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We discuss a new and novel approach to the problem of creating a photon number resolving
detector using the giant Kerr nonlinearities available in electromagnetically induced transparency.
Our scheme can implement a photon number quantum non-demolition measurement with high
efficiency (>99%) using only a few hundred atoms, and can distinguish 0, 1 and 2 photons.
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In recent years we have seen signs of a new techno-
logical revolution in information processing, a revolution
caused by a paradigm shift to information processing
using the laws of quantum physics.[1] One natural ar-
chitecture for realising quantum information processing
technology would be to use states of light [2] as the in-
formation processing medium. There have been signifi-
cance developments in all optical quantum information
processing (QIP) following the recent discovery by Knill,
Laflamme and Milburn that passive linear optics, photo-
detectors, and single photon sources can be used to create
massive reversible nonlinearities.[3] Such nonlinearities
are an essential requirement for optical quantum com-
putation and many communication applications. These
nonlinearities allow efficient gate operations to be per-
formed. In principle, fundamental operations such as the
nonlinear sign shift and CNOT gates have been demon-
strated experimentally.[4] However, such operations are
relatively inefficient (they have a probability of success
significantly less than 50 percent) and hence are not scal-
able. This is primarily due to the current state of the art
in single photon sources and detectors. Good progress is
being made on the development of single photon sources
[5] but current single photon detectors at visible wave-
lengths have efficiencies only up to 90% whilst in the
microwave regime the efficiencies are much lower at ap-
proximately 30%. Before true optical universal quantum
computation and information processing can be achieved,
the efficiency of such detectors must be significantly im-
proved. This is likely to require a drastic change in the
approach to detection technology.[6]

In this letter we describe a new and novel single photon
detection scheme based on the application of the giant
Kerr nonlinearities achievable with electromagnetically
induced transparency (EIT).[7] The scheme uses the gi-
ant Kerr nonlinearity to perform a photon number quan-
tum non-demolition (QND) measurement on the signal
mode, with only a few hundred EIT atoms and a weak
pulse in the probe mode. The effect of the QND mea-
surement in turn means that signal photons are not de-
stroyed and can be reused if required. If the signal mode
is in a superposition state (for instance a weak coherent

state), then the QND measurement can project the signal
mode into a definite number state.[8] Furthermore this ef-
fect can be used in junction with EIT’s slow light effect
to create a near deterministic on-demand single photon
source.
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FIG. 1: Schematic diagram of a photon resolving detector
based on a cross Kerr Nonlinearity. The two inputs are a
Fock state |na〉 (with na = 0, 1,..) in the signal mode a and
a coherent state with real amplitude αc in the probe mode c.
The presence of photons in mode a causes a phase shift on
the coherent state |αc〉 directly proportional to na which can
be determined with a momentum quadrature measurement.

Before we begin our detailed discussion of the EIT
detection scheme, we first consider the photon number
QND measurement using a cross Kerr nonlinearity, which
has a Hamiltonian of the form: HQND = h̄χa†ac†c where
the signal (probe) mode has the creation and destruction
operators given by a†, a (c†, c) respectively and χ is the
strength of the nonlinearity. If the signal field contains na

photons and the probe field is in an initial coherent state
with amplitude αc, the cross Kerr nonlinearity causes the
combined system to evolve as

|Ψ(t)〉out = eiχta†ac†c|na〉|αc〉 = |na〉|αce
inaχt〉. (1)

We observe immediately that the Fock state |na〉 is unaf-
fected by the interaction but the coherent state |αc〉 picks
up a phase shift directly proportional to the number of
photons na in the |na〉 state. If we measure this phase
shift we can infer the number of photons in the signal
mode a. Such a measurement can be achieved simply
with a homodyne measurement (depicted schematically
in Figure (1)).[9] The homodyne apparatus allows mea-
surement of the quadrature operator x(θ) = ceiθ +c†e−iθ



with an expected result

〈x(θ)〉 = 2Re [αc] cos δ + i2Im [αc] sin δ (2)

where δ = θ+naχt. For a real initial αc, a highly efficient
homodyne measurement of the position X = a + a† or
momentum iY = a − a† quadratures would yield signals

〈X〉 = 2αc cos (naχt) (3)
〈Y 〉 = 2αc sin (naχt) (4)

with unit variance. For the momentum quadrature this
gives a signal-to-noise ratio SNRY = 2αc sin (naχt) which
should be much greater than unity for the different na

inputs to be distinguished. In more detail, if the inputs
in mode a are the Fock state |0〉 or |1〉, the respective
outputs of the probe mode c are the coherent states |αc〉
or |αce

iχt〉. The probability of misidentifying these states
is then given by

Perror =
∣∣〈αc|αce

iχt〉∣∣2 = exp
[−4α2

c sin2 (χt)
]
. (5)

which can be written as Perror = exp
[−SNR2

Y

]
. A

signal to noise ratio of SNRY = 3 would thus give
Perror ∼ 10−4. To achieve the necessary phase shift we re-
quire αc sin (χt) ≈ 3, which can be achieved in a number
of ways dependent upon the range of values available for
αc and χt. For example, we could choose αc � 3 with
χt small and satisfy the above inequality; alternatively
we could choose χt = π/2 with αc = 3. The particu-
lar regime chosen depends on the strength of the Kerr
nonlinearity achievable in the physical system.
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FIG. 2: Schematic diagram of the interaction between a four-
level N atom and a nearly resonant three-frequency electro-
magnetic field. We note that the annihilation of a photon of
frequency ωk is represented by the complex number Ωk.

We now address the generation of the large nonlinear-
ity required to perform the QND measurement. We con-
sider a model (depicted in Fig. 2) of the nonlinear elec-
tric dipole interaction between three quantum electro-
magnetic radiation fields with angular frequencies ωa, ωb,
ωc and a corresponding four-level N atomic system.[10]
Here we define the effective vacuum Rabi frequency of
each interacting field as

|Ωk|2 =
1
8π

σk

A Ak ∆ωk, (6)

where σk ≡ 3λ2
k/2π is the resonant atomic absorption

cross section at wavelength λk
∼= 2πc/ωk,[11] A is the

effective laser mode cross-sectional area, Ak is the spon-
taneous emission rate between the two corresponding
atomic levels, and ∆ωk is the bandwidth of the profile
function describing the adiabatic interaction of a pulsed
laser field with a stationary atom.[12–14] We consider a
number N of N atoms, fixed and stationary in a volume
that is small compared to the optical wavelengths, and
that the three frequency channels of the resonant four-
level manifold of the quantum system are driven by Fock
states containing na, nb, and nc photons, respectively.
Then, if the durations of the three pulse envelope func-
tions are long compared to the lifetime of atomic level
|2〉, the evolution of the unperturbed number eigenstate
|1, na, nb, nc〉 is simply given by

|1, na, nb, nc〉 −→ e−iWt |1, na, nb, nc〉 . (7)

If we assume that the laser frequencies ωa and ωb are both
precisely tuned to the corresponding atomic transition
frequencies, that dephasing is negligible, and that the
spontaneous emission branching ratios from atomic levels
|2〉 and |4〉 are approximately unity, then W is given by

W =
N |Ωa|2 |Ωc|2 nanc

νc |Ωb|2 nb + i
(
γ4 |Ωb|2 nb + γ2 |Ωc|2 nc

) . (8)

where νc ≡ ωc − ω43, γ2 ≈ A21, and γ4 ≈ A43. We
see immediately from (8) that W is complex in nature
indicating potential absorption of the photons in |na〉.
However in the parameter regime where the inequality

|Ωb|2 |αb|2
γ2

νc

γ4
� |Ωb|2 |αb|2

γ2
+

|Ωc|2 |αc|2
γ4

(9)

is satisfied, the probability that a single photon in chan-
nel a will be scattered by one of the atoms becomes van-
ishingly small. (This condition is equivalent for the sim-
plified case where |Ωb|2 |αb|2 /γ2 ≈ |Ωc|2 |αc|2 /γ4 to the
assumption νc/γ4 � 1). Working in this regime, the
ground state |1, na, nb, nc〉 acquires a phase-shift for the
nonlinear mechanism. It is this phase shift that is the
basis of our high efficiency nondestructive detector.

We now consider the evolution of an N -atom quantum
state during an interaction with an na-photon Fock state
in the a channel, and weak coherent states parametrized
by αb and αc in the b and c channels, respectively. It is
straightforward to calculate the evolution of the atom-
field state by evaluating the sum over the Fock states
representing each coherent state.[10] With an initial state
of |ψ (na)〉in = |1, na, αb, αc〉, after a time t we find

|ψ (na)〉out = e−
1
2 |αb|2

∞∑
nb=0

αnb

b√
nb!

∣∣∣∣1, na, nb, αce
−i naφ

|αb|2
nb

〉

(10)



where the angle φ is defined by

φ ≡ N |Ωa|2 |Ωc|2
νc |Ωb|2 |αb|2

t. (11)

We note that the output state |ψ (na)〉out from the in-
teraction with the four level atoms is no longer a sim-
ple tensor product of a Fock state and two coherent
state unless |αb| � 1, in which case |ψ (na)〉out

∼=∣∣1, na, αb, αce
−i naφ

〉
, in agreement with (1). Therefore,

only when the coupling field driving channel b is a clas-
sical field does the EIT mechanism provide a true cross-
Kerr nonlinearity. For weak coherent pulses only an ap-
proximate Kerr nonlinearity is generated; the adiabatic
elimination of this control field is not permitted in this
case. However, this quasi-Kerr nonlinearity can still be
used to implement the required detection protocol.

Using the full expression for |ψ (na)〉out it is straightfor-
ward to calculate the various moments of the quadrature
homodyne operator x̂(θ) = ceiθ + c†e−iθ on mode c. The
first and second quadrature moments are given by

〈x̂(θ)〉 =
√

2e−|αb|2 |αb|2nb

nb!
Re

[
αc e

−i( na
nb

φ |αb|2+θ)
]
(12)

〈
x̂2(θ)

〉
=

1
2

+ |αc|2 + e−|αb|2 (13)

×
∞∑

nb=0

|αb|2nb

nb!
Re

[
α2

c e
−i2( na

nb
φ |αb|2+θ)

]
.

Using these moments we can obtain an estimate of
whether the present of a photon in |na〉 is distinguish-
able from the no photon case. For convenience we again
choose αc real. In this case the probability our detector
will register a false positive count for na = 1 is given by

SNRY =
〈Y (1)〉 − 〈Y (0)〉√
〈Y 2(1)〉 − 〈Y (1)〉2

(14)

where we have defined Y (na) ≡ x̂ (θ = π/2, na).
What values of SNRY are achievable? To establish an

estimate we need to make several assumptions about the
physical system and its geometry. We assume that the
interaction region (where the light and N atoms interact)
is encapsulated within a waveguide that has an effective
cross-sectional area approximately equal to 3λ2

a/2π,[14]
and that the pulses have weak super-Gaussian profiles so
that the bandwidth-interaction time product is ∆ωkt =
8. Thus |Ωa|2 t ≈ γ2/π, and — if inequality (9) is satisfied
— we can obtain a phase shift φ given by

φ ≈ N γ2

π νc |αb|2
. (15)

Therefore, given typical values for the relative detuning
νc/γ2 and 〈nb〉 = |αb|2, we can now determine the num-
ber of atoms needed to provide a given phase shift.
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FIG. 3: Plot of the signal-to-noise ratio given by (14) as a
function of: (a) the number of atoms localized in the interac-
tion region for νc/γ2 = 30 with |αb| = αc = 4, 5, 6; (b) νc/γ2

with 1000 atoms localized in the interaction region again with
|αb| = αc = 4, 5, 6.

Fig (3 a) shows the signal-to-noise ratio as a function of
the number of atoms localized in the interaction region
for a detuning of νc/γ2 = 30 for three different values
of |αb| = αc. If the state defined by (10) was indeed a
coherent state, each curve in Fig (3) would be given by
2 |αb| sin (φ) and would exhibit a peak at N = 15π2 |αb|2
atoms. Instead, the peaks correspond to phase shifts
smaller than π/2 because of the dependence for the c
mode in (10) on nb. In practice, we must choose a value
of |αb| that creates a sufficiently large transparency win-
dow in the a channel;[10] for the parameters chosen here,
we must have |αb|2 > 8π ≈ 25. Thus, from Fig. (3) and
(14), we can determine the number of atoms needed to
provide a sufficiently low probability of a false positive
detection. With approximately 570 atoms, a phase shift
of 0.24 radians corresponding to a SNR value of 2.19 is
achievable. This leads to a false positive detection error
probability of approximately 1% with a 0.8% probability
of the absorption of the photon in the 1 −→ 2 transition.
There is a wide range of reasonable parameters which
leads to similarly low error rates. For example, to de-
crease the false positive detection error and absorption
rates by an order of magnitude, a detuning of 160, 6900



atoms, and αb = αc = 10 give a phase shift of 0.137,
which leads to a SNR of 2.66 (a false detection probabil-
ity of 0.08%) and an absorption rate of 0.08%. Generally
an increase in the SNR requires an increase in the number
of atoms.

However, Fig (3 a) also shows that for a given value
of νc/γ2 and αc, the effect of increasing N eventually
leads to a decrease in the SNR. This is simply explained
by the fact that we have created too large a phase. If
such numbers of atoms are to be used there is a natural
correction method, the decrease νc/γ2. In Fig (3 b) we
plot the SNR as a function of νc/γ2 for αc = 4, 5, 6 with
N = 1000. This figure clearly shows an excellent operat-
ing window within which the detector can be used. This
flexibility is one of the hallmarks of our proposal.

We turn now to the versatility of these devices and
their use as detectors for QIP applications. In the dis-
cussions so far we have only considered the situation with
zero or one photon in the signal mode a. What happens
with a more general input? For instance, if we have a
Fock state superposition can we use the detection process
to condition the evolution of the system, if the appropri-
ate phase shift is observed? For calculational simplicity
we revert back to using the ideal cross Kerr nonlinearity
rather than the approximate form generated by the EIT
mechanism (the same physical results occur). For the su-
perposition c0|0a〉 + c1|1a〉, it is straightforward to show
that the joint signal and probe modes evolve according
to

|Ψ〉out = c0|0a〉|αc〉 + c1|1a〉|αce
iχt〉. (16)

We see immediately that the signal and probe fields have
become entangled assuming χt 	= 2nπ (with n a non neg-
ative integer). This entanglement can be used to con-
dition the evolution of the system. With probability
|c1|2, the homodyne measurement will detect a signifi-
cant phase shift (a phase shift that can not be attributed
to the |αc〉 component) and the system (16) will be pro-
jected into the state |1a〉|αce

iχt〉. For the more general
superposition |ψ〉 =

∑
cn|na〉, the total system after the

Kerr interaction is

|Ψ〉out =
∑
na

cna
|na〉|αce

inaχt〉. (17)

Using successive (single or dual) homodyne measure-
ments it is possible to project the system into a specific
number state [8]. If our input superposition state were
composed of zero, one and two photons, then the detector
could project system into one of the specific Fock states
and could therefore distinguish between 0, 1 and 2 pho-
tons. Also the projection for |ψ〉 could be onto a series of
number states. For instance with χt = π the state (17)
can be written as

|Ψ〉out =
∑

na even

cna
|na〉|αc〉 +

∑
na odd

cna
|na〉| − αc〉 (18)

A dual homodyne (heterodyne) measurement can then be
used to project (18) into either the even or odd photon
number basis depending on whether the probe mode is
measured to be either |αc〉 or | − αc〉. The probability of
failure, that is not being able to assign the measurement
result to either | ± αc〉 with high confidence, is small for
αc � 1. This thus allows the implementation of a parity
measurement. More generally, the use of dual homodyne
(heterodyne) measurements gives considerable flexibility
for the conditioning of the system.

The considerations here have been idealized in that we
have not discussed the effects of noise and dissipation.
Generally, the use of EIT devices for QIP gates requires
very low noise and dissipation.[10] However, for this de-
tector arrangement the bounds are not as strict. One of
the chief sources of error is dephasing on the c transi-
tion. Its effect on the coherent state |αc〉 is to introduce
a random phase shift φr resulting in the state |αce

iφr 〉.
With a general superposition state c0|0〉+ c1|1〉 as input
on the signal channel a, the Y momentum quadrature in
the probe mode is given by

〈Yc〉 = 2
1∑

na

|cna
|αc sin (φr + naχt) (19)

which depends on the random phase φr. The distribution
for φr depends on the exact dephasing mechanism present
for the EIT system. However, it is clear that for small
dephasing (φr 
 χt ≤ π) the presence of a large Yc

implies that the state c0|0〉 + c1|1〉 is still projected to a
Fock state with good accuracy.

To summarize, we have shown in this letter a scheme
for a highly efficient single photon number resolving de-
tector based on the cross Kerr nonlinearity produced by
an EIT system with a few hundred atoms. Our detec-
tion scheme is based on a photon number QND mea-
surement, where the phase of a probe beam is altered in
proportion to the number of photons in the signal beam.
The scheme does not destroy photons present in the sig-
nal mode, and it allows conditioning of their evolution.
Finally, this detection approach could clearly be com-
bined with the inherent storage ability of EIT systems
to turn a non-deterministic single photon source into an
on-demand source.
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