

Resilience for Autonomous Agents

Miranda Mowbray, Matthew M. Williamson
Internet Systems and Storage Laboratory
HP Laboratories Bristol
HPL-2003-210
October 17th , 2003*

E-mail: miranda.mowbray@hp.com, matthew.williamson@hp.com,

autonomous
agents,
resilience

In this paper we show how the resilience approach can give a
generic solution to the problems of looping and high-bandwidth
output in autonomous agents. A resilient approach to looping is for
the agent to delay responding again to a source that has recently
triggered a task. A resilient approach to high-bandwidth output is
for the agent to delay output when the overall “noise” level in the
environment is high. The conditions under which the delays are
triggered may be determined by data on past system behaviour. Our
generic approach allows agents to limit themselves, without
requiring them to perform semantic analyses.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

Resilience for Autonomous Agents

Miranda Mowbray and Matthew Williamson

Hewlett-Packard Laboratories Bristol
Filton Road, Stoke Gifford, Bristol, BS34 8QZ, UK

miranda.mowbray@hp.com, matthew.williamson@hp.com

Abstract. In this paper we show how the resilience approach can give a generic
solution to the problems of looping and high-bandwidth output in autonomous
agents. A resilient approach to looping is for the agent to delay responding again
to a source that has recently triggered a task. A resilient approach to high-bandwith
output is for the agent to delay output when the overall “noise” level in the en-
vironment is high. The conditions under which the delays are triggered may be
determined by data on past system behaviour. Our generic approach allows agents
to limit themselves, without requiring them to perform semantic analyses.

1 Why We Need Resilient Agents

There is a general trend for computer systems to become larger, more complex, more
heterogeneous, and more dynamically varying. As a result, central human control for
many systems is becoming difficult or impossible.

There is a need to perform some operations performed automatically and autonomously,
in a distributed fashion. Agents, or pieces of software capable of some autonomous
behaviour, are already used for tasks such as searching for online information, mon-
itoring systems, and e-shopping. (To see examples of these, visit agentland.com or
botspot.com, and see [1] for an overview.) In HP’s Utility Data Center, OpenView
agents perform low-level tasks such as monitoring memory usage or trapping events
[2].

For very large and complex systems, security and reliability are particularly impor-
tant and problematic. It will not be possible to prevent all faults (whether arising from
security oopholes or from failure of software or hardware), and it will be difficult to
mobilize a human response to faults cheaply and easily.

The presence of agents can cause or amplify certain faults, and agents can be com-
promised by malicious users [4].

In summary, future systems are likely to use agents, and will therefore need ways to
address problems caused by these agents without relying on swift human intervention.

2 Resilience – a General Approach

Traditionally, overall approaches to security and reliability have either sought to prevent
security lapses and faults happening in the first place, and/or to mend them through a
human response when they do happen.

It is generally impossible to prevent all faults, and prevention is expensive. Mending
faults when they occur, on the other hand, tends to be slow, since human response time
is slow compared with machine speed. Some types of fault can do considerable damage
if not addressed quickly. At the height of the Code Red virus attack, Cisco’s intrusion
detection system was reporting 2.5 million events a day: a fast human response to each
of these events would have been infeasible.

Our philosophy for reliability of complex systems, as outlined in [3], is to directly
tackle the problem of damage cause by faults before a human response. The approach
is to build resilient infrastructure that can hamper, mitigate and contain problems, so
buying time for a human response. Since containing damage is simpler than finding the
fault and deciding how to fix it, it makes sense to use automatic computer responses to
contain problems, and humans to sort them out.

Creating resilient systems is original as a guiding philosophy, although there are
many individual instances of resilient behaviour. This approach can be applied to a very
broad range of applications (not just to agents). Matthew Williamson’s virus throttling,
which applies this approach, drastically slows the spread of computer viruses without
noticeably affecting non-infected machines [3]. In some cases an automatic reaction
might be enough to heal the fault entirely: see [7] for a discussion.

In this paper we discuss applying this approach to two classes of problem behaviour
by agents, looping and high-bandwidth output.

2.1 Resilient Approach to the Looping Problem

One problem described in [4] is that an agent may get into an unwanted loop with its
environment or with another agent. Such loops can occur for example in email mailing
lists if two list members have wrongly-configured auto-reply agents that answer ach
other.

Following our philosophy, a generic way of addressing the looping problem for
agents is to programme the agent to delay before responding again to a source (and to
perform other tasks in the meantime), if the source has recently triggered a task.

This slows down the loop, but does not completely close it down, so that benign
loops still run – albeit slowly – and meanwhile disruption to other sources is minimized.
Of course an alarm could be triggered if there is a prolonged series of rapid requests
from a single source.

This generic approach to loops can be refined for specific examples by categorizing
requests into different types, and only delaying responses to a request from a source
if there had recently been a request from the same source in the same category. For
example, in the case of email loops, it is enough to delay email messages if another
message was recently received from the same source to the same recipient with close
to the same length (“close to” rather than “equal to” because bounce messages may
contain time stamps, for example).

Another refinement is for the meaning of “recently” to vary per source and/or per
request type, with the associated time values derived from data on normal system be-
haviour.

2

2.2 Resilient Approach to the High-Bandwidth Output Problem

A second problem is that in some circumstances agents may output so many messages
so quickly to a user’s screen that the screen scrolls to quickly to read.

One example of this is the agent Cobot in the LambdaMOO Multi-user social en-
vironment [5, 9, 4]. This agent could be coerced by a malicious user into outputting so
many messages that it drowned out any other conversations in the nline space. Another
example is the use of IRC (Internet Relay Chat) agents to flood users’ screens with text,
in order to discourage them from joining a particular channel [6]. High-bandwidth out-
put is not only a problem when the output is to users’ screens. It is also a problem if the
output is sent to software that cannot process it fast enough.

One way of addressing high-bandwidth output is for an agent to monitor the overall
“noise” level – and hence the likely number of messages currently being output in a
given time interval – and to delay messages (or drop unimportant ones) when the overall
noise level is high.

This approach is self-adjusting. Users or administrators do not have to reprogramme
the agent to hold back; it does so automatically when the noise level is high, whether the
high noise level is a result of its own behaviour or external factors. The agent does not
need to determine the reason why the noise level is high before taking action. High noise
levels resulting from system faults, local agent faults, malicious attacks, and temporary
high noise levels due to statistical fluctuations in normal operation, are all treated the
same way, at least initially.

Prolonged periods of high noise level could trigger a human-readable alarm – or
possibly an alarm to a higher-level agent authorized to take more drastic action – and a
suggestion that there may be a fault.

Just as for the looping problem it was possible to refine the generic approach by
categorizing messages into classes, and only delaying messages in the classes causing
the problem, it is also possible to refine the generic approach to the high-bandwidth
out problem in the same way. Mahajan et al [10] describe how this could be done for
routers. Reasonable bandwidth will vary for different sources, and these numbers may
be derived from historical data.

The resilient behaviour addressing the high-bandwidth output problem is one ex-
ample of a class of resilient behaviour with more general applicability, in which the
agent monitors the use of a scarce resource, and, when the resource is low, holds back
on actions that would further deplete the resource and that can be delayed or cancelled
without causing harm. In the examples mentioned above, the scarce resource is the
space on a user’s screen or in a queue to be processed by a piece of software. This
resource is not monitored directly, but the agent estimates indirectly that the resource
may be running low by measuring the noise level.

3 Other Generic Approaches to Reliability of Agents

Most work on the safety and reliability of agents has been ad hoc, trying to improve a
specific agent.

3

Of the few more systematic approaches, some have been concerned with the stan-
dardization of agent languages (so as to avoid errors caused by incomprehension be-
tween agents or between an agent and its environment) and with limiting to a certain
extent the actions that an agent can take: however there is ample scope within these
limits for agents to cause problems.

Allen et al [8] consider designing agents which reason about the effects of their
behaviour, or which examine their rules to see whether they will lead to problems. This
approach requires the agent to have quite sophisticated abilities of semantic analysis
and of knowledge about its environment, and, as [8] points out, may be computationally
intractable.

A final approach taken by (among others) the programmers of Cobot [9] is to allow
users to limit or stop the behaviour of an agent with which they are interacting.

Our approach, on the other hand, allows agents to limit themselves, without requir-
ing them to perform semantic analyses.

We are currently applying these ideas to design an agent for a specific task that will
be resilient to loops and high-bandwidth output, and will use past data to specify normal
behaviour.

References

1. Feldman, S., Yu, E.: Intelligent Agents: A Primer. Searcher 7:9 (1999). http://www.
infotoday.com/searcher/oct99/feldman+yu.htm

2. Hewlett Packard: Press Release. Redefining the Evolution of the Data Center. Novem-
ber 20 2001. http://www.hp.com/hpinfo/newsroom/feature_stories/
datacenter-1.htm

3. Williamson, M.: Resilient Infrastructure for Network Security. Complexity, in press. 2003.
http://www.hpl.hp.com/techreports/2002/HPL-2002-273.html

4. Mowbray, M.: Ethics for Bots. In: Smit, I., Lasker, G.E. (eds.): Cognitive Emotive and Eth-
ical Apects of Decision Making and Human Action. International Institute for Advanced
Studies in Systems Research and Cybernetics (2002) 24–28

5. LambdaMOO online multi-user social space. lambda.moo.mud.org:8888
6. Meinel, C.P.: Flooding Attacks. Online Security article (1997) http://

onlinesecurity.virtualave.net/hacking/irc/flooding.htm
7. Short, M.: Are you ready for enterprise systems that fix themselves? DevX enterprise art.

9891 (2002) http://www.devx.com/enterprise/Article/9891
8. Allen, C., Varner, G., Zinser, J.: Prolegomena to any future artificial moral agent. Journal of

Experimental and Theoretical Artificial Intelligence 12 (1999) 251–261
9. Isbell, Jr, C.L., Kearns, M., Kormann, D., Singh, S., Stone, P.: Cobot in LambdaMOO: A

Social Statistics Agent. In: Proc. AAAI 2000. AAAI Press/The MIT Press (2000) 36–41
http://cobot.research.att.com/papers/cobot.pdf

10. Mahajan, R., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.: Con-
trolling High Bandwidth Aggregates in the Network. Computer Communications
Review 32:3 (2002) 62–73 http://www.research.att.com/˜smb/papers/
pushback-CCR.pdf

4

