A

invent

The Space Cost of Lazy Reference Counting

Hans-J. Boehm

Internet Systems and Storage L aboratory
HP Laboratories Palo Alto
HPL-2003-215

October 16" | 2003*

E-mail: Hans.Boehm@hp.com

reference Reference counting memory management is often advocated as a
counting, technique for reducing or avoiding the pauses associated with
pause time, tracing garbage collection. We present some measurements to
space, remind the reader that classic reference count implementations may
garbage in fact exhibit longer pauses than tracing collectors.
collection,

memory We then analyze reference counting with lazy deletion, the standard
management technique for avoiding long pauses by deferring deletions and

associated reference count decrements, usually to alocation time.
Our principa result is that if each reference count operation is
constrained to take constant time, then the overall space
reguirements can be increased by afactor of ? (R) in the worst case,
where R is the ratio between the size of the largest and smallest
allocated object. This bound is achievable, but probably large
enough to render this design point useless for most rea-time
applications.

We show that this space cost can largely be avoided if allocating an
n byte object is alowed to additionally perform O(n) reference
counting work

* Internal Accession Date Only Approved for External Publication
To be published in and presented at the 31% Annual ACM SIGPLAN/SIGACT Symposium on Principlesof
Programming Languages (POPL '04), 14-16 January 2004, Venice, Italy

a Copyright Hewlett-Packard Company 2003

The Space Cost of Lazy Reference Counting

Hans-J. Boehm
Hewlett-Packard Laboratories
1501 Page Mill Rd.

Palo Alto, CA 94304

Hans.Boehm@hp.com

ABSTRACT

Reference counting memory management is often advocated
as a technique for reducing or avoiding the pauses associated
with tracing garbage collection. We present some measure-
ments to remind the reader that classic reference count im-
plementations may in fact exhibit longer pauses than tracing
collectors.

We then analyze reference counting with lazy deletion,
the standard technique for avoiding long pauses by deferring
deletions and associated reference count decrements, usually
to allocation time. Our principal result is that if each refer-
ence count operation is constrained to take constant time,
then the overall space requirements can be increased by a
factor of (R) in the worst case, where R is the ratio be-
tween the size of the largest and smallest allocated object.
This bound is achievable, but probably large enough to ren-
der this design point useless for most real-time applications.

We show that this space cost can largely be avoided if
allocating an n byte object is allowed to additionally perform
O(n) reference counting work.

1. INTRODUCTION

Reference counting[8, 14] is a commonly used technique
for automatically, or semi-automatically deallocating unref-
erenced memory and other resources. It has been used with
great success in some applications, e.g. in Unix/Linux file
systems. It has also often been suggested and used as a gen-
eral purpose memory management discipline for program-
ming language objects (cf. [11, 10, 1, 9]).

The fundamental idea behind reference counting memory
management is to associate a count of incoming pointers
count(p) with each object p in the heap. We maintain the
invariant that count(p) is the number of variables or other
heap locations that point to p. When count(p) becomes
zero, we know that p can no longer be accessed, and hence
it is safe to deallocate it.

This approach is completely different from tracing garbage
collectors, which periodically traverse the entire heap to

To appear in the 31st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL) 2004, Venice, Italy.

identify all reachable memory, and then reclaim the rest.[14]

1.1 Some prosand cons of reference counting

Reference counting claims a number of well-known advan-
tages over other automatic garbage collection techniques,
including[14]:

e It allows memory to be promptly reused. Hence newly
allocated objects may still be resident in the processor
cache from the last use of that memory, potentially
giving a significant performance benefit.

e The technique works well with a nearly full heap.
Hence, if the overhead introduced by the reference
count is small, e.g. because the average object size
is large, it can be a very space-efficient technique.

e It may allow the client code to use destructive updates
instead of copies, since it can determine whether an
object is uniquely referenced.

e Basic implementations tend to be simpler than other
techniques.

o It is often claimed to distribute storage management
overhead more evenly throughout the application.

We will concentrate on the last point, both since it is
often considered decisive, and since, as we will see, the above
statement is a gross oversimplification of the truth.

On the negative side, reference counting potentially makes
pointer updates much more expensive, in some cases pro-
hibitively so.

The best-known deficiency of reference counting is that
it fails to reclaim “cyclic garbage”: If object p points to
q and ¢ points to p, with no other pointers to p and g,
clearly the program can no longer refer to either object.
But count(p) = count(q) = 1, and neither will be reclaimed.
There are several ways to address this:

e Run a tracing collector occasionally as a backup.

e Require the programmer to avoid cycles. This becomes
more feasible in a general purpose context if we intro-
duce something like Boost weak_ptr[9] pointers that
are not included in reference counts, but are invali-
dated when an object is deallocated.

e Add a facility to the reference count implementation
for reclaiming cycles[3].

Here we concern ourselves with the fundamental perfor-
mance characteristics of basic reference counting algorithms.
Hence we consider only acyclic data structures. Our conclu-
sions still apply for the core algorithm in the presence of any
of the extensions to accommodate or prevent cycles.

1.2 Some Terminology

For the purpose of this paper, we will assume we are pro-
vided a set of underlying memory allocation and dealloca-
tion routines, which we will refer to as malloc and free.

We will use C programming language syntax for all pro-
gram fragments.

A reference count implementation can then be viewed as
providing implementations for the following operations:

alloc The operation alloc(size) allocates an object of size
bytes by calling malloc(size). We distinguish it from
the underlying malloc operation primarily because a
reference count implementation may wish to do other
work at allocation time. The newly allocated object
has an associated reference count of 1.'

incr The operation ¢ncr(p) increments the reference count
associated with p. This is called whenever an addi-
tional pointer to p is created. (Since the initial refer-
ence count is one, in our formulation, this should not
be done the first time a reference to a newly allocated
object is saved.)

decr The operation decr(p) decrements the reference count
associated with p and arranges for p to be reclaimed
(with free) if it has no further references. If p is re-
claimed, we must further ensure that counts associ-
ated with objects referenced by p are suitably adjusted.
This is invoked whenever an existing pointer goes out
of scope, or is overwritten as the result of a pointer
assignment.

These may require adapting the representation of pointers
(e.g. if a second object is used to store the reference count,
as for Boost shared ptr[9]) or the representation of heap
objects (e.g. if the reference count is explicitly stored in
each object).

A reference count implementation is used by a reference-
counted program. Such a program allocates heap objects
with alloc, and issues incr and decr operations as pointers
to heap objects are created and destroyed. A pointer assign-
ment typically requires a decr operation on the old value of
the pointer, followed by an incr operation on the new one.>

Typically the incr and decr calls will not be explicitly
present in the source. They will either be added by the
compiler (as in [11]), or they may be provided by a reimple-
mentation of the assignment operator etc. in the language
itself (as with C++ “smart pointer” implementations such
as [9]).

Tt is perhaps more natural to allocate objects with a ref-
erence count of zero. This formulation is slightly more con-
venient for us and typically more efficient. If the reference
returned by alloc is not preserved, an explicit decr call is
needed.

2This order ensures that an assignment such as p = p does
not result in a premature deallocation.

1.3 Towards Constant Time

Traditionally one claimed advantage for reference count-
ing has been that it more evenly distributes storage manage-
ment overhead. In this paper we explore the consequences
of limiting alloc, incr, and decr to (near) constant time, at
least in the sense that each will execute at most a (near)
constant number of free operations.

This is closely related to making a reference-count im-
plementation usable in real-time applications, though there
seems to be some disagreement on the precise requirements
for real-time memory management (cf. [2, 17]). Certainly
a reference count implementation cannot guarantee a mini-
mum processor utilization for a given section of client code
unless it is possible to bound the number of free calls made
on its behalf from the reference count implementation dur-
ing that section of code.

The principal result presented in this paper is that al-
though constant-time reference-count operations are possi-
ble in a bounded amount of heap space, in the presence of
variable object sizes the worst-case space bound is imprac-
tically large. Thus reference counting with variable-sized
objects should generally not be viewed as a real-time tech-
nique, unless we are willing to accept more relaxed time
bounds on the alloc operation.

2. CLASSIC REFERENCE COUNTING

The most straightforward and traditional implementa-
tions of reference counting use the following approach:

e The alloc operation simply calls malloc and sets the
associated count to one.

e The incr(p) operation is implemented as

void incr(counted_obj *p)
{
if (p != null)
++count (p) ;

In the multi-threaded case the increment operation
must be atomic. This is normally accomplished with
either an atomic hardware operation or by acquiring a
lock.

e The decr(p) operation is implemented as®

void decr(counted_obj *p)
{
if (p != null && --count(p) == 0) {
for each pointer field f of *p {
decr (p—>f) ;
}
free(p);
}
}

3For brevity, we refer to all pointer fields f within p as p ->
f, even though some of these fields may be array elements,
or be contained in nested structures.

In the multi-threaded case the count decrement and
test must be performed as a single atomic operation.?

Implementations along these lines are quite common. For
example [9] uses such an implementation.

One disadvantage of this straightforward approach is that
it is often expensive to implement in the presence of threads.
At a minimum, each decr operation requires an atomic fetch-
and-add instruction, and incr requires an atomic add in or-
der to protect against concurrent updates of the same count
field. On modern architectures, these atomic operations usu-
ally require a few dozen, or even a few hundred, processor
cycles even in the absence of cache misses.® In addition,
we've added memory references which will require space in
the processor cache.®

2.1 Pausetimesfor classic reference counting

Here we will concentrate on a second issue: The decr op-
eration recursively traverses as much of the data structure
as has become unreferenced as a result of the assignment.
Hence it, and thus pointer assignments, may take an un-
bounded amount of time. For example, assume our program
consists of the following;:

make_huge_linked_tree();
make_little_tree();

= p;

Q o Q
1}

The last assignment will be expanded to something like:

incr(p) ;
decr(q);
qQ =P

Assuming make_huge_linked_tree() builds a large linked
acyclic data structure, and returns the only reference to it,
the decr operation, which is implicitly part of the final as-
signment, will traverse and invoke free on every node in the
large data structure.

If we contrast this with the often-maligned pauses of non-
incremental tracing garbage collectors[14], the “pauses” in-
troduced by hidden decr operations directly affect only a
single thread” but as we will see, they may certainly be at
least comparable in length to a full tracing garbage collec-
tion.

A simple tracing collector must examine at least all
pointer-containing objects. But a decr operation may also

*If pointer assignments as a whole are to be atomic, or if we
need to guarantee type-safety in the presence of data races,
we need further synchronization in the assignment operation
to ensure that we perform the decr operation on the same
pointer we are replacing.

® Atomic updates can be reduced or eliminated through the
use of more sophisticated algorithms which store reference
count updates in buffers, and process them in a single
thread. Cf. [10, 15, 1]. However, the added complexity
seems to make such implementations relatively rare.
50Other more sophisticated techniques reduce this need by
storing a one bit reference count in the pointer itself[21, 14].
TOf course that thread may happen to hold a crucial lock,
and hence block others.

140

Thread unsafe

Thread safe me—

120

100

80

60

40

20

Cexpl.free shared ptr custom tracing HotSpot

Figure 1: GCBench max “pause” times (msecs).

free nearly all allocated memory. Since, unlike most trac-
ing collectors, it deallocates one object at a time and, in
our current version, does not defer any work to allocation,
the actual time spent on each object may be appreciably
greater. This is especially true if locking is required to sup-
port threads.

To illustrate this point, we measured the pause times
associated with a run the GCBench® small object alloca-
tion benchmark with complete manual explicit dealloca-
tion (“C expl. free”), two variants of reference count-
ing (“shared_ptr”, “custom”), and two variants of tracing
garbage collection (“tracing”, “HotSpot”).

Here we define the “pause time” associated with explicit
deallocation to be the time taken to explicitly walk and deal-
locate the data structures used in the benchmark.

The first reference-counting variant (“shared_ptr”) repre-
sents a straightforward application of the shared_ptr class
in the Boost C++ library[9]. This facility makes it rela-
tively convenient to use reference counting without compiler
support. The second variant (“custom”) represents a much
more aggressively tuned use of other Boost library facilities
for reference counting, and it incorporates a custom memory
allocator. Both are implementations of “classic” reference
counting, in that they do not use the technique we review
in the next section.

We included two very different tracing collectors: Our
stop-the-world non-moving collector[5] (“tracing”), and
Sun’s HotSpot Client Java Virtual machine copying gen-
erational collector (“HotSpot”). Both collectors are run in
their default mode. They could be, but were not, adjusted
for significantly reduced pause times on this benchmark.

The resulting maximum “pause” times, measured in mil-
liseconds, are given in figure 1. In most cases, we measured
both thread-unsafe and thread-safe variants. The former
perform enough locking to ensure that multiple copies of
the benchmark could correctly have been run concurrently
in the same address space. For the thread-unsafe case, this
is not true, and no locking or other synchronization is per-
formed.

Substantial additional measurement details are given in
the appendix.

8The C, C++ and Java variants we used for this test
are available at //www.hplhp.com/personal/Hans_Boehm
/gc/ge-bench /refcnt_tests.

It is clear from the measurements that reference counting
“pause times” can easily be on the same order as pause times
for tracing collectors. In the thread-safe case, they may well
be larger.

The reference count “pause times” are spent deallocat-
ing objects and recursively decrementing reference counts,
and hence are independent of many optimization issues. Al-
though C++ “smart-pointer”-based implementations do not
aggressively try to reduce reference count updates, this has
no affect on the work performed during the “pause”, and
hence these results should apply equally to other languages
and implementation styles. They will of course vary much
more significantly with the allocation and object retention
characteristics of the benchmark.

3. LAZY DELETION

The standard method for avoiding the long delays intro-
duced by cascading decr operations is to defer the recursive
invocations[22, 14, 16] until a more opportune time. When
an object’s reference count decreases to zero, just the top
level object is added to a to-be-freed set. The to-be-freed
objects are then processed later incrementally, e.g. during
later allocations or possibly in a separate thread.’

If we process one element of the to-be-freed set during each
allocation, the decr and alloc implementations become:

void decr(counted_obj *p)
{
if (p !'= null && --count(p) == 0)
<add p to to-be-freed>
}

void * alloc(size_t size)
{
void *result;
if (<to-be-freed is not empty>) {
p = <get and remove element of to-be-freed>;
for each pointer field f of #*p {

decr(p->f) ;

}

free(p);
}
result = malloc(size);
count (result) = 1;
return result;

}

If we assume that the number of pointers in each object
is bounded by a constant (i.e. avoid pointer arrays) this
approach will ensure that incrand decr run in constant time,
and that alloc’s running time is a constant times that of
malloc and free. Techniques for processing pointer arrays

“Note that reference counting allows two somewhat distinct
kinds of ”laziness”. A number of papers starting with [11]
have advocated deferring incr and decr operations required
directly by the client, e.g. to greatly reduce reference count-
ing costs for stack variables, or, in later papers, to reduce
synchronization cost. This is different from our kind of lazi-
ness, which defers only deletion and otherwise recursive decr
operations. Both techniques may of course be combined, as
is mentioned in [11]. In this paper, we use “lazy reference
counting” to mean “reference counting with lazy free and
rec[urs]ive decr invocations”, which is termed “lazy deletion”
in [14].

To—-be—freed Set

Figure 2: Large hidden to-be-freed objects.

incrementally to deal with varying numbers of pointers are
discussed briefly below.

If all objects are the same size, as in [22] or the reference
counting scheme described in [4], the above can be simplified
by letting alloc simply return the block p which it removed
from the to-be-freed set without actually deallocating and
reallocating it. In this case, we are guaranteed that an al-
location request can be satisfied in this way whenever an
unreferenced object is available.

Unfortunately, this last property does not hold in the gen-
eral case. In general, we may try to allocate a large object
when there are many suitably-sized objects on the to-be-freed
set, but none of them have yet been freed, e.g. if the to-be-
freed set appears as in figure 2. Thus the heap may need to
be grown, or we may need to reintroduce pauses for recursive
decr calls, even when sufficient objects are unreferenced.

The rest of this paper quantifies the amount of space that
may be lost to this effect.

4. FRAGMENTATION

By separating out the underlying memory allocation algo-
rithm from reference counting in our presentation, we have
largely dodged the issue of memory fragmentation, i.e. space
overhead introduced when enough unallocated space is avail-
able in the heap to allocate an object, but that space is not
contiguous. This separation is essential in some of the proofs
below, but it requires some care in interpreting the results.

We will present results about the amount of allocated heap
space, which is the amount of memory malloced, but not
freed. This usually does not reflect the worst-case space
requirements of the application. There may be additional
fragmentation overhead.

The reader should recall the following three results about
fragmentation overhead:

e Published measurements [13] suggest that typical
fragmentation overhead for applications with explicit
memory management and well-designed allocators is
very low, at least for short-running applications. Here
we are primarily concerned with worst-case overhead,

which is a different situation.'®

e Any memory allocator that does not move objects may
require heap space a factor of O(log(2=ez)) larger than
allocated space, where sp,in and Smar are the smallest
and largest possible object sizes[18, 19].

It is easy to design an allocator that achieves this
bound, to within a constant factor. Consider an al-
locator that rounds up all requested sizes to the next
power of 2, and keeps separate free lists for each object
size, never coalescing objects. There are O(log(5=2=))
size classes, and certainly allocating as much space as
the total size of allocated objects to each one is suffi-

cient.

5. ALOWER BOUND ON SPACE USAGE

We consider an object p to be unreferenced if one plus the
number of incr operations performed by the client on the
object is equal to the sum of

e The number of decr operations performed directly on
the object, and

e The number of pointers to this object from other ob-
jects that are unreferenced by this definition.

(The latter result in recursive calls to decr(p) by the classic
reference count implementation. Thus the sum is just the
total number of decr(p) operations in that case.)

We consider an object to be allocated if it has been allo-
cated with malloc, but not yet deallocated with free.

We assume that all allocation requests are for object sizes
between smin and smaz words.

For simplicity, we make the following convenience assump-
tions:

® S.in divides Smaz.

® Smin is large enough for the resulting object to hold
two pointers.

® S,.az 1S no more than half the maximum referenced
memory.

(Any of these assumptions can clearly be dropped at a cost
of decreasing the lower bound by a small constant.)

We emphasize that we are uniformly concerned with worst-
case overhead here. We suspect that the worst-case lazy
reference-counting space overhead is highly atypical in prac-
tice, as is the case for fragmentation overhead. But worst-
case space behavior must normally be considered for real-
time embedded applications, which seems to be an impor-
tant potential application for lazy reference counting.

We define an object to be immediately reclaimable if it is
unreferenced, and any other (unreferenced) objects pointing
to it have been freed.

0ur own experience with less space-efficient allocators,
longer-running programs, and deallocation delayed by a non-
moving tracing collector, suggests that typical fragmenta-
tion overhead remains well below a factor of two. This is
far better than the theoretical worst case, but significantly
worse than [13]. We conjecture that delaying object recla-
mation is a significant factor in the increase, although it
does not affect the worst case.

Standard reference count implementations base dealloca-
tion decisions on directly executed reference count opera-
tions and on examination of previously freed objects. The
following definitions capture this notion.

We say that two programs running with the same refer-
ence count implementation generate isomorphic free graphs
at particular points in time if we can establish 1-to-1 cor-
respondences between the free objects'’ and between the
immediately reclaimable objects, such that!'?

e The nth objects to become immediately reclaimable
correspond, i.e. corresponding objects became reclaim-
able in the same order.

e Corresponding free objects have the same size and con-
tain the same number of pointer fields.

e At the time of deallocation, corresponding pointer
fields in free objects that pointed to free or imme-
diately reclaimable objects pointed to corresponding
objects.

We define a reference count implementation to be
lookahead-free if it obeys the following properties:

e It is sequential, i.e. single-threaded.

e Anobject is freed only if it is immediately reclaimable.
Thus no object is ever deallocated while it is referenced
from an allocated object. (Among other things, this
precludes deallocation of cyclic data structures.)

e The decision about which object will be freed next de-
pends only on the order in which reference counts were
explicitly reduced to zero and on pointers from free
objects. More precisely, if two programs produce iso-
morphic free graphs with the given reference count im-
plementation, then corresponding objects will be freed
next.

e Deallocations (with free) may be performed in response
to alloc, incr and decr calls. The number of dealloca-
tions performed for each call depends at most on the
size argument to alloc, and the sizes of other objects
previously freed during the same call.

All sequential reference count implementations of which
we are aware are lookahead-free.

THEOREM b5.1. Assume a lookahead-free reference count
implementation deallocates (with free) at most m objects for
any sequence containing at most one alloc, two incr, and two
decr calls.

Then for every N there exists a reference-counted program
such that

e No cyclic data structures are ever constructed.

e No more than N bytes are referenced at any point.

L1f the memory for free objects s reused, the old and new ob-
jects are treated as distinct objects. Equivalently, we iden-
tify objections by their position in the sequence of alloca-
tions and not object addresses.

12This definition is a bit arbitrary, particularly in that we
do not insist that corresponding immediately reclaimable
objects have the same size. This again affects only the con-
stants in our result.

List1 List2 List3

end —4}:1—4}:1—»&—»
Figure 3: Initial P.yperiment data structure.

Nsmaz
2MmSmin

o At some point at least bytes will be allocated.

Proof First consider a program P.zperiment Which we use
only to learn about the order of deallocations performed by
the reference count implementation. Pezperiment allocates
CTr— singly linked lists each consisting of N objects'® of
size Smin. We use the second word in the first and last nodes
of each list to link together the first nodes of all lists, and
similarly for the last node. This gets us the data structure
in figure 3. Note that the only horizontal links are at the
top and bottom of the figure.

P.yperiment then continues by repeatedly performing the
following operations for — iterations, i.e. once for each
list:

N
2ms

1. Allocate a large object of size Syq. bytes.

2. Replace the null pointer at the end of the first remain-
ing list with a pointer to the newly allocated object.
This requires no incr or decr operations, since by con-
vention alloc returns an object with a reference count
of one.

3. Replace the two references to the start and end of the
first remaining list by references to the next list, using
two incr and two decr operations.'?

After the first iteration of this loop, we get the data struc-
ture in figure 4.

For each of the 2m.§v -

incr, and two decr operations are performed. Thus at most
% free calls may be made during the loop. (None can
be freed earlier, since all objects are referenced before this
point.) Since objects may not be freed before the objects
referring to them, none of the large objects can be deallo-
cated. Let k; be the number]\;)f small objects freed from the

i*" list. We have Y, k; <

iterations of the loop one alloc, two

28min

13The length N here is clearly sufficient but largely arbitrary.
""We can strengthen the result slightly by observing that
the reference count updates for the pointers to the end of
the lists are not strictly necessary, and could be omitted.
Hence we really only need one incr and one decr operation
per iteration, and we could strengthen the definition of m
correspondingly.

List1 List2 List3

Ll

end

Figure 4: P.;periment data structure after iteration 1.

We then construct Pproor to be identical to Pezperiment,
with one important difference: We arrange that the **
linked list has length exactly k;.'® If any of the k; are less
than 2, we also need to adjust P00 so that we still main-
tain the horizontally linked start and end lists correctly.®

Since none of the large objects Pegzperiment are ever freed,
inductively Peeperiment and Pproof generate isomorphic free
graphs after each main loop iteration.'” Specifically, Pyroof
must still free exactly k; elements from the i* list, and
P, 005 still fails to free any of the large objects.

Since at any given point, at most one of the large objects
is referenced, the total amount of referenced memory never
exceeds that in all of the lists allocated at the beginning,
plus the size of one large object. for Pproof, the former
includes at most %smm or % bytes. The latter consists

of Smaz bytes, which we assumed to be at most % Thus at
most IV bytes are referenced at any point.

Since none of the large objects are freed, at the end we
have one large allocated block for for each of the 5—2

2MSpin

5For all realistic reference counting implementations, it will
be easy to compute k; without the use of additional heap
space and Pp..0f can be constructed out of loops, as we
implied for P.iperiment. If ki is not easily computable, it
suffices for our stated theorem to fully unroll the outer loop
for constructing the lists, and include the k; as constants in a
program constructed for a specific N. Or we could possibly
arrange to read the k; from a file.

6We arrange for the start list to contain the first nodes of all
nonempty lists, and for the end list to contains the last nodes
of all lists of length at least two. Thus for small k; only the

start list or neither list may need to be adjusted in the i
iteration. We also omit appending the newly allocated large
block to empty lists. The large blocks corresponding to an
empty list are immediately dropped.

"Note that an immediately reclaimable small object in
Pyrogrammable may correspond to an immediately re-
claimable large object in Pp.o0r, but neither will be freed
and hence, by our assumptions, the difference will not affect
the deallocation sequence.

loop iterations, for a total of ;VmSSM bytes. o

OBSERVATION 5.1. Theorem 5.1 implies that if alloc, incr
and decr each perform a constant number of frees, and with
no constraints on the size of allocated objects, the amount
of allocated memory can be quadratic in the amount of ref-
erenced memory. This is significantly worse than the log-
arithmic worst-case overhead of fragmentation with a good
memory allocator.

Conversely, the above theorem also tells us that in order to
reduce the space overhead to a constant factor, we need m =
Q(4=ez). Up to this value we have a real tradeoff between
latency and space; beyond this value the result becomes
vacuous.

In particular, for the fixed size, “real-time” case, i.e. with
Smaz = Smin and m = 1, this is a vacuous result. (The
factor of 2 imprecision comes from the fact that we reserved
N/2 bytes in our referenced memory quota for the single
“large” object.) This is of course expected, since we know
that lazy reference counting works well for fixed object size.

Perhaps more surprisingly, the theorem suggests that
there is nothing special about the fixed size case; allowing
a small amount of variation in allocation sizes, results in
a (relatively) small amount of space overhead. The next
section confirms this.

6. AN UPPER BOUND ON SPACE USAGE

LEMMA 6.1. Lazy reference counting preserves the prop-
erty that all allocated unreferenced objects are in the to-be-
freed set or reachable from a to-be-freed object via unrefer-
enced objects.

Proof Whenever an object’s reference count reaches zero,
we put it in the to-be-freed list. Hence any unreferenced
object not in the set must be pointed to by an unreferenced
object, which must either itself be in the to-be-freed set, or
must be reachable from another object in the set.

THEOREM 6.2. Consider a reference count implementa-
tion in which each alloc call calls free on ezactly one unref-
erenced object whenever there are unreferenced objects, as in
the lazy reference count implementation we presented above.
Let Smin and Smaz be the smallest and largest requested ob-
ject size as before. Assume that at most N bytes in the heap
are referenced at any one time. Then at most z:‘:z N bytes
will be allocated at any point.

Proof The number of allocated (malloced but not freed)
objects is equal to the largest number of objects referenced
at a previous point in the computation. This is easily shown
by induction:

Initially it is true since no objects are referenced, malloced,
or freed.

Neither incr nor decr affects either the number of allo-
cated objects, or the largest number ever referenced. Hence
it suffices to show that each alloc operation preserves the
property.

When a new object is alloced we consider two cases:

e No allocated objects are unreferenced. Hence the to-
be-freed list is empty. By induction hypothesis, the
number of allocated objects is equal to the maximum
number ever referenced. The alloc call increases both
quantities by one.

e There are unreferenced allocated objects. By induc-
tion hypothesis more objects were referenced at some
point in the past. Thus the maximum number of ref-
erenced objects is not affected by the alloc invocation.

From the preceding lemma, the to-be-freed list is non-
empty. Hence alloc both frees and mallocs exactly one
object. Hence the number of allocated objects is also
unaffected.

Let K be the maximum number of objects ever referenced.
The size of any K objects is at least K spin. Thus the total
size of referenced objects N must have been at least K smin
at some point, and thus K < %

The number of allocated objects never decreases with this
particular algorithm. The final (and largest) number of al-
located objects is also K. The total size of those K objects
is at most Kspmazr < ﬁN' .

Note that the upper and lower bounds differ only by a
factor of 2 for the standard lazy reference count algorithm,
at least with our convenience assumptions. (The reason for
the factor of 2 is described at the end of section 5.) In that
case the m in the lower bound result is 1, since only alloc
calls free, and it calls it at most once.

In spite of the unpleasant space bound, the above algo-
rithm doesn’t quite give us constant time reference counting
operations, since alloc may have to traverse an unbounded
number of pointers in a large object, though it only invokes
free once. This can be reduced to constant time plus a con-
stant number of free operations per reference count opera-
tion with a more complex algorithm.

There appear to be at least two ways to accomplish this:

e We arrange to be able to find all n non-null pointers in-
side an object in O(n) time, e.g. by building a doubly-
linked list inside the object when necessary. We then
scan large pointer arrays incrementally. To compen-
sate for the fact that the average alloc will thus do less
than one free, we arrange for incr to also process de-
ferred decrements. Since allocation and initialization
of objects with many pointers require many incr calls,
this ensures that free calls will keep pace with alloca-
tions, although the bound on the number of allocated
objects will be higher.

e David Wise!® has suggested dealing with the cost of
decrementing many reference counts during a deferred
deallocation by deferring those decrements even fur-
ther, until the pointers are overwritten in the newly
allocated object.

It is possible to obtain much more reasonable space bounds
if we relax the assumption on the number of frees performed
by each alloc call:

THEOREM 6.3. Consider a reference count implementa-
tion in which each alloc(n) call calls free on unreferenced
objects of total size at least n, whenever there are sufficient
allocated but unreferenced objects available. Assume that at
most N bytes in the heap are referenced at any one time.
Then at most N bytes will be allocated at any point.

'8See http://lists.tunes.org/archives/gclist/2000-September
/001835.html. An implementation of this approach for fixed
size heap cells is described in [23].

Proof We prove the hypothesis directly by induction.
Clearly it is true at program start with no allocated objects.

When a new object is allocated with alloc(n) we again
consider two cases:

e Fewer than n bytes are allocated but not referenced.
Immediately after the alloc call all allocated unrefer-
enced objects will have been freed, and all allocated
bytes will be referenced. Thus clearly the number of
allocated bytes will be less than V.

e At least n bytes are allocated but not referenced. In
that case, the alloc operation will free at least as many
bytes as are newly allocated, and the number of allo-
cated bytes cannot increase.

Again neither incr nor decr operations affect the validity
of the induction hypothesis. o

Again, this nicely matches the lower bound result; to be
able to free n bytes when allocating n bytes, in the worst
case we will need to make 2mez free calls in response to a

single alloc call. Thus we are%;actly in the m = Z:j: case,
which we know is within a constant factor of optimal for
constant space overhead.

This does not imply that lazy reference counting costs no
space at all in this case; when we try to allocate an object
with fewer than N referenced bytes, the to-be-freed list may
be nonempty. These allocated but not referenced objects
may cause or compound fragmentation in the underlying
allocator. But this is already accounted for by the potential
O($=2z) fragmentation space overhead for the underlying
allocator.

Also note that in spite of the preceding result, if the pro-
gram has at most n objects of a given size s referenced at one
point, it may still be the case that more than n objects of
size s will need to be allocated; the theorem is purely a state-
ment about the total size of all allocated objects. Thus the
objects on the to-be-freed list may still impact the amount
of space the underlying allocator needs to reserve for a given
object size, assuming it segregates objects by size.

The preceding theorem does tell us that we can get worst-
case space bounds for lazy reference counting very similar to
those for manual memory management by letting alloc take
time in proportion to the size of the allocated object. This
is basically the same requirement as for real-time tracing
collection[4, 2]."?

7. IMPLICATIONSFOR CONCURRENCY

In the above, we considered only sequential or single-
threaded reference count operations, and we assumed de-
terministic execution. But especially the lower bound result
also has some implications for nondeterministic or concur-
rent algorithms.

OBSERVATION 7.1. The lower bound result assumed de-
terministic execution to compute the k; values. If we are
interested in the worst case among several possible nonde-
terministic executions, it suffices to choose a possible k; se-
quence, and otherwise the same proof applies.

Nondeterministic or random behavior can’t help the worst
case.

YFor time-based collection as recommended in [2], this is
implicit in that a bound on the allocation rate is assumed.

OBSERVATION 7.2. The above still applies to concurrent
implementations, such as [11], if the total number of frees
performed by any thread during a loop iteration of Pproof S
bounded by m. With a bounded number of processors, the
final loop in Pproof either cannot run in near constant time
per iteration (even if the large objects are uninitialized), or
we again risk a large increase in heap size.

8. RELATED WORK AND HISTORY

There has been much work on tracing collectors that si-
multaneously satisfy space and pause-time constraints (cf.
1, 2]).

The earliest work on lazy reference counting was by
Weizenbaum[22]. It was limited to fixed size objects, but
that restriction has usually received minimal attention.

The fact that large objects may be hidden from reallo-
cation by smaller ones is mentioned briefly by [14], but no
attempt is made to quantify the cost.

We are not aware of much discussion of the space cost of
lazy reference counting with variable-sized objects, in spite
of the fact that the technique was frequently suggested. The
issue came up in discussion on the gelist mailing list*°, where
we reminded readers of the issue, and asked for a bound on
the space cost. No answer was posted.

Ritzau’s later thesis[16] dismisses lazy reference counting
for real-time applications, insisting instead on a fixed object
size as in [20]. He states, referring to [22]: “However this
technique can not be used directly in systems where objects
have varying sizes. If differently size objects are used, the
worst case of allocation becomes to free all objects on the
heap (just to find an object of the right size).”

We have effectively refined this claim in two ways:

e We consider the possibility of simply using more space
instead of “freeing all objects on the heap”. We quan-
tify the cost of this approach. Since malloc/free users
routinely sacrifice a worst-case factor on the order of
log(£ze2) in space usage from fragmentation overhead,
we believe that something like our lower bound result
is needed to support his argument.

Theorem 6.3 points out an alternative design point:
Rather than breaking up an alloc(n) call into O(n)
small allocations, we could let it make O(n) free calls,
and use an allocator that guarantees bounded frag-
mentation.?’ This would probably require more space
but improve performance of data structure accesses.

9. ACKNOWLEDGEMENTS

The tuned Boost-reference-counting version of GCBench
used for the measurements was contributed by Peter Di-
mov. He also pointed out some problems (since repaired) in
the untuned C++ benchmark. David Wise enlightened me
about some of the relevant history. The anonymous review-
ers provided many useful suggestions.

*0See http://lists.tunes.org/archives/gclist/2000-September
/001836.html

2LGiven a hard a priori bound of N referenced bytes, it would
suffice to only allow allocation of power-of-two object sizes,
and allocate separate heap regions of size N for each of the
log(i:ﬁ) + 1 possible size classes, as we suggested earlier.
Note that if the program is known to have only n referenced

objects of size s, it is not necessarily safe to reduce the heap
size associated with s to sn.

10. REFERENCES
[1] D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan,

and S. Smith. Java without the coffee breaks: A
nonintrusive multiprocessor garbage collector. In
Proceedings of the ACM SIGPLAN ’01 Conference on
Programming Language Design and Implementation,
pages 92-103. ACM, 2001.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. A realtime
garbage collector with low overhead and consistent
utilization. In Conference Record of the Thirtieth
Annual ACM Symposium on Principles of
Programming Languages, pages 285-298, January
2003.

[3] D. F. Bacon and V. T. Rajan. Concurrent cycle
collection in reference counted systems. In Proceedings
of the Fifteenth European Conference on
Object-Oriented Programming, LNCS 2072, pages
207-235. Springer, 2001.

[4] H. Baker. List processing in real time on a serial
computer. Communications of the ACM, pages
280-294, April 1978.

[5] H.-J. Boehm. A garbage collector for C and C++.
http://www.hpl.hp.com/personal/Hans_Boehm/gc/.

[6] H.-J. Boehm. Fast multiprocessor memory allocation
and garbage collection. Technical Report
HPL-2000-165, HP Laboratories, December 2000.

[7] H.-J. Boehm. Reducing garbage collector cache misses.
In Proceedings of the 2000 International Symposium
on Memory Management, pages 59-64, 2000.

[8] G. E. Collins. A method for overlapping and erasure
of lists. CACM, 13(12):655-657, December 1960.

[9] G. Colvin, B. Dawes, P. Dimov, and D. Adler. Boost
smart pointer library.
http://www.boost.org/libs/smart_ptr/.

[10] J. DeTreville. Experience with concurrent garbage
collectors for modula-2+. Technical Report 64, Digital
Systems Research Center, August 1990.

[11] L. P. Deutsch and D. G. Bobrow. An efficient
incremental automatic garbage collector.
Communications of the ACM, 19(9):522-526,
September 1976.

[12] S. Dieckman and U. Hélzle. A study of the allocation
behavior of the SPECjvm98 Java benchmarks.
Technical Report TRCS98-33, University of California
at Santa Barbara, December 1998.

[13] M. S. Johnstone and P. R. Wilson. The memory
fragmentation problem: solved? In Proceedings of the
International Symposium on Memory Management
1998, pages 26-36, October 1998.

[14] R. Jones and R. Lins. Garbage Collection. John Wiley
and Sons, 1996.

[15] Y. Levanoni and E. Petrank. An on-the-fly reference
counting garbage collector for Java. In Conference on
Object-Oriented Programming Systems and Languages
(OOPSLA), pages 367-380, 2001.

[16] T. Ritzau. Memory Efficient Hard Real-Time Garbage
Collection. PhD thesis, Department of Computer and
InformationScience, Linképing University, April 2003.

[17] S. G. Robertz and R. Henriksson. Time triggered
garbage collection. In LCTES ’03, pages 93-102.
ACM, 2003.

[18] J. M. Robson. An estimate of the store size necessary

for dynamic storage allocation. Journal of the ACM,
18(3):416-423, 1971.

[19] J. M. Robson. Bounds for some functions concerning
dynamic storage allocation. Journal of the ACM,
21(3):491-499, 1974.

[20] F. Siebert and A. Walter. Deterministic execution of
Java’s primitive bytecode operations. In Java Virtual
Machine Research and Technology Symposium, April
2001.

[21] W. R. Stoye, T. J. W. Clarke, and A. C. Norman.
Some practical methods for rapid combinator
reduction. In Conference on Lisp and Functional
Programming, pages 159-166, 1984.

[22] J. Weizenbaum. Symmetric list processor.
Communications of the ACM, 6(9):524-544, 1963.

[23] D. S. Wise, B. Heck, C. Hess, W. Hunt, and E. Ost.
Research demonstration of a hardware
reference-counting heap. LISP Symb. Computat.,
10(2):159-181, July 1997.

A. APPENDIX: MEASUREMENT DETAILS

All measurements were obtained on a machine with two 2
GHz Pentium 4 Xeon processors running RedHat 7.2. The
second processor was basically unused for any of the exper-
iments, since even the thread-safe code was single-threaded
for nearly the complete program execution. C and C++ ex-
ecutables were compiled with gce 3.2 and statically linked.??

The GCBench benchmark primarily allocates and drops
complete binary trees of various heights up to 16, while keep-
ing some other permanent data structures live during pro-
gram execution. The maximum pause times were obtained
allocating and dropping height 16 trees, i.e. trees contain-
ing 2'7 — 1 vertices. (It also includes some initialization
code that allocates a single tree occupying the entire heap
to ensure a reasonable heap size. The deallocation time for
that was not considered as a pause for explicit dealloca-
tion/reference counting.)

GCBench has often been correctly criticized as being an
unrealistic garbage collection benchmark. Among other is-
sues, it is clearly too small and too regular to be fully repre-
sentative of real programs. But precisely that feature makes
it relatively easy to translate between languages, and to use
it as a “sanity test” for comparing different garbage collec-
tors and memory management approaches.

In our experience, it is not unrealistic for programs to drop
a large fraction of referenced memory with a single pointer
assignment, the benchmark characteristic that is most rel-
evant here. This is confirmed by live object measurements
such as those in [12] for several of the SPECjvm benchmarks.

Each tree node allocated by GCBench contains two point-
ers and two integers, which total 16 bytes on this hard-
ware.?® This object size is probably more representative of

22Note that atomic memory update instructions, and hence
locks, are relatively more expensive on a Pentium 4 than
for many other processors. The difference between thread-
unsafe and thread-safe variants is somewhat higher than on
other architectures, but the analogous graphs for an Itanium
machine look qualitatively similar.

23Standard allocators will typically allocate 24 bytes, since
they need at least a small header and 8 byte alignment. Our
tracing collector allocates 24 bytes so that it can correctly
handle C pointers just past the end of an object. Java im-
plementations are likely to allocate at least 20 bytes to ac-

Scheme than C or C++ programs, a property that favors
tracing collection. The benchmark does essentially nothing
with its data structures other than allocating and deallocat-
ing them, which favors reference counting for total execution
time, though it has minimal impact on pause time measure-
ments.

The different memory management approaches were mea-
sured as follows:

C expl. free The C version of the benchmark, using ex-
plicit deallocation with free. Deallocation requires an
explicit tree traversal. We used the standard RedHat
8.0 malloc/free implementation. Pause times were
measured as the largest amount of time taken to deal-
locate one of the height 16 trees. This is intended to
be representative of standard C coding practice.

In the thread-safe case, a second thread is forked at the
beginning of program execution. It exits immediately,
but memory allocation primitives continue to acquire
and release locks as a result.

shared_ptr Straightforward use of the Boost shared_ptr
reference-counted “smart pointer” class[9]. The imple-
mentation can be used for pointers to arbitrary classes.
Hence reference counts have to be allocated in separate
objects, which require separate allocation calls. The
thread-safe version uses the default pthread locks to
protect against concurrent reference-count updates.

custom Much more heavily tuned use of Boost reference
counting using Boost intrusive_ptrs embedded point-
ers. Uses a custom spin-lock implementation to pro-
tect reference count updates and memory allocation.
The lock implementation executes only one atomic in-
struction per lock/release cycle, and is presumably only
slight slower than using a fetch-and-add instruction for
reference count updates. Although some effort is in-
vested in reducing the cost of each synchronization op-
eration, no attempt is made to reduce their number,
unlike [15] or [1].
Memory is allocated using Boost quick_allocator,
which keeps separate regions for different sizes and
alignment requirements. It never coalesces free objects.
This may possibly result in significantly worse space
utilization than the standard allocator on real applica-
tions, but it works very well for this benchmark, since
basically all objects have the same size. The fact that
the allocator can be inlined also doesn’t hurt.

This implementation is still based on pointer opera-
tions redefined by the client code, and does not involve
any understanding of reference counting by the com-
piler. No reference-count-specific compiler optimiza-
tion is performed, and stacks are not traced as in [11].
We would expect such optimizations to have a notice-
able impact on overall execution time, but not “pause”
time.

tracing This uses version 6.2 of our tracing garbage collec-
tor[5] with the C version of the benchmark, configured
without explicit deallocation. The thread-safe version
uses thread-local allocation buffers[6], which accounts
for the small overhead for thread-support. (These are
also used in all common Java implementations.) For

commodate a method table pointer. Thus height 16 trees
actually contain about 3 MB.

30000
Thread unsafe

Thread safe me—

25000

20000

15000

10000

5000

Cexpl. free shared ptr custom tracing

HotSpot

Figure 5: GCBench total execution times.

Thread unsafe
Thread sofe e |

35 -

30

25

10 -

i,

Cexpl.free shared ptr custom tracing

HotSpot

Figure 6: GCBench Heap space use.

this experiment, the collector was not configured for ei-
ther parallel or incremental collection, either of which
would have significantly reduced pause times.>* The
intent was to compare to a straightforward stop-the-
world tracing collector.

Pause time measurements were obtained from measure-
ments made by the collector itself. These are probably
slightly lower than what is actually observed by the
client.

HotSpot We used the HotSpot 1.4.1 client VM without
performance tuning arguments. Pause times were ob-
tained from -verbosegc output. It is probably possible
to reduce pause times to the minor collection pause
time of 17-19 msecs by tuning heap sizes, but includ-
ing the full collection is probably more representative
of typical use.

The total execution time (again in milliseconds) and space
(in Megabytes) for each benchmark run are given in figures
5 and 6 respectively.

2"We also did not configure the collector for explicit memory

prefetching as in [7], both since this currently results in non-
portable X86 code, and because it has minimal impact in
this case. We expect the latter is due to the simplicity of the
benchmark, coupled with the aggressive hardware prefetch
engine in a Pentium 4.

