
                                                                

       
POLA Today Keeps the Virus at Bay 
 
Alan H. Karp  
HP Laboratories Palo Alto 
HPL-2003-191 
September 8th , 2003* 
 
E-mail: alan.karp@hp.com 
 
 
security, 
access 
control, 
computer 
virus 
 

The software industry is making a major effort to eliminate the 
flaws exploited by writers of malware.  It is the premise of this 
essay that this strategy cannot succeed.  Something else is needed, 
and that something is enforcing the Principle of Least Authority 
(POLA) at a finer granularity than we do today. 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2003 



POLA Today Keeps the Virus at Bay

Alan H. Karp
Hewlett-Packard Laboratories

alan.karp@hp.com

September 3, 2003

I applaud the software industry’s efforts to produce code that is less susceptible
to attack, but I’m afraid the effort is futile because this strategy succeeds only
when perfection is achieved. A suitable flaw in any piece of software, written by
Microsoft or anyone else, can be used to grant an attacker all the privileges of the
user. Reducing the number of such flaws will make finding points of attack harder,
but once one is found, it is likely to be exploited.

The mistake is in asking ”How can we prevent attacks?” when we should be
asking ”How can we limit the damage that can be done when an attack succeeds?”.
The former assumes infallibility; the latter recognizes that building systems is a
human process. The answer to the first question is usually ”By fixing our code.”
The answer to the second question is invariably ”By enforcing the Principle of Least
Authority.”

Nearly all of today’s systems, including Microsoft’s and all Unix flavors, enforce
POLA only at the level of the user. This approach is a good way to prevent me from
doing something I am not allowed to do, but it does nothing to prevent a process
acting on my behalf from doing something I am allowed to do but don’t want to do.
That’s exactly what the virus does; it corrupts any file I can modify. There is no
reason that the process displaying my email should be able to read my tax return;
there is no reason that process should be able to open a network connection to send
that data to an attacker. Both are possible if POLA applies only to the user.

A better approach is to enforce POLA at the level of the process or even at
the level of objects within a process. Doing so limits the damage that a successful
attack can do to the set of actions the process or object needs to do its job. It
may destroy the message my email program is displaying, but it can’t replace a
command with a Trojan horse because it doesn’t have access to that file. It may
read my email, but it can’t send it to the attacker because it can’t open a network
connection.

Such fine-grained control of permissions sounds like a user interface nightmare.
Must we put up with thousands of nagging ”May I?” prompts? Ka-Ping Yee of
Berkeley has shown that the answer is ”No”; user actions implicitly specify the
desired permissions[5]. When I double-click on a Word document, I am telling
the system that I want the process running Word to be able to read and write
only this specific file. I don’t have to worry that a macro virus will overwrite my

1



NORMAL.DOT and infect other documents. I don’t have to worry that the virus
will open a network connection and send my document to my competitor. That’s
because I never said that macros in that file should have access to NORMAL.DOT
or the network.

The primary flaw in today’s systems is that access control is identity based.
This means that any process acting on my behalf necessarily runs as me and, there-
fore, has all my privileges. In such a system, I prove my identity to the system
administrator who sets up an account for me. This account maps one-to-one with
my identity and embodies my access rights in the form of an entry in the access
control list (ACL) of every resource I’m allowed to use. Each process I run carries
my account identity with it, and every request to the system presents this identity.
Access is allowed or denied based on the entry associated with this identity in the
ACL for the specified resource.

An alternative approach is to separate authentication (who I am), authorization
(what I am allowed to do), and access control (whether or not to honor a request). I
prove my identity to an authenticator and receive the set of authorizations I should
have. These can be validated by the access control mechanism when I make a
request. Since I have an explicit set of authorizations, I can choose which to give
each process I start. Now, even if a virus takes complete control of the process I’m
using to read my email, it cannot erase all my spreadsheets.

A system built along these lines is far more flexible and manageable than what we
have today. There need not be a single authenticator. HP Corporate can handle my
identity as an HP employee and give me the set of authorizations it administers;
HP Labs can do the same for its authorizations. If I move from HP Labs to a
product division, only those two organizations need to update my authorizations.
In addition, the authenticator doesn’t need to interpret the authorizations; it just
hands them out. Similarly, the access control mechanism need not concern itself
with who I am or how I got my authorization; it just needs to allow or deny access.
Doing things this way allows the authentication and access control systems to evolve
independently, and new kinds of authorization can be introduced without modifying
existing systems.

Such a large change in the way we think about our systems seems to require
that we throw out everything and start from scratch. Some people are taking this
approach. Jonathan Shapiro’s EROS project at Johns Hopkins University[2], for
example, is building an entirely new operating system that enforces POLA as an
inherent part of its architecture. Less disruptive are those approaches that merely
require that we rewrite our applications in a POLA language, such as the E language
being developed by Mark Miller of HP[1]. Marc Stiegler of Combex has written a
fully functional desktop in E that has all the desired properties[3]. These two have
also produced a prototype web browser under DARPA contract that can safely view
a web page that would infect a machine if any other browser were used[4].

Less disruptive measures are needed if we’re to maintain compatibility with
existing software, but we must be willing to forego some of the finer points of
POLA. Attacks almost always involve some interaction with the operating system,
so we can do most of what’s needed by filtering all kernel calls. Most flavors of Unix
provide an appropriate interface, and a relatively small change to Windows would

2



add this functionality. In fact, the Windows file system redirector already provides
much of what is needed. Alternatively, we could run each process in a virtual
machine and filter at the interface to the underlying operating system kernel. Even
less intrusive is an approach based on dynamically creating accounts with exactly
the permissions we want the process to have. Unfortunately, without changes to the
process launcher, we don’t have a way to tell what rights the new process should
have. It’s worth the effort, though, because if we solve this problem the worm can’t
propagate, and the virus can’t install the backdoor.

Reducing exploitable flaws in our software has benefits, but it will not eliminate
successful attacks. It is far better to reduce the exploitabilty of flaws. Only by
remembering that we give privileges to people but enforce access control on processes
will we be able to design systems less vulnerable than those we use today.

References

1. Mark Miller, “E Language”, http://erights.org.

2. Jonathan Shapiro, “EROS: The Extremely Reliable Operating System”,
http://www.eros-os.org

3. Marc Stiegler, “CapDesk”, http://www.combex.com/tech/edesk.html

4. David Wagner and Dean Tribble, “A Security Analysis of the Combex DarpaBrowser
Architecure”, http://www.combex.com/papers/darpa-review/security-review.html

5. Ka-Ping Yee, “User Interaction Design for Secure Systems”. In Proceedings of
the International Conference on Information and Communications Security,
Singapore, 2002. http://zesty.ca/sid/

3


