC�HPL� trace last less than � minutes�

This high percentage of incomplete accesses as well as a high number of sessions accessing only the initial

part of the �le create a very special resource usage model� which is widely considered for streaming media

cache design �����

��� Temporal Properties

� Causes of Temporal Locality in Media Workloads Collected Over Long Period of Time�

Temporal reference locality� which is universally observed in web and media workloads �	�� 	�� ��� is the

primary factor that a�ects session arrival ordering� Temporal locality states that recently accessed objects

are likely to be accessed in the near future in the access stream� Two factors can cause the temporal locality

in the access stream� skewed popularity distribution and temporal correlation �		� 	��� Since popular �les

have a higher probability to be accessed within the access stream� a �le�s popularity contributes to its

temporal locality� If we randomly permute the access stream� the temporal locality caused by skewed

popularity is still preserved under reordering� However� temporal locality caused by temporal correlation

cannot be preserved under random permutation� In MediSyn� to generate a stream of session arrivals

exhibiting proper temporal locality� we need to clearly understand and distinguish the causes of temporal

locality�

To check the existence of possible temporal correlation among sessions for the same �les in our traces� we

compare reference distances ��� between the original HPC trace and a randomly permuted HPC trace� Let

s��s�� ����sn be the stream of accesses representing the media sessions of the entire HPC trace� Let si� �si� �

���� sim be the sequence of sessions to the same �le fi� The reference distances of si� � si� � ����sim are de�ned

as i�� i�� i�� i�� ���� im� im��� We calculate the reference distances for all the �les and their sessions over

the entire HPC trace� Then we apply similar procedure to the randomly permuted HPC trace�

�a� �b�

Figure �� �a� Reference distances calculated over the entire trace period in the original HPC trace� �b� Reference distances calculated

over the entire trace period in the permuted HPC trace�

Figure 	 �a� shows the histogram of the reference distances in the original HPC trace on a log�log scale�

The X�axis shows the reference distances� and the Y �axis shows the number of sessions in the original

HPC trace for the corresponding reference distance� Figure 	 �b� shows the histogram of the reference
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distances in the randomly permuted HPC trace on a log�log scale� It can be observed that two curves

are not the same� In Figure 	 �b�� there are less references with small distances� For example� there are

	��� ��� references with distance 	 in Figure 	 �a�� But there are only �� ��� references with distance 	

in Figure 	 �b�� Since in Figure 	 �b�� reference distances are only determined by the �le popularity� we

assume the reason that Figures 	 �a� and �b� are not the same is that there is temporal correlation among

sessions for the same �les over the entire trace�

To verify whether our media traces exhibit short term temporal correlation� we calculate reference distances

within every day and sum the number of references with the same distance over all days for the HPC trace�

Then� we permute accesses within every day and calculate reference distances again for the permuted trace�

The results are shown in Figures � �a� and �b�� We observe that there is almost no di�erence between

the original trace and the permuted trace on reference distances� This implies that there is no temporal

correlation for sessions within a single day and that temporal locality of sessions within a single day is

purely determined by the �le popularity distribution within that day�
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Figure �� �a� Reference distances calculated within each day in the original HPC trace� �b� Reference distances calculated within

each day in the permuted HPC trace�

The analysis above implies that temporal correlation in media workloads collected over long period of time

is due to long�term temporal correlation exhibited on a daily time scale� and that there is no temporal

correlation for sessions within a single day� These observations motivate our choice of temporal properties

in MediSyn� The temporal properties described below intend to re�ect the dynamics and evolution of

accesses to media content over time and to de�ne the proper temporal locality and long�term temporal

correlation found in media workloads�

� New File Introduction� One recent study �	�� observes that accesses to new �les constitute most of

the accesses in any given month for enterprise media servers� We envision that this access pattern is even

more pronounced for media news and sports sites� While for educational media sites the rate of new �le

introduction and accesses to them might be di�erent� we aim to design a generic parameterized model

capable of capturing the speci�cs of new content introduction for di�erent media workloads� Among the

design goals of our synthetic generator is the ability to re�ect the evolution of media content provided by

di�erent media sites over a long period of time �months�� Since we design MediSyn to support detailed

resource allocation studies� we must account for the dynamic introduction of new content and its relative

popularity�

� File Life Span� A new property called life span has recently been proposed in �	�� to measure the change

in access rate of newly introduced �les� Life spans re�ect the timeliness of accesses to the introduced �les�
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We observe that accesses to a media �le are not uniformly distributed over the entire trace period� Instead�

most accesses for a �le occur shortly after the �le is introduced� with access frequency gradually decreasing

over time� For example� for the HPC�HPL� log� �����	�� of the accesses occur during the �rst week after

�le introduction� while only 	���	
�� of the accesses occur during the second week� etc� Hence� the �le

access frequency ��le popularity� changes over time� In other words� �le popularity is non�stationary over

the trace period� This phenomenon implies that session arrivals might be very bursty when new �les are

introduced at a site� This makes media services an ideal candidate for shared hosting infrastructures and

requires that special care be taken for e�cient resource allocation in the hosting infrastructures�

Life span distribution de�nes the �le popularity changes over a daily time scale� Our analysis of the HPC

and HPL traces shows that life spans of streaming media �les can be classi�ed into two categories� news�like

and regular life spans according to how the popularity changes over time� A �le with a news�like life span

has a fast changing rate of popularity during its lifetime� A �le with regular life span has much more stable

popularity during its lifetime�

The long term temporal correlation in media traces is caused by a non�stationary �le popularity over

considered period of time� Since the rate of change in �le popularity over time can be captured by the

�le life span combined with the new �le introduction process� we use this property to model the temporal

correlation in the synthetic media workloads�

� Diurnal Access Patterns� Earlier studies observed the diurnal access patterns for streaming media

workloads �	�� 	�� �� �� 	��� The diurnal access pattern de�nes how the number of accesses to a site varies

during a given period of time� e�g�� a day� Diurnal access patterns might signi�cantly vary for di�erent

media sites� For mixed media workloads utilizing a shared infrastructure� the diurnal access patterns have

to be taken into account when designing the optimal support for e�cient resource allocation� Additionally�

the diurnal access pattern is important for capturing the burstiness of resource consumption within a given

time period� The diurnal access patterns are de�ned using the second time scale in our synthetic workload

generator� e�g� within a day�

In summary� the temporal properties we introduced not only explain the temporal locality observed in streaming

media workloads� but also have fundamental implications on resource sharing and allocation within hosting

infrastructures and content distribution networks� The temporal locality exhibited in media workloads is not an

independent property� it is a combined e�ect of the skewed popularity distribution� new �le introduction process

and life span distributions of media �les� Thus� we do not attempt to model temporal locality as a stand�alone

property in MediSyn� it is a combined result of multiple models aiming to re�ect the temporal properties of

media workloads discussed above�

� Workload Generation Process in MediSyn

MediSyn�s goal is to generate a synthetic trace representing a sequence of �le accesses to media service� This

process consists of two steps� �le property generation and �le access generation�

� File property generation

The �rst step is to generate values for all properties introduced in Section � for each media �le� Static

properties de�ne �le set parameters �duration and encoding bit rate� and the principal access patterns

	



�popularity and pre�x�� Temporal properties de�ne the ordering and timing of media sessions� MediSyn

de�nes these properties using a parameterized set of distributions in the input con�guration �le�

If a property can be described by a value such as global �le popularity� duration� encoding bit rate� MediSyn

�rst generates a sequence of values according to the given distribution� and then selects a value for each

�le� If a property is modeled as a distribution� the choice of the distribution and parameter�s� of the

distribution are generated for each �le�

Thus� a �le is the basic unit to which the property values are propagated at the �rst step of workload

generation� At the end of the �rst step� the set of corresponding static and temporal properties shown in

Table � is generated for each �le� Section � describes each property generation and correlations among the

properties in detail�

File id Duration Bit rate
�Kbps�

Popularity File Introduction
Time �sec�

Life span Life span
parameters

� � �

� 
�� ��� ����� ��� Pareto ��� � � �

� ��� 
�� �	
�� �� Lognormal �������� � � �

���
���

���
���

���
���

���
���

n �� ���� � ����� Lognormal ���� ��� � � �

Table �� Properties generated for each �le�

� File Access Generation

Taking the assigned �le popularities as the basis� MediSyn independently generates the arrival of media

sessions to each �le using� i� the initial �le introduction time� ii� the life span of the �le� and iii� the diurnal

access pattern of the �le� Each �le access includes the following three �elds�

� timestamp indicating the session arrival time�

� �le id specifying the target �le accessed during the media session�

� �le access pre�x describing the duration of the media session�

Once a sequence of media sessions is generated for each �le� all the media sessions are sorted according to

a global time and merged together to generate the synthetic trace�

� Main Models of Workload Generation in MediSyn

This section describes the models used in MediSyn to capture static and temporal properties of streaming media

workloads�

��� Duration

Prior studies �	�� �� observed that media �les might be classi�ed into a set of groups according to their durations�

Di�erent workloads can be grouped based on the content of media �les hosted by a streaming service� For

example� music sites may have �le durations from � to � minutes� while movie sites may have �le durations from

one and half to two hours� While a particular workload might be captured by a certain statistical distribution�

the same distribution may fail to capture another workload� In our case� although the �le duration distribution

of the HPC trace can be modeled by a heavy�tail distribution such as a Weibull distribution �	��� the same

distribution fails to capture the �le duration distribution of the HPL trace�






As shown in Figure � �a� and Figure � �a�� the �le durations in our traces are concentrated around a set of

hot points� These hot points are usually some common durations� semantically meaningful to a particular type

of media content� Based on this observation� we classify these hot points into a set of groups and use a set of

normal distributions to model the grouped �le duration distribution as shown in Figure � �a� and Figure � �a��

Here� each group is modeled by a normal distribution with the mean ��� of each distribution de�ned by the hot

point of that group� The standard deviation ��� of each normal distribution determines the concentration of the

durations within that group�

Note that we do not use segmented PDFs �Probability Density Functions� to model the duration distribution�

We assume a hot point can a�ect the entire duration scope rather than just a segment� Thus� we use an aggregated

distribution� whose PDF sums the PDFs of all normal distributions proportionally� To proportionally sum all

duration groups� we associate each group with a ratio determined by the number of �les in the group compared

with the total number of �les in the trace� So the normal distribution PDF of each group is normalized against

the ratio of that group� If only a fraction of a normal distribution for a group is used� normalization is performed

on the adopted fraction of the distribution� For example� since the mean of the �rst group in Table � is 
� only

half of the normal distribution is used� Tables � and � present the mean ���� the standard deviation ��� and the

ratio of each normal distribution for the HPC and HPL trace respectively� They show that the HPC and HPL

traces have di�erent hot points�

In MediSyn� users can specify a set of duration groups with di�erent �� � and ratios based on the nature of

the media workload they want to generate� For each duration group� MediSyn generates a sequence of durations

according to the ratio and the normal distribution of the group� We use the rejection method �	�� to generate the

duration sequence according to the parameterized normal distribution� Figure � �a� and Figure � �b� show the

durations generated by MediSyn to simulate the HPC workload based on the parameters presented in Table ��

Group � � � 	
� � ���� 

�� ����
� �� 	�� �� ���

ratio 
� ��� ��� ��

Table �� Parameters of the normal distributions

for the HPC trace�

Group � � � 	 

� ��� ���� 	��� ��� 
��
� ���� �	� 
� ��� ����
ratio ��� �� 
�� ��� ���

Table �� Parameters of the normal distributions for the

HPL trace�

��� Encoding Bit Rate

Since most of commercial media servers are designed to stream media �les encoded at some constant bit rates�

the current version of MediSyn is designed to only generate a set of constant bit rates for the underlying �leset�

MediSyn models encoding bit rates by a discrete distribution� where the value of each bit rate and the ratio of the

bit rate occupied in the �leset can be speci�ed� Based on the discrete distribution provided by users� MediSyn

generates a sequence of bit rates for the �leset and matches the bit rate with the �le duration randomly� since

we observe that there is no correlation between them in our traces �the correlation coe�cient is 
�
	����

��� Popularity

Earlier studies �	�� 	�� found that media �le popularity can often be captured by a Zipf�like distribution� A

Zipf�like distribution states that the access frequency of the i�th most popular �le is proportional to 	�i�� If the
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Figure �� PDF of the HPC dura�

tion distribution� �a� 	 normal dis�

tributions to capture the 	 peaks�

�b� The aggregate distribution of

the 	 normal distributions�

Figure �� PDF of the HPL dura�

tion distribution� �a� � normal dis�

tributions to capture the � peaks�

�b� The aggregate distribution of

the � normal distributions�

Figure �� PDF of the MediSyn

duration distribution� �a� 	 nor�

mal distributions to capture the 	

peaks� �b� The aggregate distribu�

tion of the 	 normal distributions�

frequencies of �les and the corresponding popularity ranks are plotted on a log�log scale� a Zipf�like distribution

can be �tted by a straight line� A larger � implies more sessions are concentrated on the most popular �les�

Some synthetic workload generators ��� 	�� also adopt a Zipf�like distribution in generating �le popularity�

However� recent studies ��� 	�� �� �� �� observed that for some web and streaming media workloads� a Zipf�like

distribution does not accurately capture the �le popularity distribution� The popularity distribution of these

workloads shows a circular curve on a log�log scale�

For reference� Figure � shows the �le popularity distributions of the HPC and the HPL traces over the entire

trace periods on a log�log scale� They are more like circular curves similar to those distributions noticed in

previous web studies ��� �� and media workload studies ��� 	���

If we use a straight line �a Zipf�like distribution� to �t the circular curve and generate session frequencies

based on the value of � obtained by curve �tting� the generated frequencies must be skewed from the original

session frequencies� Breslau et al ��� calculated � by excluding the top 	

 �les� For our traces� not only the

beginning but also the end of the curves cannot be �tted by straight lines� Moreover� since the most popular

�les are especially important for synthetic streaming media workloads� we cannot ignore the �rst 	

 �les�

Thus� an important contribution of this work is that a generalized Zipf�like distribution is proposed as a

uni�ed method to capture �le popularity distributions of both Zipf�like and circular�curve shapes� A generalized

Zipf�like distribution can be �tted by a straight line on a log�log scale after a Zipf k�transformation� The Zipf

k�transformation for �le popularity is de�ned as follows� assume x is a �le rank� y is the corresponding access

frequency for the �le� kx and ky are scale parameters� the k�transformation transforms the original x and y as

follows�
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Figure �� The original popularity dis�
tributions of the HPC trace and the

HPL trace on a log�log scale�

Figure 	� The popularity distribu�

tions after Zipf k�transformation on a

log�log scale�

Figure 
� Comparison between the

popularity distribution generated by

MediSyn and the original traces on a

log�log scale�

xk �
x� kx � 	

kx
�	�

yk �
y � ky � 	

ky
���

After the k�transformation� xk and yk denote the transformed �le rank and frequency respectively� Figure �

shows the relationship between xk and yk of the HPC and HPL traces on a log�log scale respectively� We

observe that they are perfectly straight lines� The � value of the Zipf k�transformation is derived through linear

regression �	��� Table � shows some critical parameters related to the curve �tting of the two workloads� As

shown in the table� R� is 
���� for both the HPC and HPL traces� indicating that straight lines �t both the

distributions very well�

Trace � R� kx ky Maximum frequency Number of �les
HPC ���� ����� �� �� ���
� �	
	
HPL ���
 ����� � � �� 
	

Table �� Parameters of Zipf k�transformation of the HPC and the HPL traces�

The reason that the original traces do not show perfectly straight lines at the heads of the curves is that

there is little di�erentiation in the frequencies of the most popular �les �with smaller x�� It can be attributed

to the fact that a long�term trace can collect enough �les with similar popularities over time� and thus these

�les can be considered as a group �equivalence class�� where a group rank will be a better re�ection of the �le

popularities� Intuitively� the e�ect of the k�transformation is that the popularity follows a Zipf�like distribution

if we check every group of kx �les� We divide x by kx to scale the �le ranks so that the ��i� 	�kx � 	��th rank

becomes the i�th rank and re�ect now the corresponding �le group rank� Other �le ranks are transformed to

�oat numbers evenly distributed among integral ranks� So we actually move all points on the log�log scale along

the x�axis to the left and squeeze the points to a more straight line� Similarly� the reason that the traces do not

show perfectly straight lines at the tails of the curves is that there is not enough di�erentiation in the number

of �les with the lowest frequencies� So we divide y by ky to squeeze those points along the y axis on the log�log

scale� The value of ky is not necessarily the same as kx� However� MediSyn uses the same value for kx and ky

based on our observations for both the HPC and HPL traces� which we simply refer to as k� The scale parameter

k of our k�transformation is similar to the scale parameter k of a generalized Pareto distribution �	��

��



Another explanation for the k�transformation is that the original frequency sequence cannot be �tted by a

Zipf�like distribution starting from rank 	� but it can be �tted into part of a Zipf�like distribution starting from

rank kx� To describe this �le rank starting from kx by a Zipf�like distribution� we have to divide its original rank

by kx� Similar explanation can be applied for ky � Clearly� Zipf�like distributions are a special case of generalized

Zipf distributions when k � 	�

To generate a sequence of frequencies following a generalized Zipf�like distribution� users of MediSyn specify

the maximum frequency M for the most popular �le� the number of �les N � the scale parameter k and the

Zipf�like distribution parameter �� MediSyn computes the frequency of the most popular x�th �le �x � �	� N ��

using the following formula �
Mk

�x�k��
k

��
� 	

�
k � 	� ���

where Mk �
M��
k
�	� Figure � compares the frequencies generated by MediSyn with the original frequencies in

our traces�

To determine whether there is a correlation between �le duration and �le popularity� we compute the corre�

lation coe�cient between �le popularity and �le duration for both of our workloads� Table � shows these results�

We use both the �le frequency and the �le rank as the popularity metric to compute the correlation coe�cient�

Overall� we observe no strong correlation between �le popularity and �le duration� So �le duration and �le

popularity are randomly matched in MediSyn�

Workload HPC frequency HPL frequency HPC rank HPL rank
Correlation Coe�cient ����
 ���� ����� ������

Table 	� Correlation coe�cient between �le popularity and �le duration�

We also check for possible correlation between popularity and encoding bit rate� Once again� there is no

correlation between them� so MediSyn matches popularity and encoding bit rate randomly�

��� Pre�x

One major characteristics of streaming workloads is that a signi�cant amount of clients do not �nish playing an

entire media �le� We refer to the duration between the start of a media session and the time when the session is

terminated by the client as the pre�x duration of the session� or simply the pre�x� Figure � and Figure 	
 show

the PDF for the pre�xes of two typical example �les in the HPC trace� The �spikes� in the �gures correspond to

successfully completed media sessions for the �les� while the other pre�xes in the �gures are incomplete sessions�

We observe that there is a strong correlation between the �le duration and the pre�x distribution�

� Complete sessions� The fraction of complete sessions of a �le highly depends on the �le duration� A short

�le tends to have more complete sessions� For example� the �le durations in Figure � and Figure 	
 are

��� seconds and �	�� seconds respectively� The �le in Figure � has more complete sessions than that in

Figure 	
� We use rc to denote the ratio of complete sessions for a �le compared with the total number of

sessions for the �le� Figure 		 shows the relationship between �le duration and rc� We can observe that

the rc of each �le highly depends on the �le duration�

� Incomplete sessions� The pre�x distribution of incomplete sessions of a �le depends on the �le duration�

Figure � re�ects that the pre�xes of incomplete sessions for a short�duration media �le can be captured by

��



an exponential distribution� While for a long�duration �le as shown in Figure 	
� the pre�xes of incomplete

sessions follows a heavy�tail distribution� which cannot be captured by an exponential distribution�

Thus� the overall pre�x distribution of a media workload highly depends on each �le�s pre�x distribution� which

in turn depends on the duration of the �le� There is not a straightforward solution to directly capture the overall

pre�x distribution for the entire workload� To generate each �le�s pre�x distribution� we �rst generate rc for the

�le� then model the distribution of incomplete sessions for the �le based on the assigned rc�

To generate rc for a �le� we need to determine the relationship between rc and the �le duration as shown in

Figure 		� We observe that the contour of the dotted area in Figure 		 follows a Zipf�like distribution� To obtain

this curve� we segment the durations of all �les into 	�minute bins� The maximum rc value of each bin �denoted

as rmax
c � constitutes the contour of the dotted area in Figure 		� Figure 	� shows the relationship between rmax

c

of each bin and the duration �in minutes� for the corresponding bin on a log�log scale� Because the maximum

value of rmax
c is 
���� the curve is �at in the beginning� The other points can be �tted with a straight line� Thus�

we can use a Zipf�like distribution to capture the distribution of rmax
c for all bins� We also observe that the rc

values for other �les within a bin� are uniformly distributed between 
 and the rmax
c value of the bin� So� to

generate rc for each �le� MediSyn �rst classi�es �les into 	�minute bins based on their durations� Then� MediSyn

generates rmax
c for each bin� For �les in each bin� their rc values are chosen according to a uniform distribution

between 
 and rmax
c of the bin� Through this process� the rc of each �le can be determined�

After the rc value of each �le is determined� the distribution of incomplete sessions needs to be determined�

As mentioned above� depending on the �le duration� it could be captured by an exponential distribution or some

heavy�tail distribution� Additionally� both Figure � and Figure 	
 show a similar shape in the beginning of the

distributions within a certain range of duration� We observe that for more than �
� of the media �les in the HPC

trace� the distributions of pre�xes within the �rst � minutes can be �tted by exponential distributions� These

results con�rm similar �ndings for an educational workload studied by Almeida et al ���� Given the fact that

pre�xes within a certain duration range �e�g�� the �rst � minutes� occupy a high percentage of total incomplete

sessions� we introduce a cut�o� point and use the following method to model the pre�x distribution of a given

media �le�

� If a media �le duration is less than the cut�o� point� its incomplete pre�xes are modeled by an exponential

distribution�

� If a media �le duration is longer than the cut�o� point� the distribution of incomplete pre�xes is modeled by

the concatenation of two distributions� The distribution of incomplete pre�xes less than the cut�o� point is

modeled by an exponential distribution� The distribution of the remaining incomplete pre�xes longer than

the cut�o� point is approximated by a uniform distribution�

In the HPC trace� the cut�o� point is � minutes� Users of MediSyn can specify their own cut�o� point� We use

the following denotations�

� re de�nes the ratio of incomplete sessions whose pre�xes are within the cut�o� point compared with the

total number of sessions of the �le�

� ru de�nes the ratio of incomplete sessions whose pre�xes are longer than the cut�o� point compared with

the total number of sessions of the �le� If a �le duration is less than the cut�o� point� ru is 
�

Given rc for a �le� MediSyn needs to generate the values of re and ru for the �le� The strategy is to generate

re for the �le and to set ru � 	� rc � re� Figure 	� shows the relationship between rc and re for all �les in the

HPC trace� We can see that for a given rc� the value of re is bounded on both the lower and upper sides� If we

��
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Figure ��� re versus rc�
Figure ��� CDFs of the pre�xes gen�

erated by MediSyn and the HPC trace�

denote the maximum of all rc values as R
max
c �
��� for the HPC trace�� the upper bound ruppere and the lower

bound rlowere of a given rc can be computed by Equation � and Equation � respectively�

ruppere � 	� rc ���

rlowere � ruppere � �
�� � 
�� � rc�R
max
c � ���

Figure 	� plots these calculated upper and lower bounds� The upper bound is caused by the limitation that

the sum of rc� re� and ru is 	� The lower bound changes from �
� of the upper bound to the same as the upper

bound while rc increases from 
 to R
max
c � So during workload generation� for a given rc� MediSyn generates the

value of re according to a uniform distribution between the corresponding upper bound rupperc and the lower

bound rlowerc �

After generating rc� re and ru for each media �le� MediSyn still needs to generate the mean ��� of the

exponential distribution for the incomplete pre�xes� Since each �le has its own exponential distribution for

pre�xes� we have to derive the distribution for the ��s of all media �les� Analysis of session pre�xes in the HPC

trace shows that ��s of all media �les follow a normal distribution�

MediSyn generates a sequence of pre�xes according to the generated ratios of rc� ru� re and � for each �le�

Then� these pre�xes are randomly matched with all the sessions of the �le� In this way� MediSyn can generate

all session pre�xes for every �le� Figure 	� shows the cumulative distribution function �CDF� of the pre�xes in

the HPC trace compared with the CDF of the pre�xes generated by MediSyn�

��



��� New File Introduction Process

The process of new �le introduction mimics how �les are introduced at a media site and attempts to answer the

following questions�

� What is the new �le arrival process on a daily time scale�

� What is the new �le arrival process within an introduction day�
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Figure ��� New �le introduction gaps

measured in days for the HPC trace�

Figure ��� New �le introduction gaps

measured in days for the HPL trace�

Figure �	� The number of new �les

introduced per introduction day�
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Figure �
� New �le introduction time

gaps within an introduction day�

Figure ��� The start times of new �le

introduction within introduction days�

Figure ��� The rotated start times of

new �le introduction within introduc�

tion days�

To model new �le arrival on a daily level� we capture the time gap measured in days between two introduction

days and the number of new �les introduced in each introduction day� Figure 	� shows the distribution of new �le

introduction gaps measured in days for the HPC trace� The distribution depicted in Figure 	� can be captured

by a Pareto distribution with � � ��
	��� Figure 	� shows the introduction gap distribution for the HPL trace�

which can be captured by an exponential distribution with � � ����
��

MediSyn can generate new �le introduction time gaps according to one of three possible distributions� 	�

a Pareto distribution� �� an exponential distribution� �� a �xed interval� If users specify a Pareto distribution

for the new �le introduction process� �les tend to be introduced into the system clustered over time� If the

introduction process is speci�ed by an exponential distribution� the new �le arrival process is a Poisson arrival

process� which means the interarrival times are independent� The �xed interval is used to model some arti�cial

introduction process with regular patterns�
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Since there may be multiple new �les introduced in a given day� we must also model the number of �les

introduced per introduction day� Figure 	� shows the distribution for the number of �les introduced in a given

day for the HPC trace� The distribution can be �tted by a Pareto distribution with � � 	�	����

After determining the number of �les introduced in a given day� MediSyn needs to model the new �le arrival

process within that day� We model this process by capturing the gap between two �le arrivals� Figure 	� shows

the time gaps for new �les introduced within a day� Since the distribution is too sparse on time scale of seconds�

we measure the time gaps at multiples of �

 seconds �	� minutes�� The distribution can be captured by a

Pareto distribution with � � 	�

���

Due to the properties of Pareto distribution� if we only model the time gap between two �le arrivals and start

to introduce new �les from the beginning of a day� then most of the �les will be introduced in the beginning

of every day� So we also capture the start times of new �le introduction process within every introduction day�

Figure 	� shows this distribution� Since it looks like a rotated normal distribution with the peak at 
� we rotate

the the distribution by 	� hours as shown in Figure �
� This is a normal distribution with mean ���

 seconds

and standard deviation �	�

 seconds�

��� Life Span

Since temporal correlation is observed in media workloads� an independent reference model combined with

a global popularity distribution ��� is insu�cient for a synthetic workload generator to generate a �le access

stream� SURGE ��� uses a stack distance model to generate web reference streams with reference locality� Both

the independent reference model ��� and the stack distance model ��� �� assume that each �le�s popularity is

stationary over the entire trace period and that each �le is introduced at the start of the trace� Since we

observe non�stationary popularity in streaming media workloads� such models are unsuitable for generating

session arrivals in streaming media workloads�

To accurately model the non�stationarity of �le popularity� we use the new �le introduction process to mimic

how media �les are introduced at the media sites� as we described above� In addition� each �le has its own life

span� which characterizes its changing popularity after the �le�s introduction� Thus� the global �le popularity

distribution� the �le introduction process and life spans of individual �les� all together capture the popularity

change of media �les over the entire trace�

We de�ne the relative access time of a �le as a random variable whose value is the time measured in days when

the �le is accessed by a client after the �le is introduced� The distribution of a �le�s relative access times describes

the temporal correlation of all accesses to the �le� We also call this distribution the life span distribution of

the �le� In our traces� we observe two types of life span distributions as illustrated in Figure �	 and Figure ��

respectively� Since most �les in our traces have life spans similar to Figure �	� we call this type of life span a

regular life span�

News�like streaming contents typically have life span distributions similar to Figure ��� where most accesses

occur shortly after the �le introduction and the access frequency diminishes relatively quickly� So we refer to

this kind of life span as news�like life span�

We experimented with gamma� Pareto� exponential and lognormal distributions to �t the relative access times

of our traces� Although gamma distributions can somehow capture both news�like and regular life spans� the

combination of Pareto and lognormal distributions can better �t them� Thus� news�like life spans follow Pareto

distributions� and regular life spans follow lognormal distributions�

��
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Figure ��� A regular lifespan� Figure ��� A news�like lifespan�

Figure ��� PDF that a �le at a cer�

tain rank has a Pareto life span distri�

bution�

To generate a sequence of regular life spans and news�like life spans� we need to model the distributions

of the mean ��� and the standard deviation ��� for regular life spans� and the distributions of � for news�like

life spans� Our analysis of the HPC and HPL traces shows that these parameters follow normal distributions�

Table � shows the parameters for these normal distributions derived from the HPC log to capture the parameters

of regular life spans �� and �� and news�like life spans ����

Normal distribu�
tion paramaters

lognormal � lognormal � Pareto �

� 
���
� ���	�� �����

� ����� ��
�� ������

Table 
� The parameters for the distributions �normal distributions� of the parameters in lognormal and pareto life span distributions�

There is a strong correlation between �le popularity and life span shape� A �le with a higher popularity rank

tends to have a higher probability to have a news�like life span� Figure �� shows the PDF for this probability�

The distribution can be captured by an exponential distribution� File ranks have been transformed between 


and 	 so that � for the exponential distribution is independent of the number of media �les generated� In the

HPC trace� we observed �� news�like life spans out of the �

 most popular �les� Users of MediSyn can specify

their own ratio according to the workload they want to generate� A workload including more �les with news�like

life spans has a more bursty access pattern�

��� Diurnal Access Pattern

After determining the life span and the global popularity of every �le� MediSyn can generate the number of

accesses for every day of a �le�s life span� Distributing these accesses over a day is challenging because we wish

to model both session interarrival time and diurnal access patterns�

Figure �� shows a typical session interarrival time distribution for a �le measured in a day� It is a heavy�tail

distribution and can be �tted by a Pareto distribution better than an exponential distribution� However� if we

generate all interarrival times within a day based on this Pareto distribution� it is di�cult to simultaneously

ensure diurnal pattern� Figure �� shows the interarrival time distribution for the same �le within one hour of the

same day� This distribution is not a heavy�tail distribution and can be captured by an exponential distribution�

Thus� if we can determine the number of accesses in each hour of a day according to a certain diurnal pattern�

we can use an exponential distribution to generate the interarrival times of the accesses in this hour� Thus� we

�	
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Figure ��� The PDF of session access

interarrival time gaps for a �le mea�

sured in a day�

Figure ��� The PDF of session access

interarrival time gaps for a �le mea�

sured in an hour�

Figure ��� The session access diurnal

pattern for the HPC trace� Each bin is

an hour�

can both generate the diurnal pattern and satisfy the observed exponential distribution for interarrival times�

Diurnal access patterns are universally observed by other streaming workload analyses� But we do not

explicitly �nd diurnal patterns for single �les� We only observe an aggregate diurnal access pattern for all �le

accesses� Figure �� shows the average ratios of accesses in each hour for all �les in the HPC trace�

In MediSyn� a user can specify a global diurnal pattern like Figure ��� which contains a set of bins� Each bin

speci�es a time period and the ratio of accesses in this bin� Since we believe there is no temporal correlation among

�le accesses within a day �i�e�� the temporal locality within a day is entirely determined by �le popularities��

we can make every �le follow the diurnal pattern� Essentially� each �le�s session arrival process within a given

day is modeled as a nonhomogeneous Poisson process ����� where only the session arrivals within each bin can

be modeled by a Poisson process� The session arrival rate of the �le for a given bin is computed based on the

diurnal pattern speci�ed by the user and the number of accesses within a day determined by the �le life span�

MediSyn generates the interarrival time gaps within each bin and constructs a sequence of sessions for the �le

on the scale of seconds�

� Related Work

Accurate workload characterization lays down a foundation for a successful synthesis of realistic workloads� A

number of studies on multimedia workload analysis have been reported in literature ��� �� 	�� 	�� 	�� �	��

Acharya et al ���� presented the analysis of the six�month trace data from mMOD system �the multicast

Media on Demand� which had a mix of educational and entertainment videos� They observed high temporal

locality of accesses� the special client browsing pattern showing clients preference to preview the initial portion

of the videos� and that rankings of video titles by popularity do not �t a Zip�an distribution�

Almeida et al ��� performed an analysis of two educational media server workloads� The authors provide a

detailed study of client session arrival process� the client session arrivals in one workload can be characterized

as a Poisson process� and the interarrival times in the second workload follow a heavy�tail Pareto distribution�

They also observed that media delivered per session depends on the media �le length�

The study by Chesire et al �	�� analyzed the media proxy workload at a large university� The authors

presented a detailed characterization of session duration �most of the media streams are less than 	
 minutes��

object popularity ���� of objects are accessed only once�� sharing patterns of streaming media among the clients�

and that popularity distribution follows a Zipf�like distribution �trace duration covers one week��

�




Two enterprise media server workloads have been extensively studied in �	��� The data was collected over

signi�cant period of time� Thus authors concentrated on the analysis of media server access trends� access

locality� dynamics and evolution of the media workload over time� They reported non�Zip�an and non�stationary

popularity of �les observed in their data�

In our work� we attempt to summarize �ndings from the earlier work� and build a general� uni�ed model for

workload characteristics capturing unique properties of streaming media workloads as well as the dynamics in

media workloads observed over long period of time�

Since HTTP requests and streaming media sessions are very di�erent� streaming media workloads exhibit

many new properties relative to traditional web workloads� Thus existing synthetic web workload generators ���

are not suitable for generating streaming media workloads�

The only synthetic workload generator for streaming media reported in literature is GISMO �	��� MediSyn

adopts similar approach chosen in GISMO to organize the synthetic trace generation in two steps� i� de�ning the

individual session characteristics� and ii� determining the media session arrival process� GISMO operates over a

��xed� set of media �les already �introduced� at a media site� with the assumption that object popularity follows

a Zipf�like distribution and remains the same over the entire duration of the experiment� Since we pursue the

goal of developing a synthetic workload generator which re�ects the dynamics and evolution of media workloads

over time� we propose a set of new models to re�ect these new temporal properties of streaming media workloads

in MediSyn�

� Conclusion and Future Work

Development of e�cient resource allocation mechanisms for Internet hosting centers and CDNs� serving streaming

media content� requires performing the experiments with realistic streaming media workloads which need to be

scaled� parametrized� and mixed in a controllable and desirable way�

In this work� we present a synthetic streaming media workload generator� MediSyn� which is specially designed

to accomplish this goal� In MediSyn� we develop a number of novel models to capture a set of characteristics

critical to streaming media services� including �le duration� �le access pre�x� non�stationary �le popularity� new

�le introduction process� and diurnal access pattern� Among the primary features of our synthetic generator is

the ability to re�ect the dynamics and evolution of content at media sites and the change of access rate to the sites

over time� We introduce a novel generalized Zipf�like distribution that captures recently�observed popularity of

both web objects and streaming media not captured by existing Zipf�like distributions� Our evaluation� based on

two long�term traces of streaming media services� demonstrates that MediSyn accurately captures the essential

properties of media workloads� which are chosen to represent the unique �while generic� properties of streaming

media workloads and their dynamics over time�

MediSyn implementation is based on a modular design allowing the particular system properties to be cus�

tomized� enhanced or extended to re�ect the requirements of individual scenarios� In a future work� we plan to

extend MediSyn with implementation of client interactivities within media sessions�

As part of MediSyn� we plan to release a workload analysis tool re�ecting the property pro�les generated by

MediSyn� These pro�les can be conveniently used for tuning the workload generator parameters to specify the

desired properties�

��



References

�	� General Pareto Distribution� http���www�math�uah�edu�stat�special�special���html�

��� Soam Acharya� Brian Smith� and Peter Parnes� Characterizing User Access to Videos on the World Wide

Web� In Proceedings of ACM�SPIE Multimedia Computing and Networking� January �


�

��� Jussara Almeida� Je�rey Krueger� Derek Eager� and Mary Vernon� Analysis of Educational Media Server

Workloads� In Proceedings of NOSSDAV� June �

	�

��� Virg�ilio Almeida� Azer Bestavros� Mark Crovella� and Adriana de Oliveira� Characterizing Reference Lo�

cality in the WWW� In Proceedings of PDIS� December 	����

��� Virgilio Augusto Almeida� Marcio Cesirio� Rodrigo Fonseca� Wagner Meira Jr�� and Cristina Murta� Ana�

lyzing the behavior of a proxy server in the light of regional and cultural issues� In Proceedings of WCW�

June 	����

��� Paul Barford and Mark Crovella� Generating Representative Web Workloads for Network and Server Per�

formance Evaluation� In Proceedings of SIGMETRICS� June 	����

��� Dave Bianchi� CNN�com� Facing A World Crisis� http���www�tcsa�org�lisa�����cnn�txt�

��� Rebecca Braynard� Dejan Kosti�c� Adolfo Rodriguez� Je�rey Chase� and Amin Vahdat� Opus� an Overlay

Peer Utility Service� In Proceedings of the �th International Conference on Open Architectures and Network

Programming �OPENARCH�� June �

��

��� Lee Breslau� Pei Cao� Li Fan� Graham Phillips� and Scott Shenker� Web Caching and Zipf�like Distributions�

Evidence� and Implications� In Proceedings of INFOCOM� March 	����

�	
� Je�rey Chase� Darrell Anderson� Prachi Thakar� Amin Vahdat� and Ronald Doyle� Managing Energy and

Server Resources in Hosting Centers� In Proceedings of the ��th ACM SOSP� October �

	�

�		� Ludmila Cherkasova and Gianfranco Ciardo� Characterizing Temporal Locality and its Impact on Web

Server Performance� In Proceedings of ICCCN� October �


�

�	�� Ludmila Cherkasova and Minaxi Gupta� Characterizing Locality� Evolution� and Life Span of Accesses in

Enterprise Media Server Workloads� In Proceedings of NOSSDAV� May �

��

�	�� Maureen Chesire� Alec Wolman� Geo�rey Voelker� and Henry Levy� Measurement and Analysis of a

Streaming�Media Workload� In Proceedings of USITS� March �

	�

�	�� Morris DeGroot and Mark Schervish� Probability and Statistics� Addison�Wesley� �rd edition� �

��

�	�� Raj Jain� The art of computer systems performance analysis	 technique for experimental de�

sign
measurement
simulation and modeling� John Wiley  Sons� 	����

�	�� Shudong Jin and Azer Bestavros� Temporal Locality in Web Requests Streams� Sources� Characteristics�

and Caching Implications� Technical Report BUCS�TR�	����

�� Department of Computer Science� Boston

University� August 	����

�	�� Shudong Jin and Azer Bestavros� GISMO� A Generator of Internet Streaming Media Objects andWorkloads�

Technical Report BUCS�TR��

	�
�
� Department of Computer Science� Boston University� October �

	�

�	�� Dario Luperello� Sarit Mukherjee� and Sanjoy Paul� Streaming Media Tra�c� an Empirical Study� In

Proceedings of Web Caching Workshop� June �

��

��



�	�� Real Networks� Real Producer � plus� http���www�realnetworks�com�

��
� Hewlett Packard� Utility Data Center� http���www�hp�com�go�hpudc�

��	� Jitendra Padhye and Jim Kurose� An Empirical Study of Client Interactions with a Continuous�Media

Courseware Server� In Proceedings of NOSSDAV� June 	����

���� Sheldon Ross� Introduction to probability models� Academic Press� 	����

���� Subhabrata Sen� Jennifer Rexford� and Don Towsley� Proxy Pre�x Caching for Multimedia Streams� In

Proceedings of INFOCOM� March 	����

��


