
                                                                

       
The application of a resource logic to the 
non-temporal analysis of processes acting 
on resources 
 
Jonathan Hayman 
HP Laboratories Bristol 
HPL-2003-194 
October 2nd , 2003* 
 
E-mail: jmh00@doc.ic.ac.uk 
 
 
business process 
analysis, bunched 
implications, 
concurrency, 
demos 
 

Many systems exist that can be modelled as processes interacting 
through shared resources -people, factories and computer systems to 
name but a few. Building upon a logic capable of reasoning about  
static resource models, the Logic of Bunched Implications, we 
tentatively define the semantics of a logic capable of reasoning 
about dynamic resource models.  The logic shall not consider 
the influence of timing on process interaction. We give a brief 
overview of other process logics- Hennessy-Milner logic, 
Computation Tree Logic and modal- µ - which indicate how we 
may automate the system. We illustrate how our dynamic resource 
logic may be applied to the analysis of Petri nets. In order to 
conduct an analysis of processes, we must have a formal 
representation for them: we choose Demos, and present its salient 
characteristics.  We give a formal definition of its non-time 
semantics, and prove that this is, in some sense, correct. Following 
consideration of how we apply our process logic to Demos models, 
we propose a method for reducing the state-space of models 
generated by considering a (partially) synchronous execution.  We 
show that such a system at least correctly detects deadlock. 
 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2003 



Acknowledgements

Firstly, I would like to thank the Enterprise Solutions Department,
and HP Labs as a whole, for providing such a pleasant working
environment.

Thanks also to David Pym for a great deal of useful discussion on
the logical side of this work; his contribution to this cannot be over-
estimated.

Last, but by no means least, I would like to thank Chris Tofts for
proposing this project, guiding me into the subject area, provid-
ing a wealth of knowledge and, generally, making the time I spent
producing this so enjoyable.



Contents

1 Logical Framework 11
1.1 The (static) Logic of Bunched Implications . . . . . . . . . . . . 11
1.2 Transition systems . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Labelled transition systems . . . . . . . . . . . . . . . . . 14
1.3 Modal and Temporal Logics . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Hennessy-Milner Logic . . . . . . . . . . . . . . . . . . . . 15
1.3.2 General Hennessy-Milner Logic . . . . . . . . . . . . . . . 16
1.3.3 CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 CTL− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.5 Modal-µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Modal BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1 Additive modalities . . . . . . . . . . . . . . . . . . . . . 23
1.4.2 Multiplicative modalities . . . . . . . . . . . . . . . . . . 23
1.4.3 Observable vs. silent actions . . . . . . . . . . . . . . . . . 23

1.5 Petri nets in PBI . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Demos 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Transition rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Transition system σDemos . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Resource actions . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Sequential composition . . . . . . . . . . . . . . . . . . . . 34
2.3.5 Parallel composition . . . . . . . . . . . . . . . . . . . . . 34
2.3.6 Process synchronisation . . . . . . . . . . . . . . . . . . . 35
2.3.7 Non-blocking requests . . . . . . . . . . . . . . . . . . . . 36
2.3.8 Try, while and req . . . . . . . . . . . . . . . . . . . . . . 37
2.3.9 Repeat n-times . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Example derivations . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Correctness of transition system 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Soundness of transitions . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Weak bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Kernel of πDemos states . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Correspondence between Πk and σDemos states . . . . . . . . . . 62

2



3.7 Correctness of translations . . . . . . . . . . . . . . . . . . . . . . 64
3.7.1 Correctness of g . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.2 Correctness of f̄ . . . . . . . . . . . . . . . . . . . . . . . 65

4 Demos and PBI 66
4.1 PBI and σDemos . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 Intuitive account . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Deadlock in PBI . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Sub-deadlock . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Synchronous parallel rule 74
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Soundness: try and resource splitting . . . . . . . . . . . . . . . 75
5.3 Soundness: Synchrony . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Deadlock freedom equivalence in asynchronous and synchronous

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.1 Soundness of deadlock detection . . . . . . . . . . . . . . 82
5.4.2 Completeness of deadlock detection . . . . . . . . . . . . 84

6 Conclusions 87
6.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3



List of Figures

1 Intelligence agency network and process design . . . . . . . . . . 9
2 Intelligence agency process execution . . . . . . . . . . . . . . . . 10

1.1 Approximants of X = σ ∨ [−]X to form µX.σ ∨ [−]X . . . . . . 20
1.2 Approximants of X = σ ∧ 〈−〉X to form νX.σ ∧ 〈−〉X . . . . . . 21
1.3 Differing semantics of least and greatest fixed points for an ex-

ample state space . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 1.4(a) goes to 1.4(b). 1.4(c): no action — blocked by post-

condition. 1.4(d): no action — not all pre-conditions met. 1.4(e)
goes to 1.4(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 BNF syntax of restriced Demos considered . . . . . . . . . . . . . 30
2.2 Demos program for the intelligence agency example . . . . . . . . 30
2.3 Jobber soruce code . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Semaphore source code . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Deadlock source code . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 The correspodence between states of the transition system and
the of operational semantics. . . . . . . . . . . . . . . . . . . . . 62

3.2 Bijection between kernel and transition system . . . . . . . . . . 64

5.1 Reachable state space for kitchen example derived by asynchronous
transition system . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Derivation made with the unsound parallelisation rule . . . . . . 77
5.3 Path derived, deterministically, using synchronous parallel rule . 80
5.4 State space for kitchen example derived by the synchronous tran-

sition system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4



List of Tables

1.1 Kripke semantics of (static) BI . . . . . . . . . . . . . . . . . . . 12
1.2 Semantics of CTL formulæ . . . . . . . . . . . . . . . . . . . . . 18
1.3 Kripke semantics of PBI (excluding modalities) . . . . . . . . . 24
1.4 Kripke semantics of additive modalities of PBI . . . . . . . . . . 24
1.5 Kripke semantics of multiplicative modalities of PBI . . . . . . . 25
1.6 Kripke semantics of observable modalities of PBI . . . . . . . . 26

4.1 Demos semantics of PBI . . . . . . . . . . . . . . . . . . . . . . 67

5



Introduction

When we design complex systems, we should ask questions of them before they
are implemented — will it run fast enough; would it be more efficient for a
human to do a particular sub-task; etc. To answer such questions will require
automation.

In the general case, then, how are we to automate such analyses of systems?
Perhaps the most obvious manner (at least to the computer scientist with a
disposition towards the practical) is to simulate the design, probably observing
several ‘runs’ of the simulation, thereby repeating an experiment. Though, in
principle, this approach generalises to all types of system by Turing complete-
ness (and normally requires little background knowledge other than an under-
standing of the system and the ability to program), in some ways it is grossly
unsatisfactory. What if, for example, we are simulating a network and no run of
the simulation has a very large file being transmitted (or any other rare-event)?
Clearly, our results may be overly optimistic, which could lead, for example,
to us breaching the terms of a service-level agreement. Conversely, what if our
simulation has a few too many rare-events (large files)? This time, our results
may be overly pessimistic, resulting in the over-specification of the network at
financial cost to us. One answer to this is to run the simulation for longer, so as
to increase the probability that rare-events are encountered. Of course, though,
given a finite amount of time, our results will always be approximate.

An alternative approach is to construct an analytical model of the system to
be analysed. Returning to the network example, a model would probably result
in a set of equations to solve in order to obtain some measurements of the
system’s performance (metrics). The advantage of this is that one analysis
gives exact results, taking rare-events into fair consideration, and, very often,
can be obtained much faster than by simulation. The flip-side is that, generally,
we are only able to do this for particular classes of system. For example, the
simplest analyses of queuing networks (e.g., computer networks that transmit
packets) assume a (negative) exponential probability distribution of service time
and arrival rate; that is,

P (Service time 6 t) ∝ e−µt.

Fortuitously, many systems approximate very closely the assumptions made to
build such models. Proving that the assumptions behind such models are met
(for example, that the time between packet arrivals follows a negative expo-
nential distribution), though, is somewhat more complicated and subjective;
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simulation has the same problem, manifested in the problem of how to choose
the distributions or sample data that we use to parameterise the simulation.

We must now move on to decide upon the type of system that we are to model.
Naturally, we cannot hope to provide a mathematical model for all types of
system, able to answer all types of question! We shall consider a notion again
familiar to computer scientists, that of processes, and give the definition found
in [OED73]:

Process . . . A continous and regular action or succession of actions,
taking place or carried on in a definite manner; a continuous (natural
or artificial) operation or series of operations. . .

Central to our analysis of processes, of course, shall be the environment in
which they operate. In particular, a process may be acting in an environment
with other processes; we shall say that the processes are acting in parallel or
concurrently. It has long been known — before, even, the first parallel computer
was built — that it is difficult to reason about parallel processes, as noted in
the very first item to appear in the Communications of the ACM [Per58]. Our
work to provide some degree of automation should, therefore, be of some value.

In order to further restrict the the scope of our work, we shall analyse the
behaviour of processes when they interact through the acquisition and release of
resources. To borrow Robin Milner’s famous jobshop example [Mil89], consider
two workers, called jobbers, a hammer, a mallet and a stream of jobs to be
done. Considering the workers to be processes and the hammer and mallet to
be resources1, we might want to ask all sorts of questions. For example, would
we see a gain in productivity if we gave each jobber their own hammer and
mallet?

A different class of question relates to classical concurrency: do the jobbers
deadlock (not be able to take any action without having terminated)? Let us
suppose that the jobbers are simple folk; if they work in isolation, they will
work happily until the end of their day and will not deadlock. They are also
tidy folk, leaving the resources as they found them at the start of the day (so
they return the tools to their correct place). If the jobbers work at different
times of the day, we may conclude that they will not deadlock. Should, though,
our analysis of the activity of the jobbers take into account the times that they
actually work? C.A.R. Hoare [Hoa85] argues not: our analysis would not take
into account the outcome of a jobber arriving at work late and then working
late (a not inconceivable scenario!). Thus, perhaps, we should not argue that
the system never deadlocks.

To give a more concrete example and further justification, consider the com-
munication network of Figure 1(a). Nodes represent intelligence agencies in the
UK and the US, and arcs represent dedicated, secure communication channels
(perhaps based upon quantum encryption) that can only be ‘owned’ by one node
at a time; in a sense, they are resources. The hub in the centre of the diagram
is capable of serving many lines at once and represents no limitation on the
system. It is important to abstract away the irrelevant when modelling, so we

1We could also consider the hammer and mallet to be (very simple) processes, which alludes
to the consideration of resources as processes under certain circumstances
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shall ignore its behaviour. Suppose that MI6 has a process that starts every
day at 12:43GMT which sends some data from MI5 to the FBI. To do this, it
claims ownership of the MI6 line, followed by the MI5 line, then the FBI line.
Once a process (in this case, an intelligence agency) starts to get a line, no other
process can start to get the same line. Between each acquisition, a 2-minute
pause occurs to allow some handshaking protocol to occur. Similarly, the CIA
has a process that starts every day at 12:40GMT which sends information from
the FBI to MI5: in doing this, it claims the CIA line, the FBI line and then
the MI5 line. These processes are rpesented in in Figure 1(b). What normally
happens is that the CIA process has control of the MI5 line before MI6 tries to
acquire it. Consequently, the MI6 process waits until the MI5 line is released
thereby avoiding deadlock. This execution is illustrated in 2(a).

Now, suppose that the CIA process takes an extra two minutes to gain control
over the FBI line — possibly because of interference during the handshaking
period. At 12:46, the CIA process will try to gain control over the MI5 line but
will fail — it is now owned by MI6 — and so will wait for it to become available.
At 12:47, the MI6 process will try to acquire the FBI line but will also fail — it
is owned by the CIA — and so will wait. Both the CIA and the MI6 processes,
then, will wait indefinitely: they are in deadlock. This execution is shown in
2(b).

Unfortunately, if we had taken time into account when deciding upon deadlock
freedom, from our model we would never have known that deadlock could occur,
and would fail to see the inherent flaw in the system. This could be dangerous
for MI6 (and, similarly, the CIA) — MI5, which has responsibility for coun-
terespionage, might notice that its secure link with the outside world was never
available and investigate why this was so.

We have considered a discrete-event system — we do not consider actions on
resources to happen over a period of time. Further, our consideration shall be
of discrete-resource systems. So, rather than having 2.4 litres of oil that we can
partition to allocate to processes as we wish, we shall consider n units of oil
where n ∈ N (n is a non-negative integer). However, our theoretical approach
could well be extended to a notion of continuous resource. Thus the system
developed herein shall operate on discrete-event, discrete-resource processes.
Not coincidentally, we shall consider a simulation language, Demos, that has
both these properties.
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(a) Communication network

MI6 CIA
Get MI6 line Get CIA line
Get MI5 line Get FBI line
Get FBI line Get MI5 line

(transfer data) (transfer data)
Release all Release all

(b) Communication processes

Figure 1: Intelligence agency network and process design
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(a) Normal execution
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(b) Deadlocking execution

Figure 2: Intelligence agency process execution
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Chapter 1

Logical Framework

1.1 The (static) Logic of Bunched Implications

The Logic of Bunched Implications [OP99], BI, allows us to reason about re-
sources. Given a particular collection of resources (a model), we ask whether
propositional formulæ hold.

Technically, BI is a logic based around bunches, tree-like structures of propo-
sitions (and, in the predicate case, constants). It seeks to combine the addi-
tive semantics of intuitionistic logic (giving standard meaning to the operators
∧,∨,→) with the multiplicative semantics of Girard’s Linear Logic [Gir87] (giv-
ing the operators ∗,−∗). The multiplicative connectives, essentially, allow us
to make the kind of assertions that we would like to make about systems with
resources. When we write formulæ in BI, the multiplicatives shall bind more
strongly than the additives; conjunction shall bind more strongly than disjunc-
tion, which in turn binds more strongly than implication, and negation binds
strongest of all. All binary operators are taken to be right-associative (this is
only of importance to the implications — the other binary operators are com-
mutative and associative). For example,

φ ∗ ψ ∧ ψ −∗ γ ≡ (φ ∗ ψ) ∧ (ψ −∗ γ)

Logics are defined in two parts, syntax and semantics. The syntax of the logic
is just a way to write down sentences that relate to the semantics. Attached
to the syntax may be a deduction system, taking sentences written according
in the language defined by the syntax to derive other syntactically correct sen-
tences. The semantics of the logic defines what the formulæ written in the
syntax actually mean. It may well be the case (as it is with BI) that we can
define several semantics for the logic whilst preserving the ‘correctness’ of the
deduction system. We choose to consider one of the simplest (and the one that
can have the simplest notion of resource): the Kripke semantics.

The Kripke semantics of BI allows us to define the semantics through a math-
ematical structure called a monoid,

M = 〈M, e, ◦,v〉,
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where M represents a domain for our monoid, e represents the identity element
under composition, ◦ is commutative and represents the composition of elements
of M , and v is a pre-order on M. The semantics of BI based upon this monoid
is given in Table 1.1.

Let m ∈ M , p be an atomic proposition, ϕ,ψ range over propositions and
‖p‖ ⊆M be the set of states in which the proposition p holds. Then the Kripke
semantics is given by:

m |= p iff m ∈ ‖p‖

m |= ϕ ∧ ψ iff m |= ϕ and m |= ψ
m |= ϕ ∨ ψ iff m |= ϕ or m |= ψ
m |= ϕ→ ψ iff for all n v m, n |= ϕ implies n |= ψ

m |= ϕ ∗ ψ iff for some n, n′ ∈M m v n ◦ n′ and n |= ϕ and n′ |= ψ
m |= ϕ −∗ ψ iff for all n ∈M n |= ϕ implies m ◦ n |= ψ

Table 1.1: Kripke semantics of (static) BI

There are two types of operator in the logic: additive and multiplicative. The
additive operators, ∧ and →, are just as in intuitionistic propositional logic: ∧
is used to indicate that more than one formula holds in the state, and → is
implication.

More interesting are the multiplicative operators. In ϕ ∗ψ, ∗ is used to indicate
that we can partition (using ◦) our current state; one part satisfies ϕ and the
other ψ. ϕ −∗ ψ indicates that if we add all that we need to satisfy ϕ to our
current state, ψ will hold.

It may be helpful to consider a monoid based upon a notion of resource. If
we let R denote a multiset of discrete1 resources, P(R) denote the set of all
sub-multisets of R and multiset union be ], then we can define the monoid

M = 〈P(R), *+,],=〉.
The consequent intuitive meaning of m |= ϕ∗ψ is that we can split the resource
multiset m in two, one part making ϕ true and the other making ψ true. m |=
ϕ −∗ ψ intuitively means that given the resources to make ϕ true, if we add
them to what we have in m, ψ will be true.

Example (Discrete resources) For each resource r ∈ R, define ‖r‖ = *r+;
so, for every resource r, r holds iff r is the only available resource. Also define
a proposition movebolt, holding with *wrench,mallet+; it signifies that we can
move a bolt iff we have a hammer and a mallet available.

1As we have said, not, for example, n metres of string that can be split into m and m′

metres of string where m + m′ = n for arbitrary m, m′ ∈ R.
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The Kripke discrete resource semantics gives:

hammer |= hammer

hammer,mallet 6|= hammer

hammer,mallet |= hammer ∗mallet
hammer,mallet |= hammer ∗ >
hammer,mallet |= hammer ∗ > ∧ hammer ∗ >
hammer,mallet 6|= hammer ∗ hammer ∗ >
hammer,mallet 6|= (hammer ∗ >) ∗ (hammer ∗ >)
hammer,mallet |= wrench −∗ movebolt ∗ >
hammer,mallet |= (wrench −∗ movebolt) ∗ >
hammer,mallet |= movebolt −∗ mallet ∗mallet ∗ >
hammer,mallet 6|= mallet→ mallet ∗mallet ∗ >

The monograph [Pym02] provides a substantially more detailed, technical and
comprehensive account of BI. Though it is possible to encode action (Petri nets
are discussed in [POY02, Pym02]) into BI by attaching certain semantics, the
resource interpretation above does not have a notion of how resource evolves
with the action of processes; we are only able to make static judgements. The
necessary tools to describe action, transition systems and modal logics, are
introduced below.

Notice that we have defined neither negation nor falsity in this system. We could
have included falsity, ⊥, but this makes the associated natural deduction system
incomplete. With ⊥, we could define intuitionistic negation: ¬ϕ = ϕ→ ⊥. We
obtain a classical logic (thence negation) if v is equality.

1.2 Transition systems

Since the dissemination of Gordon Plotkin’s notes on Structural Operational
Semantics, [Plo81], as detailed in [Plo03], it has become commonplace to de-
scribe the activity of programming languages as a one-step relation between
states defined structurally. That is, we give an inductive definition of the effect
of each command on the state of the system. This is normally presented in the
proof-tree natural deduction style:

(RULE-NAME) :
Premises

Conclusions
(Condition)

This asserts that if we can derive by the set of rules all the premises then the
conclusions will hold, provinding the side-consdition is met. Thus, as we have
defined the transition relation structually, we can prove properties of the relation
by structural induction.

Consider, as an example, an elementary imperative programming language. The
one-step transition relation shall be written =⇒. A transition system shall
represent state as a function from variables to values, with s[x 7→ c] representing
the system state s but with x having the value c. If we let A JeK s represent
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the result of evaluating the arithmetic expression e in state s, we could define
assignment as follows:

(ASS) :
〈x := e, s〉 =⇒ s[x 7→ c]

(A JeK s = c)

This expresses that the program x := e executing in an arbitrary state s ter-
minates after one step leaving the same state other than x is now c = A JeK s,
the result of evaluating e in s.

Together with a series of other rules for the various programming language
constructs, for example the sequential composition of commands,

(
COMPI

)
:

〈s, P1〉 =⇒ 〈s′, P ′
1〉

〈s, P1;P2〉 =⇒ 〈s, P ′
1;P2〉

this would define the transition relation =⇒.

1.2.1 Labelled transition systems

It is sometimes useful to label the the transitions between states. As noted in
[Pit02], when we define the semantics of languages we usually have reduction
transitions (which describe real action within the system) and simplification ac-
tions (which describe, for example, modifications to syntax). Though it may be
considered desirable to define the transition relation solely in terms of reduction
transitions, using a number of auxilliary relations to describe simplification,
labelling allows us to make explicit the rôle of each transition. Furthermore,
labelling shall allow finer queries to be made in the modal logic (as shall be
indicated later) though non-labelled systems are commonplace e.g., [MP83].

As we have already stated, when we come to desribe Demos, we shall be consid-
ering the interaction between processes working on resources. In particular, we
shall consider the available resources within the system; that is, those that have
not been acquired by any process. This shall be described by a multiset; we let
R,R′, . . . range over such multisets of resource, and P, P ′, Q, . . . range over the
code remaining to be executed. We shall call R / JP K a state of the transition
system. Transitions are of the form R / JP K α−→ R′ / JP ′K. We read this as:

Initially, all the resources in R are available and we have an active
process P . After an action α, the resources in R′ are available and
the active process is P ′.

We distinguish two classes of transition: σ-transitions and τ -transitions. σ-
transitions indicate action, and τ -transitions indicate silent or invisible actions,
related to the simplification relations described above, that perform syntactic
operations to expand loops and skip by commands that are not considered.

An alternative would have been to define an equivalence relation, based upon
syntax, to indicate that we consider pairs of states to be the same. For example,
given that our consideration is of action rather than time, we would consider R/Jhold(t); putR(r, 1)K and R / JputR(r, 1)K to be equivalent. Such an equivalence
relation, though, would decrease the tractability of search in a language such
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as Prolog: the arbitrary introduction of hold commands, do 0 loops etc. (the
symmetry of the equivalence relation being the key problem) would be allowed,
so we choose to define the τ relation, which is not symmetric.

An excellent account of labelled transition systems is given in [Pa̧c89], along
with a method for analyzing assertions made of programs.

1.3 Modal and Temporal Logics

The Free Online Dictinary of Computing [FOL] defines a modal logic to be:
An extension of propositional calculus [propositional logic] with operators that
express various “modes” of truth. So, rather than just being able to express “ϕ
is true”, we might be able to express that “ϕ is possibly true,” “ϕ is necessarily
true,” “ϕ is true at some point in the future,” “ϕ is true in the next state,” and
so on.

Formally, adopting the Kripke semantics of modal logics, we define a set of
states (or worlds), W , and a relation R between these states. This defines a
Kripke frame (essentially, just a set of states with transitions between them).
We then define an evaluation function for propositional atoms in each state,
h(s, p) : {>,⊥} (an alternative notation to this is s ∈ ‖p‖ ⇐⇒ h(s, p)). A
modal logic allows us to write formulæ over the transitions between worlds in
the frame. So, for example, we can write “given that I am in world s, in every
reachable world, (something) holds”.

Regarding worlds as program states, the relation between worlds as time (or
program execution), we obtain an important type of modal logic: temporal logic.
We see that temporal logics allow us to reason about the activity of processes.
In their simplest form, they allow us to make assertions about the state of a
process after one execution step; this is easily generalised to multiple-steps, as
shall be outlined below.

1.3.1 Hennessy-Milner Logic

Here we shall give an account of Hennessy-Milner logic, which was introduced
in [HM80, HM85]. Our notation shall follow that presented later in [Mil89]; in
§1.3.2 we shall generalise the following definition to match the system of [Mil89].

Firstly, in order to create a well-founded inductive definition of modal formulæ,
we shall need to define when an atomic proposition is satisfied. The definition
is straightforward: a state s satisfies an atomic proposition p, written s |= p, iff
s ∈ ‖p‖, where ‖p‖ is the set of states in which the proposition holds. Similarly,
the definitions of conjunction and disjunction follow the additive cases of Table
1.1:

s |= p ∧ q iff s |= p and s |= q

and
s |= p ∨ q iff s |= p or s |= q

Suppose that a process is in a state s. If, by some action in a set A, a transition
from s can be derived to a state in which a (possibly temporal) formula ϕ
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is true, we write s |= 〈A〉ϕ (where 〈A〉 is pronounced “diamond-A”). If all
transitions derivable from s by actions in A lead to states in which ϕ holds, we
write s |= [A]ϕ (pronounced “box-A”). In a more formal notation:

Definition: (Simple modalities)

s |= 〈A〉ϕ iff ∃α, s′. α ∈ A and s α−→ s′ and s′ |= ϕ

s |= [A]ϕ iff ∀α, s′. α ∈ A and s α−→ s′ implies s′ |= ϕ

Pictorially, these express the following:

s |= 〈−〉ϕ:

��

s |= [−]ϕ:

��

Assuming the existence of negation within our logic, it is not hard to see that
the following equivalence exists between the modalities:

〈A〉ϕ ⇐⇒ ¬[A]¬ϕ

We may choose, then, only to define one of the above modalities within the
basic logic, and define the other to be a ‘derived’ modality.

In the sequel it shall be convenient to use an abbreviated syntax to define the
action set. Assuming that the set of all action labels is A, we shall write:

[a, a′, . . .] for [{a, a′, . . .}];
[−A] for [A \A];

[−a, a′, . . .] for [A \ {a, a′, . . .}];
[ ] for [∅].2

In particular, we shall make use of [−], which abbreviates [A]. The obvious
symmetric abbreviations shall be made for the diamond modality as well.

1.3.2 General Hennessy-Milner Logic

Though the inductive definition above allows formulæ to have nested modalities,
so far we can only make statements about processes after a finite number of
steps. Furthermore, to assert that a program terminates before, say, 1000 steps
would require a very long sentence.

2There is no fixed convention for this abbreviation. Its use shall be avoided wherever
possible.
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With this in mind, suppose that we generalise conjuction (or its dual, disjunc-
tion) to require validity of all conjuncts indexed by a set I:

s |=
∧
i∈I

ϕi iff ∀i ∈ I. s |= ϕi

Given that we can express, for arbitrary n, that a program in state s terminates
(or at least stops running) after exactly n transitions from some set A as

s |= 〈A〉n[A]⊥,

we may express the above property (termination before 1000 steps) succinctly
as

s |=
∨

06i61000

〈A〉i[A]⊥.

Notice that we have abbreviated i ∈ {0, . . . , 1000} by 0 6 i 6 1000.

If we allow infinitary conjunction (i ∈ N ∪ {ω}, where ω is the first ordinal, the
least number greater than every number in N, otherwise written ‘N’ itself; we
shall interchangably write Nω for N ∪ {ω}), we may express deadlock freedom
of processes by the simple formula:

Dhml
f

def⇐⇒ ¬
∨

i∈N∪{ω}

〈A〉i[A]⊥

which is logically equivalent to ∧
i∈N∪{ω}

[A]i〈A〉>

The reader may gain some intuition as to the meaning of this sentence by
‘unfolding’ the conjunction. It expresses that the process is not stuck in this
state, that every state reachable in one transition is not stuck (and so we can
perform another transition), that every state reachable in two transitions is not
stuck (and so we can perform another transition), . . . .

1.3.3 CTL

The Computation Tree Logic of [CES86] allows some temporal properties to be
expressed more simply than the Hennessy-Milner logic described above does,
as well as being more amenable to model checking. The definition of CTL in
[CES86] requires that the transition relation is total, i.e., every state has a next
state. We regard this as unreasonable for our purposes, so we shall not require
this.

Letting AP be the set of all atomic propositions, the following two rules induc-
tively define the class of CTL formulæ:

1. Every proposition p ∈ AP is a CTL formula.

2. If ϕ and ψ are CTL formulæ, so are ¬ϕ,ϕ ∧ ψ, 〈−〉ϕ, [−]ϕ,∀[ϕUψ] and
∃[ϕUψ].
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The semantics attached to the formulæ composed of first-order propositional
logic operators is conventional, as for the box and diamond modalities. ∀[ϕUψ]
intuitively means: whatever path is chosen from the given state, ϕ will hold until
ψ holds (and ψ actually does hold somewhere). Similarly, ∃[ϕUψ] intuitively
means: a path can be chosen where ϕ holds until ψ holds (and ψ actually does
hold somewhere).

A path is an possibly infinite sequence of states, [s0, s1, . . .] where ∀i > 0[ si
σi−→

si+1 ] and σ−→ is the transition relation of the labelled transition system. If the
path is finite, there must be no derivable transition from the last state.3 Using
this definition, Table 1.3.3 defines the semantics of CTL.

[CES86] gives a relatively straightforward algorithm for model-checking CTL
formulæ where the state space of the given process is finite.

s0 |= p iff s0 ∈ ‖p‖

s0 |= ¬ϕ iff s0 6|= ϕ

s0 |= ϕ ∧ ψ iff s0 |= ϕ and s0 |= ψ

s0 |= ϕ ∨ ψ iff s0 |= ϕ or s0 |= ψ

s0 |= 〈−〉ϕ iff for some state s′ and action α ∈ A,
s0

α−→ s′ and s′ |= ϕ.

s0 |= [−]ϕ iff for all states s′ and actions α,
s0

α−→ s′ implies s′ |= ϕ

s0 |= ∀[ϕUψ] iff for all paths [s0, s1, . . .],
∃i > 0[ si |= ψ ∧ ∀j[0 6 j < i =⇒ sj |= ϕ] ]

s0 |= ∃[ϕUψ] iff for some path [s0, s1, . . .],
∃i > 0[ si |= ψ ∧ ∀j[0 6 j < i =⇒ sj |= ϕ] ]

Table 1.2: Semantics of CTL formulæ

Deadlock freedom may be represented in CTL as:

DCTL
f

def⇐⇒ ¬∃[>U¬〈−〉⊥]

1.3.4 CTL−

CTL provides a relatively clear language for expressing how propositions hold
through the evolution of processes. In many cases, however, it is sufficient to
use a subclass of CTL formulæ called CTL−.

3As we do not require that the transition relation be total, our definition of path differs
from that in [CES86] in that we allow finite sequences.
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CTL− does not have the ∃[−U−] or ∀[−U−] modalities, but does have ∃F,∀F,∃G
and ∀G. These are defined as follows (through the semantics of the CTL modal-
ities):

• s |= ∃Fϕ def⇐⇒ s |= ∃[>Uϕ]
This means that there is a path in which ϕ holds in some future state —
ϕ potentially holds.

• s |= ∀Fϕ def⇐⇒ s |= ∀[>Uϕ]
This means that along every path from s, there is a state in which ϕ holds
— ϕ is inevitable.

• s |= ∃Gϕ def⇐⇒ s |= ¬∀[>U¬ϕ]
This means that there is a path from s where ϕ holds in every state.

• s |= ∀Gϕ def⇐⇒ s |= ¬∃[>U¬ϕ]
This means that for every path from s, ϕ holds in every state — ϕ is
globally true.

∀F is frequently written AF; ∃G is frequently written EG; etc.

We can represent deadlock freedom in CTL−as:

DCTL−

f
def⇐⇒ ∀G〈−〉>

1.3.5 Modal-µ

The modal-µ calculus (a good introduction may be found in [BS01]; we sum-
marize the essentials here) is a logic where formulæ may be defined recursively.
Deadlock freedom, for example, may be recursively defined with respect to a set
of actions A as:

Drec
f = 4〈A〉> ∧ [A]Drec

f

This states that a state is deadlock free if it is possible to go to another state
and any state reached is also deadlock free.

As before, we define the set of states in which a proposition ϕ holds as ‖ϕ‖ ∈
P(S), where S is the set of all states and P(S) is the powerset of the set of states,
P(X) = {Y |Y ⊆ X}. In the above example, we have used Drec

f as a variable over
logical forumlae. If a formula has a free variable Z, we indicate this by writing
it as ρ(Z). This may be regarded as a function ρ(Z) : PS → PS. Now, by the
Knaster-Tarski theorem, the function has least and greatest fixed points; that
is, there are least and greatest sets that are solutions to the equation Z = ρ(Z).
These shall be denoted µZ.ρ(Z) and νZ.ρ(Z), respectively. For reference, the
semantics of the fixpoint operators µ and ν is given by:

‖µZ.ρ(Z)‖ =
⋂
{S|S ⊇ ‖ρ(S)‖}

and
‖νZ.ρ(Z)‖ =

⋃
{S|S ⊆ ‖ρ(S)‖}

4We shall see later that we should have used ⊆ rather than =
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One of the difficulties of writing formulæ in modal-µ is deciding which fixpoint
operator to use, and, for the reader, understanding the meaning of this choice.
We may gain some intuition if we consider the way in which the fixed points may
be constructed. To construct the least fixed point of a formula X = σ∨ [−]X for
the state-space illustrated through Figure 1.1, we would start with the formula
holding nowhere; that is, ‖X‖ = ∅. We shall call this the zeroth-approximant,
written X0 (Fig. 1.1(a)). Now, one application of the formula later, we have
X1 = ‖σ‖∪ the set of states with no transitions from them; this is precisely the
set of states where σ holds or every transition from the state leads to a state
in ∅ (Fig. 1.1(b)). This series of approximations continues until a fixed point is
reached (Fig. 1.1(d)).

i i i
i i i

- -�

- -

6 6

σ

(a) Zeroth approximant

i i i
i i y

- -�

- -

6 6

σ

(b) First approximant

i i i
i y y

- -�

- -

6 6

σ

(c) Second approximant

i i i
y y y

- -�

- -

6 6

σ

(d) Least upper bound

Figure 1.1: Approximants of X = σ ∨ [−]X to form µX.σ ∨ [−]X

Similarly, the greatest fixed point may be found by iterating from the set of all
states, taking the intersection of the iterates. An example of this is given in
Figure 1.2.

As an alternative to this interpretation, the authors of [BS01] propose the fol-
lowing maxim:

ν means looping; µ means finite looping.

Consider the formula Z = σ∨〈−〉Z, meaning that a state either makes σ hold or
some such state is reachable. The maxim gives different meaning to the formulæ
µZ.σ ∨ 〈−〉Z and νZ.σ ∨ 〈−〉Z; the former means that there is a finite-length
path to a state where σ holds, whereas the latter means that there is a possibly
infinite length path to a state where σ holds. Notice that this does not imply
that σ holds in any particular state s ∈ S! Figure 1.3 is an illustration of the
semantics of this formula. Further difficulty comes from the nesting of fixpoint
operators, which can be extremely difficult to interpret. The reader, again, is
referred to [BS01] for a proper treatment of the logic. An exercise for the reader
is to decide which fixpoint operator should be used in the definition of deadlock
freedom5.

5Answer: ν, giving Dµ
f

def
= νX.〈A〉> ∧ [A]X.
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Figure 1.2: Approximants of X = σ ∧ 〈−〉X to form νX.σ ∧ 〈−〉X

i
i i

i
ii

i i

�
��

-

@
@R

�
�	�@

@I

?
-

(a) µZ.σ ∨ 〈−〉Z
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Filled circles represent states in the fixed point solution for Z; hollow circles
represent states not in the fixed point solution for Z. σ holds in no state.

Figure 1.3: Differing semantics of least and greatest fixed points for an example
state space
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It is possible to encode all CTL formulæ quite simply in modal-µ.

• ∃[ϕUψ] ⇐⇒ µZ.ψ ∨ (ϕ ∧ 〈−〉Z).

• ∀[ϕUψ] ⇐⇒ µZ.ψ ∨ (ϕ ∧ [−]Z ∧ 〈−〉Z).

The definition of ∀[−U−] requires that we be able to enter a state in which Z
holds because we do not assume that the transition relation is total.

In defining the modalities of CTL−, we make use of the modal-µ equivalence
¬µZ.(¬ϕ) ≡ νZ.ϕ.

• ∀Gϕ def⇐⇒ νZ.ϕ ∧ [−]Z;

• ∃Gϕ def⇐⇒ νZ.ϕ ∧ (〈−〉Z ∨ [−]⊥);

• ∀Fϕ def⇐⇒ µZ.ϕ ∨ ([−]Z ∧ 〈−〉Z);

• ∃Fϕ def⇐⇒ µZ.ϕ ∨ 〈−〉Z.

CTL may not, however, encode all formulæ written in modal-µ; we see that
modal-µ is more powerful than CTL (and also, therefore, CTL−).

The Edinburgh Concurrency Workbench [MS] uses this fact — natively, the
system checks assertions made in modal-µ, but it is possible to load macros
that convert formulæ written in CTL or CTL− to modal-µ. Users that are not
fluent in modal-µ can, therefore, use a simpler language.

1.4 Modal BI

The addition of modalities to BI was first suggested in [POY02, Pym02]. Fol-
lowing our pedagogical account of modal calculi, we shall now extend these
definitions to define PBI6. We shall not venture beyond the modalities of HML
at this stage, though it would not be hard to extend the logic to allow recursion
in the manner of modal-µ, for example. As before, process-resource terms shall
be written R / JP K, where R represents the globally available resources and P
represents the current state of the process. We define the set of all such states
to be S = Res× Proc.

As is the case for BI, the semantics of the logic is defined according to a Kripke
resource monoid. This time, though, we shall define the monoid over process-
resource pairs:

M = 〈Res× Proc, (eR, eP ), ◦,v〉,

where Res× Proc is the set of all process-resource terms S, ◦ is a composition
operator, (eP , eR) is the identity element under ◦, and v is a pre-order on S.
As S is a set of pairs, we shall let R / JP K range over it.

Table 1.3 gives the Kripke resource monoid semantics of the non-modal part of
PBI. This corresponds to the semantics of BI, other than the multiplicative

6Process BI
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units, IP and IR. These are introduced to allow expression of zero-resource and
null-process respectively. So:

‖IR‖ = eR × Prog

‖IP ‖ = Res× eP

We may see the normal multiplicative unit of BI, I, as IR ∧ IP . Thus I is
extraneous. In the sequel, we shall take modalities to bind more strongly than
anything else; between themselves, they shall be of equal precedence.

1.4.1 Additive modalities

As the static logic, BI, has both additive and multiplicative operators, it seems
natural to introduce both additive and multiplicative modalities into our process
logic.

Presented in Table 1.4, the additive modalities describe process evolution with-
out a change in the resource component. For resource formulæ ϕR, such a defini-
tion would allow the arbitrary introduction and removal of additive modalities,

(DIres) :
R / JP K |= ϕR ϕR : RForm

R / JP K |= 〈−〉ϕR

(and similar for ‘box’ and elimination rules), where ϕR : RForm inicates that
ϕR is a resource formula.

1.4.2 Multiplicative modalities

We shall define four multiplicative modalities, 〈−〉+new, [−]+new, 〈−〉−new and
[−]−new, in Table 1.5. In contrast to the additive modalities, we do not have
the arbitrary introduction of modalities to resource propositions. Intuitively,
they refer to transitions that involve contraction or expansion of the resource
component.

The distinction between the diamond and box modalities is conventional: the
diamond modalities refer to the existence of a transition satisfying a property,
and the box modalities refer to all transitions satisfying a property. The dis-
tinction between the ‘+’ and ‘−’ modalities is more interesting. The positive
multiplicatives refer to transitions that involve ‘releasing’ a resource and process
component specified by the � relation. The negative modalities refer to transi-
tions that ‘acquire’ or remove a specified resource and process component (we
denote this using �, though it could be the same relation).

For the moment, we shall not venture to extend the logic with e.g., the modalities
of CTL or modal-µ. Infinitary conjunction and disjunction shall, though, be
allowed.

1.4.3 Observable vs. silent actions

Hitherto we have failed to consider how the above modalities may take into
account the distinction between observable and silent actions. Two options
exist:
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R / JP K |= p iff R / JP K ∈ ‖p‖
R / JP K |= ϕ ∧ ψ iff R / JP K |= ϕ and R / JP K |= ψ
R / JP K |= ϕ ∨ ψ iff R / JP K |= ϕ or R / JP K |= ψ

R / JP K |= ϕ→ ψ iff for all R′ / JP ′K v R / JP K
R′ / JP ′K |= ϕ implies R′ / JP ′K |= ψ

R / JP K |= ϕ ∗ ψ iff for some S / JQK ,S′ / JQ′K ∈ S
[ R / JP K v (S / JQK) ◦ (S′ / JQ′K)

and S / JQK |= ϕ and S′ / JQ′K |= ψ ]
R / JP K |= ϕ −∗ ψ iff for all S / JQK ∈ S

S / JQK |= ϕ implies (R / JP K ◦ S / JQK) |= ψ

R / JP K |= > for all R / JP K ∈ S
R / JP K |= ⊥ for any R / JP K ∈ S
R / JP K |= IP iff for some R ∈ Res. R / JP K v R / eP

R / JP K |= IR iff for some Q ∈ Prog. R / JP K v eR / JQK
R / JP K |= I iff R / JP K v er / eP

Table 1.3: Kripke semantics of PBI (excluding modalities)

R / JP K |= [A]ϕ iff ∀α ∈ A.
R / JP K α−→ R / JP ′K implies R / JP ′K |= ϕ

R / JP K |= 〈A〉ϕ iff ∃α ∈ A.
R / JP K α−→ R / JP ′K and R / JP ′K |= ϕ

Table 1.4: Kripke semantics of additive modalities of PBI
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R / JP K |= 〈A〉+newϕ iff ∃a ∈ A. ∃S / JQK ∈ PROC.
a � S / JQK

and R / JP K a−→ (R / JP ′K) ◦ (S / JQK)
and (R / JP ′K) ◦ (S / JQK) |= ϕ

R / JP K |= [A]+newϕ iff ∀a ∈ A. ∀S / JQK ∈ PROC.
a � S / JQK

and R / JP K a−→ (R / JP ′K) ◦ (S / JQK)
implies (R / JP ′K) ◦ (S / JQK) |= ϕ

R / JP K |= 〈A〉−newϕ iff ∃a ∈ A. ∃S / JQ1K ,T / JQ2K ∈ PROC.
a � S / JQ1K
and R / JP K v (S / JQ1K) ◦ (T / JQ2K)
and R / JP K a−→ T / JQ′

2K
and T / JQ′

2K |= ϕ

R / JP K |= [A]−newϕ iff ∀a ∈ A. ∀S / JQK ,T / JQ2K ∈ PROC.
a � S / JQ1K
and R / JP K v (S / JQ1K) ◦ (T / JQ2K)
and R / JP K a−→ T / JQ′

2K
implies T / JQ′

2K |= ϕ

Table 1.5: Kripke semantics of multiplicative modalities of PBI

• The transition system could be augmented with rules to provide

σ−→= τ−→
∗ σ−→ τ−→

∗

for all observable σ.

• Observable transition modalities could be introduced to complement σ=⇒.
They would be just as the modalities presented here, other than requiring
an observable action σ=⇒ rather than any type.

We shall adopt the second solution: it allows us to define distinct notions of
program equivalence, and otherwise results in a clearer notion of activity in the
logic.

1.5 Petri nets in PBI

Petri nets can be used to represent evolving systems. State of the system is
described by the distribution of tokens to places, forming a marking. State
evolves by the pre-conditions (a set of places) of an action being met (hav-
ing a token), along with all the post-conditions (a set of places) being empty.
Following the action, the places forming its post-conditions are then marked.
Several introductions to Petri nets exist, e.g., [Mur89] and the introduction to
[MBC+95]. Petri nets can be represented graphically: it is conventional to draw

25



R / JP K |= 〈〈A〉〉ϕ iff ∃a ∈ A.
R / JP K a=⇒ R / JP ′K
∧R / JP ′K |= ϕ

R / JP K |= VAUϕ iff ∀a ∈ A.
R / JP K a=⇒ R / JP ′K
∧R / JP ′K |= ϕ

R / JP K |= 〈〈A〉〉+newϕ iff ∃a ∈ A.
a � S / JQK

and R / JP K a=⇒ (R / JP ′K) ◦ (S / JQK)
and (R′ / JP ′K) ◦ (S / JQK) |= ϕ

R / JP K |= VAU+
newϕ iff ∀a ∈ A.

a � S / JQK
and R / JP K a=⇒ (R / JP ′K) ◦ (S / JQK)
implies (R′ / JP ′K) ◦ (S / JQK) |= ϕ

R / JP K |= 〈〈A〉〉−newϕ iff ∃a ∈ A. a � S / JQ1K
and R / JP K v (S / JQ1K) ◦ (T / JQ2K)
and R / JP K a=⇒ T / JQ′

2K
and T / JQ′

2K |= ϕ

R / JP K |= VAU−newϕ iff ∀a ∈ A. a � S / JQ1K
and R / JP K v (S / JQ1K) ◦ (T / JQ2K)
and R / JP K a=⇒ T / JQ′

2K
implies T / JQ′

2K |= ϕ

Table 1.6: Kripke semantics of observable modalities of PBI

places as circles, tokens as dots, and actions as bars. Pre-conditions of actions
are drawn as arrows leading into the action, and post-conditions are drawn as
arrows leading away. Figure 1.4 gives some examples.

More formally, a net is a 4-tuple, N = 〈P, T, pre, post〉. A marking M is a
function giving the number of tokens in a given place. We shall consider M :
P → {0, 1}. Taking M to be the set of all markings, P is the set of places
(circles), T the set of transitions (bars), and pre, post : T → M are functions
that return the required markings before and after a given transition (arrows).

As described in [POY02, Pym02], it is possible to encode Petri nets in BI. We
denote composition of markings M and N , M +N , and define:

(M +N)p =
{

0, Mp = 0 ∧Np = 0
1, otherwise .

This restricts our attention to the variant of Petri nets where at most one token
occurs in any place. [−] shall denote the empty marking (i.e., for all p, [−]p = 0).
We consider only finite Petri nets, so dom(M) is finite.
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(a) (b)

(c)

(d)

(e) (f)

Figure 1.4: 1.4(a) goes to 1.4(b). 1.4(c): no action — blocked by post-condition.
1.4(d): no action — not all pre-conditions met. 1.4(e) goes to 1.4(f)
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Thus [POY02] defines a pre-ordered commutative monoid

〈M, [−],+,v〉.

Petri nets, therefore, give semantics to BI. We represent action (transitions)
between Petri net markings using v. So, for example, N v M iff from M a
number of transitions lead to a marking N . This interpretation makes →, in a
sense, a global temporal operator similar to ∀G in CTL: m |= ϕ → ψ is true
if in all reachable states, if ϕ is true then ψ is true. We also lose the ability to
describe only the current marking using multiplicative conjunction, ∗.
As mentioned before, we chose to allow only one token per place in each marking.
Depending on the application, it would be quite easy to generalise away from this
restriction: we would simply take M,N : P → N and (M+N)p = Mp+Np, and
relax the requirement that the post-condition of a transition be empty before
the transition can take place.

It is also posssible to encode Petri nets in PBI. In essence, all we do is take
marked places as resources, and the graph formed by 〈pre, post, P, T 〉 as the
process term. Graphically, thhe process term would simply be the net with no
places marked. Writing N [X] to mean a Petri net N that has a sub-net X and
M for a marking (set of marked places), we can define a transition relation to
describe the activity of Petri nets. As an example,

(STRAN) :
M, p /

q
N [p→ t →m]

y t−→ M,m /
q
N [p→ t →m]

y (m 6∈ M)

for an arbitrary net N [p→ t →m] with a transition t such that pre(t) = {p} and
post(t) = {m}; the pre- and post-conditions in this specific case each comprise
of only one place.

With such a transition relation, we can ask questions relating to the con-
sequences of additional places being marked and tokens being removed from
places. For example, the semantics gives us that

* + / JNK |= m −∗ ϕ

asks if ϕ holds of a state in which only m is marked. We may use the modalities
to ask of the markings formed by transitions. The correspondence between
questions posed of Demos states and Petri nets is so great that the reader is
referred to §4.1 for a discussion of the logic presented.

The invariance in the process term need not necessarily be so: we could have
a Petri net that changes. Such a system would describe a dynamic Petri net
[AB96]. Unlike our presentation of additive modalities here, we could perhaps
consider additive modalities as referring to transitions in which only the marking
changes, and multiplicative modalities as referring to transitions in which the
net may change. Further consideration of this, though, is beyond our current
scope.
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Chapter 2

Demos

2.1 Introduction

Demos [BT01] is a simulation language for modelling processes, executing in
parallel, that interact through taking, and then relinquishing, control of re-
sources.

As indicated by the title of the manual [BT01], the value of the language is that
its operational semantics is clearly defined [TB01]. It is possible, therefore, to
define translations between Demos programs and other systems and then prove
the translation correct. For example, Demos programs can be translated to CCS
processes [TB94, TB95, BTa, BTb] and to Petri nets [Tof01] (again, if we fail
to model time). Because the translation is demonstrably correct, we can have
confidence that any results obtained of a Demos model by, say, translating to
CCS and then using the Edinburgh Concurrency Workbench [MS], are correct.

We refer the reader to [BT01] for an introduction to the language.

This document, in order to maintain a concise notation, shall consider only a
subclass of Demos programs, the syntax of which is given in Backus-Naur form in
Figure 2.1. Notably, this does not include variables, or bins or synchronisations
with values.

Returning to our intelligence agency example, we may model the system in
Demos by the program of Figure 2.2. The trace (omitted) indicates no deadlock.

We shall use the abbreviation ε for the null process, a process incapable of
any action. Letting PROG be the set of correct processes derived from the
BNF description, the set of processes is Code = {ε} ∪ PROG. Writing ·‖· for
the parallel composition of processes and ·; · for the sequential composition of
processes (see later), the following structural equivalences should be taken to
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Prog ::= Res(r, n)
∣∣ Bin(r, n) ∣∣

Entity(class, t)
∣∣ Class name = {Decl}

∣∣
close

∣∣ Prog;Prog ∣∣ hold(t)
Decl ::= getR(r, n)

∣∣ putR(r, n)
∣∣

getB(r, n)
∣∣ putB(r, n)

∣∣
sync(x)

∣∣ getS(x, n)
∣∣ putS(x, n)

∣∣
try [cond] then Decl etry [cond] then Decl

∣∣
while [cond] do Decl

∣∣ do n Decl ∣∣ req[cond] ∣∣
Entity(class, t)

∣∣ hold(t) ∣∣
Decl;Decl

cond ::= getR(r, n)
∣∣ getB(r, n)

∣∣ getS(x, n)
∣∣ cond, cond

Figure 2.1: BNF syntax of restriced Demos considered

cons ACT_TIME6 4;
cons ACT_TIMECIA 4;

class MI6 = {
getR(MI6_line, 1); hold(2);
getR(MI5_line, 1); hold(2);
getR(FBI_line, 1); hold(2);

hold(ACT_TIME6);

putR(FBI_line, 1); putR(MI5_line, 1); putR(MI6_line, 1);
}

class CIA = {
getR(CIA_line, 1); hold(2);
getR(FBI_line, 1); hold(2);
getR(MI5_line, 1); hold(2);

hold(ACT_TIMECIA);

putR(MI5_line, 1); putR(FBI_line, 1); putR(CIA_line, 1);
}

Res(CIA_line, 1); Res(FBI_line, 1);
Res(MI6_line, 1); Res(FBI_line, 1);

Entity(CIA, 12*60 + 40); %12:40
Entity(MI6, 12*60 + 43); %12:43

Figure 2.2: Demos program for the intelligence agency example
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exist:

JP‖QK ≡ JQ‖P KJP‖(Q1‖Q2)K ≡ J(P‖Q1)‖Q2KJP‖εK ≡ JP KJε;P K ≡ JεKJP ; εK ≡ JP K
We shall, though, define the transition system so as to make these equivalences
unnecessary in the derivation of transitions.

The reader shall recall that in our definition of PBI we required a transition
relation to describe the activity of processes. This is presented in the following
section, and shall be called σDemos.

2.2 Transition rules

Notation Let R denote the set of actual resources; r0, r1, . . . shall range over
R. In the sequel, we shall find it convenient to think of processes as resources.
We can define the set of resources (actual and processes)

R def= P+(R) ] P(PROC)

where P+(R) denotes the set of all sub-multisets of R. R ∈ R shall denote a
multiset of resources; multiset operations shall be as set operations tagged with
a ‘+’. R, r shall denote the multiset R with one unit of resource r added. That
is,

R, r def= R ] *r+ .
We shall write rn for ]n

1 *r+. A state in the transition system shall be represented
by a pair, s ∈ R× PROG. We let the set of all states be Ω def= R×PROC.

Let the set Act be the set of actions1 that any Demos program may make,
ranged over by σ. We can define a transition relation, −→⊆ Ω × Act × Ω, be-
tween programs and the resources they hold; we shall use infix notation for the
relation. It is defined, inductively, according to the following set of rules, which
essentially give the (exclusively) resource-sensitive, non-temporal structural op-
erational semantics of Demos programs.

As well as observable actions, we shall allow silent (non-observable) transitions;
such transitions shall be written R / JP K τ−→ R′ / JP ′K2. Recall that this should
decrease the level of non-determinism within the proof system compared to an
equivalence relation.

It may be useful later to define a new transition relation,

σ=⇒ def= τ−→
∗ σ−→ τ−→

∗
,

1Silent and observable
2The inspiration for ‘τ ’, obviously, is CCS
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where S∗ denotes the reflexive, transitive closuse of the relation S. Alternatively,
we may define =⇒ inductively:

(OBSER0) :
R / JP K σ−→ R′ / JP ′K
R / JP K σ=⇒ R′ / JP ′K

(OBSER1) :
R / JP K τ−→ R′′ / JP ′′K R′′ / JP ′′K σ=⇒ R′ / JP ′K

R / JP K σ=⇒ R′ / JP ′K
(OBSER2) :

R / JP K σ=⇒ R′′ / JP ′′K R′′ / JP ′′K τ−→ R′ / JP ′K
R / JP K σ=⇒ R′ / JP ′K

The symbol P (and P1, P2, . . . , Q, . . .) is used frequently throughout this doc-
ument. In general, it ranges over processes, including parallel processes. It is
also used to range over non-parallel processes — that is, bodies of code. The
reader should extract the appropriate choice between these from the syntax of
Demos code.

2.3 Transition system σDemos

We shall write R / JεK for cleanly terminated states. The restricted subset
of Demos considered here has the useful property that one can deduce what
resources are held by a given process by examining the code of the process, under
the assumption that the process code is well formed (only puts resources that it
holds) — for our restricted language, this property can be checked syntactically.
Consequently, we do not need to store this information, e.g., in the process term.

The declaration of each process (the Entity command) attaches to each non-
parallel process a label ` ∈ Label, where Label is the set of all process labels.
A process P labelled ` shall be written P[`]. For example, if the jobbers in the
jobshop example are called Bob and Alice, we would write

q
J[Bob]‖J[Alice]

y
. The

process label shall be included in the action label of any transition derived by
a non-parallel process so that in the process logic we will be able to determine
which process is acting. We shall illustrate this in the first rule defined below and
in the definition of Entity; otherwise, for clarity, it shall be omitted. Moreover,
in the sequel, except where this label is of particular interest to us, we shall omit
the process labels. We shall assume that σ allows labels to be carried through
from sub-derivations.

2.3.1 Resource actions

We commence by defining how processes acquire and release resources in σDemos.
To get a resource, a process simply removes the resource from the collection of
available resources if it is available. If it is not, the process will not be able to
pass the command, thus simulating the process waiting for the resource. Re-
leasing a resource is just a case of replacing the resource in the collection. The
rules for bins and actual resources are the same in σDemos; in Demos itself,
however, bins are used to model resources that may be generated or consumed
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by processes. For example, a process that must withdraw £50 from a bank
account b before executing P should be modelled getB(b, 50);P .

(GETn
R) :

R, rn /
q
getR(r, n)[`]

y `:getRn
r−→ R / JεK

(PUTn
R) :

R / JputR(r, n)K putRn
r−→ R, rn / JεK

(GETn
B) :

R, rn / JgetB(r, n)K getBn
r−→ R / JεK

(PUTn
B) :

R / JputB(r, n)K putBn
r−→ R, rn / JεK

Note that in the rules (PUT), we have assumed that processes are well formed
in that we have not checked that they own the resources that they are returning.

2.3.2 Hold

As we have already stated, our model of Demos programs shall not consider
time. Thus the transition for hold(t) shall be:

(NOTIME) :
R / Jhold(t)K τ−→ R / JεK ,

effectively skipping the command. Notice that we have used a τ -transition to
indicate that this is not observable. 3

2.3.3 Initialisation

It is also possible to define initialisation of the program (allowing a little vague-
ness by assuming that we are passed the code of class rather than just its name.
This could be resolved by introducing a function Σ : classname→ code). Again,
notice that we have defined a τ -transition.

(ENTITY) :
R / JEntity(class, name, t);P K τclass,name

Entity−→ R /
q
class[name]‖P

y
(RESn) :

R / JRes(r, n)K τr,n
Res−→ R, rn / JεK

(BINn) :
R / JBin(b, n)K τb,n

Bin−→ R, bn / JεK
3It may be more useful to split the hold into two transitions, R / Jhold(t)K

start−→stop−→, for
model-checking some properties e.g., mutual exclusion over a critical region.
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2.3.4 Sequential composition

The sequential composition of program code is relatively straightforward to
define: one command is executed, which changes the state of the system, with
the rest of the program remaining. c shall range over single commands which
may be compound e.g., while loops. There are two cases to consider. Firstly,
the first command executes completely:

(COMPTe) :
R / JcK σ−→ R′ / JεK

R / Jc;P2K σ−→ R′ / JP2K
If the command at the head executes to give an intermediate step, we place this
back in front:

(COMPI) :
R / JcK σ−→ R′ / JP ′

1K
R / Jc;P2K σ−→ R′ / JP ′

1;P2K (P ′
1 6≡ ε)

2.3.5 Parallel composition

We say that processes are acting in parallel or concurrently if more than one
process is ‘running’ at the same time. We shall use ·‖· to represent parallel
composition of processes. Each parallel process, providing it is not blocked
(waiting for a resource not free in R), may be executed. At this stage, we
choose not to define a notion of fairness in execution — see §6.1.

One approach that may be adopted is to only allow one process to execute
one step in order to form a transition of the parallel system, forming a so-
called asynchronous transition system. The choice of which process to execute
is arbitrary, or non-deterministic.

(PARI,1) :
R / JP1K σ−→ R′ / JP ′

1K
R / JP1‖P2K σ−→ R′ / JP ′

1‖P2K
(PARI,2) :

R / JP2K σ−→ R′ / JP ′
2K

R / JP1‖P2K σ−→ R′ / JP1‖P ′
2K

We must also consider the cases where one of the parallel processes terminates.

(PARTe,1) :
R / JP1K σ−→ R′ / JεK

R / JP1‖P2K σ−→ R′ / JP2K
(PARTe,2) :

R / JP2K σ−→ R′ / JεK
R / JP1‖P2K σ−→ R′ / JP1K

Alternatively, we may define a rule schema to allow easy access to parallel
processes. One may consider this to be a derived set of rules, or consider the
above to be specific instances of this; this is similar to the Expansion Law of
CCS.

(
PARi

I

)
:

R / JPiK σ−→ R′ / JP ′
i K

R /
rf

j∈I Pj

z
σ−→ R′ /

r
P ′

i

f
j∈I\{i} Pj

z
 I = {1, . . . , n},

n > 1,
i ∈ I
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with a similar rule (PARTe).

See §5 for consideration of a rule for synchronous parallel execution.

2.3.6 Process synchronisation

A powerful feature of Demos is that it is able to model synchronisation between
processes. For example, a process representing a train may synchronise with a
process representing a station to represent loading/unloading. The train process
will, once it has placed itself in the sync pool of arrived trains, not be able to
perform any action until it is released by the station — after it has been allocated
a platform and all the passengers have boarded.

To define synchronisation, we must have a notation for representing processes
waiting in a pool and processes holding other processes.

Notation
xLP M shall represent a process P that has synchonized on a pool x.

This shall lie in the resource term R. When this process is claimed by another
process, it shall be written LP Mx.
A process Q holding a multiset of processes S = *LP1Mx1 , . . . , LPnMxn

+ that syn-
chronised on pools x1, . . . , xn shall be written

r
Q
S

z
.

We see, then, that a process is actually a pair consisting of the remaining code
and the processes synchronised on it4. Where the collection of processes that
synchronised on a process is not affected by a rule (for example, sequential com-
position does not itself modify the collection of synchronized processes, though
a sub-derivation may do so), in general we shall not specify this in the rule —
for R / JP K σ−→ R′ / JP ′K it shall be implicit in JP K and JP ′K. Otherwise, where
the collection is explicitly modified, we shall write rules of the form

R /

s
P

S

{
σ−→ R′ /

s
P ′

S, s

{
.

The upper-case letter S denotes a multiset; the lower-case letter s denotes a
single item. The above definition extends in the obvious manner to parallel
processes.

(SYNCx) :
R / Jsync(x);P K syncx−→ R,

xLP M / JεK
(GETSx) :

R,
xLPiMn /r getS(x,n)

S

z
getSn

x−→ R /
r

ε
S,LPiMx

n

z
(PUTSx) :

R /
r
putS(x,n);Q

S,LPiMn
x

z
putSn

x−→ R /
r

Q
S ‖nPi

z
4PROC = Label×Code×P+(PROC), where P+ is the multiset version of powerset, Code

is the set of syntactically correct Demos programs and Label is the set of process labels. The
reader will, of course, recognise that this type, PROC, represents the solution of a recursive
domain equation.
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Though we shall not write implicity modified synchronized process collections,
it is important that the reader recognizes that they exist. So, for example,
sequential composition is actually:

(COMPI) :
R /

q
P
S

y σ−→ R′ /
r

P ′

S′

z
R /

r
P ;Q

S

z
σ−→ R′ /

r
P ′;Q

S′

z

(COMPTe) :
R /

q
P
S

y σ−→ R′ /
q

ε
S′

y
R /

r
P ;Q

S

z
σ−→ R′ /

r
Q
S′

z

2.3.7 Non-blocking requests

In order to define valid transition rules for try and while, we shall need a non-
blocking multi-request (a request where the list of actions is atomic — if any
one of the requests fails, the whole list fails — and that we can detect failure
of); req will be similar. We shall use the non-program label g[·] to denote such
a request.

When we fail to complete a non-blocking request, we shall indicate this using
the symbol FF .

(
NBLOCKT

P

)
:

R / JgetS(x, 1)K σ−→ R′ / JεK
R / Jg[getS(x, 1)]K σ−→ R′ / JεK

(
NBLOCKF

P

)
:
FF(R / Jg[getS(x, 1)]K)

(
¬∃P.

xLP MA R
)

(
NBLOCKT

R

)
:

R / JgetR(r, n)K σ−→ R′ / JεK
R / Jg[getR(r, n)]K σ−→ R′ / JεK(

NBLOCKF
R

)
:
FF(R / Jg[getR(r, n)]K) (rn 6D R)

(
NBLOCKT

)
:

R / Jg[]K τ−→ R / JεK
(
NBLOCKT

1,2

)
:

R / Jg[ei]K σ−→ R′ / JεK S / Jg[ej ]K σ−→ S / JεK
R ] S / Jg[e1, e2]K σ−→ R′ ] S′ / JεK

(
NBLOCKF

)
:

FF(R / Jg[ri]K)
FF(R / Jg[r1, r2]K) (i ∈ {1, 2})

where e ::= e, e | getR(r, n) | getB(r, n) | getS(x, 1), r ∈ R,n ∈ Z+.

These definitions are relatively straightforward; their value is that they deal
with comma-separated lists and define FF .
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2.3.8 Try, while and req

The try command introduces conditional choice into Demos. The command
try [e1] then P1 etry [e2] then P2 attempts the atomic list of actions e1. If
this succeeds, P1 shall be executed. Otherwise, e2 is tested to see if P2 should
be executed. If none of the ei pass, the process waits (no derivable transition)
until one does. If more than one pass at the same time, the earliest Pi shall be
selected.

Hence we can define the rules for try:

(
TRYT

Te

)
:

R / Jg[e1]K σ−→ R′ / JεK
R / Jtry [e1] then P etry [e2] then QK σ−→ R′ / JP K

(
TRYF

Te

)
:

FF(R, g[e1]) R / Jg[e2]K σ−→ R′ / JεK
R / Jtry [e1] then P etry [e2] then QK σ−→ R′ / JQK

The while construct defines a loop: while an expression is true, a body of code
will be executed. Should the expression be false at the beginning of the loop,
iteration will stop. The req command simply defines an atomic series of actions.

(
WHILET

Te

)
:

R / Jg[e]K σ−→ R′ / JεK
R / Jwhile [e] do QK σ−→ R′ / JQ; while [e] do QK

(
WHILEF

)
:

FF(g[e])

R / Jwhile [e] do QK σ−→ R / JεK
(REQTe) :

R / Jg[e]K σ−→ R′ / JεK
R / Jreq[e]K σ−→ R′ / JεK

2.3.9 Repeat n-times

Assume that n is an integer constant. We may then define the repetition com-
mand, do, that repeats a body n times.

(DOn) :
R / Jdo n P K τ−→ R / JP ; do (n− 1) P K (n > 0)

(DO0) :
R / Jdo n P K τ−→ R / JεK (n 6 0)

2.4 Example derivations

We now give some examples to show how transitions may be derived by the
presented system.
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Example 1: Jobshop

This example refers to the ‘jobshop.d2000’ program supplied with Demos. The
code is given in full in Figure 2.3. We only show one of the numerous possible
derivation sequences, and omit the derivations that go through the instantiation
of the entities, resources and bins [see Example 3]. Hammers shall be written h
and mallets m.

We shall first introduce some derived rules to make our derivations slightly more
succinct. The first allows us to skip some explanation of how we execute the
parallel composition of sequential processes.

R / JP K σ−→ R′ / JP ′K
(COMPI,1)

R / JP ;QK σ−→ R′ / JP ′;QK
(PARI,1)

R / JP ;Q‖P2K σ−→ R′ / JP ′;Q‖P2K
≡

R / JP K σ−→ R′ / JP ′K
=========================== (PCOMP2

1)
R / JP ;Q‖P2K σ−→ R′ / JP ′;Q‖P2K

etc.

The second simplifies how we can write a simple ‘get’ from a bin.

(GETB
1 )

R, b / JgetB(b, 1)K σ−→ R / JεK
(NBLOCKT

B)
R, b / Jg[getB(b, 1)]K σ−→ R / JεK

≡

========================= (NBLOCK1
B)

R, b / Jg[getB(b, 1)]K σ−→ R / JεK
etc.

We commence by showing how the while-loop of the worker process is expanded,
and how a bin item is placed in the available resource collection.

(NBLOCKT)*m,h + / Jg[]K τ−→ *m,h + / JεK
(WHILET

Te)*m,h + / JW K τ−→ *m,h + / JputB(easy, 1); . . . ;W K
(PARI,3)*m,h + / JJ‖J‖W K τ−→ *m,h + / JJ‖J‖putB(easy, 1); . . . ;W K

(GET1
B)*m,h + / JputB(easy, 1)K putB−→ *m,h + / JεK

============================================================== (PCOMP3
3)*m,h + / JJ‖J‖putB(easy, 1); . . . ;W K putB−→ *m,h, easy + / JJ‖J‖hold(1); . . . ;W K

where J is the code of the Jobber class, W is the code of the Worker class, and

K ≡ try [getB(easy, 1)] then trace(’Easy’) etry [. . .] then . . . ; J.
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Class Jobber=
{While []
{try [getB(easy,1)] then {Trace("Doing easy");hold(5);}
etry [getB(mid,1)]
then {try [getR(mallet,1)]

then {hold(20);
trace("Done mid");
putR(mallet,1);
}

etry [getR(hammer,1)]
then {hold(10);

trace("Done mid");
putR(hammer,1);
}

}
etry [getB(hard,1)]
then {getR(hammer,1);

hold(20);
trace("Done hard");
putR(hammer,1);

}
}

}

Class Work=
{while []
{putB(easy,1);
hold(1);
putB(hard,1);
hold(1);
putB(mid,1);
hold(25);

}
}

Res(mallet,1);
Res(hammer,1);
Bin(easy,0);
Bin(mid,0);
Bin(hard,0);
Entity(J1,Jobber,0);
Entity(J2,Jobber,0);
Entity(W,Work,0);
Hold(200);
Hold(0);
Close;

Figure 2.3: Jobber soruce code
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We can now silently remove the hold from the head of the worker process, and
expand one of the Jobber’s while loops.5

(NOTIME)
m,h, easy / Jhold(1); . . .K τ−→ m,h, easy / JputB(hard, 1); . . .K

(PARI,2)
m,h, easy / JJ‖hold(1); . . .K τ−→ m,h, easy / JJ‖putB(hard, 1); . . .K

(PARI,2)
m,h, easy / JJ‖J‖hold(1); . . .K τ−→ m,h, easy / JJ‖J‖putB(hard, 1); . . .K

(NBLOCKT)
m,h, easy / Jg[]K τ−→ m,h, easy / JK

(WHILET
Te)

m,h, easy / JJK τ−→ m,h, easy / JKK
(PARI,1)

m,h, easy / JJ‖J‖putB(hard, 1); . . .K τ−→ m,h, easy / JK‖J‖putB(hard, 1); . . .K
Thus we could write

*m,h + / JJ‖J‖W K putB
=⇒ *m,h, easy + / JK‖J‖putB(hard, 1); . . . ;W K

5We shall adopt a syntactic equivalence that allows us to drop the brackets denoting
multiset.
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Example 2: Semaphore

This simple example considers a synchronisation-based semaphore and may be
found in the Demos distribution as me4.d2000, though, for conciseness, we
ignore the third user. The code is given again in Figure 2.4. Again, we omit
the initial declations of entities etc.

We first define, for convenience:

A ≡ getS(semS, 1); hold(5); trace(’have’); putS(semS, 1)
S ≡ sync(semS); trace(’back’)︸ ︷︷ ︸

Tr

U ≡ the code of User
≡ while [] do A

Sem ≡ the code of Sem
≡ while [] do S

We shall expand the while loops that control the processes.

D1 :

(NBLOCKT)* + / Jg[]K τ−→ * + / JεK
(WHILET

Te)* + / JUK τ−→ * + / JA;UK
(PAR3

1)* + / JU‖U‖SemK τ−→ * + / JA;U‖U‖SemK
Very similar derivations justify

* + / JA;U‖U‖SemK τ−→ * + / JA;U‖A;U‖SemK
and * + / JA;U‖A;U‖SemK τ−→ * + / JA;U‖A;U‖S;SemK .

D2 :

(SYNCx)

* + / JS;SemK sync−→ * semSLTr;SemM + / JεK
(PAR2

3)

* + / JA;U‖A;U‖S;SemK sync−→ * semSLTr;SemM + / JA;U‖A;UK
We shall now allow the left user process to take the semaphore:

D3 :

(GETSx)

* semSLTr;SemM + / JA;UK getS−→ * + /s hold(5); . . . ;ULTr;SemMsemS

{
(PAR1

I )* semSLTr;SemM + / JA;U‖A;UK getS−→ * + /s hold(5); . . . ;ULTr;SemMsemS
‖A;U

{

As there are now no processes waiting in semS, the right user process cannot
proceed, and so the critical region is not entered.
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class sem=
{while []
{sync(semS);
Trace("Im back %n");

}
}

Entity(theSem,sem,0);

class User=
{while []
{getS(semS,1);
hold(5);
Trace("Have %s %n");
putS(semS,1);
}
}

Entity(U1,User,0);
Entity(U2,User,0);
Hold(50);
Entity(U3,User,0);
Hold(50);
HOLD(0);
CLOSE;

Figure 2.4: Semaphore source code
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Following two τ -transitions to skip the hold(5); trace(’have’) part of the ac-
tive user process, we may re-activate the semaphore process:

D4 :

(PUTSx)* + /sputS(semS, 1);ULTr;SemMsemS

{
putS−→ * + / JU‖Tr;SemK

(PAR1
I )* + /sputS(semS, 1);ULTr;SemMsemS

‖A;U
{

putS−→ * + / JU‖Tr;Sem‖A;UK
A τ -transition will remove the Tr part of the semaphore process (which is just
a trace command).

We may derive all following states using similar derivation trees. So, starting
again, we could obtain this sequence:

* + / JU‖U‖SemK τ−→ * + / JA;U‖U‖SemK
τ−→ * + / JA;U‖A;U‖SemK

sync−→ * + / JA;U‖A;U‖S;SemK
getS−→ * semSLTr;SemM + / JA;U‖A;UK
putS−→ * + /s hold(5); . . . ;ULTr;SemMsemS

‖A;U
{

τ,τ−→ * + /sputS(semS, 1);ULTr;SemMsemS
‖A;U

{
τ−→ * + / JU‖A;U‖Tr;SemK
τ−→ * + / JU‖A;U‖SemK
τ−→ * + / JU‖A;U‖S;SemK

sync−→ * semSLTr;SemM + / JU‖A;UK
getS−→ * + /sU‖ hold(5); . . . ;ULTr;SemMsemS

{
putS−→ * + /sA;U‖ hold(5); . . . ;ULTr;SemMsemS

{
τ,τ−→ * + /sA;U‖putS(semS, 1));ULTr;SemMsemS

{
...

Example 3: Deadlock

This example shows the transition system becoming deadlocked and gives a
suggestion of how this may be expressed in the process logic. This time, we
shall show processes and resources being created.

The code for this (simple) example may be found in Figure 2.5. In the following
derivations, we shall abbreviate the complete code of P1 by P1 ≡ getR(a, 1);Q1

and of P2 by P2 ≡ getR(b, 1);Q2.
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Res(a,1);
Res(b,1);

Class P1={
getR(a,1);
getR(b,1);
hold(5);
putR(a,1);
putR(b,1);

}

class P2={
getR(b,1);
getR(a,1);
hold(6);
putR(a,1);
putR(b,1);

}

Entity(P1,P1,0); Entity(P2,P2,0);

Figure 2.5: Deadlock source code

D1 :
(RES1)* + / JRes(a, 1)K τ−→ *a + / JK

(COMPT)* + / JRes(a, 1); Res(b, 1); . . .K τ−→ *a + / JRes(b, 1); . . .K
Similarly,

*a + / JRes(b, 1); Entity(P1, 0); . . .K τ−→ *a, b + / JEntity(P1, 0); . . .K

D2 : (ENTITYI)
*a, b + / JEntity(P1, 0); Entity(P2, 0)K

τ−→ *a, b + / JP1‖Entity(P2, 0)K

D3 :
(ENTITYT)*a, b + / JEntity(P2, 0)K τ−→ *a, b + / JP2K

(PARI)*a, b + / JP1‖Entity(P2, 0)K τ−→ *a, b + / JP1‖P2K
D4 :

(GETR1)*a, b + / JP1K getR−→ *b + / JQ1K
(COMPI)*a, b + / JP1‖P2K getR−→ *, b + / JQ1‖P2K

D5 :

(GETR1)*b + / JP2K getR−→ * + / JQ2K
(COMPI)*b + / JQ1‖P2K getR−→ * + / JQ1‖Q2K
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At this stage, we would not be able to derive any σ-transition. As we still
have code left to execute (formally, JQ1‖Q2K 6= JεK — we have not terminated
cleanly), we can deduce that the system has deadlocked.
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Chapter 3

Correctness of transition
system

3.1 Introduction

We now consider various properties of the transition system presented above.
These properties relate to the correctness of the system with respect to the
operational semantics of Demos [TB01].

The latest version of Demos, Demos 2000, has a large command set. Pragmatism
leads us to consider a small subclass of Demos 2000 programs — as we did
above by not considering variables or value-resources — namely, those written
in πDemos with the Demos 2000 delaration format. πDemos is defined, with its
operational semantics, in [BT93]. Specifically, this avoids the notational burden
of considering synchronization between processes and increases the brevity of
our proofs.

The properties considered shall relate to the validity (correctness) of our tran-
sition system. As shall be discussed, we shall not be able to demonstrate the
soundness of the transition system with respect to the operational semantics in
the familiar sense. This is to be expected: we intentionally made the transi-
tion system non-time sensitive, and so transitions derived may not be possible
according to the temporal (time-based) constraints actually in place.

πDemos allows us to consider the essential aspect of Demos programs: the
interaction of processes through shared resources. In essence, there are three
main commands:

getR The command getR(r, 1) acquires one item of r from the globally avail-
able resources, thus making it unavailable to other processes. If r is not
available at the time of request, the process will wait until it is available.

putR The command getR(r, 1) releases one item of r, making it available to
all other processes. If a process is waiting for the release of r, it will be
activated. Otherwise, it will be placed in the resource pool.
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hold The command hold(t) signifies that the process waits T time units before
resuming execution.

We shall assume that processes have been initialised correctly; failing to make
this assumption adds little to the presentation. Therefore, we will not consider
Entity etc.

State in the operational semantics is represented by a 3-tuple:

S = 〈EL,RL,Σ〉.

• Σ is a function that records the various syntactic definitions found within
the system. It will contain, for example, class definitions and resource
labels. As we are not going to consider any commands that manipulate Σ
(e.g., class and cons), we shall frequently omit it when discussing state.

• RL is the resource list, a list of 3-tuples 〈id, avail,WL〉. id is the resource
name or label; avail ∈ {tt, ff} is a boolean indicating whether the resource
is taken; and WL is a list of processes waiting on the resource, non-empty
only if not avail.

• EL is the event list, [(P,PD(code, attrs, t))]. It is a list of processes not
waiting on any resource. Processes are represented by a pair comprising
a label and the process descriptor. The process descriptor is another 3-
tuple, comprising the code remaining to be executed, the resources held
by the process, and the simulation time at which the next command is to
be executed.

The reader is referred to [BT93] for the formal presentation of the operational
semantics.

In the sequel, to match the account presented in [BT93], we shall only consider
one-item get / put, with each identifier in the resource list being unique (that
is, only one of any resource shall exist).

3.2 Simulation

We shall represent the globally available resources in the transition system by R.
Process terms shall be bracketed JP K. The state of a program in the transition
system is of the form R / JP K; an equivalent representation in the operational
semantics shall be written f(R / JP K). Transitions derived according to the
operational semantics shall be denoted =⇒ (note that this is unlabelled, to
distinguish it from observable transitions made in σDemos); as usual, single-step
transitions in the transition system shall be denoted σ−→. Explicitly observable
actions shall be denoted σ=⇒.

Our transition system is non-temporal — it does not take into account any times
inside the Demos program. So, for example, it will completely ignore synchro-
nisation by any hold statement. Consequently, it will consider the execution of
commands on resources in any and every order, including those that are impos-
sible according to the operational semantics of the program, which does take
into account time.
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We can see, therefore, that for the full Demos system we do not have the fol-
lowing:

If R / JP K σ−→ R′ / JP ′K then f(R / JP K) =⇒ f(R / JP ′K)
for some (justified — i.e., not something vacuous that makes the above triv-
ially true) function f mapping transition system states to operational semantics
states.

We may, however, consider the converse: does our transition system simulate
the operational semantics? That is, do we have the property:

If S =⇒ S′ then g(S) σ−→
∗
g(S′),

where g maps states in the operational semantics to states in the transition
system and σ−→

∗
is the reflexive, transitive closure of σ−→ (the effect of running

an arbitrary number of steps, including τ -transitions), σ ∈ Act.
In order to demonstrate such a relationship, we must define the map g be-
tween states in the operational semantics and states in the transition system.
Firstly, though, to aid clarity of expression, we shall introduce a new syntactic
abbreviation for the parallelisation operator that operates outside the semantic
brackets:

JP1K | JP2K ≡ JP1‖P2KJP1K | JεK ≡ JP1K
We shall define g through three auxilliary functions.

• gE shall convert processes in the event list to transition system processes.

gE([]) def= JεK
gE((P,PD([], [], t)) :EL) def= gE(EL)

gE((P,PD([], attrs, t)) :EL) def= JεK
gE((P,PD(b :body, attrs, t)) :EL) def=

{ JεK , if b = closeq
b; body[P ]

y
|gE(EL), otherwise

• gW shall convert lists of waiting (blocked) processes to processes of the
transition system.

gW (r, []) def= JεK
gW ((r, (P, PD(body, attr, t))) :WL) def=

q
getR(r, 1); body[P ]

y
|gW (WL)

• To convert the resource list, [〈ident, avail, waiting]〉] : [〈R,B, [Proc]〉], we
shall define gR : [〈R,B, [Proc]〉] → 〈R, JPROGK〉; the operator ⊕ shall
combine these pairs:

〈R,
q
P[`1]

y
〉 ⊕ 〈S,

q
Q[`2]

y
〉 def= 〈R ] S,

q
P[`1]

y
|
q
Q[`2]

y
〉
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gR([]) def= 〈*+, JεK〉
gR(〈r, tt, []〉 : RL) def= 〈*r+, JεK〉 ⊕ gR(RL)

gR(〈r, ff,W 〉 : RL) def= 〈*+ , gW (W )〉 ⊕ gR(RL)

We may now define our map between states in the two systems:

g(EL,RL,Σ) = R / gE(EL)|W,

where gR(RL) = 〈R,W 〉.

Theorem 3.2.1 Let S = 〈EL,RL〉 be a reachable state in a πDemos program
which evolves in one step of the operational semantics to S′ = 〈EL′,RL′〉. Then
this is simulated in the transition system. That is, for some series of σ,

If S =⇒ S′ then g(S) σ−→
∗
g(S′)

Proof By analysis of the cases of next command to be executed (the command
at the head of the event list).
We may assume, without loss of generality, that the choice of the transition to
make is decided solely by the command at the head of the event list. Generality
is not lost as this provides an arbitrary selection from the processes with equal
(but still the least) event time, assuming insertion order is arbitrary where equal
event times occur.

The event list is empty:

We have S ≡ 〈[],RL〉. According to the operational semantics, the program
halts with an error. As there is no next state, the statement is vacuously
true.

Lead object has no actions left:

We consider two cases:

attrs 6= []:

Then the program halts with an error, so, again, the statement is vacuously
true.

attrs = []:

Then S ≡ ((P,PD([], [], t)) : EL,RL). The operational semantics gives S′ ≡
(EL,RL). By the definition of gE , g(S) = g(S′), and, as σ−→

∗
is reflexive,

we have g(S) σ−→
∗
g(S′) as required.

close:

Then S ≡ ((P,PD(close : body, attrs, t) : EL,RL)). The operational se-
mantics tells us that the program halts and that there is no next state, so
the statement is vacuously true.

hold(t):

Then we have S ≡ ((P,PD(hold(t) : body, attrs, evt)) : EL,RL). By ap-
plying the rule for hold, we obtain S′ ≡ (EL′,RL) where EL′ is the same
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as the original event list with t added to evt (and, consequently, causing a
re-order of the event list) and hold(t) removed.

Now, g(S) = R / Jhold(t); bodyK | gE(EL) | W where gR(RL) = 〈R,W 〉.
Similarly, we have g(S′) = R / gE(EL) | JbodyK | W , where gR(RL) =
〈R,W 〉. By the associativity and commutativity of parallelisation, this is
just the same as the state derived by executing the hold in the transition
system,

R / Jhold(t); bodyK τ−→ R / JbodyK | gE(EL) |W.

putR(r,1):

There are two subcases for this instruction:

Nothing is waiting on the resource:

Then S ≡ ((P,PD(putR(r, 1); body, attrs, t)) : EL,RL). After we have exe-
cuted putR, we have state S′ ≡ ((P,PD(body, attrs, t)) : EL,RL′). We know
that r was previously unavailable, so (without loss of generality thanks to
the order of RL being arbitrary), RL = (r, ff, []) : RL′′, and RL′ = (r, tt, []) :
RL′′.
Now, g(S) = R / JputR(r, 1); bodyK | gE(EL) | W where gR(RL) = 〈W,R〉.
With appropriate selection of parallelisation and sequential composition rules,
we can derive the transition

R / JputR(r, 1); bodyK | gE(EL) |W σ−→ R, r / JbodyK | gE(EL) |W ;

the actual label, `1 : putR1
r, is unimportant, so shall just call it σ. Consider

g(S′) = R′ / JbodyK | gE(EL) | W ′: by the definition of gR, because no
processes were waiting on r, W = W ′ and R′ = R, r, so we have the the
state obtained by the transition system.

There are processes waiting on the resource:

S is as before. After putR, we have S′ ≡ ((P,PD(body, attrs′, t)) : EL′,RL′).
Assume, without loss of generality, thatRL = (r, ff, (P1,PD(body1, attrs1, t1)) :
W ) : RL′′. Then RL′ = (r, ff,W ) : RL′′. The operational semantics tells us
that EL′ = EL with (P1,PD(body1, attrs1, t1)) inserted at some point.

Now, g(S) = R / JputR(r, 1); bodyK | gE(EL) | W , where gR(RL) = 〈R,W 〉.
By consideration of the definition of gR, we see thatW = JgetR(r, 1); body1K |
W ′, and so we have g(S) = R/JputR(r, 1); bodyK | gE(EL) | JgetR(r, 1); body1K |
W ′.

g(S) σ−→ R, r / JbodyK | gE(EL) | JgetR(r, 1); body1K |W ′

σ−→ R / JbodyK | gE(EL) | Jbody1K |W ′

which is exactly (up to the associativity and commutativity of parallel pro-
cess composition) g(S′).

getR(r,1) — resource available:

We have S ≡ ((P,PD(getR(r, 1); body, attrs, t)) : EL,RL). The resource
is available, so S′ ≡ ((P,PD(body, attrs′, t)) : EL,RL′). Without loss of
generality (thanks to the arbitrary order or RL — it is a multiset rather
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than a list), let RL = (r, tt, []) : RL′′, and so RL′ = (r, ff, []) : RL′′ by the
operational semantics.

Now, g(S) = R/JbodyK | gE(EL) |W , where gR(RL) = 〈R,W 〉. Considering
gR(RL), we notice that R = R′′, r, and so g(S) = R′′, r / JbodyK | gE(EL) |
W . Finally,

R′′, r / JgetR(r, 1); bodyK | gE(EL) |W σ−→ R′′ / JbodyK | gE(EL) |W,

which is exactly g(S′).

getR(r,1) — the resource is unavailable:

We have S ≡ ((P,PD(getR(r, 1); body, attrs, t)) : EL,RL). After execut-
ing getR(r, 1), we have S′ ≡ 〈EL,RL′〉. Without loss of generality, let
RL = (r, ff,W ) : RL′′; hence, RL′ = (r, ff,W ′) : RL′′ where W ′ is W with
(P,PD(body, attrs, t)) inserted at the appropriate point.

g(S) = R / JgetR(r, 1); bodyK | gE(EL) | V , where gR(RL) = 〈R, V 〉. No-
tice that, by the definition of gR, gR(RL′) = 〈R, V | JgetR(r, 1); bodyK〉.
Consequently, g(S′) = R / gE(EL) | V | JgetRr1; bodyK, which, thanks to
the associativity and commutativity of the parallel composition operator, is
g(S). Now, as σ−→

∗
by definition is reflexive, we have g(S) σ−→ ∗g(S), or,

equivalently, g(S) σ−→
∗
g(S′), as required.

�

As we stated earlier, we must also show that g faithfully translates states belong-
ing to the operational semantics. A number of preliminaries must be covered
first, so this is presented in §3.7.1.

3.3 Soundness of transitions

As we have already stated, we do not have the obvious soundness property
stating that any transition derived by our transition system could have been
derived according to the operational semantics.

The transition system was designed to take no heed of synchronisation by time,
nor does it take into account the priority of processes. We should, though,
be able to prove soundess with respect to the operational semantics with the
following assumptions:

1. All event times are ignored; i.e., t = 0, or some other arbitrary constant,
for all PD entries.

2. All priorities are ignored.

3. The orders of the event list and waiting lists, consequently, are arbitrary.

4. When a resource is released, it is not necessarily a waiting process that
acquires the resource — it could be either a process in a waiting list or a
process about to enter a waiting list (i.e., with getR at its head).

In order to prove the property, we firstly need to define the map from the
transition system state to state in the operational semantics, f̄ . We use a
number of auxiliary functions:
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• hP defines the resources held by a non-parallel process (note here that we
assume that the programs passed are well-formed ; that is, they only put
resources that they own etc.). ‘\’ denotes subtraction from a multiset.

hP (JεK) def= *+
hP (JgetR(r, 1);P K) def= hP (JP K) \ *r +
hP (JputR(r, 1);P K) def= hP (JP K) ] *r+

• h shall be the multiset of all held resources:

h(JP1‖P2K) def= h(JP1K) ] h(JP2K)
h(JP K) def= hP (JP K), P not parallel

• wR defines the multiset of 〈process, resource〉 pairs where the process is
waiting on the resource

wR(JεK ,R) def= *+
wR(JP‖QK ,R) def= wR(P ) ] wR(Q)

wR(Jc;P K ,R) def=
{ *〈JP K , r〉+, if c = getR(r, 1) and r 6A R*+ , otherwise .

• w is just the multiset of waiting processes (without the resource that they
are waiting on):

w(JP K ,R) def= * JP K s.t. 〈 , JP K〉 A wR(JP K ,R)+
• mset simply splits parallel processes into a multiset of non-parallel pro-

cesses:

mset(JεK) def= *+
mset(JP K) def= * JP K +,where JP K not parallel

mset(JP1‖P2K) def= mset(P1) ]mset(P2)

• The multiset of active processes is just the multiset of all processes minus
the multiset of waiting processes.

a(JP K ,R) def= mset(JP K) \ w(JP K ,R)

• The set of processes waiting on a resource r is given by:

wP (r) def= * JP K |〈JP K , r〉 A wR(JP K ,R)+
We are now in a position to define our translation f̄ :

f̄(R / JP K) def= 〈EL,RL〉
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where

EL def=
[
(`,PD(body, attrs, t))

q
body[`]

y A a(JP K ,R)∧
attrs = hP (JbodyK) ∧ t = 0

]
RL def= *〈r, tt, []〉 s.t. r ∈ R + ] * 〈r, ff,Wr〉 s.t. r A h(JP K) +
Wr = [(`, PD(JbodyK , hP JbodyK, 0)) s.t.

q
body[`]

y A wP (r)]

We shall now proceed with the body of the proof, which shall be by induction
on the structure of σDemos processes.

Theorem 3.3.1 The transition system is sound with respect to a non-time
and non-priority sensitive operational semantics. That is,

If R / JP K σ−→ R′ / JP ′K then f̄(R / JP K) =⇒∗ f̄(R′ / JP ′K).

Proof By induction on the structure of σDemos processes P .

P ≡ hold(t):

TS We may only derive the transition R / Jhold(t)K τ−→ R / JεK
Op sem f̄(R/JP K) = 〈[P,PD([hold(t)], attrs, 0)],RL〉. Executing the hold yields

EL′ = [(P,PD([], attrs, 0))]. Given the well-formedness of states, attrs =
[], so another execution gives EL′′ = [], RL′′ = RL. Notice that f̄(R /JεK) = 〈[],RL〉 = 〈EL′′,RL′′〉.

P ≡ getR(r, 1):

TS Assuming that we are able to make a transition, the resource must be
available, so R ≡ R′′, r, for some R′′. We have the transition R′′, r /JgetR(r, 1)K σ−→ R′′ / JεK.

Op sem Without loss of generatlity thanks to the arbitrary order of the
resource list, because r is available we may assume that f̄(R /JP K) = 〈[(P,PD([getR(r, 1)], attrs, 0))], [(r, tt, [])] : RL′′〉. The
operational semantics allows us to take the resource, yielding
〈[(P,PD([], [], 0))], [(r, ff, [])] : RL′′〉. The ‘exec’ command allows us to
take another step to 〈[], [(r, ff, [])] : RL′′〉. Assuming the well-formedness
of the program (this atomic command in itself is not well-formed — we
could, alternatively, have made this a special case in the COMP case
below), this is f̄(R′′ / JP ′′K).

P ≡ putR(r, 1):

Similar — but we use assumption (4) to eliminate the possibility of a waiting
process taking the resource straight away.

P ≡ c; body:

c is a command and body some non-parallel process. Consider the cases for
c.

c ≡ hold(t):
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TS P ≡ hold(t); body. We may only derive the transition R /Jhold(t); bodyK τ−→ R / JbodyK.
Op sem f̄(R / Jhold(t); bodyK) = 〈[(P,PD([hold(t); body], attrs, 0))],R〉.

The operational semantics yields, upon execution of the hold,
〈[(P,PD([body], attrs, 0))],R〉, which is exactly f̄(R / JbodyK)

c ≡ getR(r, 1) or putR(r, 1):

As before, but we will not need to use the ‘exec’ rule to reduce down to an
empty event list. (The consideration of getR above could be placed here
instead of above — it was placed there to show how a proof that considered
bins would be constructed)

P ≡ P1‖P2:

Assume, without loss of generality, that R / JP1‖P2K σ−→ R′ / JP ′
1‖QK. We

therefore have R / JP1K σ−→ R′ / JP ′
1K, so, by induction, f̄(R / JP1K) =⇒∗

f̄(R′ / JP ′
1K). We must show that this execution matches the execution of

f̄(R / JP1‖P2K). P2 is either waiting on a resource or it is not: if it is, it will
be placed in the waiting list of some resource. It, therefore, will not affect
the execution of this command. If P2 is placed in the event list, thanks to
the arbitrary order of the event list, it is possible that P1’s execution may be
followed again. Moreover, this property is maintained through the execution
of any intermediate steps made by P due to all times being equal.

�

3.4 Weak bisimulation

To consider some further properties, it will be useful to have a notion of equiv-
alence between states; we shall adopt observational equivalence similar to that
developed in [Mil89]. Observational equivalence between states, informally, tells
us that any visible (in our case, ignoring τ -transitions) series of transitions from
one of the states can be made if, and only if, it can be made from the other.

More formally, writing Act for the set of all actions and Act∗ for the set of
observable actions (i.e., Act∗ = Act \ {τ}):

Definition (Weak bisimulation)
Let ? represent a relation between states in the transition system, i.e., ? ⊆ Ω2.
We shall use infix notation, writing R/ JP K?R/ JQK1 rather than (R/ JP K ,R/JQK) ∈ ?. ? is a weak bisimulation between states if:

1. for any transition R / JP K σ=⇒ R′ / JP ′K where σ ∈ Act∗, we have R /JQK σ=⇒ R′ / JQ′K and R′ / JP ′K ?R′ / JQ′K; and

2. for any transition R / JQK σ=⇒ R′ / JQ′K where σ ∈ Act∗, we have R /JP K σ=⇒ R′ / JP ′K and R′ / JQ′K ?R′ / JQ′K .
1We shall not allow bisimulation between states with different resource sets at this stage,

so if R 6= S, R / JP K 6≈ S / JQK for any P, Q.
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Definition (Observational equivalence relation)
We shall use ≈ to denote observable equivalence. We write R / JP K ≈ R / JQK
if there is a weak bisimulation between these states. That is,

≈def=
⋃
{? | ? is a bisimulation}

It may be that ≈ is a congruence relation. That is, for any process Ψ[P ] contain-
ing P as a sub-term, if P ≈ Q then Ψ[P ] ≈ Ψ[Q] (where Ψ[Q] is Ψ[P ] with P
substituted for Q). We do not need to prove this property, but do require that if
two states are observationally equivalent and we create the parallel composition
of each of them with a third state, observational equivalence is preserved.

Lemma 3.4.1 If R / JP K ≈ R / JP ′K, then R / JP‖QK ≈ R / JP ′‖QK for any
process Q.

Proof Very similar to CCS, [Mil89] pp. 98
We shall demonstrate that ? = {(R/JP1‖QK ,R/JP2‖QK) | R/JP1K ≈ R/JP2K}
is a bisimulation.

To prove this we can show that, for σ ∈ Act∗ and supposing R / JP1‖QK ?R /JP2‖QK:
1. (a) R/ JP1‖QK σ=⇒ R′ / JP ′

1‖QK implies R/ JP2‖QK σ=⇒ R′ / JP ′
2‖QK and

R′ / JP ′
1‖QK ?R′ / JP ′

2‖QK.
(b) R / JP1‖QK σ=⇒ R′ / JP1‖Q′K implies R / JP2‖QK σ=⇒ R′ / JP2‖Q′K

and R′ / JP1‖Q′K ?R′ / JP2‖Q′K.
2. The same, swapping P2 and P1. This shall follow immediately from the

symmetry of the parallelisation operator.

1. (a) R / JP1‖QK σ=⇒ R′ / JP ′
1‖QK, so must be able to derive the transition

R / JP1K σ=⇒ R′ / JP ′
1K. As R / JP1K ≈ R / JP2K, we can also derive

R / JP2K σ=⇒ R′ / JP ′
2K with R′ / JP ′

1K ≈ R′ / JP ′
2K. We may then

derive R / JP2‖QK σ=⇒ R′ / JP ′
2‖QK, and R′ / JP ′

1‖QK ?R′ / JP ′
2‖QK.

(b) R / JP1‖QK σ=⇒ R′ / JP1‖Q′K, so R / JQK σ=⇒ R′ / JQ′K. Hence,
R / JP2‖QK σ=⇒ R′ / JP2‖Q′K, and R′ / JP1‖Q′K ?R′ / JP2‖Q′K.

�

Another useful property of observational equivalence is that it is an equivalence
relation: it is reflexive, symmetric and transitive.

Theorem 3.4.2 Observational equivalence is an equivalence relation.

Proof We split the proof into proving the three sub-properties. That is, for
all R1 / JP1K, R2 / JP2K and R3 / JP3K,

1. Reflexivity: R1 / JP1K ≈ R1 / JP1K.
2. Symmetry: R1 / JP1K ≈ R2 / JP2K implies R2 / JP2K ≈ R1 / JP1K.
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3. Transitivity: R1 / JP1K ≈ R2 / JP2K and R2 / JP2K ≈ R3 / JP3K implies
R1 / JP1K ≈ R3 / JP3K.

The proofs of (1) and (2) are immediate from the definitions of ≈ and bisimu-
lation. (3) follows easily, too. �

3.5 Kernel of πDemos states

Let Π be the set of states in the operational semantics of πDemos, ranged over
by tuples D = 〈EL,RL,Σ〉. The equivalence class of a state D with respect to
g,

‖D‖ def= {E ∈ Π | g(D) ≈ g(E)} ,

is the set of states (containing programs) that are “equal”, in some sense relating
to the execution of the states, to the state under consideration. In our case this
shall be observational equivalence in the transition system.

Suppose we want to find a member of the equivalence class for a particular
state, D. We cannot simply construct ‖D‖ by checking every Demos state for
equivalence: the set of states Π is infinite. Instead, we must obtain such a
program (which we will say belongs to the kernel of Π, ΠK) from its syntax.

Definition The πDemos state Dk ∈ ΠK shall be the πDemos state D =
(EL,RL) with all the hold(t) commands removed and all times (both in the
event list and the resource lists) set to zero. (If priorities existed in πDemos
— and they do not — we would equalise these too.) Where the first command
of a process in the event list is getR(r, 1) and r is unavailable in RL, the re-
maining body of code of the process is placed (with the other kernelised process
information) in the waiting list of r. The resource list of the kernel state has no
extraneous resource entries; that is, there are no entries (r, ff, []) where r is not
referred to by any process. We shall assume that the operational semantics are
extended to maintain this property.

The following lemma asserts that the the corresponding kernel state for a
non-parallel process belongs to the equivalence class. We use the notation
RL[(r, b,W )] to mean the resource list RL with the entry for r being (r, b,W ).
We use EL[P/Q] to mean the event list EL having P in place of Q (thus possibly
causing the order to be different if the times of P and Q are different). The
reader should be cautious as we use the subscript k to indicate kernelisation
following other subscripts.

Lemma 3.5.1 For all Π states (EL,RL), if g(EL,RL) = R / JP K for some
R / JP K where P is non-parallel, then g(EL,RL) = R / JP K ≈ R′ / JPkK =
g((EL,RL)k)

Proof By the definition of g, we have g(EL,RL) = R / gE(EL) | W where
gR(RL) = 〈R,W 〉. Since the result is not the parallel composition of processes,
there is only one body of code in (RL, EL). Irrespective of where it came from,
we may induce over the body of code (i.e., P ∈ Π) found in some process
descriptor.
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No code in body:

Notice that this would imply that the process came from the event list;
otherwise, if it had been a process waiting on a resource, we would have
getR at the head of the body.

Kernelisation yields exactly the same process (albeit possibly with a different
event time). Consequently, g(D) = g(Dk). As ≈ is reflexive, g(D) = g(Dk)

P ≡ putR(r, 1) or close:

Again, 2 D = Dk implies that g(D) = g(Dk), so g(D) ≈ g(Dk).

P ≡ getR(r, 1):

There are two cases to consider: either (r, tt, []) is in RL or (r, ff,W ) is in
RL.

If (r, tt, []) is in RL, we have D = Dk which implies g(D) = g(Dk), so
g(D) ≈ g(Dk).

Otherwise, r is not in R, the available resource collection of g(D) or in R′, the
available resource collection of g(Dk). Consequently, irrespective of whether
the process descriptor was in EL or waiting on r in RL, we can derive no
transition from g(D), nor can we from g(Dk). Thus g(D) ≈ g(Dk).

P ≡ hold(t):

Then g(D) = R / Jhold(t)K; the corresponding kernel state, Dk, gives
g(Dk) = R / JεK. Neither of these processes may make any observable
transition — Jhold(t)K may only make a silent transition.

P ≡ P1;P2:

Without loss of generality, we may assume that P ≡ a; body, where a is a
single command. Consider the cases for a:

a ≡ getR(r, 1):

Then P ≡ getR(r, 1); body, and g(D) = R/JgetR(r, 1); bodyK. There are two
cases to consider: either r A R iff 〈r, tt, []〉 ∈ RL or r 6A R iff 〈r, ff,W 〉 ∈ RL.

• (r 6A R): We can derive no transition from R / JgetR(r, 1); bodyK. In the
kernel, g(Dk) = R / JgetR(r, 1); bodykK, irrespective of whether body was
in the waiting list of r or getR(r, 1); body was in the event list, which we
can derive no transition from.

• (r A R): Then R ≡ R′, r, and we may only derive the transition R′, r /JgetR(r, 1); bodyK σ=⇒ R′ / JbodyK. Kernelisation yields Dk where the
process is in the event list (because r is available), so g(Dk) = R′, r /JgetR(r, 1); bodykK, from which we may only derive the transition R′, r /JgetR(r, 1); bodykK σ=⇒ R′ / JbodykK.
Now, letD′ be the πDemos stateD[body/getR(r, 1); body][〈r, ff, []〉/〈r, tt, []〉].
Then g(D′) = R′ / JbodyK, and, by induction, g(D′

k) = R′ / JbodykK ≈ R′ /JbodyK. Consequently, by the definition of≈, g(D) = R′, r/JgetR(r, 1); bodyK ≈
R′, r / JgetR(r, 1); bodykK = g(Dk).

2We shall write ‘=’ in the sense of two states in Π being exactly the same other than having
possibly different event times. Their translations into the transition system will thus be the
same.
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a ≡ putR(r, 1):

Similar to (r A R) case.

a ≡ close:

Similar to (r 6A R) case.

a ≡ hold(t):

Then P ≡ hold(t); body and g(D) = R/Jhold(t); bodyK. Kernelisation yields
g(Dk) = R/JbodykK. By induction, g(D[body/hold(t); body]) = R/JbodyK ≈
R / JbodykK = g(Dk). Notice that the hold generates a non-observable τ -
transition, so g(D) ≈ g(Dk) by the definition of ≈.

�

We now generalise, showing that the translation of any πDemos state into the
kernel generates an element of the equivalence class.

Theorem 3.5.2 Translation of a πDemos program into the kernel generates
a member of the equivalence class. That is, Dk ∈ ‖D‖; or g(D) ≈ g(Dk).

Proof By induction on n = |EL| + |WL| 3 where |WL| = the number of
processes waiting on resources.

We shall say that two πDemos states are equal even if they have differing event
times or the order of lists differs if that order is arbitrary as their intepretation
in the transition system will be the same. For convenience, we shall have two
base cases.

n = 0:

There are no waiting or active processes. Consequently, D ≡ Dk so g(D) =
g(Dk). ≈ is an equivalence relation and therefore reflexive, so g(D) ≈
g(Dk).

n = 1:

Immediate by Lemma 3.5.1.

n > 1:

The event and resource list translated into σDemos states will be of the form
g(D) = R / JP1‖P2K.
Let D1 = D[P1/(P1‖P2)] and D2 = D[P2/(P1‖P2)] — essentially, deleting
from the event and waiting lists a non-zero number of processes. Then
g(D1) = R/JP1K and g(D2) = R/JP2K. By induction, R/JP1K ≈ R/JP1kK =
g(D1k) and R / JP2K ≈ R / JP2kK = g(D2k).

Now, by Lemma 3.4.1, R/JP1‖P2K ≈ R/JP1k‖P2K ≈ R/JP1k‖P2kK = g(Dk).
Therefore, because ≈ is an equivalence relation, g(D) ≈ g(Dk)

�
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Figure 3.1: The correspodence between states of the transition system and the
of operational semantics.

3.6 Correspondence between Πk and σDemos states

As we used Σ in the previous section to mean the signature of a state in πDemos,
to avoid confusion we shall use the upper-case Greek letter Ω to denote the set
of σDemos (transition system) states. So,

g : Π → Ω

and
f̄ : Ω → Π.

The range of g when applied to states in the kernel, Πk, shall be written Ωk.
That is,

Ωk
def= {R / JP K | ∃Dk ∈ Πk. g(Dk) = R / JP K}

It is interesting to consider how our translations between Π and σDemos states
work when we restrict our attention to the kernel sets Πk and Ωk. Looking at
the definitions of g and f̄ , they do not seem to ‘lose’ any information about the
state. For some πDemos state in the kernel, Dk ∈ Πk, given its representation
in σDemos, g(Dk) ∈ Ωk, we would expect to be able to determine Dk. Similarly,
given f̄(R / JP K), we would expect to be able to determine R / JP K. We ask,
then, the question: does f̄ ‘undo’ g, and g ‘undo’ f̄?

Theorem 3.6.1 For any state Dk ∈ Πk,

f̄(g(Dk)) = Dk

Proof Outline By induction on |EL|+|WL| whereWL is the list of processes
waiting on resources.

3| · | may be read as “list length”. We shall refrain from giving the normal recursive
definition.
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First consider the resource list, and note that the collection of resource labels
is preserved, as is the availability of each resource. Also notice that the each
non-parallel (sub)process label is preserved.

The interesting case is where |EL| + |WL| = 1 and the only process is in the
waiting list of some unavailable resource r, WLr. Applying g gives a process
with getR(r, 1) at its head, and application of f̄ removes this, putting the process
back into the waiting list of r.

Notice that we do not consider the case where getR(r, 1) is the command at
the head of the event list and r is unavailable, as this is not a kernel state.
Therefore, we do not have a problem deciding from g(Dk) whether a process
has or has not yet ‘executed’ the getR(r, 1) command. �

Theorem 3.6.2 For any state R / JP K ∈ Ω — note that we do not require
that R / JP K be in Ωk —

g(f̄(R /
q
P[`]

y
)) = R /

q
P[`]

y

Proof Outline By induction on the structure of R / JP K. We first note that
the action of g after f̄ on an arbitrary state R / JP K results in the same re-
source collection, R. We also note that the labels of non-parallel processes are
preserved.

Again, there is essentially one interesting case: If P ≡ getR(r, 1); body and
r 6A R, body will be placed in the waiting list of r in f̄(R / JP K). g will restore
the getR(r, 1) command. Otherwise, for a non-parallel process, the code will be
placed in the event list of f̄(R / JP K). g will not add anything to the front, thus
restoring R / JP K. �

A bijection between two sets A and B is a function that maps every element
of A to exactly one element of B, with every element of B being mapped onto
exactly once.

Corollary 3.6.3 f̄ is the inverse function of g (or, equivalently, g is the inverse
of f̄) when we consider the sets of kernel states. That is, for Dk ∈ Πk and
(R / JP K)k ∈ Ωk,

g(f̄((R / JP K))k) = (R / JP K)k

and
f̄(g(Dk)) = Dk.

Consequently, g is a bijection from Ωk to Πk and f̄ is a bijection from Πk to
Ωk.

Proof The proof is immediate from the above theorems and the definitions
of inverse functions and bijections. �
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Figure 3.2: Bijection between kernel and transition system

3.7 Correctness of translations

3.7.1 Correctness of g

As mentioned before, in order to demonstrate that Theorem 3.2.1, that the
transition system simulates πDemos, is not vacuously true through choosing an
artificial definition of g, we must show the following property, which relates to
the soundness of the transition system with respect to the operational semantics
of πDemos. This is illustrated in Figure 3.1. We make use of the soundness
property of the transition system (Theorem 3.3.1) and Theorem 3.6.1.

Theorem 3.7.1 Let =⇒∗ represent the reflexive, transitive closure of the tran-
sitions derivable according to the operational semantics. Then ∀D,D′ ∈ Π, σ ∈
Act∗

g(D) σ=⇒ g(D′) implies Dk =⇒∗ D′
k.

Proof By Theorem 3.3.1,

R / JP K σ−→ R′ / JP ′K implies f̄(R / JP K) =⇒∗ f̄(R′ / JP ′K).
The property applies for every sub-transition to derive R / JP K σ=⇒ R′ / JP ′K,
so

R / JP K σ=⇒ R′ / JP ′K .
Now, R / JP K ranges over g(Dk), so

g(Dk) σ=⇒ g(D′
k) implies f̄(g(Dk)) =⇒∗ f̄(g(D′

k)).

By Theorem 3.6.1,

g(Dk) σ=⇒ g(D′
k) implies Dk =⇒∗ D′

k.

Finally, because g(D) ≈ g(Dk),

g(D) σ=⇒ g(D′) implies Dk =⇒∗ D′
k,

as required. �
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3.7.2 Correctness of f̄

Simularly, to demonstrate that we have not chosen an artificial f̄ to make The-
orem 3.3.1, the soundness of the transition system, vacuously true, we require
the following theorem, which relies on the simulation theorem (Theorem 3.2.1)
and on Theorem 3.6.2.

Theorem 3.7.2 Let σ−→
∗

represent the reflexive, transitive closure of the tran-
sition relation σ−→. Then for all R / JP K ∈ Ω,

f̄(R / JP K) =⇒ f̄(R′ / JP ′K) implies R / JP K σ−→
∗
R′ / JP ′K

Proof By Theorem 3.2.1, for all D,D′ ∈ Π,

D =⇒ D′ implies g(D) σ−→
∗
g(D′).

Now, f̄(R / JP K), f̄(R′ / JP ′K) ∈ Π, so

f̄(R / JP K) =⇒ f̄(R′ / JP ′K) implies g(f̄(R / JP K)) σ−→
∗
g(f̄(R′ / JP ′K)).

Theorem 3.6.2 gives us

f̄(R / JP K) =⇒ f̄(R′ / JP ′K) implies R / JP K σ−→
∗
R′ / JP ′K ,

as required. �
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Chapter 4

Demos and PBI

We have now defined, in abstract terms, the logic that we shall use, PBI, and a
transition system for Demos programs. It remains to consider how we integrate
the two and what we are able to express in the resulting system.

4.1 PBI and σDemos

Recall that the definition of the semantics of PBI given in §1.4 was by a monoid,

M = 〈Res× Prog, e, ·,v〉.

The monoid that we shall use to define the logic for Demos models shall be
denoted MD,

MD
def= 〈R × PROC, *+ / JεK , ◦,=α〉.

The composition relation ◦ combines states in Ω = R×PROC. It simply forms
the multiset union of the resource component and the parallel composition of
the process component.

(R / JP K) ◦ (S / JQK) def= R ] S / JP‖QK
The comparison pre-order =α is a simple equivalence,

R / JP K =α S / JQK def⇐⇒ R ≡ S ∧ P ≡ Q.

=α considers pairs to be equal iff they have the same resource multisets and
their process terms are the same, up to the commutativity and associativity of
parallelisation, with the inclusion of an arbitrary number of JεK processes. Thus*+ / JεK is the identity element under ◦.
The semantics of PBI following from these definitions is presented in Table 4.1.

Finally, we must define the relations � and � for the multiplicative modalities.
These define, respectively, the resources acquired and released by particular
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R / JP K |= r iff R / JP K =α *r + / JεK
R / JP K |= Q iff R / JP K =α * + / JQK

R / JP K |= ϕ ∧ ψ iff R / JP K |= ϕ and R / JP K |= ψ
R / JP K |= ϕ ∨ ψ iff R / JP K |= ϕ or R / JP K |= ψ

R / JP K |= ϕ→ ψ iff R / JP K |= ϕ implies R / JP K |= ψ

R / JP K |= ϕ ∗ ψ iff for some S / JQK ,S′ / JQ′K ∈ Ω
[ R / JP K = S ] S′ / JQ‖Q′K)

and S / JQK |= ϕ and S′ / JQ′K |= ψ ]
R / JP K |= ϕ −∗ ψ iff for all S / JQK ∈ Ω

S / JQK |= ϕ implies R ] S / JP‖QK |= ψ

R / JP K |= 〈A〉ϕ iff for some α ∈ A
R / JP K α−→ R / JP ′K and
R / JP ′K |= ϕ

R / JP K |= [A]ϕ iff for all α ∈ A
R / JP K α−→ R / JP ′K implies
R / JP ′K |= ϕ

R / JP K |= 〈A〉+newϕ iff ∃a ∈ A.
a � S / JQK

and R / JP K a−→ R ] S / JP ′‖QK
and R ] S / JP ′‖QK |= ϕ

R / JP K |= [A]+newϕ iff ∀a ∈ A.
a � S / JQK

and R / JP K a−→ R ] S / JP ′‖QK
implies R ] S / JP ′‖QK |= ϕ

R / JP K |= 〈A〉−newϕ iff ∃a ∈ A. a � S / JQ1K
and R / JP K = S ]T / JQ1‖Q2K
and S ]T / JQ1‖Q2K a−→ T / JQ′

2K
and T / JQ′

2K |= ϕ
R / JP K |= [A]−newϕ iff ∀a ∈ A. a � S / JQ1K

and R / JP K = S ]T / JQ1‖Q2K
and S ]T / JQ1‖Q2K a−→ T / JQ′

2K
implies T / JQ′

2K |= ϕ

R / JP K |= ¬ϕ iff R / JP K 6|= ϕ

R / JP K |= > always
R / JP K 6|= ⊥ for any R / JP K
R / JP K |= IR iff ∃P ∈ PROC. R / JP K =α*+ / JP K
R / JP K |= IP iff ∃S ∈ R. R / JP K =α S / JεK
R / JP K |= I iff R / JP K =α *+ / JεK

Table 4.1: Demos semantics of PBI
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actions.

getRn
r � *rn + / JεK

getBn
b � *bn + / JεK

getSn
x � *xn + / JεK

putRn
r � *rn + / JεK

putBn
b � *bn + / JεK

putSn
x � *xn + / JεK

4.1.1 Intuitive account

• Resource propositions r hold in states with no process component where
r is the only resource available.

• Process propositions P hold in states with null resource component with
P being the only process.

• The additive unit of ∧ is >, which holds in any state.

• The additive unit of ∨ is ⊥, which holds in no state.

• The multiplicative resource unit IR holds in states with no resource com-
ponent, but allows an arbitrary (possibly parallel) process.

• The multiplicative resource unit IP holds in states with only a null process
component, but allows an arbitrary resource component.

• The (extraneous) multiplicative unit I holds in states with only a null
process component and no available resources.

• The additive logical operators ∧,∨ and → are all as in classical (boolean)
logic. ∧ allows us to assert that two propositions hold in a state, ∨ allows
us to assert that at least one of two propositions holds in a state, and →
allows us to assert that if one proposition holds in a state, so does another.

• The multiplicative conjunction of two propositions will hold in a state,
R / JP K |= ϕ ∗ ψ, if the state can be partitioned into two parts, the
partition being of resources and processes, with one part making ϕ hold
and the other making ψ hold.

• Multiplicative implication relates to the addition of resources or processes:
R/ JP K |= ϕ −∗ ψ holds if all states in which ϕ holds when composed with
the state R / JP K give states in which ψ holds.

• 〈A〉ϕ will hold if a state can evolve to a new state by a single action α ∈ A
in which ϕ holds given no change in the resource component of the state.
Similarly, [A]ϕ holds in a state if all transitions labelled α ∈ A lead to
states in which ϕ holds, again with no change in the resource component.
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• R / JP K |= 〈A〉+ϕ will hold if by some action σ ∈ A, there is a transition
to a new state with a larger resource collection, R / JP K σ−→ R]S / JP ′K,
with σ � S, and R]S / JP ′K |= ϕ. Similarly, [A]+ relates to all transitions
with labels in A leading to states in which a proposition holds.

• Dually, the negative multiplicative modalities relate to transitions leading
to states with smaller resource collections. They relate to transitions of
the form R]S/ JP K σ−→ R/ JP ′K, with the difference in resource specified
by σ � S.

• Finally, because our pre-order is an equality, our logic is classical so we
have negation, ¬. This allows us to assert that a proposition does not
hold in a given state. The inclusion of negation makes → redundant: we
could use the equivalence ϕ→ ψ ⇔ ¬ϕ ∨ ψ.

If we want to reason about an arbitrary type of action occuring, we would form
the disjunction of diamond modalities or the conjunction of the box modalities.
We shall introduce the following abbreviations:

R / JP K |= [A]anyϕ iff R / JP K |= [A]−newϕ ∧ [A]+newϕ ∧ [A]ϕ

R / JP K |= 〈A〉anyϕ iff R / JP K |= 〈A〉+newϕ ∨ 〈A〉−newϕ ∨ 〈A〉ϕ.

Recalling the definition of IR, the formula r ∗ IR holds in states where r is the
only available resource with an arbitrary process term. We shall soon see a
formula representing r being one of the free resources. Recalling the definition
of IP , the formula P ∗IP holds in states where P is the only process in the state
with an arbitrary collection of resources.

4.2 Deadlock in PBI

As presented in §1.3.2, deadlock freedom in Hennessy-Milner logic is defined as:

Dhml
f =

∧
i∈N∪{ω}

[A]i〈A〉>

We must make a few adaptations to this to make it suitable for us. Firstly,
we must select an appropriate modality: we shall choose the any modalities.
Secondly, we wish to relax the requirement that the process never terminates
to requiring that if it is in a non-terminated state, it can take an action. We
do this by requiring IP , the proposition indicating clean termination, or non-
termination in every state. Consequently, the PBI formula for deadlock freedom
in Demos is:

DD
f =

∧
i∈N∪{ω}

[−]iany(〈A〉any> ∨ IP )

69



4.3 Examples

We shall start by considering the modalities. The additive modalities, as we
have said, relate to transitions in which the resource component of state does
not change. We have, then,

R / Jhold(5); putR(r, 1)K |= 〈−〉>,

which expresses that the process can act without changing the available resource
collection. We also have

*r + / Jhold(5); putR(r, 1)‖getR(r, 1); putR(r, 1)K |= [−](r ∗ IR).

which expresses that every action that does not change the available resource
collection gives a state in which r is the only available resource. Notice that we
do not have |= 〈−〉¬(r ∗ IR): the getR transition, the only transition leading to
a state in which r is unavailable, does not match the semantics of the additive
modality.

The additive modality does not refer to actions that will change the available
resource collection, so

R / JputR(r, 1)K |= [−]⊥,

which expresses that the process can make no action that does not change the
available resource collection.

The multiplicative release modality is used for putX transitions. So, for exam-
ple, *r, s + / JputB(b, 1)K |= 〈−〉+new(b ∗ r ∗ s)

by the (only) transition

*s, r + / JputB(b, 1)K putB1
b−→ *b, r, s + / JεK

and that putB1
b � *b + / JεK.

The multiplicative acquisition modality is used for getX transitions:

*b, r, s + / JputB(b, 1)‖getB(b, 1)K |= [−]−new(r ∗ s ∗ IR)

by the only get transition

*b, r, s + / JputB(b, 1)‖getB(b, 1)K getB1
b−→ *r, s + / JputB(b, 1)‖εK

In general, we will have the following:

R / JP K |= [− ]+newϕ+

∧[− ]−newϕ−
∧[− ]ϕ

where ϕ+ is some formula true in all states following a transition by any process
with put at its head, ϕ− following a transition by any process with get at its
head, and ϕ following a transition by any other process.
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∗ relates to partitions of the state, both of processes and resources. Returning
to the intelligence agency example, recalling that > holds for any state, we see
that the following holds:

*C,F, 6, 5 + / JP K |= F ∗ >

where C denotes the CIA line, 6 denotes the MI6 line etc. by *F + / JεK |= F
and *C, 6, 5 + / JP K |= >. So in general, just as we can in propositional BI, we
may indicate that a resource r is available by the formula r ∗ >.

Returning to the jobshop example, we may wish to express that h and m are the
only available resources. Clearly, *h,m + / JP K |= h ∗m ∗ >, but also *h,m, x +
/ JP K |= h∗m∗>. Rather than using >, we should have used IR: *h,m+/ JP K |=
h∗m∗IR. This expresses that there are three partitions in the state, one having
only the resource h, another having the resource m and the final one being an
arbitrary process with no resource.

Suppose that we have a proposition εC which denotes termination of the CIA
process. As has been illustrated, it is not the case that in every possible execu-
tion the CIA process terminates.1

*C,F, 6, 5 + / JP K 6|= ∧
i∈Nω

[−]iany(〈−〉any> ∨ εC)

This formula expresses that there is a state from which the system can make
no transition and the CIA process has not terminated cleanly. We might like to
consider the effect of removing MI6’s line: would this allow the CIA to complete
its task in all conditions? We may express this in the logic as:

*C,F, 6, 5 + / JP K ?= 6 ∗
∧

i∈Nω

[−]iany(〈−〉any> ∨ εC)

Now, *6 + / JεK |= 6. For the above formula to be true, then, all we have to show
is that *C,F, 5+/ JP K |= ∧i∈Nω

[−]iany(〈−〉any>∨εC). (Notice that the choice of
partition here is entirely deterministic.) Because MI6’s line is removed, the MI6
process will not be able to proceed to take MI5’s line or the FBI’s. Consequently,
the CIA process will terminate properly, so we do have2:

*C,F, 6, 5 + / JP K |= 6 ∗
∧

i∈Nω

[−]iany(〈−〉any> ∨ εC).

This illustrates how ∗ may be used to reason about subtraction of resources
from a system.

It is a simple matter to ask if a partition exists that is non-deadlocking:

R / JP K ?= DD
f ∗DD

f

This will hold only if there are deadlock-free partitions S1 / JP1K and S2 / JP2K
such that R / JP K = S1 ] S2 / JP1‖P2K. If we require a non-trivial partition
(i.e., without one partition being null-process), we would ask:

R / JP K ?= (DD
f ∧ ¬IP ) ∗ (DD

f ∧ ¬IP )

1The following formula comes from the definition of deadlock — see §4.2
2But not overall deadlock freedom
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Now let us consider −∗. Suppose that we want to consider the effect of installing
a new line from the hub to the FBI. Would this result in deadlock freedom? The
question would be posed in the logic as:

*C,F, 6, 5 + / JP K ?= F −∗ DD
f

The only state (model) satisfying |= F is *F + / JεK. Thus to answer the above
question, we must resolve satisfaction of *C,F, F, 6, 5 + / JP K ?= DD

f . It turns
out that this is true: either the CIA process or the MI6 process may end up
blocked, but the other will eventually release the resource that it is waiting on.

The multiplicative modalities are also quite interesting: we could now use the
positive (given the possible inclusion of processes, a better term might be compo-
sition) modalities 〈A〉+new and [A]+new to indicate a new process being generated.
This occurs with an Entity command, and would require � to be extended by

τ class
Entity � * + / JclassK .

Similarly, we could use the positive (a better term now might be decomposition)
modalities to indicate processes being removed. This could be through the
termination case of parallel composition or through an explicit kill command
(which does not exist in Demos). With such rich multiplicative modalities, it
may be desirable to exlude the case where the number of processes changes in
this manner from the additive modality. Further consideration of this, though,
is beyond our current scope. We shall, therefore, use the additive modalities for
Entity declarations etc., and leave � and � defined only where necessary: on the
resource actions.

It should be noted, though, that the total composition relation described here
makes proof-search very non-deterministic. Take, for example, the formula
〈−〉+new> −∗ ϕ. Not allowed if we define composition partially, R/JP K◦S/JεK =
R ] S/JP K, to evaluate this we may have to consider adding every σDemos pro-
cess that can release a resource!

4.3.1 Sub-deadlock

Consider again the jobshop example of §2.4. The worker process (the input
stream of jobs to do) can, as it is, never deadlock. Consequently, if we consider
the whole process we see that it is always possible to derive a transition using
the worker process3, so the whole system may never deadlock. Now, this is not
of very much use to us: what we really want to know is whether or not the
jobbers deadlock.

Deadlock of a process, whether it be a sub-process or not, is defined to occur
where no transition is derivable at any reachable future state. For a sub-process
Pk[`], then, a state is deadlock-free with respect to Pk[`] iff there is no reachable
state from which Pk[`] does not act in any transition from any future state. We
can write this in PBI as:

DP,k
f

def⇐⇒ ¬
∨
〈−〉any

(
¬εk ∧

∧
[−]jany[K]any⊥

)
3This is not the case if we consider a fair transition system, §6.1
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Note that we have used a set of action labels indicating action by Pk[`], K. This
set can be defined by pattern-matching,

K = {a | a ∈ Labels and a = ` : }
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Chapter 5

Synchronous parallel rule

5.1 Motivation

Consider a kitchen in which there is a knife, a pair of scissors, a mother and her
child. The mother uses the knife and then the scissors before returning them.
Adopting our Demos representation for processes, and letting k represent the
knife and s the pair of scissors, her activity is modelled by the following sequence
of actions:

Pm = getR(k, 1); getR(s, 1); hold(5); putR(s, 1); putR(k, 1).

The child only wants to use the scissors for a short period of time, and they are
not allowed to use the knife. Their Demos representation is:

Pc = getR(s, 1); hold(1); putR(s, 1),

We want to ask if having the mother and the child in the kitchen at the same time
will cause deadlock. Letting putative consequence (asking whether a formula
is satisfied in a particular model) be written ?=, the question is represented
formally by: *s, k + / JPm‖PcK ?= DD

f .

In the logics presented above, HML, CTL and modal-µ, the complexity of model-
checking such questions increases as the state space generated by the transition
system increases. Figure 5.1 shows the program fragment of the states that
may be generated using the transition system with the parallel composition
rule presented above.

Branching occurs where more than one transition is derivable from a particular
state — there is non-deterministic choice of the next state to enter into. For
example, at state (1, 1), either the child may take the scissors or the mother may
take the knife. For the transition system presented above, the only time we may
have such non-deterministic choice is where we have the parallel composition of
processes where more than one is active (i.e., not waiting on a resource).

The astute reader may have noticed that, when considering deadlock, it was
not essential to distinguish whether the first action was or was not the mother
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3
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Pc

The axes are labelled by numbers representing the line of code being executed:

Pm Pc

1 getR(k, 1) getR(s, 1)
2 getR(s, 1) hold(1)
3 hold(5) putR(s, 1)
4 putR(s, 1) ε
5 putR(k, 1) —
6 ε —

So, for example, (4, 3) = JputR(s, 1); putR(k, 1)‖putR(s, 1)K.
Arrowed lines indicate which states may be derived from each state.

Figure 5.1: Reachable state space for kitchen example derived by asynchronous
transition system

picking up the knife, and then considering the real interaction. Why, then, did
we need to generate a whole collection of states to distinguish this possibility?
In terms of process interaction, it would have been more efficient to force the
first action to be the mother taking the knife. Of course, the reader could argue
that it is the rôle of the modeller to weed-out such irrelevances. Unfortunately,
though, the modeller may not know in advance which processes we wish to
model interaction between, so this cannot be expected.

5.2 Soundness: try and resource splitting

Let us consider how we may formulate a rule that allows synchronous execution
of processes. If we include the simple, intuitive rule

(SPAR) :
R / JP K σ−→ R′ / JP ′K S / JQK σ−→ S′ JQ′K

R ] S / JP‖QK σ−→ R′ ] S′ / JP ′‖QK ,

the semantics of the transition system become unsound with respect to the
operational semantics of Demos. The unsoundness comes, in part, from the
fact that we have considered only a simple split of resources: in deducing a
transition, we may allocate one processes resources it does not need, thereby
depriving the other process of resources. This error may manifest itself in a try
command choosing the wrong branch.
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To give a concrete example of this, consider the jobshop example (§2.4) with
one extra hammer. Suppose that one worker has taken a medium-difficulty job
to do, and the other has taken a hard job to do. The state in Ω, then, is:

*m,h, h + / JMID; J‖HARD; JK
where MID is the procedure for a medium-difficulty process

try [getR(m, 1)] then {hold(20); trace(’Mid’); putR(m, 1)}
etry [getR(h, 1)] then {hold(10); trace(’Mid’); putR(h, 1)} ,

and HARD denotes

getR(h, 1); hold(20); trace(’Hard’); putR(h, 1)

Define

MIDh ≡ hold(10); trace(’Mid’); putR(h, 1)
HARDh ≡ hold(20); trace(’Hard’); putR(h, 1),

representing the code to be executed if we have a middle- or hard-difficulty job,
respectively, and have picked up a hammer.

The derivation from this state, using the unsound transition rule, is presented
in Figure 5.2.
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Clearly this is wrong — we did not use the mallet on the easy job as we should
have done. The error came from the fact that it was possible for us to ‘give’ the
mallet to the process executing HARD, which did not need it, whilst MID did
not know that the mallet existed.

For this reason, a logical resource weakening rule for transitions,

(WEAK) :
R / JP K σ−→ R′ / JP ′K

R ] S / JP K σ−→ R′ ] S / JP ′K ,
would also be unsound.

Two solutions exist to overcome this particular problem. One is to adopt the
rule:

( SPAR ) :
R ]H / JP K σ1−→ H / JP ′K R′ ]H / JQK σ2−→ H / JQ′K

R ]R′ ]H / JP‖QK σ1|σ2−→ H / JP ′‖Q′K .

This allows both derivations to ‘see’ all the unused resources in the system.

The second solution is to disallow the command at the head of any process being
‘try’ when considering the synchronous parallel rule. We shall adopt the first
solution.

5.3 Soundness: Synchrony

The presentation so far has failed to take into one thing into account: we do
not necessarily want to consider processes executing synchronously. Take, for
example, the following processes:

P1
def= getR(r, 1); getR(s, 1); putR(r, 1); putR(s, 1)

P2
def= do(2){putB(b, 1); }getR(s, 1); getR(r, 1); . . .

The only path derivable from here using the synchronous rule is:

*r, s + / JP1‖P2K
getR|putB

=⇒ *s, b + /s getR(s, 1); putR(r, 1); putR(s, 1)
‖ do(1){putB(b, 1); }getR(s, 1); getR(r, 1); . . .

{
getR|putB

=⇒ *b, b + /s putR(r, 1); putR(s, 1)
‖ getR(s, 1); getR(r, 1); . . .

{
=⇒ . . .

By executing synchronously, we missed the deadlock that would have occurred
if the two putBs had executed first. In effect, the transition system that we have
described so far in this section could be simulated in the operational semantics
by removing all hold commands and inserting hold(k), for some constant k,
between all the other commands.

How, then, can we reconcile our desire for a state space reduction with the
necessity of considering all interactions between processes? The answer lies in
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identifying which commands could affect the execution of other processes — we
shall say that they interfere with other processes. We can choose to branch only
on these commands, whilst executing non-interfering commands synchronously.
So, for example, if a process has a series of commands on a resource that is
not referenced by any other process, we will not introduce any new paths to be
examined when model checking.

We shall, therefore, require a condition, (∗), that dictates when to use the
synchronous parallel rule and when to use the asynchronous rule(s). To capture
intereference some auxilliary functions are required. Firstly, the multiset of
resources accessed by a non-parallel process:

res(getR(r, n)) def= *rn +
res(putR(r, n)) def= *r +
res(getB(b, n)) def= *bn +
res(putB(b, n)) def= *b +
res(sync(x)) def= *sync x +

res(getS(x, n)) def= *sync xn +
res(c;P ) def= res(c) ] res(P )

res(c, C) def= res(c) ] res(C)

res

(
try [e1] then P1

etry [e2] then P2

)
def= res(e1) ] res(e2) ] res(P1) ] res(P2)

res(anything else) def= *+
where sync x is a token indicating synchronisation on a pool x.

The command that may next be executed by a non-parallel process is its head,
defined as follows:

head(c) def= c head(c;P ) def= c

The function −→res shall return the multiset of resources accessed by parallel
processes:

−→res(JεK) def= *+
−→res(JP‖QK) def= res(P ) ] −→res(Q), P not parallel

Take the set of indices of a parallel process P to be InP ; that is, if P =JP1‖ . . . ‖PnK then InP = {1, . . . , n}. The set of indices of non-interfering pro-
cesses (processes with non-interfering commands at their head) shall be written
C ′

P , defined as:

C ′
P

def=

{
i

res(head(Pi)) C−→res
(wwww

k∈IP \{i}
Pk

)
= ∅

}

To ensure that the synchronous parallel rule does not prevent us entering the
true deadlocked state, we shall also require that it only be applied to processes
that are able to act. This set of processes is:

AR
P

def= {i|i ∈ InP ∧ (head(Pi) = getR(r, n) =⇒ res(head(Pi)) F R)}
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We shall execute all non-interfering processes synchronously until there are none
left, at which point we shall use the non-deterministic asynchronous parallel
rules. Thus the condition is:

C ′
P ∩AR

P 6= ∅ (∗)

The synchronous parallel execution rule, then, is:

(SPAR) :
Ri ]H / JPiK σi−→ H / JP ′

i K
H(
⊎

i∈I′P
Ri) / JP K σi|i∈I−→ H /

rf
k/∈I′P

Pk

f
i∈I′P

P ′
i

z (∗)

The asynchronous parallel execution rules are unchanged, other than having the
condition ¬(∗).
In Figure 5.3, we present an example series of transitions derivable with this rule.
Notice that there is no choice of which transition to derive — this particular
path is derived completely deterministically from the given state. Following a
τ -transition to remove the null process, we would now use the asynchronous
transition rules to consider the interfering executions. Figure 5.4 shows ther
reduced state space of the kitchen example. Notice that the it is much smaller
than that derived by the asynchronous system, with only one branching point.

*r, s, t+ /

u
wwwwv

getB(r, 1) getR(u, 1) getR(t, 1)
putR(u, 1) hold(4) getR(s, 1)
hold(3) putR(u, 1) hold(4)

putR(t, 1)
putR(s, 1)

}
����~ C ′

P = {1, 3}

getB|getR−→ *s+ /

u
wwv

getR(u, 1) getR(s, 1)
putR(u, 1) hold(4) hold(4)
hold(3) putR(u, 1) putR(t, 1)

putR(s, 1)

}
��~ C ′

P = {3}

getR−→ *+ /

u
v getR(u, 1) hold(4)

putR(u, 1) hold(4) putR(t, 1)
hold(3) putR(u, 1) putR(s, 1)

}
~ C ′

P = {3}

τ−→ *+ /

u
v getR(u, 1)

putR(u, 1) hold(4) putR(t, 1)
hold(3) putR(u, 1) putR(s, 1)

}
~ C ′

P = {3}

putR−→ *t+ /

u
v getR(u, 1)

putR(u, 1) hold(4)
hold(3) putR(u, 1) putR(s, 1)

}
~ C ′

P = {3}

putR−→ *s, t+ /

u
v getR(u, 1)

putR(u, 1) hold(4) ε
hold(3) putR(u, 1)

}
~ I ′P = {3}

Figure 5.3: Path derived, deterministically, using synchronous parallel rule
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Filled circles represent states in which (∗) holds. Double lines indicate a tran-
sition derived using the synchronous parallel rule.

Figure 5.4: State space for kitchen example derived by the synchronous transi-
tion system

As mentioned before, though, the reduced state space comes at a cost. The tran-
sition system is not complete with respect to the operational semantics of Demos
programs because the operational semantics defines asynchronous action. In the
sequel, |=a shall represent satisfaction in PBI with the normal, asynchronous
semantics, and |=s shall represent satisfaction with the synchronous parallel
rule. We see, then, that |=s is not complete with respect to |=a.

Proposition 5.3.1 |=s is not complete with respect to |=a. That is, there is
a formula ϕ and σDemos state R / JP K with R / JP K |=a ϕ and R / JP K 6|=s ϕ.

Proof Take R / JP K to be the first state in the sequence above. Then
R / JP K |=a 〈−〉anys ∗ t ∗ IR but R / JP K 6|=s 〈−〉anys ∗ t ∗ IR. �

Moreover, |=s is not even sound with respect to |=a (and, therefore, the opera-
tional semantics of Demos):

Proposition 5.3.2 |=s is not sound with respect to |=a. That is, there is a
formula ϕ and σDemos state R / JP K with R / JP K |=s ϕ but R / JP K 6|=a ϕ.

Proof With R/JP K as before, R/JP K 6|=a ¬(〈−〉anys∗t∗IR) but R/JP K |=s

¬(〈−〉anys ∗ t ∗ IR). �

This holds even in a system without negation, e.g., consider evaluating 〈−〉(s ∗
IR) on the first state of the above sequence.

We postulate, though, that there is a syntactically defined class of formulæ, Φs,
for which |=s is sound and complete. We anticipate that deadlock freedom, DD

f ,
is in this class. Though the definition of this class is beyond us at the moment,
we shall proceed to show that deadlock freedom is, indeed, sound and complete
in the synchronous system.
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5.4 Deadlock freedom equivalence in asynchronous
and synchronous systems

Recall that the formula for deadlock freedom for Demos in our HML-type logic
is:

DD
f =

∧
i∈N∪{ω}

[Act]any
i(〈Act〉any> ∨ IP ).

This formula will be equivalent in both transition systems if

• any state reachable in the synchronous system that is deadlocked is also
reachable in the asynchronous system, and

• any deadlocked state reachable in the asynchronous system is also reach-
able in the synchronous system.

The first condition relates to soundness of deadlock detection in the synchronous
system (dually, completeness of deadlock freedom); the second relates to com-
pleteness of deadlock detection in the synchronous system (dually, soundness of
deadlock freedom).

More formally, for arbitrary κ, λ ∈ Nω there exist κ′, λ′ such that:

If R / JP K |=s 〈−〉κany(¬(〈−〉any> ∨ IP )) then
R / JP K |=a 〈−〉κ

′

any(¬(〈−〉any> ∨ IP ))
(5.1)

If R / JP K |=a 〈−〉λany(¬(〈−〉any> ∨ IP )) then
R / JP K |=s 〈−〉λ

′

any(¬(〈−〉any> ∨ IP ))
(5.2)

5.4.1 Soundness of deadlock detection

In order to show the soundness of deadlock detection, we shall firstly show that
any state reachable in one transition by the synchronous system is reachable by
the asynchronous system.

Lemma 5.4.1 There exists a finite number of transitions, n, such that:

If R / JP K σ−→s R′ / JP ′K then R / JP K σ−→
n

a R′ / JP ′K
Proof By induction on the structure of synchronous transition derivations.
The non-parallel cases are trivially true — in neither system do we use the
parallel execution rules.

The interesting case is where we have a try command in parallel with some
other process, as presented in §5.2.

The other cases for (SPAR) follow quite easily from the fact that we can ‘decom-
pose’ the derivation using (SPAR) to form two asynchronous derivations. From
the fact that the two processes do not interfere — otherwise, we would not be
using (SPAR) — we can deduce that the resources necessary to take both ac-
tions will be available in the asynchronous case if they were in the synchronous
case.
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Returning to the try command case, assume that

R / JP K ≡ S ] S′ ]H / Jtry [e1] then P1 etry [e2] then P2‖QK .
If we are to derive a transition, we must have the sub-derivation S ] H /Jtry [e1] then P2 etry [e2] then P2K try−→ H / JP ′K, where P ′ ≡ P1 or P2.
We know that neither e1 nor e2 require any resources referenced by process Q
by (∗). Consequently, any transition from process Q will not use the resources
required by e1 or e2, and so they are not contained in S′. Therefore, any re-
sources that could be used by the try command, thereby affecting the path
chosen, will not be hidden by inclusion in S′. Thus adding the resources in
S′ to the environment will not affect the transition, so we could equivalently
derive:

S ] S′ ]H / Jtry . . .K try−→ H ] S′ / JP ′K
As this does not use a parallel execution rule — it uses (TRY), this holds for
both systems. By induction, there exists an integer m such that

S′ ]H / JQK σ−→
m

a H / JQ′K .
If, then, we apply the asynchronous parallel rule to first derive

S ] S′ ]H / Jtry . . . ‖QK try−→ S′ ]H / JP ′‖QK ,
we can apply the same sequence of m transitions on Q to derive the required
state. �

It follows easily by transfinite (ordinal) induction that any state reachable by a
sequence of transitions in the synchronous system is reachable by a sequence of
transitions in the asynchronous system.

Lemma 5.4.2 For any κ ∈ Nω there is a κ′ ∈ Nω such that:

If R / JP K σ−→
κ

s R′ / JP ′K then R / JP K σ−→
κ′

a R′ / JP ′K
�

We now prove that if deadlock is detected according to the synchronous transi-
tion system then the state really can deadlock.

Theorem 5.4.3 (Soundness of deadlock detection (5.1))

R/JP K |=s 〈−〉κany(¬(〈−〉any>∨IP )) =⇒ R/JP K |=a 〈−〉κany(¬(〈−〉any>∨IP ))

Proof If we dissect the formula 〈−〉κany¬(〈−〉any> ∨ IP ), it expresses that
¬(〈−〉any>∨IP ) holds in some state reachable from R/JP K. Suppose, then, that
the synchronous transition system leads to a state R′/JP ′K |=s ¬(〈−〉any>∨IP ).
By Lemma 5.4.2, we know that we can reach this state in the asynchronous
system. We must, then, show that R′ / JP ′K |=a ¬(〈−〉any> ∨ IP ).

Firstly, notice that ¬(〈−〉any>∨ IP ) is logically equivalent to ¬〈−〉any>∧¬IP .
Consequently, from the semantics of ∧, we have R′ /JP ′K |=s ¬IP . As this is not
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a modal formula, the differing transition system will not affect its satisfaction,
so R′ / JP ′K |=a ¬IP . All that remains to be proven, then, is that R′ / JP ′K |=s

¬〈−〉any> implies R′ / JP ′K |=a ¬〈−〉any>. Assuming R′ / JP ′K |=s ¬〈−〉any>,
there are two cases to consider: (∗) holds and (∗) does not hold.

If (∗) does not hold, we are unable to derive a transition using the asynchronous
parallel execution rules, and the synchronous parallel rule may not be used.
Immediately, therefore, we are unable to derive any transition in the purely
asynchronous system, so R′ / JP ′K |=a ¬〈−〉any>.

If (∗) holds, we know that there is at least one process with a non-interfering
command at its head. Furthermore, we know that if this command is a getX
(where X could be R, B or S) command, the resource is available. There is no
reason, therefore, why we cannot make a transition from this state for every
process indexed by C ′

P ∩ AR
P . We may deduce that this case does not arise:

R′ / JP ′K |=a ¬〈−〉any> is never true if (∗) holds, so we may vacuously conclude
R′ / JP ′K |=s ¬〈−〉any>. �

5.4.2 Completeness of deadlock detection

In order to show that the synchronous system is complete with respect to the
asynchronous system — that is, if we detect deadlock in the asynchronous sys-
tem, we will in the synchronous system — we shall first show that if it is not
possible to make a transition in the asynchronous system from an arbitrary
state, it is not possible to make a transition in the synchronous system.

Lemma 5.4.4 For all states R / JP K,
R / JP K |=a ¬〈−〉any> =⇒ R / JP K |=s ¬〈−〉any>

Proof By induction on R / JP K
Assume that R / JP K |=a ¬〈−〉any>. As usual, we shall consider only the case
where P is the parallel composition of processes and (∗) holds. Otherwise,
we would use exactly the same transition system and the statement would be
easily provable. Then there is no derivation concluding, for any state R′ / JP ′K,
R / JP K σ−→a R′ / JP ′K. Consequently, as P is the parallel composition of
processes, there is no transition derivable for any of these. In the synchronous
system, (∗) holds, so we would require at least one derivation of a transition
for a sub-process to derive a transition for P . By induction, we can make no
transition for a sub-process in the synchronous system, so we can derive no
transition for P in the synchronous system. 1 �

To prove the completeness of deadlock detection is quite complicated. We shall,
therefore, present only an outline of the proof. Moreover, we shall consider
only acquisition through getR; the cases for getS and getB are similar, as is
acquisition through try.

1An alternative proof would note that this case is vacuously true: if (∗) holds, we must
be able to make a transition, so we must be able to make a transition in the asynchronous
system. We have given the full proof to illustrate how we could prove the property with a
more relaxed condition (∗).
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Theorem 5.4.5 (Completeness of deadlock detection (5.2)) If there is
a path to a deadlocked state in the asynchrounous system, there is a path to a
state in the synchronous system. That is, for arbitrary R / JP K,
R / JP K |=a 〈−〉κany¬(〈−〉any> ∨ IP ) =⇒ R / JP K |=s 〈−〉κany¬(〈−〉any> ∨ IP )

Proof Outline We start by assuming an arbitrary state R′ / JP ′K such that
R′ / JP ′K |=a ¬(〈−〉any>∨ IP ). This is equivalent to R′ / JP ′K |=a ¬〈−〉any>∧
¬IP ). By the semantics of ∧, R′ / JP ′K |=a ¬〈−〉any> and R′ / JP ′K |=a ¬IP .
By Lemma 5.4.4, we see that R′ / JP ′K |=s ¬〈−〉any>. Whether IP holds in a
state is independent of the transition system, so R′ / JP ′K |=s IP .

Now, notice that the only rule we may fail to derive a transition by is (GETR);
it is the only rule for which the side-condition2 does not form a tautology with
the other rules. As the state is deadlocked, the command at the head of every
process, therefore, must be getR(ri, 1). Moreover, as the side condition is not
met (because we are not able to make a transition from this state), we do not
have any resource ri that is requested.

We may only use the rule (SPAR) to execute certain commmands. It may not
be used to pass any getR(ri, 1) command where either ri is not available or ri
is referenced by some other process. Beyond here, the asynchronous system will
be used. Notice that (∗) necessarily does not hold where we fail to derive a
transition in the asynchronous system. We see, then, that

R / JP K σk

−→a R′ / JgetR(r1, 1)‖ . . . ‖getR(rn, 1)K
implies R / JP K σ`

−→s R′ / JgetR(r1, 1)‖ . . . ‖getR(rn, 1)K
As ¬(〈−〉any> ∨ IP ) is equivalent in the two systems, then,

R / JP K |=a 〈−〉κany¬(〈−〉any> ∨ IP ).

�

It is interesting that in the above proofs we have not used the fact that we do not
use the (SPAR) rule to pass by putR(r, 1) commands where r is referenced by
any other process. We could, therefore, remove this restriction and preserve the
correctness of deadlock detection. Such a relaxation, though, would decrease
the size of the class Φs of formulæ equivalent in the synchronous and asyn-
chronous systems. The synchronous system would, for example, be incomplete
in detecting whether any sub-process could ever have to wait on a resource.

It is also interesting to consider the behaviour of the synchronous parallel rule
on the following program:

while(>){
getR(r, 1) getR(s, 1) putB(t, 1)
getR(s, 1) getR(r, 1) getB(t, 1)

}

The synchronous execution rule, assuming a resource state *r, s, t+, will contin-
ually ‘execute’ the third process. Though this is fine with respect to detecting

2The side-condition is implicit in the structure of the initial resource component
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overall system deadlock, we will not be able to detect that the first two processes
may become stuck: they will never pass their first commands, so they may both
always make a transition.
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Chapter 6

Conclusions

We have presented some of a theoretical framework capable of conducting anal-
yses of discrete-event processes that interact through shared, discrete resources.
This has involved taking the Logic of Bunched Implications and extending its
semantics to be able to consider both processes and resources. In order to de-
scribe such processes, we have taken a simulation language, Demos, and defined
its non-temporal action. Demos is an ideal language for this task: as well as
being designed to model concurrently executing processes interacting through
shared resources, its operational semantics are defined. This has allowed us
to show that the transition system used by the logic that defines the action
of processes is correct with respect to the non-temporal action of processes in
Demos. We defined a kernel of Demos states capable of representing processes
non-temporally.

6.1 Further work

A number of aspects remain to be considered.

Shared resource 1 Demos programs do not allow us to represent shared re-
source: we cannot represent, for example, that processes P1 and P2 have
access to a resource whilst P3 does not.2 Our process logic, similarly, is
not able to make such a distinction, and it is not clear to see how we may
extend it to do so without significantly modifying the logic.

Fairness and justice We have allowed processes to execute in an arbitrary
manner (e.g., in §5.4.2 we allowed the third process to be executed all the
time, ignoring the (blocked) first two processes). Such biased execution
may be considered to model improperly the actual characterisics of a sys-
tem. Following from the discussion of fairness in [GPSS80], Manna and
Pnueli in [MP83] suggest two characteristics of proper executions: fair-
ness and justice. We adapt their definition to our notion of concurrently
executing processes.

1As suggested by D. J. Pym
2This could represent the resource having been taken by P1 or P2 which are “close to”

each other, or the resource being generally unavailable to P3.
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• An execution sequence is said to be fair if it terminates finitely, it is
infinite and all finite processes terminate or otherwise cannot continue
to execute, or it is infinite and all non-halting processes are executed
infinitely often.

• An execution sequence is said to be just if whenever a process is
always able to take a transition, that process will act infinitely many
times.

[CES86] describes how fairness may be integrated into a model-checker.

Adopting such a fairness condition in the example of §5.4.2 above would
prevent the third process executing through every transition, and we could
deduce that the system can deadlock. It appears particularly important
to require such a notion of fairness when we consider a parallel execution
rule that may favour particular processes, such as the one we defined.

Non-syntactic resource ownership Our approach would be more general
had we not relied upon the fact that at a given state it is possible to
deduce what resources are held by a process from the syntax of the pro-
cess code. For example, if the following were allowed in Demos: while
[putB(r,1)] (or even try[putB(r,1)]), we would not be able to deduce
from the syntax the resources held by the process. It would, therefore, be
necessary to keep a record of the resources held by each sub-process in the
transition system. Just as processes explicitly hold other processes that
are synchronised on them, we would have

R /

s
P*r, s, t+

{

representing a process P holding resources r, s and t. We chose not to do
this in order to reduce the burden of notation.

Variables Most programmers will recognise the usefulness of variables, and
they are, indeed, allowed in Demos 2000.3 It would be a relatively simple
matter to extend the transition system to take this into account. We
would introduce a variable state component to take this into account.
Transitions, then, would be of the form R/JP K s σ−→ R′/JP ′K s′. Variable
state would be simply a map from variable labels to variable values, s :
V ar ⇀ Float. We chose not to introduce this as our account is theoretical,
and whilst it is not difficult to introduce variables into an implementation,
proofs can become less succinct with their inclusion.

The semantics of PBI presented in this document have been defined with proof-
search in mind. If we were to write a model-checker, though, it is anticipated
that it will not be able to check all formulæ; for example, to check the formula

R / JP K |= IR −∗ ϕ

could involve us considering adding all syntactically correct processes being
placed in composition with P . Clearly, as the set of all processes is infinite,

3That is, numeric variables e.g., x := 4; y := 5, rather than resource-variables.
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such a simple implementation would lead to a non-complete model-checker. It
would be acceptable, however, to provide a model checker complete for only a
fragment of the logic. It may also be necessary to consider a logic other than
the general Hennessy-Milner-style logic used here, similar to CTL or modal-µ.

Finally, we have not given a deduction system for our logic. Such a system
should be proven correct (sound and complete) with respect to the semantics
defined here.

To conclude, we have seen how we can extend the Logic of Bunched Implications
to consider processes in a simple manner to achieve an expressive and clear way
of formally reasoning about processes that interact on shared resources.
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