

Review of existing tools for working
with schemas, metadata, and thesauri

John Gilbert1, Mark H. Butler
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2003-218
November 6th , 2003*

E-mail: gilberj@tcd.ie, mark-h _butler@hp.com

SIMILE, RDF,
semantic web,
schemas,
ontologies,
thesauri

SIMILE, a joint project between HP, MIT Libraries and the W3C,
is investigating applying Semantic Web tools, such as RDF
(Resource Definition Framework) and associated schema
languages, to the problem of dealing with heterogeneous metadata.
Currently creating schemas involves writing them by hand using a
text editor. As one of the aims of SIMILE is to simplify the
deployment of heterogeneous data, it is desirable to investigate the
applicability of schema authoring tools that reduce the need for
expert knowledge and the risk of schema errors. This report reviews
existing applications that support the creation of metadata schemas
and graphical user interfaces for entering instance data based on
those definitions. It also compares and contrasts these applications
with existing applications used for the creation of thesauri, which
have many similarities with schemas and ontologies.

* Internal Accession Date Only Approved for External Publication
1 Trinity College Dublin, Dublin, Eire.
 Copyright Hewlett-Packard Company 2003

 1

Review of existing tools for working with schemas,
metadata, and thesauri

John Gilbert (gilberj@tcd.ie)1
Mark H. Butler (mark-h_butler@hp.com)
Hewlett Packard Laboratories, Bristol UK

01 October 2003

Abstract
SIMILE, a joint project between HP, MIT Libraries and the W3C, is investigating
applying Semantic Web tools, such as RDF (Resource Definition Framework) and
associated schema languages, to the problem of dealing with heterogeneous metadata.
Currently creating schemas involves writing them by hand using a text editor. As one
of the aims of SIMILE is to simplify the deployment of heterogeneous data, it is
desirable to investigate the applicability of schema authoring tools that reduce the
need for expert knowledge and the risk of schema errors. This report reviews existing
applications that support the creation of metadata schemas and graphical user
interfaces for entering instance data based on those definitions. It also compares and
contrasts these applications with existing applications used for the creation of
thesauri, which have many similarities with schemas and ontologies.

Keywords
SIMILE, RDF, Semantic Web, Schemas, Ontologies, Thesauri

1 Introduction
SIMILE1 is a research project investigating how to extend DSpace2, a digital asset
management system developed by Hewlett-Packard Laboratories and MIT Libraries.
It aims to provide an architecture for information search and retrieval across
heterogeneous metadata that describes multiple collections of resources from
disparate domains. Typically these collections use different metadata schema to
define the structure and organization of metadata descriptions for a given domain.

What is the difference between ontologies, schemas and
vocabularies?
Currently terms like schema and ontology are used in multiple, conflicting ways.
Therefore this report proposes some specific terms in order to distinguish between
these conflicting definitions:

Instance data: Instance data is metadata that is specific to resources.

Schemas: Schemas are generic descriptions of collections of metadata. This report
proposes that it is possible to distinguish between four different types of schemas:

1 Summer intern at HP Labs Bristol from Trinity College Dublin, Eire.

 2

vocabulary, ontological and constraint schemas and controlled vocabularies. In the
Semantic Web specific schema information, possibly composed of all four types of
schema, is identified using a namespace.

Vocabulary schemas: A vocabulary schema defines a set of classes and properties
that can be used to describe a particular domain. Note a vocabulary schema is quite
different to a controlled vocabulary.

Ontological schemas: Ontological schemas describe relationships between classes
and properties, both within a namespace and between multiple namespaces. The
Semantic Web community refers to ontological schemas as ontologies, but here we
use the term schema to emphasise the similarity with the other schema language
types.

Constraint schemas: A constraint schema describes constraints that are applied to
classes and properties. Constraint schemas may be used to validate metadata
associated with a particular schema, but they may also be used for inference.

Controlled vocabularies: A controlled vocabulary defines a set of terms that may be
used as property values. The controlled vocabulary may optionally define relations
between the terms such as synonyms.

Namespace: A namespace is a grouping of related information that uses a common
name. A namespace may provide no information at all, but ideally it will provide a
vocabulary schema, optionally supported by an ontological schema, a constraint
schema and optionally one or more controlled vocabularies.

Application profile: An application profile is a vocabulary schema derived from
subsets of several other vocabulary schemas and associated with a particular
application.

SIMILE is investigating applying Semantic Web tools to the problem of dealing with
heterogeneous metadata, so instance data will be represented using the Resource
Definition Framework (RDF)3, and associated schemas will be written in languages
such as RDF Schema4, DAML+OIL5 or OWL6 and XML Schema. In gross
simplification, RDF Schema is primarily used for vocabulary schemas, OWL for
ontological schemas and XML Schema for constraint schemas although both RDFS
and OWL have vocabulary, ontological and constraint elements whereas XML
Schema is primarily concerned with constraint elements.

Why are schemas necessary?
RDF has much in common with the OEM semi structured database model7 8 9 where
property arcs are explicitly labelled so in principle schemas are unnecessary. So why
do we need schema information in order to process RDF? Here we propose that there
are several advantages for providing schemas in the SIMILE context:

• Providing vocabulary schemas means users only need to perform the operation
of deciding what metadata is required to describe a collection of resources
once, rather than for each individual resource.

 3

• Schemas can provide labels and textual descriptions for classes and properties,
that are more human readable than the URI notation used in the RDF model.

• Once a vocabulary schema has been defined, it is possible to reuse part of or
the entire schema for describing a different collection of resources. This
reduces the effort required to specify the metadata required by a collection,
and may also simplify the task of searching multiple collections.

• Vocabulary and constraint schemas may be used to validate instance
metadata10.

• Vocabulary schemas can be used to automatically create user interfaces for
entering metadata and to automatically create user interfaces for templated
queries.

• Ontological schemas can be used to map one vocabulary on to another
vocabulary, enabling searching across heterogeneous collections of resources.

• Ontological schemas can also be used to map between instance data that uses
the same vocabulary, but where different approaches have been used for
encoding data for different instances, for example the use of synoymns.

However, we note that there are limits to what can be described by ontological
schemas based on hierarchical representations and hence the type of mappings that
can be performed11.

Why do we need tools for schema creation?
Regardless of the type of schema being created, creating schemas currently involves
writing them by hand using a text editor, which is difficult, potentially error-prone,
and requires expert knowledge of schema languages. As one of the aims of SIMILE is
to simplify the deployment of heterogeneous data, it is desirable to investigate the
applicability of schema authoring tools that provide graphical schema authoring
environments, reducing the need for expert knowledge and the risk of schema errors.
This report reviews existing applications that support the creation of metadata
schemas for RDF based languages.

Why do we need tools for metadata creation and
visualisation?
Just as it is desirable to have tools to help create schemas, we also require tools that
help users create metadata. However as metadata varies with schema, it is undesirable
to require custom tools for each schema to be supported. Instead we need tools that
make use of schema information, and optional additional information to automatically
create an authoring environment for metadata that uses particular schemas.

How does this relate to existing work?
Although the use of RDF based languages is relatively recent, the library community
already uses similar applications for the creation of thesauri. Therefore this report also
considers these applications, and compares and contrasts
them with the applications designed for RDF based
languages.

In the discussion that follows one important distinction
between the applications is the level of abstraction from the
underlying data representation. RDF can be serialised in

Conceptual
model

RDF
model

RDF
serialization

 4

many forms, but the current serialisation recommended by the W3C is RDF/XML, an
XML, text-based serialisation that can be created using any plain text editor (vim,
emacs and others). Above this level, one can work with RDF at the data model level,
where the data model is a graph composed of individual triples. Going up a further
level, we reach the highest level of abstraction the underlying RDF data model is also
hidden, and instead the tools focus on the conceptual model of a schema associated
with a particular namespace or application profile. Here details such as anonymous
nodes in the underlying RDF data model are hidden from users.

Note that although tools at the various levels use a graph as part of their interface, this
graph represents different things: RDF editors use the graph to display the actual RDF
graph model of the triples that underpin RDF, while the schema creation tools use the
graph as a metaphor to represent the actual structure of the schema being developed.

2 RDF Editors
In the following section on RDF editors, the two tools evaluated display the RDF
document as a two dimensional graph. The ultimate goal of both tools is to simplify
editing RDF documents, without requiring knowledge of the underlying serialisation
e.g. RDF/XML. As such, both tools described are visual with a drag and drop
interface, where users ‘draw’ the nodes (either resource or literal) on screen, and click
between them to add properties.

As RDF Schema, DAML+OIL, and OWL schema languages are all expressed in RDF
these tools can be used for creating schemas in these languages as well as editing
instance data. This is the lowest possible level of tool for working with RDF, short of
using a text editor to create documents by hand.

IsaViz
The IsaViz12 interface consists of a number of
windows. The main window displays the RDF graph,
which is easy to navigate by zooming or panning the
display: functions readily available by dragging with
the right mouse button pressed.

An overview window provides information about
where in the graph the current section displayed in the
main window has come from, and gives the ability of
navigating at a high level.

A toolkit window
provides a toolbar
with the main tools
used in creating and modifying a graph, with options
for selecting nodes and properties, or creating nodes
(either resource or literal). It is possible to 'deactivate'
a section of the graph, effectively commenting it out in
the serialisation. This could be used to ‘remove’ nodes

 5

and properties from a description, without losing the structure and information
contained within them. It is also possible to resize and modify the layout of sections
of the graph. This information is then stored in a custom IsaViz file that stores both
the RDF and the layout information. When you wish to publish the model so that
others can use it, you must export the RDF in an appropriate serialisation.

An attribute window displays the attributes of
whatever node or property is currently selected in the
graph, allowing for modification of the items property
values.

Finally a definitions window provides access to manage multiple namespaces (by
associating prefixes with full URIs), property types used in the graph and the ability
to browse properties of a selected node in the main window.

Schema support is lacking in the tool: building new metadata instances is done using
an existing instance document rather than the actual schema. IsaViz extracts the
properties from the existing instance document to make them available in the
‘Property Types’ tab of the Definitions window. Classes however must still be typed
by hand.

One limitation with IsaViz is that it uses the AT&T GraphViz DOT layout algorithm
to initially render the display. This graph toolkit is platform specific so the binary
version is not portable between platforms, although IsaViz itself is written in Java and
made available under a GPL-compatible license.

RDFAuthor
RDFAuthor13 has been developed
for Mac OS X, though a Java
Swing port is available for cross
platform usage. It is distributed
for free under the GNU GPL.

Although the graph layout is not
as clear as the one provided by
IsaViz, the tool provides better
RDF Schema support. It is
possible to load an RDF Schema,
which makes the Classes and
Properties defined in that schema
available in a separate ‘Schemas’

 6

window, for drag-and-drop usage in creating an instance document. When classes and
properties are added to the instance document, the application automatically types
nodes and properties.

Navigation within the tool involves zooming in or
out, and sliding the view using scrollbars. The
user can configure the size of the area within
which the graph is displayed. Depending on the
size of the graph, the view can become cramped,
unlike that of IsaViz where the space for
rendering is considered infinite.

Summary
Both IsaViz and RDF Author are suitable for use by people familiar with the RDF
data model. The tools are a step in the right direction as far as support for editing
RDF/XML documents is concerned, but they are not necessarily suitable for users
who do not require knowledge of the underlying data model. Furthermore using these
tools to create schemas and ontologies requires specialist knowledge of the associated
RDF vocabularies e.g. RDF schema. The tools avoid some syntactic errors in the
creation of schema but they do not facilitate easily capturing the relationships between
properties and classes as they operate at the base RDF level so the user manipulates
nodes and arcs, not at the level of the conceptual model, where the user would
manipulate classes, properties, relations and constraints.

3 Schema Editors
Here we consider tools specifically designed for the creation of schemas. Most of
these tools also facilitate knowledge acquisition and any relevant features are noted.
These tools all provide a conceptual model of the schema. For other reviews of tools
for creating schemas and ontologies, see 14 15 16. For an excellent introduction to how
to create ontologies and schemas see 17.

OilEd
OilEd18 is a tool created specifically for editing DAML+OIL documents. DAML+OIL
is a precursor to the W3Cs OWL. OWL was developed from the DAML knowledge
interchange language commissioned by DARPA, and a language created by the
description logic community called OIL. The main OilEd application interface
consists of a number of tabs, each providing a different editing option. Within each
tab the left of the screen is occupied by a pane listing the relevant items for that pane,
for example the pane contains a list of all classes in the classes tab, while it contains
all properties while the properties tab is selected:

 7

- Classes: The classes tab allows the user to define classes, document those
classes, define super / sub class relations and attach properties with specified
restrictions.

- Properties: The properties tab allows the user to create and edit DAML+OIL
properties. In addition to creating properties, DAML+OIL provides
mechanisms for defining inverse, hierarchical and transitive relationships
between properties, as well as domain and range restrictions amongst others.

- Individuals: This tab allows for the creation of instance data using the defined
ontology, for example specifying what classes this instance is an instance of,
applying properties to the instance etc.

- Axioms: This section allows for the definition of logical axioms that apply to
the ontology, such as specifying that two classes
are disjoint i.e. Class Male and Class Female
may not have any instances in common.

- Two ‘housekeeping’ tabs: Container, which
provides general information about the ontology
and Namespaces, which allows for the control
of multiple namespaces within the ontology.

The classification of classes and instances in OilEd is
performed using a reasoner external to the system.
Based on class definitions, it creates an appropriate
class hierarchy (using both the specified sub/super class
relations, and also using those inferred by the system).
Rather than typing instance data explicitly, OilEd is
designed so that the reasoner can infer which classes a
particular instance belongs to and classify the instance
accordingly. The class hierarchy output is shown in the
adjacent window.

The main list of classes and properties displayed on the left of the interface does not
reflect the sub/super class relationship hierarchy, but is simply ordered alphabetically.
After invoking the reasoner, double clicking on any class in the class list will display
a hierarchical classification of all classes. This view is not available for properties or
instances however.

 8

OilEd supports importing other DAML+OIL projects, allowing for mixing different
schemas when creating metadata descriptions. It also supports the use of multiple
namespaces using a prefix #(INT) on class and property names to indicate which user-
configured namespace they are taken from. It is available open source under the GPL.

Protege-2000
OilEd is strongly based on Protégé-200019, so there are a number of similarities in
their user interfaces. Tabs in Protégé are available for:

- Classes: This tab is used to define classes, including sub/super class
relationships and restrictions upon those properties attached to the class.

- Slots: Slots are another name for properties.
- Forms: This tab allows the user to create a form for entering individual class

instances.
- Instances: This tab is used to create class instances.
- Queries: For searching and creating stored queries of the instance data in the

knowledge base.

The class/slot lists are displayed as hierarchical trees modelling the defined sub/super
class/property relationships. Elements within the hierarchy with multiple super
class/slot relationships are replicated in the tree structure. Additional tabs are
available depending on installed third party plug-ins.

 9

Amongst the applications considered here, the ‘Forms’ feature is unique to Protégé
but is found in simple database applications such as Microsoft Access. Although it is
possible to automatically create user interfaces for data entry from vocabulary
schemas, sometimes such interfaces will be inappropriate for a number of reasons:

- It may be desirable to give a slot a different name to that used in the schema.
- It may be desirable to place slots in a particular order, for example to reflect

work flow.
- It may be natural to associate some slots with different UI widgets apart from

simple text boxes, for example a drop-down box in the case of a controlled
vocabulary.

- The user may never provide values for certain slots, so they may be omitted
from the user interface, for example when a slot value may be calculated from
other slot values.

- The user may need to decide on object type first as this determines what slots
will be available.

Protégé generates an initial knowledge acquisition interface for each class defined
which can be tailored by hiding fields, and restructuring them on the screen.

Unfortunately when creating a metadata instance, it can only be created for one class:
although multiple inheritance is supported in the class hierarchy, multiple typing is
not supported for instance data. In this sense then, unlike OilEd, Protégé currently
adheres strictly to the notion of an objects properties being dependant upon class type.

Navigation of instance data is done using a mirror of the class hierarchy, which
displays a list of instances in a separate pane when a class is selected. This is in
contrast to the OilEd navigation, which, like its classes, simply lists all instances
alphabetically. The Protégé approach to metadata-browsing is more structured than
that of OilEd, and it also offers better query support than the simple keyword search
provided by OilEd.

An additional problem with the current implementation of Protégé is its lack of
support for multiple namespaces. Although it supports ‘including’ external projects, to
reuse their terms, the single-namespace problem means that terms which are repeated
will conflict. Protégé is available open source under the Mozilla public licence.

 10

KAON OI-Modeller
KAON20 is an open-source ontology management infrastructure targeted for business
applications and is made available under the Lesser GPL. It includes a comprehensive
tool suite including OI-Modeller. The graph layout algorithms are based on the
TouchGraph library21. The tool is still under development, and currently supports
editing of the vocabulary schema only i.e. the class and property hierarchy.

The user interface appears to be a cross between the simple RDF editors that use a 2D
graph-tree visualisation, and the ‘options’ panes available in both OilEd and Protégé
for modifying class and properties respective properties. The graph displayed can be
expanded or contracted as required to display sub and super concepts. It is possible to
view a concept hierarchy on the right of the screen, as well as inspect any other
ontologies included within this project.

The available options at
the bottom of the screen
are context-based on the
item(s) selected within
the graph, and without
the ‘tabs’ style of Protégé
and OilEd, it is initially
unclear what exactly you
are working with.

At the time of writing this
report, this tool is at an
early stage of
development; in
particular its graph
display was found to be
unreliable and the

 11

software lacks documentation.

Ontolingua
Ontolingua22 is a browser based
ontology editor, created by Stanford
University. After logging in it is possible
to either browse existing ontologies from
the library, or create a new ontology.
Creating a new ontology begins with a
basic definition of what the ontology is
about, and any ontologies from the
library that should be included.

The screen is split into two frames, a top
frame with options for searching, adding
classes, axioms etc. This top frame
controls the contents of the bottom
frame.

The interface for editing concept properties is based on standard HTML forms, and
hyperlinks are used throughout for both navigation and selecting editing options. Rich
in functionality, the tool is slightly overwhelming as a web based application.

Simple features, taken for granted in the other tools evaluated, are lacking in this tool.
For example, when creating a class, it must be a subclass of at least one existing class.
This super class name must be entered by hand into a text box during the new classes
creation. In a tool such as OilEd this is done by right clicking on the class to be sub-
classed.

Summary
With a wide user base, Protégé sets the de-facto standard against which most ontology
creation software is compared. Although OilEd is strongly influenced by Protégé, the
two tools diverge on many topics: multiple typing for instance data, how classes fit
into the overall design and structure of instance data i.e. are they used to define
templates for the data as in Protégé, or used to classify arbitrary descriptions as done
using the external reasoner in OilEd. Possibly a side effect of the underlying ontology
description, these differences highlight that there are several possible approaches to
schema modelling.

The KAON OI-Modeller, although still in development provides an alternative
approach to visualising the ontology under consideration, with its graph based
conceptual model. Like Protégé and OilEd, OI-Modeller provides standard features
for working with an ontology, modifying concepts and sub concepts, applying
restrictions and so on. Currently it does not support more than simply editing the
concept hierarchy, and its contractible-graph is unstable and difficult to navigate,
making the tool awkward to work with.

 12

Protégé’s support of knowledge acquisition is far superior to that of any other tool
tested, giving excellent configurability via its forms designer. However the data
navigation tools provided in both Protégé and OilEd are poor, OilEd offering none
past a simple alphabetical list, and Protégé offering a ‘browse-by-class’ and query
search. Such interfaces are unlikely to be sufficient for large collections of instance
data that will be a feature of SIMILE. Perhaps a form of faceted search would be a
flexible, scalable and user-friendly approach to the problem.

4 Ontology Visualisation software
A number of ‘ontology’ browsers exist, which place a different visualisation on the
underlying structure of the ontology to make it more usable. These tools were
included as none of the visualisations were used in the construction of the other tools
evaluated. All provide a conceptual model of the ontologies being viewed.

OntoRama
OntoRama23 is a prototype
ontology browser that uses a
fisheye visualisation. On the
right hand side of the screen a
hierarchical tree is displayed,
while on the left hand side
(the main section of the
applications interface) a
graph view is provided, using
a hyperbolic view, so that
those classes near the centre
of the window are displayed
reasonably large while those
at the extremities are
relatively small.

Navigation can be performed using either the tree on the right, or dragging the graph
displayed on the left. Class properties are displayed at the bottom of the screen.

Though multiple super classes are supported, the sub-
hierarchies are ‘cloned’ to avoid the confusion of using a
real graph i.e. the graph is converted into a tree. Cloned
sections of the graph in both the hyperbolic graph view and
the tree view are displayed in red, making it easy to
recognise them. The tool can read in RDF/XML.

VIUM
VIUM24 (shown on the right) is another ontology
visualisation tool that uses another type of fisheye view
rather than a standard tree-based hierarchy or graph based
view. Instead this visualisation allows something of a cross
between the two: All classes are displayed, but once one is

 13

selected, the view re-organizes itself, making the selected class and associated classes
appear in a larger font, and pushes those very distantly related into the background,
with others varying in between. Colour coding and indentation of terms can also be
used to control the visualisation.

OntoSaurus
OntoSaurus25 is a web-based browser
for the ‘loom’ language, with an
interface much like that of Ontolingua.
The top section of the screen is used to
select ‘theories’ to work with or search
for items in the knowledge base, which
then replaces the right hand side of the
screen with the chosen theory. This
screen then displays top-level
concepts, child theories etc. Clicking
on a concept displays that concepts
structure, axioms, sub/super-concept
hierarchy, and instances of the
concept. One section of the screen
allows for ‘bookmarking’ a section of the ontology for quick-access. RDFAuthor also
has a similar feature. The Interface uses the webs ease of navigation via hyperlinks to
make navigating the ontology being viewed a simple task.

Summary
Each of the three visualisation tools/ontology browsers evaluated provide a different
view than that used by the other tools discussed in this report: Ontorama with its
hyperbolic graph view which replicates nodes pointed to by multiple properties in
order to provide a tree view, VIUM with its hybrid hyperbolic-graph/structured tree
view, and finally the basic OntoSaurus web-based hierarchical viewer which is
comparable to the initial thesauri view in TCS8 discussed in a later section.

5 Application profile editors

SCART: The MEG Registry Client
The MEG Registry project26 at UKOLN27
has developed a schema creation tool
specifically designed to encourage re-use
of existing element sets and encoding
schemes aimed specifically at librarians.
An element set is a vocabulary schema i.e.
a group of related properties used to
specify property-value pairs in metadata
descriptions, such as the 15 elements that
form the well known Dublin Core28.
Encoding schemes are used to control the
form that values for an element may take.
The MEG client supports two forms of

 14

encoding scheme: data types that provide simple descriptions of the encoding scheme,
including pointers to external specifications (e.g. a date format), and descriptions
based on an enumeration of values (i.e. a controlled vocabulary). Due to the user
interface provided, this enumeration is only suitable for small sets of terms with less
than 15 members.

The tool supports the creation and editing of application profiles that reuse existing
vocabulary schemas, as well as the creation of new vocabulary schemas and
associated encoding schemes hidden away under ‘advanced functionality’.

The main window allows the creation of application
profiles, displaying all profiles as a tree. The lower
section of the window provides a context sensitive
property editor for whatever is selected from the
application profile (or later, the element sets and
encoding schemes).

A second window provides the ability to search a
registry for existing element sets and encoding

schemes. This is based on a keyword search, which returns a list of all related items in
the registry. To use either an encoding scheme or element from the registry, it is a
simple matter of dragging the item from the ‘search results’ window onto your
application profile, and modifying its description. One problem here is the lack of any
visual indication of the source of elements and encoding schemes within the
application profile tree i.e. did the element come from the registry or from a locally
defined schema?

By enabling advanced mode in
the main window, two
additional columns appear: one
for element sets, and one for
encoding schemes. As with the
application profile column,
selecting either of these
columns will display an
appropriate property editor in
the lower half of the screen.

Note that the element sets and
encoding schemes editor is
very simple, and only creates

 15

flat element sets with no hierarchical relationships.

Also the UI design is deliberate to try to encourage the re-use of existing elements and
encoding schemes rather than the creation of new elements.

Summary
The MEG registry client provides a basic tool for working with application profiles.
The software performs its job admirably, however there are many possible
improvements: for example provide support for dealing with larger controlled
vocabularies, better tools for searching existing schemas, various possible user
interface improvements and indicate the provenance of elements and encoding
schemes in application profiles i.e. whether they have come from locally defined
schemas or from an online registry.

6 Meta-data instance editors

Haystack
Haystack29 is a tool that has
been developed to allow
users to manage all of their
information in a way that
makes sense to them. The
project aims to remove the
barriers imposed by
applications that are
designed to work with
specific information types.
Haystack is built using RDF
as its underlying data-
model, and work has been
done within the project on
providing RDF authoring
environments for end users30.

Work within the project has identified three main types of user interface component,
known as a view, which can be used to represent one or more resources on the screen.
They are:

1. Property editing allowing users edit property-value pairs.
2. Managing lists and taxonomies, important for classification of data and

enables users to quickly locate data again.
3. Specifying and viewing relationships between objects, while hiding the

complexity of the overall data model (i.e. only those relationships of
immediate interest are displayed).

There are various implementations of each view, and views can be nested within
views to display an object in the most suitable manner for a given context, thus
providing flexibility within the system. For example property editing views may be
nested in a managed list view. By providing various views on a single underlying

 16

resource, the problem of allowing users manipulate the properties of a resource can
now be cast as a problem of providing appropriate views for a resource for the user(s)
of the system.

SHAME
The Standardized Hyper Adaptable Metadata Editor (SHAME)31 is a framework for
building RDF based metadata editors. This framework aims to help provide
appropriate abstract views on metadata for different users of the system, which may
then be presented differently by different UI generators. Core to SHAME is its
configurability through a data modelling part (SHAME Query Model), and a form
specific part (SHAME Form Model). Configuration requires writing configuration
files in RDF using reified statements to specify a Query Model and Form Model. A
Query Model is used to identify data to bind to a view, while a Form Model is used to
specify display information.

A demonstration application, Configurable Editor32 (shown above), is available with
sample configuration files for a LOM editor, a Dublin Core editor, and a Form-Form
editor (used for editing SHAME form models).

 17

SIC
Simple Instance Creator33 is a tool
that allows users create DAML+OIL
instance data using a form-based
interface. The interface is generated
based on the provision of an
Ontology to the software. Forms are
created based on daml:Class
definitions, and can be nested
hierarchically to form a single
interface for a network of Classes
which have been linked together
using properties.
daml:DatatypeProperty properties
are displayed as the actual fields
which users input data into.

Summary
Haystack provides users much flexibility in both organizing their information, and
displaying it on screen in a meaningful way. Views are described in a programming
language written in N3 called adenine, rather than being derived from schemas, and
must be customised for different schemas. SHAME on the other hand uses
configuration files written in RDF that make extensive use of reification to specify
paths to bind instance data in order to populate form views. Unlike Haystack, the
framework does not specify any particular approach to presenting instance metadata
via the UI, so it is left to the developer or a UI generator to define the interaction
between user and data that may take place. SIC is the simplest of the tools, and
although it provides no possibility of configuring the generated interface, it allows
users to select a DAML+OIL ontology and then automatically generates a form from
the ontology, allowing the user to enter instances of classes. Since forms are
generated directly from the ontology, a limitation of the tool is it is not possible to
specify when properties are required and when they are optional, or use conditional
logic that only makes certain properties appear in certain contexts, which can assist
users entering metadata into the form.

7 XForms
XForms 34 35 is a technology being developed by the W3C for combining XML and
Forms. It is a declarative way of creating user interfaces for creating, editing and
viewing instance data represented in XML. It uses three other XML technologies,
XML Schema and XPath, and a new technology created by the XForms and HTML
Working Groups designed to reduce the need for scripting called XML Events. It
provides for support collecting data, but can also perform additional processing such
as calculations, validation, and can determine which form controls are relevant, read-
only or required.

 18

Unfortunately even though RDF can be serialised in XML, it is not always amenable
to processing with XML tools, for two reasons: first because there are multiple XML
serialisations of the same RDF model, and second because XML documents are
modelled as trees whereas RDF models are graphs. Recently there has been growing
interest in creating workarounds that overcome these problems to allow XML tools to
be used with RDF/XML - for example RDF Twig36. This report will not discuss the
suitability of XForms for use with RDF/XML, and hence its use in SIMILE, but
mentions this technology because it is relevant and we would like to propose that any
future work on declarative descriptions of UI’s for manipulating RDF should consider
the existing XForms work.

8 Thesaurus construction software
Thesauri are a particular type of controlled vocabulary that have additional relations
between terms, for example indicating narrower and broader terms (abbreviated NT
and BT respectively). Therefore the terms represent classes and the relations indicate
subclass relationships, so thesauri are related to vocabulary schemas and ontological
schemas. In addition the software used for the creation of both is reasonably similar
regarding user interface requirements. When creating instance meta-data from
schemas, we use specified controlled vocabularies and thesauri to source the values
for some attributes.

The following tools are all commercial, and have been evaluated using ‘trial’
versions. A variety of other commercial tools exist, but did not provide trail or
demonstration versions, and hence are not included here.

Webchoir TCS-8
TCS-837 is a multi-user system. A
manager uses the Thesaurus manager
to control user accounts, and
Thesauri/Permissions. The second
tool provided as part of the package
is the thesaurus editor. After initially
logging in, one can open a thesaurus

and begin
work.

Like the Protégé UI, the left hand section of the
screen is used to display the preferred terms
used in the thesaurus – by default as a standard
hierarchy, though it is possible to turn it into an
alphabetically ordered list as in OilEd.

In WebChoir, a thesaurus that allows multiple
inheritance is known as a polyhierarchy. When

 19

displaying polyhierarchies, WebChoir will replicate the term to which the multiple
BTs have been applied to under the additional terms. Note that narrower terms (NT)
will not be replicated in the tree view however.

Once terms have been created, it is
possible to browse terms using a web-
like interface based on hyperlinks as
shown in the adjacent screen shot. Here a
description of the term includes
information such as Status, Broader
Terms (BT) and Related terms (RT).
Narrower Terms are not listed however.
Any linkable terms are hyperlinked for
browsing.

When editing a term descriptor, the right hand side of the main window takes a
tabbed-appearance like Protégé, providing tabs for working with the terms properties:
descriptor (name, image, stage, status, scope note), used for (UF) and used for and
(UFA) relationships to denote synonyms and to indicate preferred terms, related
terms, category, source etc.

As well as creating terms using the descriptor tab, it is also possible to create terms
via relationships such as related terms. They are then added to a list view of all terms
available in the thesaurus.

The tool supports adding translations for other languages, using the ‘translation’ tab
although no translation options are available in the demo version.

It is possible to import and export different formats including ASCII, XML and
MARC, but some of these features are disabled in the evaluation version. It is also
possible to generate a hierarchical website of the terms. Finally the option is available
to generate a number of different reports on the thesaurus: alphabetical, hierarchical,
partial hierarchies, descriptor by category and so on.

 20

Thesaurus Builder
Thesaurus Builder38 is the simplest
of the thesaurus software evaluated.
The main application window
consists of a simple tree-view of the
thesaurus hierarchy. Polyhierarchies
are not supported. The lower section
of the screen provides a tabbed-view
for editing and displaying properties,
such as translations, a hierarchy
showing the path from the root to
this term, non-preferred terms etc. It
is possible to export these thesauri as
XML, an MS Access database, or as
a variety of RTF formatted
documents.

One notable feature of this tool is the
simple way that multilingual thesauri construction is encouraged, with the entering of
the preferred term in other languages on the main properties tab – and an option to
translate the current thesaurus into one of the alternative languages.

MultiTes
The MultiTes39 main window displays
the preferred terms of the thesaurus
alphabetically, in a tabular form with
relations that apply to the term,
categories, the terms status etc.

A toolbar with large buttons is used to
add new terms to the thesaurus, add
relationships to existing terms, and
generate various views on the selected
term from the list such as a hierarchy to
show the path to this term, or a full term
report displaying all broader terms, narrower terms, related terms and other
relationships, which pops up in a small window within the application.

The toolbar also provides the ability to generate a number of reports (hierarchical,
alphabetical, rotated etc.). The tool supports multilingual thesauri. In addition, it is
possible to define custom relationships based on the existing built in ones: for
example abbreviation can be defined in terms of being an equivalence relation.

 21

Term Tree
The Term Tree40 display
is easy to work with,
despite using a rather old
style of user interface. On
the left hand side of the
application a combination
of a tree and list view is
used to navigate terms.
All terms are displayed,
and anytime a broader
term is specified, the term
is replicated to become a
child of the broader term.
This extends to
hierarchies, and
polyhierarchies are
supported.

The right hand side of the interface allows easy addition of broader terms, narrower
terms, use for terms etc. by either adding a new term to the thesaurus, or simply
adding structure to an existing set of terms by selecting terms from the existing list to
add the relationship between.

The tool supports importing of thesauri either in Term Tree or Microsoft Access
format, and exporting as XML, tab delimited, comma separated values, Term Tree,
HTML, or metabrowser format. Like the other thesaurus construction software, it
supports creating reports in a number of formats.

Summary
The functionality and interface of the four thesauri creation tools is more standardised
than that of the ontology/metadata instance tools evaluated. Preferred terms were
generally shown hierarchically (with MultiTes being the exception), with TermTree
displaying all preferred terms at the root level, with hierarchical relationships
replicating terms under their specified broader terms. This replication expanded to
terms that had sub-hierarchies. Tabbed views for editing properties are used in TCS8
and Thesaurus builder, while Term Tree displays all properties in a single pane on the
right of the tools interface. MultiTes, slightly older than the other tools, used a
multiple-window based view for the various views of terms and those terms property
editors. As already noted thesauri can be regarded as a simple type of ontology, so
these tools are simpler than the more general ontology tools previously described: for
example there is no requirement for specifying complex property restrictions or
logical axioms that were found in OilEd and Protégé.

 22

9 Conclusions
First, SIMILE is aimed at users who are not Semantic Web experts so the UI of any
tools provided by the project must reflect this. RDF editors are too low level for such
users, and tools more akin to ontology and thesaurus editors must be provided. It may
also help the target audience if the user interface adopts terms that are familiar to the
user e.g. synonym may be more familiar to users than equivalence, or broader term
more familiar than super class.

Second, the majority of ontology tools reviewed use some form of tree view to
explore classes and properties. A tree view lets users hide information when they do
not need details, yet quickly drill down to specifics when they do. It is often desirable
to have multiple search interfaces to the data being manipulated, rather than solely
relying on a tree view: several tools already incorporate this into their UI, such as the
tree view and query tab provided by Protégé, or the tree view and fisheye view
provided by OntoRama. Tabbed views on the other hand encourage the end user to
concentrate on distinct aspects of a task such as class description, class relationship
and specifying constraints rather than leaving them overwhelmed by the entire set of
functionality available to them within the tool.

Third, any schema tool for use within SIMILE must offer some way of importing
vocabulary schemas and controlled vocabularies as done in the MEG client. As we
wish to encourage schema re-use, this should be made easy to use, flexible and avoid
repetitive searches if at all possible.

Fourth, although librarians differentiate between element sets and controlled
vocabularies, in languages like OWL and RDF Schema these are both represented
using classes. We need to provide a UI that reflects the fact that classes can be used in
different ways e.g. as bundles of properties and as property values.

Fifth, SIMILE may need deal with very large controlled vocabularies (for example
250,000+ in the case of the Getty Thesauri41). This has a number of implications: it
may not be possible to keep the controlled vocabularies on a client machine so instead
some kind of web service is required. Also dealing with such large vocabularies will
require a more sophisticated way of browsing than simply listing alphabetically.

Sixth, with some schemas the number of metadata elements that will be captured
about an item is potentially very large. Therefore just as it is desirable to simplify a
user interface aimed at a naive user, it may also be desirable to think about how
schemas and the presentation of schemas can be optimized to make best use of
cognitive capabilities of metadata authors. For example, if forms require more than 7
fields then it may be desirable to use multiple forms or use some type of grouping42. It
may even be possible for schema creation tools to assist schema authors with
optimizing their schemas for metadata authors.

Finally we note that existing tools do not assist users in the modelling of their
schemas, but rather exist solely to enable the user formally capture an existing model.
Unlike entity relationship modelling for relational databases, there is currently no
formal approach for creating RDF models. This leaves it to the user to address
questions such as:

 23

- When it is appropriate to structure properties by grouping related properties
together or when to keep them flat in a ‘hedgehog’ style model?

- When an object should refer to its constituent parts (‘hasPart’) or when the
constituent parts should refer to the object (‘isPartOf’)?

- When is it necessary to explicitly type the objects at creation (as done in Protégé)
or when is better to leave them untyped and infer type dynamically (as done in
OilEd)?

Therefore guidelines on a more methodical approach to data modelling using RDF are
highly desirable. Once these guidelines have been agreed on, it may be possible to
create tools that assist the user to create models that are compatible with the
guidelines.

1 SIMILE, Semantic Interoperability of Metadata and Information in unLike Environments
http://web.mit.edu/simile/www/

2 DSpace - Durable digital depository, MIT Libraries
www.dspace.org

3 RDF
http://www.w3.org/RDF/

4 RDF Vocabulary Description Language 1.0: RDF Schema
http://www.w3.org/TR/rdf-schema/

5 DAML+OIL
http://www.daml.org/

6 W3C Web Ontology Language (OWL) Working Group
http://www.w3.org/2001/sw/WebOnt/

7 Serge Abiteboul, "Querying Semi-Structured Data", ICDT, pages 1-18, 1997,
http://citeseer.nj.nec.com/abiteboul97querying.html

8 Dan Suciu, "An Overview of Semistructured Data", SIGACTN: SIGACT News (ACM Special
Interest Group on Automata and Computability Theory), V29, 1998,
http://citeseer.nj.nec.com/160105.html

9 Peter Buneman, "Semistructured data", pages 117--121, 1997,
http://citeseer.nj.nec.com/buneman97semistructured.html

10 Charles Smith and Mark Butler, “Validating CC/PP and UAProf profiles”, HP Technical Report
2002-286, http://www.hpl.hp.com/techreports/2002/HPL-2002-268.html

11 Dean Jones and Ray Paton, “Some problems in the formal representation of hierarchical knowledge”,
http://citeseer.nj.nec.com/jones98some.html

12 Emmanuel Pietriga, IsaViz, W3C
http://www.w3.org/2001/11/IsaViz/

13 Damian Steer , RDFAuthor,
http://rdfweb.org/people/damian/RDFAuthor/

14 A. J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa, V. R. Benjamins, “WonderTools? A
comparative study of ontological engineering tools."
http://sern.ucalgary.ca/KSI/KAW/KAW99/papers/Duineveld1/wondertools.pdf

 24

15 Michael Denny, "Ontology Building: A survey of editing tools."
http://www.xml.com/pub/a/2002/11/06/ontologies.html

16 "A survey on ontology tools." OntoWeb Consortium, 2002.
http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/OntoWeb_Del_1-3.pdf

17 Natalya F. Noy and Deborah L. McGuinness, "Ontology Development 101: A guide to creating your
first ontology."
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html

18 Sean Bechhofer and Gary Ng, OilEd, University of Manchester
http://OilEd.man.ac.uk/

19 Protégé 2000, Stanford Medical Informatics
http://protege.stanford.edu

20 KAON
http://kaon.semanticweb.org/

21 Touchgraph Library
http://touchgraph.sourceforge.net/

22 Ontolingua, KSL Stanford University
http://www.ksl.stanford.edu/software/ontolingua/

23 OntoRama
http://www.ontorama.org/

24 Andrew Lum, VIUM, School of Information Technologies – University of Sydney
http://www.it.usyd.edu.au/~alum/demos.html

25 Ontosaurus, Information Sciences Institute University of Southern California
http://www.isi.edu/isd/ontosaurus.html

26 MEG Registry project, UKOLN
http://www.ukoln.ac.uk/metadata/education/regproj/

27 UKOLN
http://www.ukoln.ac.uk/

28 Dublin Core Element set
http://dublincore.org/documents/dces/

29 Haystack, MIT Computer Science and AI Laboratory
http://haystack.lcs.mit.edu/

30 Dennis Quan, David R. Karger and David F. Huynh, RDF Authoring Environments for End Users,
http://haystack.lcs.mit.edu/papers/swfat2003.pdf

31 SHAME, KM Research group - Centre for user oriented IT design
http://kmr.nada.kth.se/shame/

32 SHAME, Configurable RDF Editor
http://sourceforge.net/project/showfiles.php?group_id=61349&release_id=177335

33 Simple Instance Creator, Evren Sirin
http://www.mindswap.org/~evren/SIC/

 25

34 W3C XForms,
http://www.w3.org/MarkUp/Forms/

35 Micah Dubinko, What are XForms, XML.Com,
http://www.xml.com/pub/a/2001/09/05/xforms.html

36 Norm Walsh, RDF Twig,
http://rdftwig.sourceforge.net/

37 TCS-8, WebChoir
http://www.webchoir.com

38 Thesaurus Builder
http://www.thesaurusbuilder.com/

39 MultiTes
http://www.multites.com/

40 Term Tree, This to That Pty Ltd.
http://www.termtree.com.au/

41 Getty Art and Architecture Thesaurus, Categories for the Description of Works of Art, Thesaurus of
Geographic Names, Union List of Artist Names, J. Paul Getty Trust,
http://www.getty.edu/research/tools/

42 The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information, George A. Miller, originally published in The Psychological Review, 1956, vol. 63, pp.
81-97, http://www.well.com/user/smalin/miller.html

