

cl: A Language for Formally Defining
Web Services Interactions

Svend Frølund, Kannan Govindarajan
HP Laboratories Palo Alto
HPL-2003-208
October 1st , 2003*

 Web services have emerged recently as a distributed computing paradigm

of choice for loosely-coupled computing. Current web services standards
such as SOAP, and WSDL provide rudimentary mechanisms for defining
interaction amongst services that may be located in different
organizations. While WSDL provides the definitions for the entry-points
of a service, in many cases, the interactions between services has more
structure than can be described by just the definition of entry points. In
particular, the sequence of interactions often is an important component of
interactions between services. In current web services standards, the
notion of sequencing is handled by the workflow definitions provided by
proposals such as BPEL4WS. Although workflow definitions are clearly
powerful enough to express all possible sequences of message exchanges
between services, our approach is different. Our contention is that sharing
workflow definitions across services will enable inter-operability, but
leads to tighter coupling amongst the services.

We propose a conversation definition language as a simple, yet powerful,
way to define web services interactions. Our definitions have no
executable logic in them, just as traditional interfaces do not have any
implementations in them. The main idea behind cl is to explicitly define
the permissible message exchanges over time (conversations) between
web services. We also introduce the notion of choice as a key enabler in
expressing the externally visible behavior of services. We provide
semantics for such conversation definitions in terms of the potential traces
of documents exchanged between the services. We outline some of the
essential properties of such conversation definitions, compare with other
similar approaches, and discuss potential directions for further research.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

cl: A Language for Formally Defining Web Services Interactions

Svend Frølund Kannan Govindarajan
Hewlett-Packard Laboratories, Palo Alto, CA 94304

Abstract

Web services have emerged recently as a distributed
computing paradigm of choice for loosely-coupled com-
puting. Current web services standards such as
SOAP, and WSDL provide rudimentary mechanisms
for defining interaction amongst services that may be
located in different organizations. While WSDL pro-
vides the definitions for the entry-points of a service,
in many cases, the interactions between services has
more structure than can be described by just the def-
inition of entry points. In particular, the sequence
of interactions often is an important component of
interactions between services. In current web ser-
vices standards, the notion of sequencing is handled by
the workflow definitions provided by proposals such as
BPEL4WS. Although workflow definitions are clearly
powerful enough to express all possible sequences of
message exchanges between services, our approach is
different. Our contention is that sharing workflow def-
initions across services will enable inter-operability,
but leads to tighter coupling amongst the services.

We propose a conversation definition language as
a simple, yet powerful, way to define web services in-
teractions. Our definitions have no executable logic in
them, just as traditional interfaces do not have any im-
plementations in them. The main idea behind cl is to
explicitly define the permissible message exhanges over
time (conversations) between web services. We also
introduce the notion of choice as a key enabler in ex-
pressing the externally visible behavior of services. We
provide semantics for such conversation definitions in
terms of the potential traces of documents exchanged
between the services. We outline some of the essential
properties of such conversation definitions, compare
with other similar approaches, and discuss potential
directions for further research.

1 Introduction

1.1 Background

Web services are a new paradigm for applications,
or business processes, that span organizational bound-
aries and interact over the open internet through the
use of standard protocols. In order for a web service
in one organization to interact with a web service in
another organization, one needs to establish technical
conventions (i.e., standards) for interactions between
web services. These technical conventions range from
messaging formats (e.g., SOAP [SOA03]), interaction
definitions (e.g., WSDL [WSD03]), to properties of the
interactions, such as security, transactionality, etc.

Traditional models for distributed computing are
typically based on synchronous communication (e.g.,
remote procedure calls) and shared types (e.g., inter-
faces specified in some interface definition language).
These properties reflect the fact that traditional dis-
tributed computing models were intended for deploy-
ment within a single organization. In contrast, web
services are intended to provide a distribution model
for systems that span organizational boundaries

Some of the inherent characteristics of web services
that differentiate them from traditional distributed
computing environments are the following:

• Loose coupling: Changes to a web service
provider should not require re-installation of
software components by the clients of the web
service. In effect, different players who interact
should be able to evolve in a semi-independent
manner. For instance, if a service provider up-
grades its end, it should not require all its clients
to upgrade in unison.

• Flexible data interpretation: The interpretation
of the data communicated among enterprises is
different for each enterprise. For instance, the

1

address field of a purchase order may have dif-
ferent significance for the parties. If a uniform
object model is used, the semantics of data, i.e.,
the code or logic that uses the data and hence
confers semantics to the data often tends to be
similar or homogeneous contributing to tighter
coupling.

These characteristics often place competing require-
ments on the web services infrastructure. Any con-
straints on the semantics is likely to lead to tighter
coupling, and any infrastructure that has loose cou-
pling, and does not specify semantics adequately, can
lead to loss of inter-operability or significantly increase
the cost of inter-operability.

1.2 Web Service Interfaces

Just as in traditional programming systems, hav-
ing a precise notion of interface is the key to achiev-
ing loose coupling and inter-operability in the con-
text of web services. The emerging WSDL stan-
dard [WSD03] is the de-facto way to define web service
interfaces. WSDL defines concepts, such as port, mes-
sage, and operation, to define the transport, the for-
mat of the messages, and the interaction type respec-
tively. WSDL supports a document exchange model,
which means that the service interaction points are
defined in terms of the documents that are exchanged
with the service rather than method signature defini-
tions. WSDL can be argued to be more extensible,
and flexible than traditional interface definition mech-
anisms such as IDL.

As has been observed by several re-
searchers [HBCS03, BCTH03], inter-operability
between web services requires a richer notion of inter-
face than what is offered by WSDL. In particular, it
is not sufficient to specify the documents accepted by
individual operations, it is also important to know the
sequence in which these operations must be invoked.
In other words, it is important to specify, as part of
its interface, the conversations that a web service can
engage in.

In the web-services software stack, conversations
are typically described as shared workflow definitions
(e.g., written in BPEL4WS [BPE03]). A workflow lan-
guage is essentially a Turing complete programming
language to express processes that involve multiple
web services. As a light-weight alternative to workflow
languages, we introduce a conversation language to de-
scribe the extensional behavior of web services. That
is, our conversation language allows us to describe the
sequences of interactions (i.e., conversations) that a

web service may engage in, without describing the un-
derlying logic that chooses which particular sequence
to actually engage in.

In essence, our conversation language gives a declar-
ative specification of the externally visible behavior,
whereas BPEL4WS is an imperative description of the
workflow associated with the service. We can thus
treat a definition written in our language as a type
definition for a service, and this type definition could
well be implemented by a BPEL4WS workflow defini-
tion. Using a declarative, rather than an imperative,
description of conversations has many advantages:

1. Supports Ubiquitous Services : A light-weight
definition of extensional behavior enables a
larger class of entities to interact. A work-
flow definition language that is Turing-complete
places stricter requirements on the entities that
interact with services.

2. Enables Loose Coupling: In contrast to work-
flow definitions, our language contains no shared
logic or variables, which gives rise to a looser
coupling.

3. Improved Reasoning : Because our language is
simpler, and not Turing complete, it is simpler
to reason about formally.

4. Testing: One of the key advantages of provid-
ing a theoretical framework is in testing the cor-
rectness of systems. The key problem in loosely-
coupled systems is that the different components
that make up the loosely-coupled system may
be in different enterprises. This significantly in-
creases the complexity of testing new services be-
fore they are deployed. Indeed, without a clean,
minimal, externally visible interface for services,
testing new services is more difficult.

Our conversation language, called cl, describes two-
party conversations. The base construct in cl is the
notion of an interaction: the one-way exchange of a
document between two web services. A conversation
is then a sequence of such interactions. A cl conver-
sation definition is based on non-deterministic choice
between, and sequential composition of, basic interac-
tions.

One of the main challenges in defining cl is the treat-
ment of non-deterministic choice. In languages such as
CSP [Hoa78] and CCS [Mil80], processes perform a co-
ordinated choice since they synchronize at the choice
point, and agree on which branch to take. In contrast,
some web service systems, such as [HBCS03], give a

2

separate conversation specification for each web ser-
vice, which means that non-deterministic choice is a
purely local action. That is, the conversation defini-
tion provides no guarantee that different services will
choose the same branch at a given choice point. Thus,
with local choice, a conversation description has to ex-
plicitly handle the case where services make different,
and possibly conflicting, choices. Dealing with poten-
tial conflicts explicitly as part of the conversation def-
inition itself makes the conversation definition more
complex. The goal of cl is to provide the semantic
simplicity of coordinated choice, and at the same time
provide the loose coupling afforded by local choice.

The choice semantics of cl relies on the notion of
interactions that can either commit or abort. When a
service reaches a choice point in its conversation def-
inition, it performs a purely local choice between the
branches. If two services choose different branches
at the same choice point, one of those branches will
abort and the other will commit, and the services will
agree on these outcomes. The first interaction in a
branch determines which service is the initial sender
in that branch. An aborted interaction is only pos-
sible when different branches contain different initial
senders. Moreover, the occurrence of an aborted inter-
action requires that the services actually choose these
different branches that allow both of them to issue
a send operation at about the same time. Thus, we
expect aborted interactions to be rare in practice.

We organize the remainder of the paper as fol-
lows. We introduce the way we model a system of
distributed web services in Section 2. We outline the
syntax and semantics of our language in Section 3. We
discuss the key properties of our language in Section 4,
and we discuss related work in Section 5. We conclude
with a discussion of future work in Section 6.

2 Model

We model a service as an entity that has two pieces:
a platform and a backend application logic imple-
mentation. The platform basically executes cl def-
initions, performs inter-service messaging, and dis-
patches incoming messages to the backend application
logic, etc. The backend application logic contains the
application-specific behavior of a service. The bound-
ary between the backend and the platform in a given
service allows the application logic to send and receive
messages through the platform, and it allows the back-
end to instantiate cl conversation definitions to specify
the legal sequences of such send and receive actions. A
given backend may instantiate multiple cl definitions,

or multiple instances of the same conversation defini-
tion and thus carry out multiple conversations with
different services at the same time.

A send action may either commit or abort. That
is, when a backend tries to send a message as part
of a conversation, the platform may either abort or
commit the send. The sending of a message and sig-
naling the outcome of the message are asynchronous
actions. That is, to send a message, the backend sim-
ply deposits the message in the platform. The send
then remains tentative until the platform subsequently
signals that the send either commits or aborts. This
asynchronous semantics for message-based communi-
cation preserves the loose coupling of services.

We model the behavior of a service in terms of the
send, receive, abort, and commit events that occur
between the platform and and backend of the service.
We next define formally the types of events that we
consider, and the types of event histories that we con-
sider to be well-formed.

2.1 Observable Events

Since we are interested in providing a theoretical
foundation of observable interactions between services,
we first define the notion of observable events. These
observable events are observed in the interface between
the platform and the backend.
Definition 1
A basic event is a member of the set
{sP (v), rP (v), aP (v), cP (v)}, where

sP (v) represents the event that service P sends the
value v.

rP (v) represents the event that service P receives the
value v.

aP (v) represents the event that service P aborts the
send of value v.

cP (v) represents the event that service P commits the
send of value v1.

Note that the ’values’ that are communicated be-
tween services are unconstrained. They could be XML
documents, integers, etc.
Definition 2
The set of valid histories H is defined as follows:

1. λ ∈ H (λ is the history with no events in it).

2. For any basic event e, and history h ∈ H, e.h ∈
H.

1Note that the abort and commit pertain to sends and are
’status’ messages pertaining to sends.

3

An event e is said to occur in a history h, if h = h1.e.h2

for some h1 and h2. We write e ∈ h if event e occurs
in history h. Histories with at least one event in them
are said to be non-empty.
Definition 3
A basic event e1 is said to occur before an event e2 in
a history h if there exist histories h1, h2, and h3 such
that h = h1.e1.h2.e2.h3. We write e1 ≺h e2 if the e1

occurs before e2 in h.
Definition 4
Given a basic event of the form xP (v), where x ∈
{s, r, a, c}, the service P is said to be the principal
actor of the event.
Definition 5
Given two services P and Q, we define the relevant
history of events between them to be a string of basic
events where the principal actors of the events are the
services P and Q.
Definition 6
A relevant history H of events between two services P
and Q is said to be locally well-formed if the following
properties hold.

1. (rP (v) ∈ H) =⇒ ((sQ(v) ∈ H) ∧ (cQ(v) ∈
H) ∧ (sQ(v) ≺H rQ(v)) ∧ (sQ(v) ≺ cQ(v)))

2. (aP (v) ∈ H) =⇒ (((sP (v) ∈ H) ∧ (sP (v) ≺H

aP (v))) ∧ (rQ(v) /∈ H))

3. (cP (v) ∈ H) =⇒ ((sP (v) ∈ H) ∧ (sP (v) ≺H

cP (v)))

Essentially, the first component of the definition of
local well-formedness states that if an event, e1, that
represents a service P receiving a document occurs in
the history, an event, e2, that represents a service Q
sending the same document occurs in the history be-
fore e1. The second component states that if an abort
event occurs in a history, it must be preceded by an
appropriate send event. In addition, if an abort event
occurs, the relevant document is not received by the
service to whom the original document was sent. The
third component of well-formedness states that if a
commit event occurs in a history, it is preceded by a
send event. If one has guaranteed message delivery in
the infrastructure, we will be able to assert that the
other services will eventually receive the the commit-
ted messages as well.

From the definition of well-formedness, the follow-
ing observation immediately follows:

Observation: If H is a non-empty locally well-
formed history relevant to any pair of services P and
Q, the first event in H is a send event.

c ::= P → Q : T | (1)
c1; . . . ; cn | (2)
label | (3)
choice | (4)
label : choice (5)

choice ::= either c1 or . . . or cn end | (6)
either(P ≺ Q) c1 or . . . or cn end (7)

Figure 1: The abstract syntax of cl.

3 cl: a Language for Defining
Conversations

3.1 Abstract Syntax

We introduce a language, called cl, to specify two-
party conversations. In general, our approach can be
extended to define conversations amongst an arbitrary
number of parties, but we do not discuss the general
case in this paper.

A conversation is an exchange of typed documents
over time between two services. A conversation con-
sists of a number of interactions. Each interaction has
a sender and receiver. In cl, an interaction between
the services P and Q is specified as “P → Q : T ,”
where T is the type of a document being passed from
P to Q. To define such interactions, we rely on a set of
services (P, Q ∈ Service) and a set of document types
(T ∈ Type). We do not explicitly define the type sys-
tem associated with the messages exchanged between
documents, but it encompasses the type system for
XML proposed in [mW03].

We define the syntax of cl in Figure 1. The figure
defines the structure conversation definitions, which
are elements of the set Conversation (c ∈ Conversation).
As can been seen from the figure, there are various
ways to compose conversations. Here we informally
outline the meaning of composition. We define the
semantics formally in Section 3.3. The conversation
“c1; . . . ; cn” is the sequential composition of the con-
versations c1 . . . cn, in that order. Sequential composi-
tion means that ci+1 does not start until ci has ended.
The conversation “either c1 or . . . or cn end” captures
branching: executing this conversation amounts to ex-
ecuting one of its constituent parts.

There are four kinds of branching that are possible.
These are illustrated by the following examples:

4

either P → Q : T1 or P → Q : T2 end: This choice
represents a situation where the end points of the
interactions over which the choice occurs are the
same, but there is a choice in the type of document
that is exchanged. This choice allows service designers
to model the situation when at any point in time one
of a set of documents may be communicated between
the services.

either P → Q : T1 or Q → P : T2 end: This
choice represents a situation where the end points in
the interaction are themselves different. We refer to
such choice interactions as symmetric choice interac-
tions. These interactions are critical in modeling the
communication patterns that arise from timeouts,
cancellations, and other interrupt-style communica-
tion patterns between services. An example is, a
service orders a book from a book seller, and may
want to cancel before the book-seller confirms that it
can fulfill the order.

either(P ≺ Q) P → Q : T1 or Q → P : T2 end:
This choice represents a situation where the end
points of the interactions over which there is a choice
are different and there is an ordering amongst the
end points. This ordering dictates which end point
may abort its send. We refer to such interactions as
asymmetric choice interactions. The purpose is to be
able to model, situations where there is asymmetry
amongst interacting services. In the example from
the symmetric case above, it may be the case that
the even though the buyer has sent a cancel, if the
cancel reaches the seller after the seller has sent the
confirmation, the seller’s confirmation has higher
precedence. Essentially, the buyer’s cancel message is
rendered invalid by the seller’s confirmation message.

label : either c1; label or . . . or cn end: This choice
represents a choice with the ability to loop in one
or more of the branches of the choice. This allows
for potentially unbounded sequences of interactions
between services. We assume a set Label of labels,
and use label to refer to an arbitrary element of this
set.

In the general case, there could be conversation
fragments instead of simple interactions in the exam-
ple above. In addition, the choice could be among n
branches as opposed to two branches.

3.2 Example Conversation Definitions

In this subsection, we briefly define some motivat-
ing examples of conversation definitions. These exam-

ple provide some of the motivation for each of the con-
structs that we have proposed in the language above.

3.2.1 Simple Purchase Example

In this example, we present a simplified view of the
exchange of business documents in a typical business
to business purchase. We focus in on the actual pur-
chase process between a Buyer, and a Seller that are
modeled as interacting web services. In this case, the
type of documents exchanged are denoted by names,
but can be XML schemas, simple types, etc.
Buyer → Seller : PurchaseOrder;
Seller → Buyer : PurchaseOrderResponse;
Seller → Buyer : AdvancedShippingNotice;
Seller → Buyer : Invoice;
Buyer → Seller : Payment

3.2.2 Simple Purchase with Status Check

The example above illustrated the simple sequenc-
ing capability in conversation definitions. If, on the
other hand, we wanted to model the possibility of the
Buyer optionally enquiring the status of the order be-
fore sending the payment, the conversation definition
can look as follows:
Buyer → Seller : PurchaseOrder;
Seller → Buyer : PurchaseOrderResponse;
Seller → Buyer : AdvancedShippingNotice;
Seller → Buyer : Invoice;
either

Buyer → Seller : StatusEnquiry;
Buyer → Seller : Payment

or
Buyer → Seller : Payment

end

3.2.3 Purchase with Cancellations Allowed

If, in addition, the Seller service wants to allow the
buyer to to cancel orders before the shipping is done,
the conversation definition may look as follows:
Buyer → Seller : PurchaseOrder;
Seller → Buyer : PurchaseOrderResponse;
either

Seller → Buyer : AdvancedShippingNotice;
Seller → Buyer : Invoice;
either

Buyer → Seller : StatusEnquiry;
Buyer → Seller : Payment

or
Buyer → Seller : Payment

end
or

5

Buyer → Seller : Cancel
end

Essentially, the first choice determines whether the
conversation will proceed further. If the Cancel branch
of the choice is taken, the conversation ends, else, the
conversation proceeds normally.

3.2.4 Cancellation with Asymmetric Behavior

Often, we want to allow for the situation where one
of the constituent parties has greater power. For ex-
ample, once a seller has shipped things, it may be sig-
nificantly more expensive for the seller to cancel the
shipment. In such situations, where the shipping doc-
uments from the seller is has greater precedence over
the cancel from the buyer, the conversation definition
will look as follows:
Buyer → Seller : PurchaseOrder;
Seller → Buyer : PurchaseOrderResponse;
either(Buyer ≺ Seller)

Seller → Buyer : AdvancedShippingNotice;
Seller → Buyer : Invoice;
either

Buyer → Seller : StatusEnquiry;
Buyer → Seller : Payment

or
Buyer → Seller : Payment

end
or

Buyer → Seller : Cancel
end

3.2.5 Purchase with RFP process

Finally, before the Buyer sends the Seller the purchase
order, they may have been involved in a Request for
Proposal (RFP) process. The RFP process may in-
volve any number of rounds of proposal refinement
between the buyer and the seller.
Buyer → Seller : RequestForProposal;
Seller → Buyer : Proposal;
RFP : either

Buyer → Seller : ProposalResponse;
Seller → Buyer : Proposal;
RFP

or
Buyer → Seller : ProposalAccept;
end
Buyer → Seller : PurchaseOrder;
Seller → Buyer : PurchaseOrderResponse;
either(Buyer ≺ Seller)

Seller → Buyer : AdvancedShippingNotice;
Seller → Buyer : Invoice;
either

Buyer → Seller : StatusEnquiry;
Buyer → Seller : Payment

or
Buyer → Seller : Payment

end
or

Buyer → Seller : Cancel;
end

3.3 Semantics

We define the semantics of a conversation defined in
cl as the set of histories that can arise when executing
the conversation between two web services. We map
a conversation to a set of histories as a two-step pro-
cess: we map a conversation to an intermediate rep-
resentation, called a typed trace, and we then define
a conformance relation between histories and typed
traces. A typed trace is a sequence of parameterized
events. That is, the elements of a typed trace con-
tain the types of information that may be exchanged
in interactions. We map a given conversation to a
set of typed traces; each typed trace corresponds to a
possible “unrolling” of loops and choices in the con-
versation. We then define a notion of conformance
between histories and typed traces. Roughly speak-
ing a history conforms to a typed trace, if the values
in history events comply with the types in the typed
trace, and if the sub-history at each service complies
with the interaction sequencing embodied in the typed
trace.

3.3.1 Typed Traces

A typed trace is a sequence of parameterized events,
where each event has the following format:
Definition 7
A parametrized event E is a member of the set
{SP (V), RP (V), AP (V), CP (V)}, where

SP (V) represents the event that service P sends a value
that matches or validates against the template
V .

RP (V) represents the event that service P receives a
value that matches or validates against the tem-
plate V .

AP (V) represents the event that service P aborts a send
with a value that matches or validates against
the template V .

CP (V) represents the event that service P commits a
send of a value that matches or validates against
the template V .

6

Our motivation in including the notion of values
validating against a template in addition to the tradi-
tional notion of value matching a type is motivated by
the recent work in type-theory for XML [mW03].
Definition 8
The set of valid typed traces T is defined as follows:

1. λ ∈ T

2. For any parametrized event e, and trace t ∈ T ,
e.t ∈ T .

A parametrized event e is said to occur in a typed-
trace t, if t = t1.e.t2 for some t1 and t2. We write e ∈ t
if event e occurs in trace t.

In essence, a typed trace is like a history, but for
the fact that it has templates of documents or types
of the values associated with the events as opposed to
the actual values themselves. We do not define the ≺
relation amongst typed events in a history.

We first define semantics of conversation definitions
that do not have any choice interactions in them. We
later extend the semantics to include interactions that
contain choice definitions in them.
Definition 9
Given an interaction i of the form P → Q : T , the
semantics of i is the set {SP (T).CP (T).RQ(T)}. We
write i �→ S, if S is the semantics of the interaction i.

In essence, given a simple interaction, there is one
possible typed-trace associated with it. This typed
trace captures the fact that one of the end points of
the conversation did a successful send followed by a
commit, while the other end of the conversation did
a successful receive. The relative order of the commit
and receive is not important in the typed trace.
Definition 10
Given two sets of typed traces T1 and T2, the con-
catenation T of T1 and T2 (written as T = T1.T2) is
defined as follows.

(∀t1i ∈ T1)(∀t2j ∈ T2)(∃t ∈ T)[t = t1i.t2j]
and
(∀t ∈ T)(∃t1 ∈ T1)(∃t2 ∈ T2)[t = t1.t2] For any set

of typed traces S and integer i, Si = S.S.S...i times.
For any set of typed traces S, we define S∗ =

⋃∞
i=0 Si

That is, the concatenation of two sets of typed
traces is a set of traces whose elements are made up
of concatenating any element of the first set with any
element of the second set.
Definition 11
Given a conversation definition of the form c = i1; c′

where i1 is a simple interaction of the form P → Q : T ,
and c′ is a conversation fragment. Suppose further
that i1 �→ Si1 , and c′ �→ Sc′ . The set Sc such that
c �→ Sc is defined as Sc = Si1 .Sc′ .

For example, consider the example conversation
fragment:

Buyer → Seller : PO2;
Seller → Buyer : POR3;
Seller → Buyer : ASN4;

The semantics is:
{SBuyer(PO).CBuyer(PO).RSeller(PO)}.
{SSeller(POR).CSeller(POR).RBuyer(POR)}.
{SSeller(ASN).CSeller(ASN).RBuyer(ASN)}
In essence, the typed trace corresponding to a
straight-line conversation definition has exactly one
element in it that is the concatenation of the typed
traces of each interaction in sequence.

Now that we have the semantics of arbitratily long
conversation definitions without choice, we introduce
choice. We provide semantics by inducting over both
the number of ’simple’ interactions, and the number
of choice interactions in the conversation fragment.

Suppose c is a conversation fragment that has ex-
actly one choice interaction. In addition assume that
each of the branches in the choice has at most one
interaction. The possible cases are:

1. either P → Q : T1 or . . . or P → Q : Tn end:
In this case, suppose we can write the choice
as either i1 or . . . or in end for interactions i1
through in. Suppose further, that ∀n

k=1ik �→ Sk.
Then either i1 or . . . or in end �→ S, where
S =

⋃n
j=1 Sj .

2. either P → Q : T1 or . . . or Q → P : Tn end:
First consider the case when n = 2. That is, the
choice is of the form either P → Q : T1 or Q →
P : T2 end. Now, suppose we designate i1 =
P → Q : T1, and i2 = Q → P : T2. We know
that i1 �→ S1 = {SP (T1).CP (T1).RQ(T1)}, and
i2 �→ S2 = {SQ(T2).CQ(T2).RP (T2)}. We define
the set S that either P → Q : T1 or Q → P :
T2 end maps to as follows: S = SL ∪ SR, where
SL is the set

S1 ∪ S3 Where S3 is:
{SP (T1).SQ(T2).CP (T1).AQ(T2).RQ(T1)}
and SR is the set:

S2 ∪ S4 Where S4 is the set:
{SP (T1).SQ(T2).CQ(T2).AP (T1).RP (T2)}
Definition 12
Two interactions i, and i′, are said to interfere

2We use PO to represent PurchaseOrder in our examples in
this section.

3We use POR to represent PurchaseOrderResponse in our
examples in this section.

4We use ASN to represent AdvancedShippingNotice in our
examples in this section.

7

if the sender of one interaction is the receiver
in the other interaction. In the example above,
the interactions i1, and i2 interfere. The sets S3,
and S4, are said to be the interference sets for
the interactions i1 and i2. The set S3 is referred
to as the i1-biased interference set, whereas S4 is
referred to as the i2-biased interference set. The
interference set for two interactions that do not
interfere is the empty set φ.

Now, suppose that there are two branches in the
choice c , but each branch has a number of in-
teractions. Suppose one branch is of the form
i1; c1 , and another branch is of the form i2; c2.
Suppose i1 = P → Q : T1 and i2 = Q → P : T2.
Suppose that either P → Q : T1 or Q → P :
T2 end �→ SL ∪ SR Suppose in addition that
c1 �→ Sc1 , c2 �→ Sc2 (c1 and c2 are simple lin-
ear conversation fragments). The semantics S
of c is: SL.Sc1 ∪ SR.Sc2 .

If the choice has n branches, k of which are con-
versation fragments whose first interaction of the
form P → Q : Tk, k = 1..l, and m are frag-
ments whose first interaction of the form Q →
P : Tj, j = 1..m. That is the interaction is of the
form: either c1 or . . . ck or ck+1 or . . . ck+m end
where k + m = n. Suppose the first interactions
in each branch are i1, . . . , ik, ik+1, . . . , ik+m.
Suppose further that the rest of the conversa-
tion in each branch is: c′1, . . . , c′k, c′k+1, . . . , c

′
k+m.

Suppose further that for each interaction ix, x =
1..n, ix �→ Six and for each fragment c′y, y =
1..n, c′y �→ Sc′y .

Suppose further that for any interaction ik, the
set Skz represents the ik-biased interference set
between interactions ik, and iz.

The semantics of the choice is
⋃n

a=1(Sia ∪⋃n
b=1 Sab).Sc′a . Note that this definition is pow-

erful enough to provide semantics for both type
choice and symmertric choice interactions.

For example, consider the following conversa-
tion fragment that has a simple type choice
interaction:
either

Buyer → Seller : SE5;
Buyer → Seller : Pay6

or
Buyer → Seller : Pay

end

5We use SE to represent StatusEnquiry in our examples in
tis section.

6We use Pay to represent Payment in our examples in tis
section.

The semantics is:
({SBuyer(SE).CBuyer(SE).RSeller(SE)}.
{SBuyer(Pay).CBuyer(Pay).RSeller(Pay)})
∪{SBuyer(Pay).CBuyer(Pay).RSeller(Pay)}.
Now, consider a fragment, that has a symmetric
choice:
either

Seller → Buyer : ASN ;
Seller → Buyer : Invoice;

or
Buyer → Seller : Cancel

end

The semantics associated with the fragment is:
({SSeller(ASN).CSeller(ASN).RBuyer(ASN)}.
{SSeller(Invoice).CSeller(Invoice).RBuyer(Invoice)})
∪{SBuyer(Cancel).CBuyer(Cancel).RSellerer(Cancel)}
∪{SSeller(ASN).SBuyer(Cancel).CSeller(ASN).
ABuyer(Cancel).RBuyer(ASN)}
∪{SSeller(ASN).SBuyer(Cancel).CBuyer(Cancel).
ASeller(ASN).RSeller(ASN)}

3. either(P ≺ Q) P → Q : T1 or . . . ; or Q →
P : Tn end: First consider the case when
n = 2. That is, the choice is of the form
either(P ≺ Q) P → Q : T1 or Q → P :
T2 end. Now, suppose we designate i1 = P →
Q : T1, and i2 = Q → P : T2. We know
that i1 �→ S1 = {SP (T1).CP (T1).RQ(T1)}, and
i2 �→ S2 = {SQ(T2).CQ(T2).RP (T2)}. We de-
fine the set S that either(P ≺ Q) P → Q :
T1 or Q → P : T2 end maps to as follows:
S = SL ∪ SR, where SL is the set S1, and
SR is the set: S2 ∪ S4 Where S4 is the set:
{SP (T1).SQ(T2).CQ(T2).AP (T1).RP (T2)}
The set S4, the i2-biased interference set, is re-
ferred to as the asymmetric interference set for
Q → P : T2 in either(P ≺ Q) P → Q :
T1 or Q → P : T2 end. In an asymmetric in-
teraction of the form either(P ≺ Q) P → Q :
T1 or Q → P : T2 end, the i1-biased interference
set is defined to be the empty set.

Now, suppose that there are an two branches in
the choice c , but each branch has a number of
interactions. Suppose one branch is of the form
i1; c1 , and another branch is of the form i2; c2.
Suppose i1 = P → Q : T1 and i2 = Q → P : T2.
Suppose that either(P ≺ Q) P → Q : T1 or Q →
P : T2 end �→ SL ∪ SR Suppose in addition that
c1 �→ Sc1 , c2 �→ Sc2 (c1 and c2 are simple linear
conversation fragments). The semantics S of c
is: SL.Sc1∪SR.Sc2 , where SL, and SR are defined
as above.

8

If the choice has n branches, k of which are con-
versation fragments whose first interaction of the
form P → Q : Tk, k = 1..l, and m are frag-
ments whose first interaction of the form Q →
P : Tj, j = 1..m. That is the interaction is of the
form: either c1 or . . . ck or ck+1 or . . . ck+m end
where k + m = n. Suppose the first interactions
in each branch are i1, . . . , ik, ik+1, . . . , ik+m.
Suppose further that the rest of the conversa-
tion in each branch is: c′1, . . . , c

′
k, c′k+1, . . . , c

′
k+m.

Suppose further that for each interaction ix, x =
1..n, ix �→ Six and for each fragment c′y, y =
1..n, c′y �→ Sc′y .

In addition, suppose that for interactions il, l =
k + 1 . . . n, let Silio , o = 1 . . . k represent the
asymmetric interference set between interation
il, and io. Using this, we can define the com-
plete asymmetric interference set Sasym

l for in-
teraction il as follows Sasym

il
=

⋃k
r=1 Silir .

The semantics of the choice is⋃k
a=1(Sia).Sc′a

⋃⋃m
b=1(Sik+b

∪ Siasym
k+b

).Sc′k+b.

For example, consider a conversation fragment
of the form:
either(Buyer ≺ Seller)

Seller → Buyer : ASN ;
Seller → Buyer : Invoice;

or
Buyer → Seller : Cancel

end

The semantics associated with the fragment is:
({SSeller(ASN).CSeller(ASN).RBuyer(ASN)}.
{SSeller(Invoice).CSeller(Invoice).RBuyer(Invoice)})
∪{SBuyer(Cancel).CBuyer(Cancel).RSeller(Cancel)}
∪{SSeller(ASN).SBuyer(Cancel).CSeller(ASN).
ABuyer(Cancel).RBuyer(ASN)}
Essentially, if the Buyer has lower precedence
than the Seller, the Buyer has to be prepared to
abort its send.

4. label : either c1; label or . . . or cn end: If the loop
choice has n branches, k of which are conversa-
tion fragments that loop and m are fragments
that dont loop. That is the interaction is of the
form: either c1 or . . . ck or ck+1 or . . . ck+m end
where k + m = n. Suppose the first interactions
in each branch are i1, . . . , ik, ik+1, . . . , ik+m.
Suppose further that the rest of the conversa-
tion in each branch is: c′1, . . . , c

′
k, c′k+1, . . . , c

′
k+m.

Suppose further that for each interaction ix, x =
1..n, ix �→ Six and for each fragment c′y, y =
1..n, c′y �→ Sc′y .

Suppose further that for any interaction ik, the
set Skz represents the ik-biased interference set
between interactions ik, and iz.

The semantics of the loop choice can be written
as:

(
⋃k

a=1(Sia ∪
⋃n

b=1 Sab))∗.(
⋃n

d=k+1(Sid
∪⋃n

e=1 Sde))

For example, consider a conversation fragment
of the form:
RFP : either

Buyer → Seller : PR7;
Seller → Buyer : Pl8;
RFP

or
Buyer → Seller : PA9;

end

The semantics associated with the fragment is:
({SBuyer(PR).CBuyer(PR).RSeller(PR)}.
{SSeller(P1).CSeller(Pl).RBuyer(Pl)})∗.
SBuyer(PA).CBuyer(PA).RSeller(PA)

Now that we have the machinery in place for pro-
viding the semantics of conversation fragments with
at most one choice statement, we can easily generalize
it to a conversation fragment that has any number of
choice statements in a straightforward inductive man-
ner. We rely on the following properties of conversa-
tion definitions.
Lemma 1
Given a conversation fragment f1 of the form:

either
either ci1 or . . . or cil end

or
c1

or
...

or
ck−1

end
(where each cx is a conversation fragment)
and a conversation fragment f2 of the form:
either ci1 or . . . cil or c1 or . . . ck−1 end, for
any typed trace t, f1 �→ t ⇐⇒ f2 �→ t.
Proof Sketch
The proof relies on the observation that for each pos-
sible typed trace in the semantics of the nested frag-

7We use PR to denote ProposalResponse in the examples in
this section.

8We use Pl to denote Proposal in the examples in this section.
9We use PA to denote ProposalAccept in the examples in

this section.

9

ment, there is a typed trace in the semantics of the
flattened fragment, and vice versa.
Lemma 2
Given a conversation fragment f1 of the form
either c1 or . . . ck or ck+1 or . . . cn end, where each of
the branches c1, . . . , cn have the same first interaction,
there is an equivalent definition of the fragment where
the first interaction in each branch in the choice does
not have the same first interaction.
Proof Sketch
Essentially, if each of the branches has the same
first interaction, say, i1. Therefore, for all i, i =
1..n, ci = i1; c′i. Consider the fragment f2 of the form
i1; either c′1 or . . . c′k or c′k+1 or . . . c′n end. For any
typed trace t, f1 �→ t ⇐⇒ f2 �→ t.
Theorem 1
If the first interaction of one of the branches of a choice
interaction is itself a choice interaction, there exists
an equivalent conversation fragment where the first
interaction none of the branches of a choice interaction
is itself not a choice interaction.
Proof Sketch
From the lemma above, we have have the base case.
We can induct on the number of such nested choice
interactions to get the general result.

3.3.2 History Conformance

We define what it means for a locally well-formed his-
tory to conform to a typed trace. The conformance
relation has two aspects: there is a structural aspect,
which requires that the sequence of interactions agree
between a history and a typed trace, and there is a
value aspect, which requires that the data exchanged
as part of the history validates against the templates
of the typed trace.

To define history conformance, we first define two
notions of projection. For any locally well-formed his-
tory h, we define the projection of h onto a service P ,
as the subhistory of h where all events have P as prin-
cipal actor. That is, in constructing the projection, we
simply drop all events that do not have P as principal
actor. We write the projection of h onto P as h|P .
If no events in h have P as principal actor, the pro-
jection is the empty history. Similarly, we define the
projection of a typed trace t onto a service P as the
subtrace of t where all parameterized events have P as
principal actor. We use t|P to denote this projection.

In Figure 2, we define a conformance relation be-
tween histories and traces. Given a history h and a
typed trace t, if “h → t” we say that h conforms to t.
Essentially, a history conforms to a typed trace if the
sub-history that happens at each service conforms to
the sub-trace defined for that service. By focussing on

λ → λ (8)
∀P ∈ Service : h|P → t|P

h → t
(9)

v : V v′ : V ′ h → t

sP (v).cP (v′).h → SP (V).CP (V ′).t
(10)

v : V v′ : V ′ h → t

sP (v).aP (v′).h → SP (V).AP (V ′).t
(11)

v : V h → t

rP (v).h → RP (V).t
(12)

Figure 2: Defintion of →

“local” conformance, we avoid defining conformance
relative to an external observer. In particular, the con-
formance relation does not have to account for the in-
cidental interleaving of events at distributed services.
We use the notation “v : V ” to indicate that the value
v validates against the template V .

We can extend the notion of conformance to conver-
sation definitions. We say that a history h conforms
to a conversation definition c if h conforms to one of
c’s typed traces:

h → c ⇔ ∃t : (c �→ S ∧ t ∈ S) (13)

4 Key Results

In this section, we formally outline some of the key
theorems and outline proofs for the same.
Theorem 2
Given a conversation definition c, there exists a unique
set of histories H such that h ∈ H ⇐⇒ h → c.
Proof Sketch
This is a consequence of how the → relation is de-
fined.

The main consequence of the theorem above is that
the semantics of conversation definitions in terms of
histories is unique and well-defined.
Theorem 3
There exists a decision procedure p that given a history
h and a conversation definition c can decide whether
h → c.
Proof Sketch
This can be proven by a straight forward induction on
the length of h or by constructing the decision proce-
dure.

10

This property is more specific to conversation defi-
nitions. If one were to represent the protocol between
two services as a workflow with shared variables, and a
turing-complete language for expressing computation,
as is the case with BPEL4WS [BPE03], such proper-
ties would be infeasible to prove.
Theorem 4
Given a conversation definition c and a history h such
that ¬(h → c), there is a deterministic procedure to
determine the first event e ∈ h and interaction i in c
such that the mismatch between i and c is the first
instance that causes ¬(h → c).
Proof Sketch
This property essentially ensures that there is a way
to determine the cause of deviation of a history from
a conversation definition.

The main consequence of this theorem is that it
is possible to have a procedure to debug conversation
definitions. Proving a similar procedure for generic
workflow definitions may not be feasible.

Essentially, the last two theorems tell us that it is
possible to decide whether a trace conforms to a con-
versation definition. In addition, if a history does not
conform to a conversation definition, we can determine
the first cause of non-conformance. These properties
therefore provide a basis of managing, and testing web
services interactions.

5 Related Work

There are many web servies related standards that
are emerging that are relevant for this work. We enu-
merate some of the main efforts and briefly describe
the relationship with our work.

• SOAP and WSDL: SOAP and WSDL [SOA03,
WSD03], are the standards that are emerging
out of the web services community as standards
for enabling web services interactions. There
are a couple of key differences between our work
and SOAP/WSDL. cl is a language for defining
the externally visible behavior of services and
is complementary in many respects to SOAP,
and WSDL. cl also supports a wider variety of
basic interaction types by virtue of supporting
choice interactions. The symmetric and asym-
metric choice interactions supported by cl have
no analogue in WSDL. We believe that these
choice interactions play a key role in enabling
loose coupling while allowing for interoperabil-
ity.

• WSCL and SFS : The work on WSCL [WSC02]
served as the basis for the language cl. The

authors were among the key contributors to
WSCL, as well as a more complete stack of spec-
ifications that comprised the Service Framework
Specification [SFS01]. Our work provides some
of the formal underpinnings for WSCL. In ad-
dition, we consider more general kinds of choice
interactions than were allowed in WSCL.

• BPEL4WS : BPEL4WS [BPE03] has emerged as
a proposal from leading web services infrastruc-
ture providers as a proposal for describing busi-
ness process execution. Version 1.1 of the spec-
ification [BPE03] has added support for ability
to describe business protocols as a special case of
business processes. The key difference between
our approaches is that cl does not have any exe-
cutable logic embedded in it unlike BPEL4WS.
This distinction is a result of cl representing the
externally visible behavior and BPEL4WS being
a richer language in which the protocols can also
be expressed. The simplicity of cl makes it easier
to reason about.

• Other Research: Richard Hull, et al [HBCS03,
BFHS03] have proposed a mealy-machine-based
formalism to express the behavior of web ser-
vices. Similar to cl, a mealy machine can ex-
press the behavior of a web services as sequences
of interactions, where the sequences are con-
structed by sequential composition and non-
deterministic choice. Unlike mealy machines, cl
provides programming constructs to deal with
situations where web services make conflicting
choices. If the mealy machines in two web ser-
vices take conflicting paths, the conflict resolu-
tion must be described explicitly in the subse-
quent interactions. In contrast, cl provides a
notion of aborted sends and asymmetric choice
to more conveniently handle conflicting choices.
In addition, the mealy-machine formalism uses
null transitions to model the internal state tran-
sitions of the services. Our conversation def-
initions in cl are not meant to model the in-
ternal transitions of the service. This separa-
tion of concerns, we believe provides the basis
for inter-operability amongst services while pre-
serving loose coupling. The separation between
the internal and external behavior of a service
also explains the relationship between cl and the
body of work in modeling concurrent and mobile
systems [Mil99].

11

6 Conclusions and Directions for
Further Research

In this paper, we have outlined a simple language
cl for describing the externally visible behavior of web
services, provided semantics for the same. The se-
mantics of a conversation was the set of well-formed
histories of observable events. We also discussed the
relationship of cl to other emerging web services tech-
nologies.

There are many possible directions for further re-
search.

• Multiple Services: We believe our approach of
defining interactions amongst web services is ap-
plicable to interactions among any number of
services. For instance, our current definitions
of interactions allow for one sender and one re-
ceiver. We can extend the language definition to
accomodate multiple senders or receivers with
appropriate barrier/synchronization or broad-
cast semantics. Since we are interested in exten-
sional behavior, and are not interested in model-
ing the internal states of the services, we believe
that our approach will be different from tradi-
tional approaches to this problem.

• Reliability: A core construct to provide reliabil-
ity within an enterprise is the notion of a trans-
action. A transaction is a programming abstrac-
tion that allows consistent updates of shared
data, such as bank accounts or inventory data,
in the presence of failures and concurrency. A
transaction typically satisfies the ACID proper-
ties: it is atomic with respect to failures, it trans-
forms one consistent state to another, it executes
in logical isolation from other transactions, and
its effects remain durable. In the context of web
services, the consistency, isolation, and durabil-
ity are often the responsibility of the backend.
Atomicity, on the other hand, does have an im-
pact on the external behavior of the service, and
we can provide such support in cl.

• Implementation: We believe that implementing
cl as part of a web services infrastructure is also
an area for further investigation. An implemen-
tation would provide further evidence for the
thesis that a language like cl will provide a means
for achieving interoperability in the presence of
loose coupling.

• Type Systems: In this paper, we have laid some
of the foundations for why conversation defini-
tions can be viewed as interface defitions for ser-

vices that are interacting. Our definition of the
semantics of these conversation definitions may
provide a basis of a type-theory for interacting
services. We may be able define notions such as
sub-typing, extensions, etc., providing a formal
type-system for services that goes beyond the
traditional notion of interface as type definition.

References

[BCTH03] B. Benatallah, F. Casati, F. Toumani, and
R. Hamadi. Conceptual modeling of web ser-
vice conversations. In Proceedings of CAiSE
2003, 2003.

[BFHS03] Tevfik Bultan, Xiang Fu, Richard Hull, and
Jianwen Su. Conversation specification: A new
approach to design and analysis of e-service
composition. In Proceedings of the World Wide
Web Conference, 2003.

[BPE03] Business Process Execution Language for
Web Services version 1.1. http://www-
106.ibm.com/developerworks/library/ws-
bpel/, 2003.

[HBCS03] Richard Hull, Michael Benedikt, Vassilis
Christophides, and Jianwen Su. E-services: A
look behind the curtain. In Proceedings of ACM
Symposium on Principles of Database Systems.
ACM, 2003.

[Hoa78] C. A. R. Hoare. Communicating sequen-
tial processes. Communications of the ACM,
21(8):666–677, August 1978.

[Mil80] R. Milner. A Calculus of Communicating Sys-
tems. Springer Verlag, 1980. LNCS 92.

[Mil99] R. Milner. Communicating and Mobile Sys-
tems: the π-calculus. Cambridge University
Press, 1999.

[mW03] Jèrôme Simèon and Philip Wadler. The
Essence of XML. In Proceedings of 30th ACM
SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM, 2003.

[SFS01] Service Framework Specification.
http://www.hpl.hp.com/techreports/2001/HPL-
2001-138.html, 2001.

[SOA03] SOAP Version 1.2, Part 0: Primer.
http://www.w3.org/TR/soap12-part0/, 2003.

[WSC02] Web Services Conversation Language (WSCL)
1.0. http://www.w3.org/TR/2002/NOTE-
wscl10-20020314/, 2002.

[WSD03] Web Services Description Language (WSDL)
Version 1.2 Part 1: Core Language.
http://www.w3.org/TR/2003/WD-wsdl12-
20030611/, 2003.

12

