

An Architecture for Componentized, Network-Based
Media Services

Michael Harville, Michele Covell, Susie Wee
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-185
August 28th , 2003*

streaming media,
media services,
system
architecture,
distributed
processing,
modular,
service location
management

We present MSA (Media Services Architecture), a flexible, general
architecture for requesting, configuring, and running services that
operate on streaming audio and video as it flows through the
network. MSA decomposes requested media services into modular
processing components that may be distributed to servers
throughout the network and which intercommunicate via standard
streaming protocols. Use of standard protocols also affords
seamless inter-operability between MSA and media content
delivery networks. MSA manages media services by monitoring the
networked servers and assigning service components to them in a
manner that uses available computational and network resources
efficiently. We describe some implemented example services to
illustrate the concepts and benefits of the architecture.

* Internal Accession Date Only Approved for External Publication
Published in and presented at the International Conference on Multimedia and Expo 2003, 6-9 July 2003, Baltimore,
Maryland
 Copyright IEEE 2003

AN ARCHITECTURE FOR COMPONENTIZED, NETWORK-BASED MEDIA SERVICES

Michael Harville, Michele Covell, Susie Wee
Streaming Media Systems Group, HP Labs, Palo Alto, CA 94304 USA

ABSTRACT

We present MSA (Media Services Architecture), a flexible, gen-
eral architecture for requesting, configuring, and running services
that operate on streaming audio and video as it flows through the
network. MSA decomposes requested media services into modular
processing components that may be distributed to servers through-
out the network and which intercommunicate via standard stream-
ing protocols. Use of standard protocols also affords seamless
inter-operability between MSA and media content delivery net-
works. MSA manages media services by monitoring the networked
servers and assigning service components to them in a manner that
uses available computational and network resources efficiently. We
describe some implemented example services to illustrate the con-
cepts and benefits of the architecture.

1. INTRODUCTION
One of the most significant trends in computing today is the migra-
tion of applications from local platforms into the network, in the
form of componentized, web-based services. Using inter-operable,
reconfigurable components delivered by the network, powerful ser-
vices may be dynamically constructed and made available to end-
users on demand, without their investing heavily in the under-
lying computational resources, software integration, and system
administration. This model allows developers to easily maintain
and rapidly improve their software, and it allows end-users to eas-
ily obtain the most current applications, or to switch application
vendors entirely. Many major technology companies recognize
the tremendous appeal of componentized, web-based services and
have begun rebuilding their offerings in this form [1].

A second important trend is the increasing demand for digi-
tal rich media, such as audio, video, and images [2]. Digital me-
dia is easily shared between one’s own devices, between different
people, and between widespread or mobile locations. Streaming-
media overlays are central to meeting media timing constraints.
Mobile streaming media content delivery networks (MSM-CDNs)
address scalability, user mobility, error-prone wireless channels,
and real-time constraints [3]. In MSM-CDNs, self-managed “edge
servers” work within today’s IP infrastructure to ensure high-quality
delivery performance through adaptive routing, caching, coding,
and monitoring of media streams.

In this paper, we present a Media Services Architecture (MSA),
that builds on both of these trends in computing. The MSA extends
componentized, web-based services to the domain of streaming
rich media by decomposing complex media services into flexibly
configured, network-based parts. This approach allows rapid de-
velopment and simple maintenance of powerful new applications,
and promotes scalability to large numbers of users. All of this is
achieved without sacrificing ease-of-use from the perspective of
the media service clients.

2. NETWORK-BASED MEDIA SERVICES
Many types of analysis performed on audio, video, and other me-
dia in standalone systems today easily integrate into a networked-

processing architecture. For example, speech recognition, face de-
tection and recognition, and audio de-noising could simply move
off the local desktop to networked server machines with available
bandwidth and processing power. In addition, the MSA makes
practical new, high-value services including:

Video compositing: Two or more video streams may be blended,
image by image, according to masks to produce a single video
stream with content from multiple sources. “Picture-in-picture”
and “blue-screening” special effects are among the many applica-
tions. Video transcoding may be needed to overcome mismatched
formats, resolutions, and frame rates of the input streams.

Meeting summarization and transcription: When cameras and
microphones are present in a meeting, the incoming audio and
video streams can be collected in the network and processed with
video and audio segmentation and voice and face recognition to
produce an indexed record of the meeting. This record can be
used to quickly recall the meeting content at a later time.

Dynamic view selection: In live teleconferencing and webcast lec-
ture applications, multiple cameras are often needed for adequate
coverage. The best camera view typically changes many times
during the event. Analysis of the video and audio streams from
the event can be used by a network-based service to automatically
select the best video feed.

These types of media analysis are available today through lo-
cal desktop processing. However, componentized services oper-
ating on media streams in the middle of the network offer many
advantages over the traditional desktop model, including:

� Improved application offerings: Developers can quickly dis-
tribute improved services by simply updating the MSA. New
services are quickly created by mixing and matching compo-
nents. Applications are available whenever users can reach the
network, not just when they can access their own machines.

� Reduced system administration: Because processing is per-
formed in the network, end users need not worry about contin-
uous installation and update difficulties on their own machines.

� Facilitation of multi-stream processing: Many media-based
applications, such as meeting summarization, require multiple
streams to be gathered for joint processing. When these streams
do not arise from the same machine, it is usually much more ef-
ficient to process them mid-network.

� Controlled computational environment: While individual
users’ machines may vary widely in their compute power, mem-
ory capacity, and operating systems, MSA machines can be
standardized to a narrow range of specifications. Service com-
ponents can be developed and optimized for these specifica-
tions, leading to more reliable overall application performance.

� Efficient sharing of results: In many situations, such as the
meeting summarization context, the processed media and anal-
ysis results desired by multiple users are nearly the same or
identical. Rather than duplicate this processing on each user’s
machine, mid-network processing can perform overlapping com-
putations once only, and then distribute the results to each user.

In short, network-based media processing services offer users the
potential of much greater flexibility and functionality than current,
local, media-centric applications, with reduced maintenance and
reliability concerns. In the next section, we describe how media
services can be delivered in an efficient and scalable manner.

3. MEDIA SERVICES ARCHITECTURE
The key design goals of the MSA are 1) integrating with the media
delivery architecture, and 2) enabling media services in a highly
flexible manner. The main features of the MSA are:

� Interoperability: seamless streaming interconnections be-
tween components using open interfaces and standards

� Modularity: modular service components allowing dynamic
media service construction in the middle of the network

� Manageability: efficient assignment of media services to
computation and storage resources in a scalable manner

The means by which the architecture provides each of these fea-
tures are discussed in the three subsections below.

3.1. Seamless Interconnects for Streaming Inter-Operability
All inter-machine transport of media streams within the MSA, as
well as between elements of the MSA and components of media
content delivery networks (CDNs), is conducted via uniform input
and output modules that we have dubbed “Ears”. The Ears rely
on standards-based media streaming protocols, thereby easing in-
tegration of the MSA with CDNs and other streaming media ap-
plications. Both the input and output Ears communicate with other
networked machines via 1) the SDP protocol for describing mul-
timedia, 2) the RTSP protocol for session management and media
playback control, and 3) the RTP/RTCP protocol for transport of
data under real-time constraints. A given Ear manages one end
(send or receive) of flow for a single media stream, but multiple
Ears can be linked into the same, synchronized streaming session.

The Ears also provide data compression and decompression
functionality, so that multimedia flowing through the architecture
can be inter-converted between the compressed formats typically
used for network transmission and the uncompressed format of-
ten demanded by media processing and analysis algorithms. Input
Ears automatically detect the format of incoming streams and re-
cruit the appropriate decompression module to convert the data
into forms suitable for media analysis. Output Ears convert raw
data streams into compressed formats suitable for network trans-
port. Standard compression schemes supported include MPEG-1,
-2, and -4 video and AMR and WAV audio.

Finally, because media processing algorithms may not oper-
ate at the same rate as the streaming media, the Ears implement
data buffering and flow control methods to smooth data rate mis-
matches. Circular buffering minimizes expensive data copying,
and multi-threading efficiently services data requests from the net-
work, the application, and the (de)compression routines. Buffer
overflow is handled by selectable policies for dropping frames.

3.2. Flexible, Modular Service Decomposition
An MSA service is initiated by contacting a Service Portal with a
simple, high-level Media Service Request. These requests can be
made directly by the user via the web, or they may be generated
by applications run by the user either locally or within the MSA.
Each Request contains the name of the service, such as “video
compositing”, along with any necessary service parameters, such
as source and destination URLs.

Service -enabled
Machine

User

Service
Portal

Content
Server

Input from
Content Server

and 2 Live Cameras

Output Display

Internet

Media Service
Request

1

Service
Builder2
Service
Builder2

Service
Location
Manager

Component
Placement Requests

3

Component
Placement Decisions

4

Streaming Media/Data

7

Construction Requests
Local

Builder

5

6

Components

Abstract Graph
Of Components

Ears

Fig. 1. Steps in starting a distributed media service: 1) User makes Media
Service Request; 2) Service Portal runs Service Builder for named ser-
vice; 3) Service Builder makes Component Placement Requests to SLM;
4) SLM returns Component Placement Decisions to Service Builder; 5)
Construction Requests sent to Local Builders on selected service-enabled
machines; 6) Local Builder instantiates and connects service Components;
7) media flows and service runs

These simple Media Service Requests hide the complexity of
most media services. For example, meeting summarization can
employ speech recognition, face detection, video motion analysis,
and voice identification, and each of these component algorithms
can, in turn, be divided into several sub-components. A given pro-
cessing algorithm, on the other hand, may be a useful component
in many different services. For these reasons, it is highly desir-
able to encapsulate media processing algorithms into modular, re-
usable components that are flexibly and dynamically combined.

We therefore structure each media service as a graph of in-
dependent “Components” communicating through data streams.
Each Component encapsulates one or more “Sub-Component” pro-
cessing algorithms working tightly together. The Components for
one media service can be dynamically placed on a single machine
or distributed across the network. Since Components are well en-
capsulated, each operates without concern for this distribution.

The steps by which the MSA decomposes and distributes ser-
vices are depicted in Figure 1. First, after receiving a Media Ser-
vice Request, the Service Portal starts up a Service Builder to man-
age the Request’s fulfillment. Each named media service is asso-
ciated with a different Service Builder, and each Service Builder
knows the structure of an abstract graph of Components that will
implement that service. For each Component in this graph, the
Service Builder sends a Component Placement Request to a “Ser-
vice Location Manager” (SLM) to determine, as discussed in Sec-
tion 3.3, the networked machine on which to run the Component.
The SLM returns Component Placement Decisions, which include
specific URLs (with port numbers) for each input and output stream
of each Component, back to the Service Builder. The Service
Builder groups these Decisions by selected machine, and sends
one Construction Request, listing desired Components and their
input and output URLs, to each machine.

A “Local Builder” runs on each MSA machine to service Con-
struction Requests. For a given Request, the Local Builder creates
each of the named Components, and uses the input and output
URLs to instantiate Ears to send and receive data between these
Components and those on other machines. The Local Builder
also attempts to optimize each collection of inter-communicating
Components running on a single machine, by eliminating identical
Sub-Component processing done by more than one Component.

Service Location Manager

Service
Builder

Component
Placement Requests

Component
Placement Decisions

1

6

Network
Distance

Table

Previous
Decision

Table

Resource
Requirement

Routines

Resource
Queries

Service -enabled
Machines

Local Resource
Manager

Machine
Placement

Costs

2 3

4

5

Fig. 2. Service location management steps: 1) Service Builder sends
Component Placement Request to SLM; 2) SLM consults tables of net-
work distances and previous decisions to select host pool; 3) SLM com-
putes Component resource needs, and sends queries to host pool machines;
4) Local Resource Managers send back resource status and port numbers;
5) final Machine Placement Costs computed; 6) machine with lowest cost,
and reserved ports and URLs, returned in Component Placement Decision

Such duplication sometimes occurs when services are divided into
reasonably-sized, reusable Components. This cost of service mod-
ularity is thus mitigated by the Local Builder’s optimizations.

After all Construction Requests are fulfilled, the service is
ready to run. Components in the service graph closest to the data
destination request media via an RTSP PLAY command, thereby
pulling data through the entire graph of connected Components.

3.3. Dynamic Service Location Management
Many individual machines in the MSA network are capable of per-
forming the underlying processing for media services. Therefore,
for each Media Service Request, decisions must be made as to how
to allocate MSA resources to best fulfill the request. To avoid un-
duly increasing the network load, these decisions are based in part
on the (network) proximity of various service-enabled machines to
good paths between sources and destinations of the media streams.
To provide services with minimal delay and highest quality, these
decisions also take into account the current processing load carried
by each MSA media processor. Finally, when some Components
of a service share Sub-Component processing, it may be preferable
to group them on the same machine.

To make these decisions intelligently, we use “service location
management” (see [4]). The MSA contains Service Location Man-
agers (SLMs) that determine where to place the individual Compo-
nents that comprise a service. For a given Media Service Request,
an SLM places Components of the service one at a time in an order
defined by the associated Service Builder. Placement Decisions
for Components are not made simultaneously, through joint opti-
mization over all factors and all Components, as this is likely to
be a complex, time-consuming procedure for even moderately so-
phisticated services. However, Placement Decisions for different
Components are not entirely independent, as this could lead to in-
efficient data paths and duplicate Sub-Component processing. In-
stead, SLMs maintain tables of recent Component Placement De-
cisions, and base each new decision in part on this history.

Our service location management methodology is shown in
Figure 2. For each Component Placement Request, the SLM first
selects a pool of potential host machines, based on network local-
ity and previous Component Placement Decisions. To assess the
former, the SLM consults a table of network “distances” between
server machines, to determine which machines are near the service
data sources and destinations, or the path(s) between them. The
table distances are determined by measured network delays and
bandwidths. Machines on which other Components of the service
have previously been placed may be given greater preference by

the SLM for placement of the current Component, particularly if
those previously placed Components are to be connected directly
to, or are indicated to potentially share Sub-Component process-
ing with, the current one. All of this information is combined into
calculating “Machine Placement Costs” for each potential host.

The required computational and memory resources of the Com-
ponent are determined by the SLM by supplying service parame-
ters, such as media resolution and frame rate, to a Resource Re-
quirement Routine associated with that type of Component. Re-
source availability on potential hosts is determined by the SLM
through consultation of Local Resource Managers (LRMs) resi-
dent on those machines. Each LRM monitors that machine’s state
by direct inquiry to the operating system. LRMs also track pending
and recently fulfilled requests from the machine’s Local Builder,
as these may not yet be reflected in current processor load statis-
tics. Each LRM returns the machine status back to the SLM, along
with network port numbers reserved for use by the Component if it
is placed there. The SLM increments all Machine Placement Costs
in inverse proportion to the machine’s resource availability.

The machine with the lowest Placement Cost is selected as the
Component host. A Component Placement Decision, specifying
this host and containing Component input and output URLs and
reserved ports, is returned by the SLM to the Service Builder. The
SLM’s table of recent Placement Decisions is also updated.

4. EXPERIMENTAL RESULTS
We have implemented a prototype of the MSA, along with Com-
ponents from which a variety of services may be built. To better
illustrate the operation and benefits of the MSA, we discuss ser-
vices supported by three Components operating on video media:

� Resizing: Changes the width and/or height of the video; for in-
stance, a high-resolution video may be downsampled for better
transmission and display on a PDA.

� Background Removal: Extracts the dynamic or “interesting”
objects in a scene, such as people, while suppressing other, un-
changing aspects of the scene, such as walls and furniture. Our
Background Removal Component is based on the method of
[5]. It attempts to replace background in a scene with a constant
color (such as white), while leaving the foreground unchanged.

� Compositing: Uses a mask to replace pixels in a video stream
with pixels from another image or video stream. Our Composit-
ing Component replaces video stream pixels having a special
color (such as white) with pixels from another image or stream,
while leaving the other pixels unchanged.

Transcoding of video to lower resolutions suitable for mobile clients,
such as PDAs and cellphones, is important to modern CDN de-
sign [6, 7], and can be achieved via the Resizing Component. By
combining this with Background Removal, “intelligent compres-
sion” services for even lower target bit-rates, without loss of the
most “interesting”, foreground part of the video, may be provided.
We focus here on a “Mobile Private Video Phone” (MPVP) service
that uses all three of the above Components. MPVP allows video
teleconferencers to prevent others from seeing the details of their
surroundings, by using Compositing to replace their background
with an image or video of their choice. For instance, a person call-
ing from the beach may prefer to use a background image of his
office. For users receiving video on mobile devices, downsampling
(via Resizing) is also used, for bit-rate reduction.

The MPVP service may be started within an IP telephony ap-
plication that has already opened an audio channel to a remote

Fig. 3. Mobile Private Video Phone service results, where a person in an
office wishes to appear as if he is at the beach. a) Abstract graph of Com-
ponents describing service; b) - d) Three possible distributions of Com-
ponents on a small network. The three servers and the video source and
destination are arranged to reflect their relative network distances. Images
represent the (possibly processed) video flowing on each link. Machines
with no processing Components simply forward the media.

participant, and now wants to add video. The application sends
a request for the “MPVP” service, along with parameters such
as the destination IP address and desired video resolution, to an
MSA Service Portal. The Portal starts the MPVP Service Builder,
which knows the abstract graph for the service (Figure 3a): Resiz-
ing feeding into Background Removal feeding into Compositing.

The Service Builder sends Component Placement Requests for
each of the three Components, in the order they appear in the ab-
stract graph, to an SLM. For illustration, we assume the network
contains three service-enabled machines on which the SLM can
place Components. Also, the SLM knows how much computa-
tion can be reduced if two or more of the Components are placed
on the same machine. The SLM considers the potential compu-
tation savings, the current computational load levels on each ma-
chine, the processing requirements of each Component, and the
network topology and load levels, in order to arrive at a decision
as to how to distribute the Components. Three possible distribu-
tions are shown in Figure 3b-d.

The first distribution (b) is not favored by our SLM because
its long data path will result in high latency for the service. Such
a distribution might be selected by simpler placement algorithms
that do not account for network topology and placement history.
The second configuration (c) places all Components on the same
machine. This results in computational savings not just through
elimination of redundant Sub-Component processing, but also by
removing extra video decompression and compression steps, per-
formed by the Ears, that would be needed if the Components were
on separate machines. Configuration (c) thus greatly reduces the
overall computational load introduced to the service network, and
may be preferred when system load levels are high, as when many
services are in progress. A disadvantage of placing all Compo-
nents on one machine, however, is that their combined processing

is less likely to keep up with the frame rate of the streaming video.
For instance, it may be difficult to do Resizing, Background Re-
moval, and Compositing all on the same machine at 30 frames/sec,
so that some frames need to be dropped and the resultant video
quality diminishes. By spreading the Components across three dif-
ferent machines, on the other hand, as in Figure 3d, all three Com-
ponents are more likely to run smoothly, without dropped frames,
at 30 frames/second, particularly if these machines were selected
because they were relatively unloaded.

The Placement Decisions made by the SLM are returned to
the Service Builder, which groups them by machine and sends out
Construction Requests to the Local Builders resident on those ma-
chines. The Local Builders start up the requested Components,
and direct them to send and receive data according to the URLs
specified in the Construction Requests. When all Local Builders
have notified the Service Builder that their Components are ready,
media flow through the service is started via an RTSP “PLAY”
command. The images on the links between machines in Figure 3
show examples of the processing done to a real video stream as it
flowed through the various service topologies.

This service example illustrates some basic aspects of the MSA.
Clearly, this approach can be extended to incorporate additional
types of Component processing, as well as branching of processed
streams to multiple users, each of whom may request different, fur-
ther processing along his own branch. Also, many of our other ser-
vice Components may employ video and audio analysis to produce
non-media data streams such as text (e.g. from speech recognition)
or event summaries and time indices (e.g. from vision-based per-
son tracking and activity analysis).

5. CONCLUSIONS
Many advanced algorithms in video and audio analysis and pro-
cessing have yet to make their way into widely-used applications.
This is due, in part, to the difficulties of configuring complex me-
dia processing applications, in obtaining the substantial processing
resources they often require, and in connecting these applications
to interesting sources of media and desirable output locations. By
enabling flexible media processing that lives in the network it-
self, we believe our Media Services Architecture has the poten-
tial to bring advanced, media-rich applications into mainstream,
widespread usage. This architecture integrates easily with media
CDNs, allows for modularity of services for easy reconfiguration
and re-use, and promotes efficient allocation of scarce network re-
sources, while reducing maintenance, compatibility, and availabil-
ity issues for end-users.

6. REFERENCES

[1] Intel, “Media Processing for the Modular Network.” see
http://www.intel.com/network/csp/resources/white papers/7786web.htm.

[2] H. Houh, J. Adam, M. Ismert, C. Lindblad, and D. L. Tennenhouse,
“VuNet Desk Area Network: Architecture, Implementation, and Ex-
perience,” IEEE Journal of Selected Areas in Communications, 1995.

[3] S. Wee, J. Apostolopoulos, W. Tan, and S. Roy, “Research and design
of mobile streaming media content delivery network,” in ICME, 2003.

[4] S. Roy, M. Covell, J. Ankcorn, S. Wee, M. Etoh, and T. Yoshimura,
“A system architecture for mobile streaming media services,” in Intl.
Wksp. on Mobile Distrib. Computing, May 2003.

[5] M. Harville, G. Gordon, and J. Woodfill, “Adaptive background sub-
traction using color and depth,” in ICIP, Oct 2002.

[6] H. Sun, W. Kwok, and J. Zdepski, “Architectures for MPEG com-
pressed bitstream scaling,” IEEE Trans. Circuits and Sys. for Video
Tech., vol. 6, April 1996.

[7] S. Wee, B. Shen, and J. Apostolopoulos, “Compressed-domain video
processing,” HP Labs Tech Report, October 2002.

