
                                                                

       
A Large-Scale Evaluation of Acoustic and  
Subjective Music Similarity Measures 
 
Adam Berenzweig1, Beth Logan, Daniel P.W. Ellis1, Brian Whitman2 

Cambridge Research  Laboratory  
HP Laboratories Cambridge 
HPL-2003-193 
September 8th , 2003* 
 
E-mail: alb63@columbia.edu, Beth.Logan@hp.com, dpwe@ee.columbia.edu 
 
 
music 
similarity, 
acoustic 
measures, 
evaluation, 
ground-truth 
 

Subjective similarity between musical pieces and artists is an elusive concept, but 
one that must be pursued in support of applications to provide automatic 
organization of large music collections. In this paper, we examine both acoustic 
and subjective approaches for calculating similarity between artists, comparing 
their performance on a common database of 400 popular artists. Specifically, we 
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between superficially similar distribution modeling and comparison techniques. 
(2) Subjective measures from diverse sources show reasonable agreement, with 
the measure derived from co-occurrence in personal music collections being the 
most reliable overall. (3) Our methodology for large-scale cross-site music 
similarity evaluations is practical and convenient, yielding directly comparable 
numbers for different approaches. In particular, we hope that our information-
retrieval-based approach to scoring similarity measures, our paradigm of  sharing 
common feature representations, and even our particular dataset of features for 
400 artists, will be useful to other researchers. 
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1 Introduction

Techniques to automatically determine music similarity have attracted much attention in recent
years [8, 7, 12, 10, 1, 6]. Similarity is at the core of the classification and ranking algorithms
needed to organize and recommend music. Such algorithms will be used in future systems to
index vast audio repositories, and thus must rely on automatic analysis.
However, for the researcher or system builder looking to use similarity techniques, it is difficult
to decide which is best suited for the task at hand. Few authors perform comparisons across
multiple techniques, not least because there is no agreed-upon database for the community.
Furthermore, even if a common database were available, it would still be a challenge to establish
an associated ground truth, given the intrinsically subjective nature of music similarity.
The work reported in this paper started with a simple question: How do two existing audio-based
music-similarity measures compare? This led us in several directions. Firstly, there are multiple
aspects of each acoustic measure: the basic features used, the way that feature distributions are
modeled, and the methods for calculating similarity between distribution models. In this paper,
we investigate the influence of each of these factors.
To do that, however, we needed to be able to calculate a meaningful performance score for each
possible variant. This basic question of evaluation brings us back to our earlier question of
where to get ground truth [6], and then how to use this ground truth to score a specific acoustic
measure. Here, we consider five different sources of ground truth, all collected via the Web
one way or another, and look at several different ways to score measures against them. We also
compare them with one another in an effort to identify which measure is ‘best’ in the sense of
approaching a consensus.
A final aspect of this work touches the question of sharing common evaluation standards, and
computing comparable measures across different sites. Although common in fields such as
speech recognition, we believe this is one of the first and largest cross-site evaluations in mu-
sic information retrieval. Our work was conducted in two independent labs (LabROSA at
Columbia, and HP Labs in Cambridge), yet by carefully specifying our evaluation metrics,
and by sharing evaluation data in the form of derived features (which presents little threat to
copyright holders), we were able to make fine distinctions between algorithms running at each
site. We see this as a powerful paradigm that we would like to encourage other researchers to
use.
This paper is organized as follows. First we review prior work in music similarity. We then
describe the various algorithms and data sources used in this paper. Next we describe our
database and evaluation methodologies in detail. In Section 6 we discuss our experiments and
results. Finally we present conclusions and suggestions for future directions.

2 Prior Work

Prior work in music similarity has focused on one of three areas: symbolic representations,
acoustic properties, and subjective or ‘cultural’ information. We describe each of these below
noting in particular their suitability for automatic systems.
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Many researchers have studied the music similarity problem by analyzing symbolic represen-
tations such as MIDI music data, musical scores, and the like. A related technique is to use
pitch-tracking to find a ‘melody contour’ for each piece of music. String matching techniques
are then used to compare the transcriptions for each song e.g. [8]. However, techniques based
on MIDI or scores are limited to music for which this data exists in electronic form, since only
limited success has been achieved for pitch-tracking of arbitrary polyphonic music.
Acoustic approaches analyze the music content directly and thus can be applied to any music
for which one has the audio. Blum et al. present an indexing system based on matching features
such as pitch, loudness or Mel-frequency cepstral coefficients (MFCCs) [3]. Foote has designed
a music indexing system based on histograms of MFCC features derived from a discriminatively
trained vector quantizer [7]. [12] extracts a variety of features representing the spectrum, rhythm
and chord changes and concatenates them into a single vector to determine similarity. [10] and
[1] model songs using local clustering of MFCC features, determining similarity by comparing
the models. [2] uses a suite of pattern classifiers to map MFCCs into an “anchor space”, in
which probability models are fit and compared.
With the growth of the Web, techniques based on publicly-available data have emerged [5,
6]. These use text analysis and collaborative filtering techniques to combine data from many
users to determine similarity. Since they are based on human opinion, these approaches capture
many cultural and other intangible factors that are unlikely to be obtained from audio. The
disadvantage of these techniques however is that they are only applicable to music for which
a reasonable amount of reliable Web data is available. For new or undiscovered artists, an
audio-based technique may be more suitable.

3 Acoustic Similarity

To determine similarity based solely on the audio content of the music, we use our previous
techniques which fit a parametric probability model to points in an audio-derived input space
[10, 2]. We then compute similarity using a measure that compares the models for two artists.
The results of each measure are summarized in a similarity matrix, a square matrix where each
entry gives the similarity between a particular pair of artists. The leading diagonal is, by defini-
tion, 1, which is the largest value.
The techniques studied are characterized by the features, models and distance measures used.

3.1 Feature Spaces

The feature space should compactly represent the audio, distilling musically important informa-
tion and throwing away irrelevant noise. Although many features have been proposed, in this
paper we concentrate on features derived from Mel-frequency cepstral coefficients (MFCCs).
These features have been shown to give good performance for a variety of audio classification
tasks and are favored by a number of groups working on audio similarity [3, 7, 12, 9, 10, 1, 2].
Mel-cepstra capture the short-time spectral shape, which carries important information about the
music’s instrumentation and its timbres, the quality of a singer’s voice, and production effects.
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However, as a purely local feature calculated over a window of tens of milliseconds, they do not
capture information about melody, rhythm or long-term song structure.
We also examine features in an ‘anchor space’ derived from MFCC features. The anchor space
technique is inspired by a folk-wisdom approach to music similarity in which people describe
artists by statements such as, “Jeff Buckley sounds like Van Morrison meets Led Zeppelin, but
more folky”. Here, musically-meaningful categories and well-known anchor artists serve as
convenient reference points for describing salient features of the music. This approach is mir-
rored in the anchor space technique with classifiers trained to recognize musically-meaningful
categories. Music is “described” in terms of these categories by running the audio through each
classifier, with the outputs forming the activation or likelihood of the category.
For this paper, we used neural networks as anchor model pattern classifiers. Specifically, we
trained a 12-class network to discriminate between 12 genres and two two-class networks to
recognize these supplemental classes: Male/Female (gender of the vocalist), and Lo/Hi fidelity.
Further details about the choice of anchors and the training technique are available in [2]. An
important point to note is that the input to the classifiers is a large vector consisting of 5 frames
of MFCC vectors plus deltas. This gives the network some time-dependent information from
which it can learn about rhythm and tempo, at least on the scale of a few hundred milliseconds.

3.2 Modeling and Comparing Distributions

Because feature vectors are computed from short segments of audio, an entire song induces a
cloud of points in feature space. The cloud can be thought of as samples from a distribution
that characterizes the song, and we can model that distribution using statistical techniques. Ex-
tending this idea, we can conceive of a distribution in feature space that characterizes the entire
repertoire of each artist.
We use Gaussian Mixture Models (GMMs) to model these distributions, similar to previous
work [10]. Two methods of training the models were used: (1) simple K-means clustering of the
data points to form clusters that were then each fit with a Gaussian component, to make a Gaus-
sian mixture model (GMM), and (2) standard Expectation-Maximization (EM) re-estimation of
the GMM parameters initialized from the K-means clustering. Although unconventional, the
use of K-means to train GMMs without a subsequent stage of EM re-estimation was discovered
to be both efficient and useful for song-level similarity measurement in previous work [10].
The parameters for these models are the mean, covariance and weight of each cluster. In some
experiments, we used a single covariance to describe all the clusters. This is sometimes referred
to as a “pooled” covariance in the field of speech recognition; an “independent” covariance
model estimates separate covariance matrices for each cluster, allowing each to take on an in-
dividual ‘shape’ in feature space, but requiring many more parameters to be estimated from the
data.
Having fit models to the data, we calculate similarity by comparing the models. The Kullback-
Leibler divergence or relative entropy is the natural way to define distance between proba-
bility distributions. However, for GMMs, no closed form for the KL-divergence is known.
We explore several alternatives and approximations: the “centroid distance” (Euclidean dis-
tance between the overall means), the Earth-Mover’s distance (EMD) [11] (which calculates
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the cost of ‘moving’ probability mass between mixture components to make them equivalent),
and the Asymptotic Likelihood Approximation (ALA) to the KL-divergence between GMMs
[13] (which segments feature space and assumes only one Gaussian component dominates in
each region). Another possibility would be to compute the likelihood of one model given points
sampled from the second [1], but as this is very computationally expensive for large datasets it
was not attempted. Computationally, the centroid distance is the cheapest of our methods and
the EMD the most expensive.

4 Subjective similarity measures

An alternative approach to music similarity is to use sources of human opinion, for instance
by mining the Web. Although these methods cannot easily be used on new music because they
require observations of humans interacting with the music, they can uncover subtle relationships
that may be difficult to detect from the audio signal. Subjective measures are also valuable
as ground truth against which to evaluate acoustic measures—even a sparse ground truth can
help validate a more comprehensive acoustic measure. Like the acoustic measures, subjective
similarity information can also be represented as a similarity matrix, where the values in each
row give the relative similarity between every artist and one target.

4.1 Survey

The most straightforward way to gather human similarity judgments is to explicitly ask for it in
a survey. We have previously constructed a website, musicseer.com, to conduct such a survey
[6]. We defined a set of some 400 popular artists (described in section 5.3 below), then presented
subjects with a list of 10 artists (a1, ..a10), and a single target artist at, and asked “Which of these
artists is most similar to the target artist?” We interpret each response to mean that the chosen
artist ac is more similar to the target artist at than any of the other artists in the list if those artists
are known to the subject, which we can infer by seeing if the subject has ever selected the artists
in any context.
Ideally, the survey would provide enough data to derive a full similarity matrix, for example by
counting how many times users selected artist ai being most similar to artist aj . However, even
with the 22,000 responses collected, the coverage of our modest artist set is relatively sparse:
only around 7.5% of all our artist pairs were directly compared, and only 1.7% of artist pairs
were ever chosen as most similar. We constructed this sparse similarity matrix by populating
each row with the number of times a given artist was chosen as most similar to a target as a
proportion of the trials in which it could have been chosen. Although heuristic, this worked
quite well for our data.

4.2 Expert Opinion

Rather than surveying the masses, we can ask a few experts. Several music-related online
services contain music taxonomies and articles containing similarity data. The All Music Guide
(www.allmusic.com) is such a service in which professional editors write brief descriptions of
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a large number of popular musical artists, often including a list of similar artists. We extracted
the “similar artists” lists from the All Music Guide for the 400 artists in our set, discarding any
artists from outside the set, resulting in an average of 5.4 similar artists per list (so 1.35% of
artist pairs had direct links). 26 of our artists had no neighbors from within the set.
As in [6] we convert these descriptions of the immediate neighborhood of each artist into a
similarity matrix by computing the path length between each artist in the graph where nodes are
artists and there is an edge between two artists if the All Music editors consider them similar.
Our construction is symmetric, since links between artists were treated as nondirectional. We
call this the Erdös measure, after the technique used among mathematicians to gauge their
relationship to Paul Erdös . This extends the similarity measure to cover 87.4% of artist pairs.

4.3 Playlist Co-occurrence

Another source of human opinion about music similarity is human-authored playlists. We as-
sume that such playlists contain similar music, which, though crude, proves useful. We gathered
around 29,000 playlists from “The Art of the Mix” (www.artofthemix.org), a website that serves
as a repository and community center for playlist hobbyists.
To convert this data into a similarity matrix, we start with the normalized playlist co-occurrence
matrix, where entry (i, j) represents the joint probability that artist ai and aj occur in the same
playlist. However, this probability is influenced by overall artist popularity which should not
affect a similarity measure. Therefore, we use a normalized conditional probability matrix
instead: Entry (i, j) of the normalized conditional probability matrix C is the conditional prob-
ability p(ai|aj) divided by the prior probability p(ai). Since

cij =
p(ai|aj)

p(ai)
=

p(ai, aj)

p(ai)p(aj)
, (1)

this is an appropriate normalization of the joint probability. Note that the expected log of this
measure is the mutual information I(ai; aj) between artist ai and aj .
Using the playlists gathered from Art of the Mix, we constructed a similarity matrix with 51.4%
coverage for our artist set (i.e. more than half of the matrix cells were nonzero).

4.4 User Collections

Similar to user-authored playlists, individual music collections are another source of music
similarity often available on the Web. Mirroring the ideas that underly collaborative filtering,
we assume that artists co-occurring in someone’s collection have a better-than-average chance
of being similar, which increases with the number of co-occurrences observed.
We retrieved user collection data from OpenNap, a popular music sharing service, although we
were careful not download any audio files. After discarding artists not in our data set, we were
left with about 176,000 user-to-artist relations from about 3,200 user collections. To turn this
data into a similarity matrix, we use the same normalized conditional probability technique as
for playlists as described above. This returned a similarity matrix nonzero values for 95.6% of
the artist pairs.
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4.5 Webtext

A rich source of information resides in text documents that describe or discuss music. Using
techniques from the Information Retrieval (IR) community, we derive artist similarity measures
from documents returned from Web searches [14]. The best-performing similarity matrix from
that study, derived from bigram phrases, is used here. This matrix has essentially full coverage.

5 Evaluation Methods

In this section, we describe our evaluation methodology, which relies on some kind of ground
truth against which to compare candidate measures; we expect the subjective data described
above to be a good source of ground truth since they are derived from human choices. In this
section we present several ways to use this data to evaluate our acoustic-based models, although
the techniques can be used to evaluate any measure expressed as a similarity matrix. The first
technique is a general method by which one can use one similarity matrix as a reference to
evaluate any other, whereas the other techniques are specific to our survey data.

5.1 Evaluation against a reference similarity matrix

If we can establish one similarity metric as ground truth, how can we calculate the agreement
achieved by other similarity matrices? We use an approach inspired by practice in text informa-
tion retrieval [4]: Each matrix row is sorted into decreasing similarity, and treated as the results
of a query for the corresponding target artist. The top N ‘hits’ from the reference matrix de-
fine the ground truth, with exponentially-decaying weights so that the top hit has weight 1, the
second hit has weight αr, the next α2

r etc. (We consider only N hits to minimize issues arising
from similarity information sparsity.) The candidate matrix ‘query’ is scored by summing the
weights of the hits by another exponentially-decaying factor, so that a ground-truth hit placed at
rank r is scaled by αr

c . Thus this “top-N ranking agreement score” si for row i is

si =
N∑

r=1

αr
rα

kr

c (2)

where kr is the ranking according to the candidate measure of the rth-ranked hit under the
ground truth. αc and αr govern how sensitive the metric is to ordering under the candidate
and reference measures respectively. With N = 10, αr = 0.51/3 and αc = α2

r (the values
we used, biased to emphasize when the top few ground-truth hits appear somewhere near the
top of the candidate response), the best possible score of 0.999 is achieved when the top 10
ground truth hits are returned in the same order by the candidate matrix. Finally, the overall
score for the experimental similarity measure is the average of the normalized row scores S =
1

N

∑N
i si/smax, where smax is the best possible score. Thus a larger rank agreement score is

better, with 1.0 indicating perfect agreement.
One issue with this measure arises from the handling of ties. Because much of the subjective
information is based on counts, ranking ties are not uncommon (an extreme case being the 26
‘disconnected’ artists in the “expert” measure, who must be treated as uniformly dissimilar to
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all artists). We handle this by calculating an average score over multiple random permutations
of the equivalently-ranked entities; because of the interaction with the top-N selection, a closed-
form solution has eluded us. The number of repetitions was based on empirical observations of
the variation in successive estimates in order to obtain a stable estimate of the underlying mean.

5.2 Evaluating against survey data

The similarity data collected using our Web-based survey can be argued to be a good inde-
pendent measure of ground truth artist similarity since users were explicitly asked to indicate
similarity. However, the coverage of the similarity matrix derived from the survey data is only
around 1.7%, which makes it suspect for use as a ground truth reference as described in section
5.1 above. Instead, we can compare the individual user judgments from the survey directly to
the metric that we wish to evaluate. That is, we ask the similarity metric the same questions that
we asked the users and compute an average agreement score.
We used two variants of this idea. The first, “average response rank”, determines the average
rank of the artists chosen from the list of 10 presented in the survey according to the experi-
mental metric. For example, if the experimental metric agrees perfectly with the human subject,
then the ranking of the chosen artist will be 1 in every case, while a random ordering of the
artists would produce an average ranking of 5.5. In practice, the ideal score of 1.0 is not pos-
sible because survey subjects did not always agree about artist similarity; therefore, a ceiling
exists corresponding to the single, consistent metric that optimally matches the survey data. For
our data, this was estimated to give a score of 2.13.
The second approach is simply to count how many times the similarity measure agrees with
the user about the first-place (most similar) artist from the list. This “first place agreement”
proportion has the advantage that it can be viewed as the average of a set of independent bi-
nomial (binary-valued) trials, meaning that we can use a standard statistical significance test
to confirm that certain variations in values for this measure arise from genuine differences in
performance, rather than random variations in the measure. Our estimate of the best possible
first place agreement with the survey data was 53.5%.

5.3 Evaluation database

In order to conduct experiments we have compiled a large dataset from audio and Web sources.
The dataset covers 400 artists chosen to have the maximal overlap of the user collection (Open-
Nap) and playlist (Art of the Mix) data. We had previously purchased audio corresponding to
the most popular OpenNap artists and had also used these artists to construct the survey data.
For each artist, our database contains audio, survey responses, expert opinions from All Music
Guide, playlist information, OpenNap collection data, and webtext data.
The audio data consists of 707 albums and 8772 songs for an average of 22 songs per artist.
Because our audio experiments were conducted at two sites, a level of discipline was required
when setting up the data. We shared MFCC features rather than raw audio, both to save band-
width and to avoid copyright problems. This had the added advantage of ensuring both sites
started with the same features when conducting experiments. We believe that this technique of
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establishing common feature calculation tools, then sharing common feature sets, could be use-
ful for future cross-group collaborations and should be seriously considered by those proposing
audio music evaluations, and we would be interested in sharing our derived features. Dupli-
cated tests on a small subset of the data were used to verify the equivalence of our processing
and scoring schemes.
The specific track listings for this database, which we refer to as “uspop2002”, are available at
http://www.ee.columbia.edu/˜dpwe/research/musicsim/.

6 Experiments and Results

A number of experiments were conducted to answer the following questions about acoustic-
and subjective-based similarity measures:

1. Is anchor space better for measuring similarity than MFCC space?

2. Which method of modeling and comparing feature distributions is best?

3. Which subjective similarity measure provides the best ground truth, e.g. in terms of agree-
ing best, on average, with the other measures?

Although it risks circularity to define the best ground truth as the measure which agrees best
with the others, we argue that since the various measures are constructed from diverse data
sources and methods, any correlation between them should reflect a true underlying consensus
among the people who generated the data. A measure consistent with all these sources must
reflect the ‘real’ ground truth.

6.1 Acoustic similarity measures

We first compare the acoustic-based similarity measures, examining artist models trained on
MFCC and anchor space features. Each model is trained using features calculated from the
available audio for that artist. Our MFCC features are 20-dimensional and are computed using
32 ms frames overlapped by 16 ms. The anchor space features have 14 dimensions where each
dimension represents the posterior probability of a pre-learned acoustic class given the observed
audio as described in Section 3.1.
In a preliminary experiment, we performed dimensionality reduction on the MFCC space by
taking the first 14 dimensions of a PCA analysis and compared results with the original 20-
dimensional MFCC space. There was no appreciable difference in results, confirming that any
difference between the anchor-based and MFCC-based models is not due to the difference in
dimensionality.
Table 1 shows results for similarity measures based on MFCC space, in which we compare
the effect of varying the distribution models and the distribution similarity method. For the
GMM distribution models, we vary the number of mixtures, use pooled or independent vari-
ance models, and train using either plain K-means, or K-means followed by EM re-estimation.
Distributions are compared using centroid distance, ALA or EMD (as described in section 3.2).
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We also compare the effect of including or excluding the first cepstral coefficient, c0, which
measures the overall intensity of a signal. Table 1 shows the average response rank and first
place agreement percentage for each approach.
From this table, we see that the different training techniques for GMMs give comparable per-
formance and that more mixture components help up to a point. Pooling the data to train the
covariance matrices is useful as has been shown in speech recognition since it allows for more
robust covariance parameter estimates. Omitting the first cepstral coefficient gives better re-
sults, possibly because similarity is more related to spectral shape than overall signal energy,
although this improvement is less pronounced when pooled covariances are used. The best
system is one which uses pooled covariances and ignores c0. Models trained with the simpler
K-means procedure appear to suffer no loss, and thus are preferred.
A similar table was constructed for anchor-space-based methods, which revealed that full, inde-
pendent covariance using all 14 dimensions was the best-performing method. Curiously, while
the ALA distance measure performed poorly on MFCC-based models, it performed competi-
tively with EMD on anchor space models. We are still investigating the cause; perhaps it is
because the assumptions behind the asymptotic likelihood approximation do not hold in MFCC
space.
The comparison of the best-performing MFCC and anchor space models is shown in Table 2.
We see that both have similar performance under these metrics, despite the prior information
encoded in the anchors.

6.2 Comparing ground truth measures

Now we turn to a comparison of the acoustic and subjective measures. We take the best-
performing approaches in each feature space class (MFCC and anchor space, limiting both to
16 GMM components for parity) and evaluate them against each of the subjective measures. At
the same time, we evaluate each of the subjective measures against each other. The results are
presented in Table 3. Rows represent similarity measures being evaluated, and the columns give
results treating each of our five subjective similarity metrics as ground truth. Top-N ranking
agreement Scores are computed as described in section 5.1.
The mean down each column, excluding the self-reference diagonal, are also shown (denoted
“mean*”). The column means can be taken as a measure of how well each measure approaches
ground truth by agreeing with all the data. By this standard, the survey-derived similarity matrix
is best, but its very sparse coverage makes it less useful. The user collection (opennap) data has
the second-highest “mean*”, including particularly high agreement with the survey metric, as
can be seen when the top-N ranking agreements are plotted as an image in figure 1. Thus, we
consider the user collections as the best source of a ground truth similarity matrix based on this
evidence, with the survey (and hence the first place agreement metric) also providing reliable
data. (Interestingly, the collection data does less well agreeing with the survey data when mea-
sured by the first place agreement percentage; we infer that it is doing better at matching further
down the rankings).
We mentioned that a key advantage of the first place agreement measure was that it allowed
the use of established statistical significance tests. Using a one-tailed test under a binomial
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Independent Pooled
#mix c0? ALA EMD ALA Cntrd EMD

EM 8 y 4.76 / 16% 4.46 / 20% 4.72 / 17% 4.66 / 20% 4.30 / 21%
8 n - 4.37 / 22% - - 4.23 / 22%

16 n - 4.37 / 22% - - 4.21 / 21%
K-means 8 y - 4.64 / 18% - - 4.30 / 22%

8 n 4.70 / 16% 4.30 / 22% 4.76 / 17% 4.37 / 20% 4.28 / 21%
16 y - 4.75 / 18% - - 4.25 / 22%
16 n 4.58 / 18% 4.25 / 22% 4.75 / 17% 4.37 / 20% 4.20 / 22%
32 n - - 4.73 / 17% 4.37 / 20% 4.15 / 23%
64 n - - 4.73 / 17% 4.37 / 20% 4.14 / 23%

Optimal 2.13 / 53.5%
Random 5.50 / 11.4%

Table 1: Average response rank / first place agreement percentage for various similarity schemes
based on MFCC features. Lower values are better for average response rank, and larger percent-
ages are better for first place agreement.

MFCC Anchor
#mix EMD ALA

8 4.28 / 21.3% 4.25 / 20.2%
16 4.20 / 22.2% 4.20 / 19.8%

Table 2: Best-in-class comparison of anchor vs. MFCC-based measures (average response rank
/ first place agreement percentage). MFCC system uses K-means training, pooled diagonal
covariance matrices, and excludes c0. Anchor space system uses EM training, independent full
covariance matrices, and includes c0.
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assumption, first place agreements differing by more than about 1% are significant at the 5%
level for this data (10,884 trials). Thus all the subjective measures are showing significantly
different results, although differences among the variants in modeling schemes from tables 1
and 2 are at the edge of significance.

7 Conclusions and Future Work

Returning to the three questions posed in the previous section, based on the results just shown,
we conclude:

1. MFCC and anchor space achieve comparable results on the survey data.

2. K-means training is comparable to EM training. Using pooled, diagonal covariance ma-
trices is beneficial for MFCC space, but in general the best modeling scheme and com-
parison method depend on the feature space being modeled.

3. The measure derived from co-occurrence in personal music collections is the most useful
ground truth, although some way of combining the information from different source
warrants investigation since they are providing different information.

The work covered by this paper suggests many directions for future research. Although the
acoustic measures achieved respectable performance, there is still much room for improvement.
One glaring weakness of our current features is their failure to capture any temporal structure
information, although it is interesting to see how far we can get based on this limited represen-
tation.
Based on our cross-site experience, we feel that this work points the way to practical music
similarity system evaluations that can even be carried out on the same database, and that the
serious obstacles to sharing or distributing large music collections can be avoided by transferring
only derived features (which should also reduce bandwidth requirements). To this end, we have
set up a web site giving full details of our ground truth and evaluation data, http://www.ee.
columbia.edu/˜dpwe/research/musicsim/ . We will also share the MFCC features for
the 8772 tracks we used in this work by burning DVDs to send to interested researchers. We are
also interested in proposals for other features that it would be valuable to calculate for this data
set.
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1st place survey expert playlist collection webtext
Random 11.8% 0.015 0.020 0.015 0.017 0.012
Anchor 19.8% 0.092 0.095 0.117 0.097 0.041
MFCC 22.2% 0.112 0.099 0.142 0.116 0.046
Survey 53.5% 0.874 0.249 0.204 0.331 0.121
Expert 27.9% 0.267 0.710 0.193 0.182 0.077
Playlist 26.5% 0.222 0.186 0.985 0.226 0.075
Collection 23.2% 0.355 0.179 0.224 0.993 0.083
Webtext 18.5% 0.131 0.082 0.077 0.087 0.997
mean* 0.197 0.148 0.160 0.173 0.074

Table 3: First place agreement percentages (with survey data) and top-N ranking agreement
scores (against each candidate ground truth) for acoustic and subjective similarity measures.
“mean*” is the mean of each ground-truth column, excluding the shaded “cheating” diagonal
and the “random” row.
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Figure 1: Top-N ranking agreement scores from table 3 plotted as a grayscale image.
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