

Model checking Demos using PBI:
A Simple Approach

Jonathan Hayman
HP Laboratories Bristol
HPL-2003-196
October 7th , 2003*

E-mail: jmh00@doc.ic.ac.uk

model
checking,
demos,
bunched
implications,
concurrency

The application of a resource logic to the non-temporal analysis of
processes acting on resources, ‘Hayman 2003. This defines the
non-temporal semantics of simulation language, Demos, in order to
be able to model processes acting on shared resources. It also
defines the semantics of a logic, PBI, an extension of the Logic of
Bunched Implications, to query these models. This document
describes a simple model checker capable of checking a subclass of
PBI formulae against Demos models. It is assumed that the reader
is familiar with, ‘The application of resource logic to the non-
temporal analysis of processes acting on resources,’ Hayman 2003.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

Model checking Demos using PBI: A Simple

Approach

Jonathan Hayman∗

Hewlett-Packard Laboratories, Bristol

Summer 2003

Abstract

[Hay03] defines the non-temporal semantics of a simulation language,
Demos, in order to be able to model processes acting on shared resources.
It also defines the semantics of a logic, PBI, an extension of the Logic of
Bunched Implications [POY02, Pym02, OP99], to query these models.

This document describes a simple model checker capable of checking
a subclass of PBI formulæ against Demos models. It is assumed that the
reader is familiar with [Hay03].

1 Introduction

It is difficult to reason about how processes running in parallel or concurrently
may interact. This comes from the fact that a process may interfere with other
processes acting in their environment.

Demos is a system for simulating processes interacting on shared resources.
Though we are interested in analysis rather than simulation, we shall use the
syntax of Demos to represent processes. In [Hay03], we defined a subclass of
Demos, σDemos, that models the salient characteristics of non-temporal process
interaction and proved our interpretation of such interaction to be correct.

Defined in [Hay03], PBI is a logic of processes and resources. It was defined,
in particular, to query σDemos models, and allows properties such as deadlock
freedom and sub-component deadlock freedom to be expressed.

This document describes the operation of a (semi-)recursively defined program
capable of checking an interesting subclass σDemos models against an interest-
ing subclass of PBI formulæ.

2 A logic for model checking

PBI was presented in [Hay03] as a Hennessy-Milner style logic (HML). Though
useful for proving properties of systems, the inclusion of infinitary conjunction

∗jmh00@doc.ic.ac.uk

1

(and disjunction) in HML necessitates a deduction system that is able to rea-
son about arbitrary infinitary modal formulæ. As alluded to by the inclusion
of sections on CTL and modal-µ in [Hay03], this makes the HML logic not
particularly suited to a the development of a simple model checking algorithm.

2.1 CTL−

CTL [CES86] is a relatively simple temporal logic particularly suited to model
checking. As well as the finite part of HML, there are two additional modalities
relating to properties holding over paths1.

The first, ∀[φUψ], expresses that along every path derivable from a given state, φ
holds until ψ holds, and ψ does eventually hold. The second, ∃[φUψ], expresses
that along some path from the current state, φ holds until ψ holds, and ψ does
eventually hold.

s0 |= p iff s0 ∈ ‖p‖

s0 |= ¬φ iff s0 6|= φ

s0 |= φ ∧ ψ iff s0 |= φ and s0 |= ψ

s0 |= φ ∨ ψ iff s0 |= φ or s0 |= ψ

s0 |= 〈−〉φ iff for some state s′ and action α ∈ A,
s0

α−→ s′ and s′ |= φ.

s0 |= [−]φ iff for all states s′ and actions α,
s0

α−→ s′ implies s′ |= φ

s0 |= ∀[φUψ] iff for all paths [s0, s1, . . .],
∃i > 0[si |= ψ ∧ ∀j[0 6 j < i =⇒ sj |= φ]]

s0 |= ∃[φUψ] iff for some path [s0, s1, . . .],
∃i > 0[si |= ψ ∧ ∀j[0 6 j < i =⇒ sj |= φ]]

Table 1: Semantics of CTL formulæ

Simpler still is CTL−. The four operators, defined in terms of the CTL modal-
ities above, allow us to simply express many interesting properties.

• s |= ∃Fφ def⇐⇒ s |= ∃[>Uφ]
This means that there is a path in which φ holds in some future state —
φ potentially holds.

• s |= ∀Fφ def⇐⇒ s |= ∀[>Uφ]
This means that along every path from s, there is a state in which φ holds
— φ is inevitable.

1We shall use the definition of path found in [Hay03] rather than [CES86]: A path is a
possibly infinite sequence of states [s0, s1, . . .] such that ∀i. si −→ si+1

2

• s |= ∃Gφ def⇐⇒ s |= ¬∀[>U¬φ]
This means that there is a path from s where φ holds in every state.

• s |= ∀Gφ def⇐⇒ s |= ¬∃[>U¬φ]
This means that for every path from s, φ holds in every state — φ is
globally true.

It is interesting to note that CTL is heavily restricted by its notion of path: it
does not take into account that transitions may be labelled or allow quantifica-
tion over particular types of state. Consequently, it does not correspond directly
to the native modalities of PBI, 〈A〉, 〈A〉+, 〈A〉− and the box modalities; rather,
it corresponds to the derived any modalities.

The reader is referred to [Hay03] for a slightly more verbose account of CTL
and pointers into the literature.

2.2 Modal-µ

In essence, the modal-µ calculus allows recursive propositions to be defined.
Take, for example, the formula

Z
def= 〈A〉> ∧ [A]Z;

Z holds in states that it is possible to derive a transition from (states that have
a derivative) where all next states have this property, too.

For an arbitrary formula φ(Z) with a free logical variable Z, it may be the
case that there are a number of solutions for the set of states in which Z holds
satisfying Z = φ(Z). Each such set is called a fixed point of Z = φ(Z). Of
particular interest are the least fixed points and the greatest fixed points; these
will exist if φ(Z) is monotonic. s |= µZ.φ(Z) is defined to hold iff s is in the
least set of states such that Z = φ(Z), and νZ.φ(Z) is defined to hold iff s is
in the greatest set of states such that Z = φ(Z). µ and ν are called fixpoint
operators. Again, the reader is referred to [Hay03] for a more verbose account
of this, and to [BS01] for an excellent introduction to the µ-calculus.

As modal-µ relies neither upon presupposed diamond or box modalities nor
upon a notion of path, the fixpoint operators are directly applicable to PBI.
Model checking modal-µ in the simplest case involves iteratively labelling states
to reach a fixed point.

3 Implementation

Though the CTL− temporal operators do not directly correspond to the modal-
ities of PBI, they do allow many interesting questions to be posed in the logic.
As our goal is to create a very simple model checker in a functional language,
we shall use CTL− rather than modal-µ.

We have only considered the core part of the Demos language in this imple-
mentation. For simplicity, we shall have a repeat{P} structure, equivalent to
while [true] do P , rather than while.

3

3.1 State space generator

The first component of the model checker is the state space generator. For a
given state, this returns a graph where the nodes are reachable σDemos states
and the arcs represent one-step transitions; the arcs are labelled by the action
labels. Nodes also contain a list of propositions used in the evaluation of CTL−

modal formulæ.

For example, the state space of

R / JP K ≡ *r + / Jrepeat{getR(r, 1); putR(r, 1)}K

is (abbreviating getR(r, 1) by gr, putR(r, 1) by pr and repeat{P} by R(P))

���
��������

���
��������������

��

�����������

Our approach to building the state space graph is to add a node and then recur-
sively add all its derivatives (thereby performing a depth-first expansion). When
we encounter a node already in the graph, we assume that it has already been
expanded. This avoids the insertion duplicate states and recursing infinitely on
cycles.

To data structure created is implemented, for performance reasons, using SML
pointers to nodes. Because the state space may be large, modifications of the
state space are usually defined imperatively rather than recursively. In par-
ticular, modifications to the list of propositions used in checking the CTL−

modalities shall not result in a new state space object being generated.

3.2 Logic component

The second component of the model checker is the logic unit. This uses the
state space generator to check whether or not propositions in CTL hold in a
given state. The checker function operating on a state R / JP K in a state space
space(S / JQK) to check a proposition φ,

check φ (R / JP K) space(S / JQK),

is defined recursively as follows.

4

3.2.1 Logical units and propositions

> holds in any state, and ⊥ holds in none. IP holds in states where there is only
a null process; IR holds in states where there is no available resource. Resource
propositions hold where the state comprises only that resource, with no process.
Process propositions hold where the state comprises only that process, with no
resources.

• check > (R / JP K) space(R / JP K) def= >.

• check ⊥ (R / JP K) space(R / JP K) def= ⊥.

• check IR (R / JP K) space(R / JP K) def= R / JP K ≡ * + / JP K.

• check IP (R / JP K) space(R / JP K) def= R / JP K ≡ R / JεK.

• check I (R / JP K) space(R / JP K) def= R / JP K ≡ * + / JεK.

• check r (R / JP K) space(R / JP K) def= R / JP K ≡ *r + / JεK, for resource
atoms r.

• check Q (R / JP K) space(R / JP K) def= R / JP K ≡ * + / JQK, for process
atoms Q.

3.2.2 Additives

The conjunction of two propositions holds if both hold in the given state; the
disjunction holds if one or both hold. As the logic is boolean (because the
monoid uses an equality), to check implication we first check the antecedent.
If it is false, we return true. Otherwise, we return the result of checking the
sequent. We check both propositions in the same state space graph.

• check (φ∧ψ) (R/JP K) space(R / JP K) def= check φ (R / JP K) space(R / JP K)
and also check ψ (R / JP K) space(R / JP K). (Similarly for disjunction).

• check (ψ → ψ) (R / JP K) space(R / JP K) def= if check φ (R / JP K) space(R / JP K)
then check ψ (R / JP K) space(R / JP K), otherwise true.

3.2.3 Multiplicatives

The multiplicatives are slightly more complicated. One approach, which we did
not adopt, to checking R / JP K |= φ ∗ ψ is to determine from the syntax of φ
the resource and process component required to make φ true. We subtract this
from R / JP K, and check in the resulting state space ψ. This, however, would
not be complete — we would have trouble checking e.g., > ∗ ψ.

An alternative approach to checking R / JP K |= φ ∗ψ, which we did adopt, is to
check whether there is any partition of R / JP K with one part satisfying φ and
the other satisfying ψ. Though this inefficiently involves checking all possible
sub-partitions, it is immediate from the definition of the semantics of ∗ that this

5

is complete for all formulæ (assuming completeness for checking subformulæ).
Each sub-partition has its own state space expanded to form a new graph.

It is not possible to extend this approach to checking φ −∗ ψ; to do so would
involve checking whether all process resource pairs satisfying φ, when added to
the current process resource pair, make ψ true. This, in turn, would require us
to check every possible process resoruce pair, which is impossible as the set of
such pairs is infinite.

Instead, for the multiplicative implication, we adopt the first approach, defining
a partial function syntactically from propositions to resource-process pairs that
indicates the component necessary to make the antecedent true. The partial
function, defined below, shall be undefined where we have more or less than
one pair making the antecedent true, e.g., IR or ⊥. We take \ to be multiset
subtraction.

resources I
def= *+

resources r
def= *r +

resources P
def= *+

resources φ ∗ ψ def= (resources φ)] (resources ψ)

resources φ −∗ ψ def= (resources ψ) \ (resources φ)

Similarly, the process component required to make a formula true is defined as
follows. In this case, \ is process subtraction.

processes I
def= JεK

processes r
def= JP K

processes P
def= JεK

processes φ ∗ ψ def= (processes φ) | (processes ψ)

processes φ −∗ ψ def= (processes ψ) \ (processes φ)

It follows that the model checker is complete with respect to a subclass of
antecedents, Φa:

Φa ::= r | P | I | Φa ∗ Φa | Φa −∗ Φa

Implementationally, where resources φ or processes φ is undefined, an exception
shall be raised thus preserving the soundness of the system. Again, we construct
a new graph object for the state space of the new state.

• check (φ ∗ ψ) (R / JP K) space(R / JP K) def=
for some partition R / JP K ≡ (S / JQK) ◦ (S′ / JQ′K),
check φ (S/JQK) space(S / JQK) and also check φ (S′/JQ′K) space(S / JQK).

• Let S / JQK be (resources φ) / (processes φ) in
check (φ −∗ ψ) (R / JP K) space(R / JP K) def=

check ψ (R] S / JP‖QK) space(R] S / JP‖QK)

6

3.2.4 HM Modalities

To check R / JP K |= 〈−〉anyφ, all we need do is check if φ holds in any state
adjacent in the state space graph to R / JP K. This can be checked in the same
graph. Similarly, R / JP K |= [−]anyφ involves checking φ in all states adjacent
in the state space graph to R / JP K. At this stage, we choose not to implement
the specific additive and multiplicative modalities of PBI, nor checking against
labels.

• check (〈−〉anyφ) (R / JP K) space(R / JP K) def= for some state S / JQK
connected by an arc from R / JP K, check φ (S / JQK) space(R / JP K).

• check ([−]anyφ) (R / JP K) space(R / JP K) def= for all states S / JQK
connected by an arc from R / JP K, check φ (S / JQK) space(R / JP K).

3.2.5 CTL− modalities

Recall from [Hay03] the definition of the CTL− modalities in modal-µ:

• ∀Gφ def⇐⇒ νZ.φ ∧ [−]Z;

• ∃Gφ def⇐⇒ νZ.φ ∧ (〈−〉Z ∨ [−]⊥);

• ∀Fφ def⇐⇒ µZ.φ ∨ ([−]Z ∧ 〈−〉Z);

• ∃Fφ def⇐⇒ µZ.φ ∨ 〈−〉Z.

These provide a useful intuition as to how the CTL− modalities shall be recur-
sively defined in SML.

Let us first consider ∀Gφ. The modal-µ formula defines it to hold in states
where φ holds and in all derivatives ∀Gφ holds. In order to prevent recursing
infinitely on cycles, we shall mark all states in which we are evaluating ∀Gφ.
Note that the marking has to be ∀Gφ (or, alternatively just φ) rather than
setting a boolean in order to allow arbitrary nesting of CTL− modalities. If
we revisit a node (i.e., visit a node marked ∀Gφ), we know that φ will hold on
every node through this cycle, so we take this to be a true evaluation of ∀Gφ
for this state — though if other paths from the node fail to have φ holding
throughout, some other conjunct shall fail. Taking a marked state as true for
∀Gφ is alluded to by the use of the greatest fixpoint operator, ν, as opposed to
µ.

Similarly, ∃Gφ holds where we have φ holding in the current state and ∃Gφ
holding in some derivative if there is one. Again, we take revisiting a marked
node to be a positive result.

∀Fφ, which holds where φ holds in the current state or where all derivatives
have ∀Fφ holding and there is a derivative, is slightly different. If we encounter
a cycle (revisit a state marked ∀Fφ), then no state on this cycle satisfies φ.
Thus not every path has a state satisfying φ, so we return a negative result
by returning false on this conjunct. This is alluded to by the use of the least
fixpoint operator, µ, in the modal-µ definition.

7

∃Fφ, similarly, holds if φ holds in the current state or there is a derivative in
which ∃Fφ holds. Again, we take revisiting a node to mean that the particular
disjunct corresponding to this path does not hold.

We let marked(R / JP K, φ,G) hold if the state R / JP K is marked with a for-
mula φ in G, and let mark(R / JP K, φ,G) be a function that returns the state
space G with R / JP K marked φ. The derivatives of R / JP K in G shall be
derivs(R / JP K, G). We shall temporarily abbreviate check φ (S / JQK) G to
C

S/JQK
G φ.

C
R/JP K
G ∀Gφ def= C

R/JP K
G φ ∧

{
>, if marked(R / JP K,∀Gφ,G)∧

S/JQK∈derivs(R/JP K,G) C
S/JQK
mark(R/JP K,∀Gφ,G)∀Gφ

C
R/JP K
G ∃Gφ def= C

R/JP K
G φ ∧

{
>, if marked(R / JP K,∃Gφ,G)∨

S/JQK∈derivs(R/JP K,G) C
S/JQK
mark(R/JP K,∃Gφ,G)∃Gφ

C
R/JP K
G ∀Fφ def= C

R/JP K
G φ ∨

{
⊥, if marked(R / JP K,∀Fφ,G)∧

S/JQK∈derivs(R/JP K,G) C
S/JQK
mark(R/JP K,∀Fφ,G)∀Fφ

C
R/JP K
G ∃Fφ def= C

R/JP K
G φ ∨

{
⊥, if marked(R / JP K,∃Fφ,G)∨

S/JQK∈derivs(R/JP K,G) C
S/JQK
mark(R/JP K,∃Fφ,G)∃Fφ

It should be noted that the recursive calls to evaluate the CTL− modalities must
delete any labels they have placed. Not only may they interfere with succeeding
evalutions (e.g., consider the evaluation of ∃F〈−〉new>∧∃F〈−〉new> — the root
state would be labelled, thus immediately giving a false result), but they may
interfere within recursive calls to the evaluation of the multiplicative modality.
As the labels are only used for detecting cycles, they should persist through
checking derivatives but should be removed through checking sibling states.

Finally, to show that our labelling approach generalises to nested CTL− for-
mulæ, notice that the definition of CTL− formulæ is well founded; there is no
formula φ such that φ = Mφ for some modality M. Therefore, we will never
have a collsion of labels.

Observing the above definitions, we see that the system is complete (modulo
the exclusive inclusion of the any modalities as opposed to the complete set of
additive and multiplicative modalities) other than in multiplicative implication.
The following grammar describes the formulæ for which the checker is complete:

Φ ::= > | ⊥ | I | IR | IP | r | Φ
| Φ ∧ Φ | Φ ∨ Φ | Φ → Φ
| Φ ∗ Φ | Φa −∗ Φ
| 〈−〉anyΦ | [−]anyΦ
| ∀GΦ | ∃GΦ | ∀FΦ | ∃FΦ
| ¬Φ

8

4 System interaction

ASCII being somewhat inadequate for writing logical formulæ, our implemen-
tation of the model checker in SML alters the notations used in our theoretical
account. Table 2 gives the representations used in the implementation.

All binary operators are right-associative, the precedence being as follows:

¬ � ∗ � −∗ � ∧ � ∨ � →,

where � is to be read as “binds more strongly than”.

We also introduce an extra-logical construct PRINT φ which binds as tightly as
¬. This prints the current state and returns the result of evaluating φ. As the
evaluation of booleans in SML is lazy (e.g., in checking φ∨ψ, if φ is true, ψ will
not be evaluated), this can be used to see the states where a proposition fails,
where it passes and the partition allocated to a particular proposition. Suppose,
for example, that we want to see the reachable states in which a proposition φ
does not hold; we would query using the checker-proposition

φ || PRINT FF

To see where φ did hold, we would use

φ && PRINT TT

Suppose we want to see which partitions satisfy φ; we would use

(φ && PRINT TT) ** TT

Conversely, to see what is left after satisfying φ,

φ ** PRINT TT

4.1 Intelligence Agency example

Recall from [Hay03] the intelligence agency example. We had two processes, one
owned by the CIA and one owned by MI6, that acquired and released control
of four communications channels. The Demos code is given in Figure 1.

Stripping away the delcarations, we obtain the following state for the model
checker:

([’’6’’,’’5’’,’’C’’,’’F’’],
[P[getR(’’6’’,1),hold 2, getR(’’5’’,1),hold 2, getR(’’F’’,1),

hold 2, hold 4, putR(’’F’’,1), putR(’’5’’,1), putR(’’6’’,1)],
P[getR(’’C’’,1),hold 2, getR(’’F’’,1),hold 2, getR(’’5’’,1),
hold 2, hold 4, putR(’’5’’,1), putR(’’F’’,1), putR(’’C’’,1)]])

The formula for deadlock freedom (for convenience, predefined by the system
as DF), is

AG(D TT || IP)

Supposing the above state is defined as si, we can check for deadlock freedom
using the checkst function:

2-> is reserved in SML

9

Item Representation Example(s)
Resources
Resource string r 7→ ’’r’’

Resource multiset List of strings *r, s, t+ 7→ [’’r’’,’’s’’,’’t’’]

Processes
ε Null JεK 7→ Null

Non-parallel process P[List of commands] JgetR(r, 1); putR(r, 1)K 7→
P[getR(’’r’’,1),putR(’’r’’,1)]

Process List of non-parallel processes Jε‖getR(r, 1); putR(r, 1)K 7→
[Null,P[getR(’’r’’,1),putR(’’r’’,1)]]

State (Resource mset, Process)-pair *r, s + / JεK 7→ ([’’r’’,’’s’’],[Null])

Propositions
> TT

⊥ FF

IR IR

IP IP

I I

r R resource r 7→ R’’r’’

P Pr process ε 7→ Pr[Null]

¬ψ ∼(ψ) ¬⊥ 7→∼(FF)
φ ∧ ψ φ && ψ

φ ∨ ψ φ || ψ

φ→ ψ φ Imp ψ2

φ ∗ ψ φ ** ψ

φ −∗ ψ φ -* ψ

〈−〉anyφ D φ 〈−〉any> 7→ D TT

[−]anyφ B φ

∀Gφ AG φ

∃Gφ EG φ

∀Fφ AF φ

∃Fφ EF φ

Table 2: SML representations

10

cons ACT_TIME6 4;
cons ACT_TIMECIA 4;

class MI6 = {
getR(MI6_line, 1); hold(2);
getR(MI5_line, 1); hold(2);
getR(FBI_line, 1); hold(2);

hold(ACT_TIME6);

putR(FBI_line, 1); putR(MI5_line, 1); putR(MI6_line, 1);
}

class CIA = {
getR(CIA_line, 1); hold(2);
getR(FBI_line, 1); hold(2);
getR(MI5_line, 1); hold(2);

hold(ACT_TIMECIA);

putR(MI5_line, 1); putR(FBI_line, 1); putR(CIA_line, 1);
}

Res(CIA_line, 1); Res(FBI_line, 1);
Res(MI6_line, 1); Res(FBI_line, 1);

Entity(CIA, 12*60 + 40); %12:40
Entity(MI6, 12*60 + 43); %12:43

Figure 1: Demos program for the intelligence agency example

11

- checkst DF si;
val it = false : bool

If we want to see the state that is deadlocked, we enter the query

- checkst (AG(D TT || IP || PRINT FF)) si;
(())#[[getR(F,1),putR(F,1),putR(5,1),putR(6,1)],

[getR(5,1),putR(5,1),putR(F,1),putR(C,1)]]
val it = false : bool

The result is exactly as we proposed in [Hay03].

Finally, recall that we argued that adding a new FBI line would remove deadlock.
To check:

- checkst (R’’F’’-*DF) si;
val it = true : bool

5 Conclusions

We have described a (relatively) simple, recursive approach to model checking
Demos using PBI. With it, we are able to analyse the essentials of process
interaction through shared resource, for example deadlock.

It remains to implement the remainder of the system described in [Hay03].
Specifically, the following items remain:

PBI modalities It would not be difficult to extend the existing system to
include the basic modalities of PBI, 〈A〉new and 〈A〉 as opposed to solely
implementing 〈−〉any here (and the corresponding box-modalities). This
would allow us to query, for example,

∀F(〈−〉new> ∨ IP),

which asks if every path eventually performs a resource action or termi-
nates — in a way checking that a process makes progress.

Action labels Our implementation does not allow restriction of modalities to
particular sets of labels. So, for example, 〈−〉any is allowed, but for a
restrictive action label set A, 〈A〉any is not allowed. To implement the full
labelling system described in [Hay03] would also require that processes are
labelled.

Weak modalities Desribed in [Hay03] are weak, or observable, modalities.
Rather than being defined in terms of the transition relation σ−→, which
allows observable or hidden actions to be derived, they are defined in terms
of σ=⇒, which allows for the arbitrary prefix and suffix of silent actions to
one observable action.

Extension to σDemos The full transition system of [Hay03] was not imple-
mented: we did not include synchronisation, entity declarations, or a whole
host of other features of Demos.

12

Fair execution In concluding [Hay03], it was remarked that the system could
be extended to consider only fair and just execution sequences. Unlike the
above extensions, this would require further theoretical consideration.

Synchronous execution As described in [Hay03], a rule for synchronous par-
allel execution may be implemented to reduce the size of the state spaces
considered by the model checker. It may be possible to determine syntacti-
cally whether or not a given formula will be equivalent in the synchronous
and asynchronous systems and, if so, to use the synchronous system. At
the very least it is possible to do this for deadlock freedom.

Naturally, these aspects were omitted because our consideration here is of a
simple model checker for Demos. Though the extensions described above should
not be very hard to implement, it probably would take a good deal of work. It
would also be possible to write a model checker capable of expanding the state
space as required, rather than in advance as described here. For example, if we
were to evaluate 〈−〉any> in a model that has a very large state space, it seems
very wasteful to expand the whole state space in advance. Alternatively, more
recent approaches to model checking could be applied, e.g., using game theory.

Of course, if we were to implement such an elaborate system, we should also
reconsider the use of the CTL− modalities. Though they are suited to a simple
implementation, the fixpoint operators of modal-µ would allow a much richer
class of formulæ to be expressed, especially given the variety of one-step modal-
ities offered by PBI.

References

[BS01] Julian C. Bradfield and Colin Stirling. Modal logics and mu-
calculi: an introduction. In J. Bergstra, A. Ponse, and S. Smolka,
editors, Handbook of Process Algebra, pages 239–330. Elsevier,
http://www.dcs.ed.ac.uk/∼jcb/, 2001.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifica-
tions. ACM Transactions on Programming Languages and Systems
(TOPLAS), 8(2):244–263, 1986.

[Hay03] Jonathan Hayman. The application of a resource logic to the non-
temporal analysis of processes acting on resources. Technical report,
Hewlett-Packard Laboratories, Bristol, 2003.

[OP99] Peter W. O’Hearn and David J. Pym. The logic of bunched implica-
tions. Bulletin of Symbolic Logic, 5(2):215–243, June 1999.

[POY02] David J. Pym, Peter W. O’Hearn, and Hongseok Yang. Possible worlds
and resources: The semantics of BI. Journal of Theoretical Computer
Science (to appear), 2002.

[Pym02] David J. Pym. The Semantics and Proof Theory of the Logic of Buched
Implications, volume 26 of Applied Logic Series. Kluwer Academic
Publishers, Dordrecht, July 2002.

13

