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Multimedia search engines facilitate the retrieval of documents from large media 
content archives now available via intranets and the Internet. Over the past 
several years, many research projects have focused on algorithms for analyzing 
and indexing media content efficiently. However, special system architectures are 
required to process large amounts of content from real-time feeds or existing 
archives. Possible solutions include dedicated distributed architectures for 
analyzing content rapidly and for making it searchable. The system architecture 
we propose implements such an approach: a highly distributed and reconfigurable 
batch media content analyzer that can process media streams and static media 
repositories. Our distributed media analysis application handles media 
acquis ition, content processing, and document indexing. This collection of 
modules is orchestrated by a task flow management component, exploiting data 
and pipeline parallelism in the application. A scheduler manages load balancing 
and prioritizes the different tasks. Workers implement application-specific 
modules that can be deployed on an arbitrary number of nodes running different 
operating systems. Each application module is exposed as a web service, 
implemented with industry-standard interoperable middleware components such 
as Microsoft ASP.NET and Sun J2EE. Our system architecture is the next 
generation system for the multimedia indexing application demonstrated by  
www.speechbot.com. It can process large volumes of audio recordings with 
minimal support and maintenance, while running on low-cost commodity 
hardware. The system has been evaluated on a server farm running concurrent 
content analysis processes. 
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1 Introduction

Increases in data storage and network bandwidth capacity have made massive amounts of audio,
video, and images available on intranets and the Internet. However, digital media documents,
though rich in content, generally lack structured and descriptive metadata that would allow
indexing, random access, and cross-linking. Consequently, content processing algorithms, such
as segmentation, summarization, speech recognition, etc. are clearly needed for indexing and
searching of digital multimedia. Moreover, many system level challenges remain to be solved
to enable efficient indexing and searching of large multimedia document collections[17].
First, multimedia indexing systems need to be designed to process vast amounts of content (e.g.
millions of hours of audio/video) and to retrieve relevant information interactively with rapid
response time. Thousands of hours of media are now available online, but a limited number
of text-based search engines exist to retrieve these documents. Our content-based media search
engine, SpeechBot [1], indexes over 17,000 hours of content, a mere fraction of what is archived
on the Internet. SingingFish [4] uses attached production metadata to index over 9 million
multimedia URL’s. Radio and TV stations that possess large archives, in some cases over a
million hours, in analog or digital form, face a similar content indexing and retrieval problem.
Second, media indexing systems need to be extensible, allowing additional content processing
or search algorithms to either improve existing functionality or add new features. Also, it is
likely that several different content analyzers and search methods will have to be combined to
achieve better results. Integrating human generated metadata can improve performance even
further.
Finally, media search systems need to have good precision and accuracy. Although digitizing
and storing large quantities of media files are challenging problems in themselves, browsing and
searching these files accurately is an even more complex problem, studied by many research
groups in the recent past [10, 5, 22, 20, 7]. Given the level of noise and the lack of structure
in media documents, content analysis and indexing represent a challenging signal processing,
machine learning and information retrieval problem [11].
In the following sections, we first describe the system challenges of large multimedia content
analysis systems. Then we propose a system design that addresses the problems of system
scalability and extensibility for multimedia content analysis and indexing. We conclude with a
preliminary performance evaluation, and future work.

2 Multimedia searching and indexing systems

2.1 Searching low-level perceptual metadata

Since media documents cannot be searched in their native form, they must be processed to ex-
tract either perceptual or semantic information which will allow indexing and searching. Visual
and acoustic data are low level representations and do not enable high level semantic queries,
such as finding individuals in a picture or words spoken in an audio recording. Image perceptual
representations may entail Color, Shape, and Texture (CST) vectors. Likewise, acoustic repre-
sentations may include pitch, rhythm or phoneme transcription. These metadata are usually
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represented as feature vectors, like CST vectors or a lattice of acoustic units (e.g. a phoneme
lattice). Such metadata often require minimal computational resources to be generated. Hence,
simple streaming pipeline architectures can be used, allowing the production of feature streams
while the media is recorded and digitized.
Low-level features can be used to search content by a similarity match. For example, a feature
vector is computed from a query image and compared to feature vectors for each image in the
repository; images with the highest similarity scores are returned [21]. Similarly, from an audio
recording, a lattice of phonemes can be computed with a speech recognition system. A spoken
query or a text-based query term may then be converted into a sequence of phonemes (i.e. a
phonemic pronunciation from a dictionary) that can be scanned through the phoneme lattice in
order to return the most likely acoustic matches [8].
These approaches can be fairly effective for querying multimedia, but have several significant
drawbacks. First, they perform queries at the perceptual level, e.g. finding images that look alike
or occurrences of spoken words that sound like a given word. Although simple to use, queries
are limited to perceptual clues and users still must choose the right query example to get relevant
results. Moreover, these algorithms often generate a number of false positives that increase with
the size of the searched database. Finally, they do not scale well since the entire repository must
be traversed for every query. However, significant research effort has been expended in the
design of similarity matching systems that can scale up on demand. In this approach, the most
significant challenge is scanning the whole repository with acceptable performance (retrieval
accuracy and response time).

2.2 Indexing high-level semantic metadata

In contrast, semantic queries can be performed when higher level metadata representations have
been computed. Semantic metadata representations may include, for instance, the word or topic
transcriptions of spoken audio content, or the description of the subject in a picture. Such
metadata can then be indexed in its native form (usually text), allowing queries for exact matches
in near constant time. However, this approach is not without its disadvantages.
First, the semantic analysis of the media content utilizes statistical models which need to be
trained beforehand on a predefined set of objects, e.g. a word dictionary for speech recogni-
tion. The analysis is then performed with this fixed set of models, limiting the output to the
trained objects only. Second, metadata must be computed up front, and often a sequence of
properly orchestrated complex algorithms must be executed before the information is available
for searching.
In summary, there is a tension between two possible approaches for media content processing
and indexing. One scheme involves processing the data into low-level features at a low compu-
tational cost, and then searching the metadata at query time. Another, our approach, comprises
computing higher level semantic representations at a higher initial cost, but enhances query
performance by indexing metadata. Both approaches require building distributed systems with
significant computing power and intelligent middleware. Ultimately, systems combining low
level metadata search and semantic indexing will likely achieve the best results.
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Figure 1: System overview.

3 System Architecture

3.1 Design Requirements

The sheer abundance of multimedia content and the expensive computations needed to analyze
each document require a system architecture that is highly scalable. Demands for scalability are
ever-increasing and every design has its theoretical limit; however, there is a tradeoff between
complexity, efficiency and scalability in any given design that achieves the right balance for a
given problem. A good system architecture should not have crippling limitations that restrict a
reasonable expansion of the system.
For the problem of providing scalable resources, two approaches have traditionally been used.
Using tightly coupled clusters such as Beowulf [19] is one solution, yielding a high performance
support system with very low overhead. However, these systems have a disadvantage in that
they are dependent on a homogeneous underlying hardware and software platform. The second
approach is to use a loosely distributed architecture. Here, the system design permits the use
of multiple hardware and software platforms, but carries the disadvantages of costly messaging

4



overhead, bookkeeping, failure recovery, etc. Each architecture has its usefulness in a given
problem domain. We have adopted the distributed architecture, allowing for scattered resources
on multiple platforms that can be added and removed quickly. This design scales well with
some overhead.
Another core challenge in a distributed system solution is workflow management. Parallel ap-
plications, such as the one currently being addressed, require a sequence of tasks to be executed
in the proper order[16]. Such workflows may be seen as directed acyclic graphs (DAGs) having
pipelined components within each graph that link the output of one component to the input of
the next, as in a producer-consumer model. Moreover, as content analysis algorithms are con-
stantly refined, they drive the need for a more flexible workflow management sub-system so that
changes in workflow may be easily assimilated.
Workflow designs may not be static as described above, but instead dynamic requiring a different
flow graph for every given input document. Our requirements, on the other hand, are met
by a semi-static workflow with a manager that allows for compile-time modifications and not
necessarily dynamic run-time changes.
With the need for workflow management and the obvious requirement of distributed compu-
tational nodes, workflow management clearly may be dissociated from task scheduling. A
scheduler helps prioritize tasks and maximize available resource usage, required for an efficient
distributed, parallel application. Task prioritization in particular is a novel feature which may
be exploited when, for example, breaking news coverage must be analyzed before the system
can finish its existing batch of work. Scheduling can also help manage heterogeneous resources
and capabilities by becoming aware of them (such a specific face detector service) and matching
task requirements with resource availability.
Heterogeneity is a reality of multimedia analysis applications as many software components de-
veloped on various architectures must be plugged together. This requires standards that promote
interoperability between computational components. The web services model is an emerging
solution for such problems, and our architecture is built using web services to implement an
asynchronous messaging layer.
A distributed architecture creates the need for reliability in certain critical components so that
failures are tolerated. Mechanisms such as checkpoint-restart are useful, and allow for recovery
to a consistent state in case of fatal crashes of several components.

3.2 Related Work

A recent trend has seen grid-based systems emerging [12], implementing systems for different
application domains such as medical imaging [14], computer vision, simulation, data visual-
ization, graphical interactive sessions[15], etc. Grid systems allow data- and CPU-intensive
processes to run on clusters of heterogeneous computers, potentially located at different sites.
Many features of our infrastructure mirror those found in grid systems, but differ in capability
and simplicity.
Other systems built for streaming multimedia content analysis, such as Stampede [18], allow
for interactive and real-time application pipelines by dropping data when necessary. However,
real-time processing is not a requirement of our system, given requirements addressed by batch-
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processing applications. Bounded latency similar to real-time processing is a desirable feature
for content analysis but may only be achieved by providing sufficient resources for processing
the input data stream – dropping data is not acceptable for a media indexing application.
Work has also been done in workflow representations, such as derived or manually-built gram-
mar representations [23], defining dependencies between analytic components. Other frame-
works represent dependencies as an object-oriented hierarchy, linking data objects and algo-
rithms in a semantic graph [13]. Our approach is different as it uses a high-level graphical
description of the process components. The input/output data to/from media content analyzers
are encapsulated using XML documents. This is similar to an earlier version of our system [9].

3.3 System components

Our system architecture is divided into three components with each component assigned a
unique role in performing media content analysis. These components are the (1) workflow
manager, (2) the proactive workers, and (3) the scheduler. This architecture is presented in
greater detail in our companion paper [16].
The workflow manager controls the order of media processing. The workflow manager collects
feature metadata by enriching a metadata XML document format called MMDOC [16]. As fea-
tures of the multimedia document are computed, they are appended to this document, producing
a richly structured high-level feature set that is indexed for access via user queries. The work-
flow manager is able to handle hundreds of simultaneous workflows from a set of pre-defined
workflow graphs. It performs checkpointing and can restart at the last consistent state.
A unique workflow graph wfi, where i is the MMDOC workflow graph, is formally described
by a set of analytical components ACi = {aci,j}, where j is the analytic component ID-string.
Each aci,j is described by PRr, where PRr is the set of physical resources required to exe-
cute that analytic component. The knowledge of required physical resources is critical since it
is needed to optimize scheduling. Resource requirements can be estimated by simulation [6],
learned from previous executions, or deduced from heuristics. However, for our initial imple-
mentation we simply assign values based on empirical observation.
The next component in the architecture is the remote proactive worker. Workers provide com-
putational capability for multimedia content analysis. These workers are aware of their available
resources, including the set of analytic components ACi = {aci,j} they can execute. Therefore,
workers can advertise a tuple rck, defined as the resource capability of the worker k = (PRa,
the set of available physical resources; and ACi = {aci,j}, the set of available analytical com-
ponents ) to the scheduler when requesting work instances wi,j. This design allows workers
to be heterogeneous as long as they describe their capabilities appropriately. The workers are
proactive in seeking work, eliminating the burden of a join/leave subsystem to track them. Each
worker simply submits an rck to get a work instance wi,j.
The scheduler manages the distribution of tasks to worker nodes and therefore optimizes the ex-
ecution of tasks by minimizing idle time. The scheduler is aware of PRr, the physical resources
required by an analytic component aci,j. The scheduler has priority-ready queues that are named
on the (PRr, aci,j) tuple, which enable efficient task scheduling when proactive workers submit
their published rck = (PR, AC) requests. All tasks submitted to workers are transferred to
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another queue, where they are kept until results are received by the scheduler. To handle recov-
ery from failed workers, each enqueued operation is accompanied with a fixed expiration time.
When a task expires, it is reinserted in the appropriate queue for rescheduling. This design frees
the scheduler from tracking tasks submitted to unreliable worker nodes.

3.4 Implementation Details

We have implemented an asynchronous message-passing protocol between the components de-
scribed in the previous section. In this protocol, an acknowledgement is a separate message,
instead of a synchronous response to an initial request (figure 1). This approach avoids block-
ing connections for relatively long-lived tasks, and is appropriate for loosely-coupled, possibly
wide-area distributed systems. Messages are transmitted RPC-style via web services - Simple
Object Access Protocol (SOAP) over HTTP. It is often argued that XML-based wire formats are
inefficient and overkill for message passing in a heterogeneous environment. But for the prob-
lem at hand, where content processing tasks are computationally much more expensive than
XML messaging overhead, the advantages of XML make it an acceptable choice.
To support the architectural design, all tasks must carry some meta-information. This consists
of a workflow instance identifier, a task priority, the physical resource requirements PRr of
the task, and an asynchronous acknowledgement location. These are all encapsulated within a
SOAP document header as shown in figure 2.

<soap-env:Header>
<types:SBHeader>

<workflowID xsi:type="xsd:string">
{BE524120-51D7-4F29-A448-94B1C7BF055F}

</workFlowID>
<resReq xsi:type="xsd:string">cpu=4, network=4</resReq>
<taskPriority xsi:type="xsd:int">0</taskPriority>
<ackURL xsi:type="xsd:string">

http://<hostname>:<port>/speechbot-scheduler/SchedulerServlet
</ackURL>

</types:SBHeader>
</soap-env:Header>

Figure 2: A SOAP header included with every SOAP message exchanged in the system.

3.5 Platform Specification

The described system was implemented using Java and .NET C# development tools on Linux
and Microsoft Windows operating systems. Java web services were implemented using Java 2
Enterprise Edition (J2EE) and the Java Web Services Development Pack (JWSDP) API collec-
tions. Java web services were built on Linux, as .NET is unavailable for Linux and other Unix
variants. .NET, instead of Java, was used on Windows to demonstrate platform independence
and interoperability within the architecture.
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The workflow manager was implemented using the commercial package Microsoft BizTalk
Server 2002 [2] on Windows 2000 Server. BizTalk incorporates the graphical tool Visio [3]
to ease the design of workflow graphs. Support for reliable, checkpointed workflows and doc-
ument logging were additional desirable features of BizTalk. Scalability in BizTalk is achieved
by dehydrating long running workflows to avoid blocking system resources. Dehydration is
the process by which a workflow instance awaiting a message is written to storage. Once the
expected message arrives, the dehydrated workflow is hydrated to continue processing. The
workflow manager communicates with external resources (Java and .NET web services) via
proxies implemented using the .NET Framework and registered as COM+ components. Asyn-
chronous results are returned to the workflow manager using .NET web services which place
acknowledgments in message queues.
The Scheduler was designed using the Java APIs while workers were implemented using .NET
and Java. Next, we describe the performance of our system implementation.

4 Performance Evaluation

The system described above is implemented by a functionally complete prototype. While not yet
suitable for production deployment, we are able to use this implementation to process multiple,
concurrent jobs to completion.
The prototype implementation is currently configured to produce text transcriptions of audio
from Real Media streams. It orchestrates the services of four proactive workers to accomplish
this goal.

GetReal downstreams and decodes Real Media URL to raw audio (WAV) and metadata,

Mfcc produces preliminary feature vectors (Melcep Frequency Cepstral Coefficients,
or MFCCs) for speech recognition from audio,

Transcribe produces transcriptions from overlapping audio chunks and MFCCs,

Merge merges the results of multiple Transcribers into a single transcription.

The two most time-consuming workers in the system are GetReal and Transcribe. Because
GetReal is aimed at external streaming archives, accessible via proprietary streaming protocols,
it cannot process streams faster than the end-user playback rate dictated by the built-in Real
Player tm components. Therefore, GetReal is network and playback-rate-bound. On our current
hardware platform, we run out of CPU at 30 GetReal processes, but can scale out with multiple
boxes. We then saturate our currently allotted 4 Mb/s to the Internet at 88 GetReal processes.
This provides more than enough scalability for our purposes. But as long as we process at play-
back rates, we cannot do better than 1x real-time. Alternatively, an FTP worker can download
an audio file made available on an FTP server, in a mere fraction of the file’s duration.
Transcribe is based on a CRL custom version of the Sphinx 3 large vocabulary speech recognizer
from CMU (Carnegie Mellon University), and processes audio between 5x and 10x real-time.
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Figure 3: Application pipeline.

This would represent a low throughput performance, were it not for our support of data paral-
lelism. The input audio is split into overlapping chunks, and fed to multiple Transcribe workers
which process the chunks in parallel (figure 3). The results are then merged into the final tran-
script. This approach can scale to a throughput equal to the input rate of media documents at
the cost of some latency, given enough Transcribe workers are provided.

Distributed event logging was implemented that enabled us to capture the arrival, scheduling,
submission, and result acknowledgement of each work component. Even though all hosts were
NTP-synchronized, there was considerable clock-jitter between hosts. We circumvent the prob-
lem by comparing readings taken on the same host during log analysis.

In order to evaluate the system, we deployed up to five workers with Transcribe, Mfcc and
Merge services along with two workers providing the GetReal service. The singleton scheduler
and BizTalk workflow manager were deployed on dedicated machines. Our hardware resources
include dual Intel P4 Xeon 2.4GHz machines with 1GB of RAM running Mandrake Linux 9.1,
along with several Intel PIII SMP machines running Microsoft Windows 2000 and XP.

Work Computing Scheduling Total Message
Component time STD overhead STD latency STD overhead

avg (min) avg (min) avg (min) avg (min)

GetReal1 N/A N/A 00:03.94 00:02.04 N/A N/A N/A
Mfcc 02:23.11 00:56.75 00:01.78 00:00.60 02:25.03 00:57.28 00:00.14

Transcribe 12:19.65 02:32.89 00:02.26 00:01.16 12:22.05 02:32.14 00:01.14
Merge 00:00.60 00:00.24 00:01.15 00:00.90 00:02.24 00:00.74 00:00.50

Table 1: A breakdown of the computation time and scheduling overhead for each worker ob-
served in the system.
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In table 1 we show the performance of the target application. The scheduling overhead on
average is only 2.29 seconds per task request, which is largely due to the 5 second polling
interval preset on all proactive workers. Each Transcribe task injected into the workflow consists
of 5 audio segments of 35 seconds each. Adjacent segments overlap by 5 seconds; thus each
Transcribe job represents an audio document of 155 seconds (2.5 minutes) in length.
Messaging overhead is negligible compared to the computation times of each task, except for
the Merge task where the message sizes are considerably larger. However, for this application
domain, the use of XML to leverage interoperability between various platforms is justified. We
have not tested the scalability limit of the system because of time constraints.

5 Conclusions and future work

Our system implements a scalable distributed architecture for multimedia content processing.
The different functions of the system (workflow management, scheduling, and analytic tasks)
are implemented as distinct and disjoint components. Each component communicates with the
other using standard protocols, thus achieving interoperability. The system scales easily by
adding new worker resources, distributed across the network.
In our design we exploit data parallelism and pipeline parallelism to distribute work load. Media
streams fit this model particularly well, as they can be split along time into independent units of
work. Moreover, the system is designed such that every component can be replicated as needed,
including the workflow manager and the scheduler. This is possible because each component is
independent of each others.
However, several problems remain to be addressed. Performance can be optimized further by
improving data locality between the remotely distributed components. We also do not address
security issues, such as the problem of rogue workers stealing tasks away. Fortunately, we can
take advantage of emerging security standards for web services.
Future work will focus on alternate implementations of the workflow management component.
Although we can interactively design new workflows using Visio’s graphical interface, the result
is a static XML document that cannot be modified at run time. Dynamic workflows are desirable
when the topology of the workflow depends on the media content. Moreover, we would like to
allow users to programmatically create new workflows. We also plan to deploy the system on a
larger scale, allowing us to dramatically increase the size of our public index [1].
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