

Efficiently Modelling Resource
in a Process Algebra

Chris Tofts
HP Laboratories Bristol
HPL-2003-181
September 2nd , 2003*

E-mail: chris_tofts@hp.com

process
algebra,
semaphore,
resource,
composition

In a concurrent system the effects of contention for resource are
primary for both understanding and controlling the behaviour of the
system. Since resources are inherently shared, hoping for a
compositional presentation seems highly unlikely. Equally, in this
context, composition in terms of the ability to subdivide resource
seems an ambitious goal. In this presentation we demonstrate that,
by exploiting synchrony, we can present resources in a divisible
manner. Further, this eradicates counting duplication (counts
residing both in the resource representation and in the claiming
entities) greatly reducing the state space of the system. Finally our
compositional representation of resource usage in a synchronous
process algebra is obtained without any changes or additions to the
underlying language and could be achieved in ‘bare’ SCCS. For
brevity we assume a basic familiarity with asynchronous (such as
CCS) and synchronous process algebra (such as SCCS) for an
introduction see ‘Communication and Concurrency’ by Robin
Milner, and the SCCS probabilistic/prioritized extension WSCCS.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

Efficiently Modelling Resource in a Process Algebra.

C. Tofts
HP Research Laboratories Bristol,

Filton Road, Stoke Gifford,
Bristol, BS34 8QZ,
chris tofts@hp.com

August 27, 2003

Abstract
In a concurrent system the effects of contention for resource are primary for both understand-

ing and controlling the behaviour of the system. Since resources are inherently shared hoping
for a compositional presentation seems highly unlikely. Equally, in this context, composition
in terms of the ability to subdivide resource seems an ambitious goal. In this presentation we
demonstrate that, by exploiting synchrony, we can present resources in a divisible manner. Fur-
ther, this eradicates counting duplication (counts residing both in the resource representation
and in the claiming entities) greatly reducing the state space of the system. Finally our composi-
tional representation of resource usage in a synchronous process algebra is obtained without any
changes or additions to the underlying language and could be achieved in ’bare’ SCCS [7]. For
brevity we assume a basic familiarity with asynchronous (such as CCS) and synchronous pro-
cess algebra (such as SCCS) for an introduction see [8] and the SCCS probabilistic/prioritized
extension WSCCS[11].

1 Introduction

Most components within concurrent systems can be roughly partitioned into two types:

1. the interesting bits - the components that control interaction and cause computation to pro-
ceed;

2. the resource bits - variables, semaphores, counters that record state, both local and global,
and are utilised by the interesting components.

In our work on the semantics[5] of DEMOS [1, 2] one of the interesting observations is that the
state costs of the ’interesting’ parts of the model are small, but the state cost of the ’boring’ bits
is the main limitation is performing automated formal analysis.

2 Representing resource

Classically resources in process algebras are modelled as semaphores. As an example the simple
mutual exclusion problem in CCS[8] is usually presented thus:

Sem
def
= get.put.Sem

User
def
= get.critical.put.User

ME − Sys
def
= (User|User| . . . |User|Sem)\{get, put}

1

Off greater interest is the situation when the resource comes in chunks, and a component may
want to use less than the totality. From the compositional view the repesentation we should desire
would be as follows (exploiting the definition of Sem given above):

ResN
def
= Sem|Sem| . . . |Sem (N copies)

User2
def
= get.get.using2.put.put.User2

Use2 − Sys = (User2|User2| . . . |User2|ResN)\{get, put}

However, elementary analysis (consider the case when N = 2), shows that the above representation
does not behave in the manner we would wish. The fundamental problem is that there is no
composition on actions within an asynchronous calculus.

Within the setting of a synchronous calculus such as SCCS [7] or MEIJE[9] we would standard-
edly proceed in much the same way:

SSem
def
= $get : $put : SSem

User
def
= get : critical : put : User

ME − Sys
def
= (User|User| . . . |User|Sem)d{critical}

in the above $ denotes a desynchronised or waiting capable action.
However, with multiple resource use we would write the previous example as follows:

ResN
def
= SSem|SSem| . . . |SSem (N copies)

User2
def
= get2 : $using2 : put2 : User2

Use2 − Sys
def
= (User2|User2| . . . |User2|ResN)d{using2}

and this will indeed proceed in the manner in which we would expect. In some senses we have a
different way to express a value passing calculus in the synchronous setting. Rather than subdiving
actions we exploit the powers. In this instance we can subdivide the resource by exploiting the
associativity and commutativity of parallel composition. Then renaming the local access to the
divided resource will allow the movement the permission operators leading to the representation of
the system as a pure parallel composition.

Whilst the above representation is compositional it duplicates state information, in order to
return resources entities must know how much they hold hence the multipe resource need not
count them. This has no impact at the level of the complete system but has major implications
for the efficiency of automated graph generation systems. Increasing state has multiplicative effect
on the number of states that need to be considered. Taking this representational requirement we
could define resources as follows:

SpSem
def
= $get : $0

ResN
def
= SpSem|SpSem| . . . |SpSem (N copies)

User2
def
= get2 : using2 : (SpSem|SpSem|User2)

Use2 − Sys
def
= (User2|User2| . . . |User2|ResN)d{using2}

largely this approach is avoided because it uses spawning, at therefore a risk of being infinite state.
Equally early graph builders did not absorb the $0 objects allowing the syntactic form to grow
indefinately.

The above approaches seem to hint that it should be possible to encode all of the resource
requirements purely within the action part of the process system which would then minimise states
that need to be considered in automated constructions. So we present a further alternative view of
resource:

2

User2
def
= $using2#have2 : User2

Use2 − Sys
def
= (User2|User2| . . . |User2)d{{

√
, using2}#{

√
, have1, . . . haveN}}

In this instance we need a bit of notation to form permission sets, the above implies the free
group formed by the combination of the atom (using2) and the action set. Explicitly we have the
permission set:

{
√

, using2, using2#have2, using2#have4, using2#have6, . . .}
as a consequence we do not permit more than one instance of a using2 action to be occuring on
any tick. Hence, the permission has the effect of restricting the number of copies of using2 and
thus implicitly enforces the resource limit. If we changed the permission to

{{
√

, using2, using22, using23}#{
√

, have1, . . . haveN}}
this would have the effect of permitting up to 3 instances of the user being live at the same time.
With this representation, without any extension to the basic language of SCCS, we have gained
three major benefits:

1. we have no need for an explicit state representation of the resource(semaphore);

2. we can vary the amount of resource available by changing the permission set, and do not have
to change any of the component process descriptions;

3. the actions witnessing the current levels of resource utilisation are always visible.

One complaint about the above might be that it will only work when the ownership of a resource
extends for precisely one ’tick’. Consider the following process:

User2
def
= $using2#have2 : User2a

User2a
def
= using2#have2 : User2b

User2b
def
= using2#have2 : User2

Use2 − Sys
def
= (User2|User2| . . . |User2)d{using2#{have1, . . . haveN}}

Note that in the states Using2a and Using2b to proceed we must be able to perform the action
have2 there is no alternative. If this does not occur the system will deadlock. Hence once ownership
is established it will be maintained by forcing the other system components to wait. It should be
noted that any individual deadlocked process acts as an anihilator for the complete system within
a synchronous calculus. Consequently, any failure to proceed on the part of a process of the form
of User2a and User2b will, in essence, destroy the system under study.

Whilst the above has enabled us to remove the explicit resource processes completely some tools
do not support limited action specification in this instance we can complete the system for the cost
of a single state process as follows:

Res
def
=

√
: Res + have : Res + have2 : Res + . . . + haveN : Res

Use2 − Sys
def
= (User2|User2| . . . |User2|Res)d{using2}

In the setting of a probabilistic calculus the above approach permits compositional resource
usage reasoning. For each particular set of subcomponents we can compute the average demand
on resource and then combine these estimates together. Whilst in any interesting case this will
require more resource than will be avialable we can obviously estimate the period for which the
system resource requirements exceed those that are available and hence the performance limitations
imposed by the resource restrictions. Such a calculational approach can be embedded in the toolset
presented in [12]. As a large scale example we represent the model of printer memory usage derived
by Athena Christodolou in [3]

3

Figure 1: Interactions diagram for printer memory usage.

3 Printer memory usage

In Figure 1 the resource usages within a simplified printer model are presented, this is largely
based on the model presented in [3] and requires WSCCS [12] to provide the rate and priority
constructions. The various elements within the printer compete for two main resources the processor
and memory.

3.1 Personality

Within a printer the personality is the element which converts the language in which the page is
presented (e.g., pdf, pgl ,ps) into a pattern of dots which can be placed on the paper by a print
engine. A printer may contain several different personalities. A personality has several basic states:

• Active: pages are recieved and then parsed;

• Parsing: using the processor the page is converted from the presentation format to the printing
format;

• Idle: the printer is now using a different personality;

• Pickled: in this state the personality returns some of its working memory and compresess its
internal state subsequently it has to be reconstructed. Furthermore, it can be killed back to
its initial state, whereby it gives up all of its working memory and internal state;

• Initialising: the personality has to construct its internal working tables and gather working
memory.

Constructing each of the above states formally.

4

Idle State

PI
def
= 1.context : PGM

+1.
√

: PI
If a context switch occurs then this personality becomes the active personality so it needs to acquire
some working memory state PGM (personality get memory), otherwise it stays idle.

Getting memory

PGM
def
= 1ω2.get2 : Pinit

+1ω.free : PGM
+1.

√
: PGM

The personality tries to get the 2 units of memory it needs, if they are not available it asks the
memory manager to free some memory and retries, if the memory manager cannot respond then it
retries. If it succeeds in acquiring its working memory then it needs to set up its internal state.

Initialising

Pinit
def
= pdone.get2#proc : Pactive

+(1 − pdone).get2#proc : Pinit
+1.get2 : Pinit

In this state we have two units of memory so all transitions from it must have get2 actions. We use
an exponential distribution parameterised by pdone to represent the time taken to construct the
internal data tables. But to do that we need to utilise the processor. So we run interleaved for an
exponential time on the processor, the two transitions with proc as part of the action. Otherwise,
it simply maintians its ownership of the memory.

Once it has been initialised it is active and can accept pages.

Active

Pactive
def
= pages.get2 : Pparse

+(1 − pages).get2#context : Pidle
In this state a number of pages arrive at an exponential rate given by the variable pages. Note as
this state has memory all transitions have get2 actions. If a page arrives then it is parsed. If there
are no more pages for this personality then the context is switched to an alternate one.

Parsing

Pparse
def
= dl.get2#page#proc : (Page|Pactive)

+(1 − dl).get2#proc#proc : Pparse
+1.get2 : Pparse

Since no system can have an unbounded number of pages there is a global limit on the number
of pages simultaneously being processed, the requirement of a page action before the parsing can
commence. The parsing time is given by the parameter dl as an exponential distribution, and we
also require the processor in order that we can perform the parse. At this point we can spawn a
page that will run its own processing throughtout the rest of the printing process. In the spawn
the personality is returned to the active state to see if there is another page for it.

5

Idle

Pidle
def
= 1.get2 : Pidle

+1.pickle#get2 : Ppickle
+1.get2#context : Pactive

An idle personality still has 2 units of memory so all transitions must have a get2 action. From
the idle state it may get a context switch instruction to become live and will return to the active
state. Equally it may be asked to compress itself, ’pickling’ which halves its memory requirements.
Otherwise nothing may happen, so it retains its two memory units.

Pickling

Ppickle
def
= pt.get2#proc : Ppickled

+(1 − pt).get2#proc : Ppickle
+1.get2 : Ppickle

The pickling process occupies the processor for an amount of time given by an exponential distribu-
tion pt, during this 2 units of memory are required. If the processor is not available it just retains
its claim on the 2 units of memory.

Pickled

Ppickled
def
= 1.get#context : PG1

+1.get : Ppickled
+1.get#killpers : PI

In this state the personality only has 1 unit of memory so all transitions have a get component.
If a context switch occurs then the personality must ’unpickle’ itself. Alternatively its last unit of
memory may be reclaimed and it is ’killed’ back to its initial state.

Unpickling

PG1
def
= 1ω2.get2 : Pinit

+1ω.free#get : PG1
+1.get : PG1

We assume unpickling is fast and does not require significant processing. In this instance we must
have get on all transitions to indicate the possesion of 1 unit of memory, but it needs two. So it
attempts to claim it. If this claim cannot be met then it asks the memory manager to free some
memory for it and tries again. If the memory manager will not respond then it retries.

3.2 Pages

In this model pages come in two varieties:

• Simple: a page occupying one memory unit which uses one font which is already in memory;

• Complex: a page occupying two memory units which uses three fonts of which one will be
new.

6

Page type choice

Page
def
= pcomp.page : CompPg

+(1 − pcomp).page : SimpPg
With probability pcomp it is a complicated page, otherwise a simple page.

Complex get memory

CompPg
def
= 1ω2.get2#page : CompPgI

+1ω.free#page : CompPg
+1.page : CompPg

A complicated page needs 2 units of memory so try to claim them, as per usual if they cannot be
claimed ask the memoy manager to free some memory and retry until we can progress.

Complex initialise fonts

CompPgI
def
= 1ω3.getFont

2#newFont#get2#page : CompPgWF

+1ω2.getFont#newFont
2#get2#page : CompPgWF2

+1ω.newFont
3#get2#page : CompPgWF3

+1.get2#page : CompPgI
This has 2 units of memory and uses one page slot, so on all transitions we must have the action
component get2#page to keep its resources. A complicated page needs 3 fonts, 2 old and 1 new.
Obviously if 3 fonts are not avialable the extra fonts must be created. So the transitions represent
creating 1,2 or 3 fonts depending on the current number of old fonts around in priority order. After
the page has launched the font creation, it must wait for the number of fonts it asked for to be
built.

Waiting for fonts

The following states represent the system waiting for 1,2 or 3 fonts to be built respectively.
CompPgWF

def
= 1.get2#crFont#page : CompPgR

+1.get2#page : CompPgWF

CompPgWF2
def
= 1.get2#crFont2#page : CompPgR

+1.get2#page : CompPgWF2

CompPgWF3
def
= 1.get2#crFont3#page : CompPgR

+1.get2#page : CompPgWF3
As before we must have get2#page as an element of all transitions. We ensure that the font will
continue to inform the page that it is built until the page accepts the action. Consequently we can
wait for all of our fonts to be simultaneously ready before proceeding.

Page running

CompPgR
def
= cr.get2#fontRelease

3#pgDn#page#proc : T
+(1 − cr).get2#proc#page : CompPgR + 1.get2#page : CompPgR

In this instance we need get2#page on all transitions for resource retention. The running time of
the page is given by the exponential defined by cr. When the page has completed it releases all of
its fonts. It then becomes a process that runs forever but produces no actions other than

√
, the

identity for multiplication.

7

Simple page get memory

SimpPg
def
= 1ω2.get1#page : SimpPgI

+1ω1.free#page : SimpPg
+1.page : SimpPg

A simple page needs 1 unit of memory so try to claim it, as per usual if they cannot be claimed
ask the memoy manager to free some memory and retry until we can progress.

Simple page get font

SimpPgI
def
= 1ω2.getFont#get#page : SimpPgR

1ω1.newFont#get#page : SimpPgWF
+1.get#page : SimpPgI

The simple page keeps its memory and page slot with get#page actions on all transitions. It uses
one, preferably old, font. If the font is not avialable it is built and the page must wait for that to
complete.

Simple page waiting font

SimpPgWF
def
= 1.get#crFont#page : SimpPgR

+1.get#page : SimpPgWF
It preserves its resources and waits for a font built return.

Simple page waiting font

SimpPgR
def
= sim.get#fontRelease#pgDn#page#proc : T

+(1 − sim).get#proc#page : SimpPgR
+1.get#page : SimpPgR

The running time is given by the exponential distribution defined by sim. When running it needs
the processor as well as the page slot and memory unit which it requires all the time. When it has
finished running it releases its font.

3.3 Fonts and font manager

The lifecycle of a font passes through the following stages:

• Memory acquisition: the memory in which the font will reside must be obtained;

• Font construction: the processor must be used to fill the memory with the font description;

• Font use: the font is used in the construction of a page;

• Font idle: once used the font is available for further printing until its memory is reclaimed by
the memory manager.

The font manager simply spawns the number of fonts required by the current pages.

8

Font manager

FntMgr
def
= 1.newFont : (FntMgr|Font)

+1.newFont2 : (FntMgr|Font|Font)
+1.newFont3 : (FntMgr|Font|Font|Font)
+1.

√
: FntMgr

Simply spawns the number of fonts requested if no font is requested then do nothing. This is limited
to 3 fonts but could be made wider if necessary.

Font claiming memory

Font
def
= 1ω2.get#mkfnt : FontB

+1ω.free : Font
+1.

√
: Font

Try to claim one unit of memory, if not succesful try to get the memory manager to free some
memory. Retry until it gets the memory. The action mkfnt is to allow us to see how often new
fonts are created.

Font building

FontB
def
= fb.get#proc : FontBt

+(1 − fb).get#proc : FontB
+1.get : FontB

Taking a time given by an exponential distribution with parameter fb. Use the processor and the
font’s memory to build a font. If the processor is not avialable then wait. Note we must issue get
on all transitions to retain our memory.

Font built

FontBt
def
= 1ω1.get#crFont : FontInUse

+1.get : FontBt
Try to inform the customer that the font they requested is available. Again we must issue get on
all transitions to witness the ownership of the resource. Clearly this new font must be being used,
otherwise it would not have been created.

Font in use

FontInUse
def
= 1.get : FontInUse

+1.get#fontRelease : FontUsed
Witness the use of the memory while it is use. Eventually it will be released by its current page.
At this point the font can still reside in memory to save recreation time.

Font idle

FontUsed
def
= 1.get#getFont : FontInUse

+1.freeFont#get : T
+1.get : FontUsed

In this state the font may return to use with a new page, or it may be told to die by the memory
manager to release its memory. If neither of these things happen then it continues to occupy 1 unit
of memory.

9

3.4 Memory Manager.

The memory manager responds to free requests from the various components that require memory
in order to proceed. If a memory request is refused then these components immediately respond by
requesting that memory is made available for them. In this version the memory manager reclaims
memory in the following order:

• Killing off unused fonts;

• Asking personalities to pickle themselves;

• Asking personalities to kill themselves.

Memory manager

MMI
def
= 1.free : MM + 1.

√
: MMI

MM
def
= 1ω5.freeFont#ff : MMI

+1ω4.pickle#fp : MMI
+1ω3.killpers#fk : MMI
+1.

√
: MMI

The memory manager waits for a free request. When it sees it it tries the various potential sources
of memory in order. It there is no memory to be freed it waits for the next request.

3.5 Putting it all together

We form the system in two stages, firstly building the personality system PS, secondly the complete
system SY S.

IM
def
= {c1, c2, pgDn, mkfnt, ff, fk, fp, get, proc, page, freeFont, free, pickle,

killpers, newFont, getFont, fontRelease, crFont}
PS

def
= Θ((PI|Pactive)dIM)

P
def
= {{

√
, proc}#{

√
, page, page2, page3}#{

√
, get, get2, . . . , get10}#

{
√

, c1, c2, pgDn, mkfnt, ff, fk, fp}}
SY S

def
= Θ((PS|FntMgr|MMI)dP)

Whilst we only start with four parallel components it should be remembered that the font manager
and the personality both spawn processes, fonts and pages respectively. If we set a page limit of
three and a memory limit of 10 units then we could have a further further 12 processes in the system
giving us a grand total of 16 parallel elements. With these scale settings building the graph upon
which we can take measurements takes about 2 hours on a P600 with 512Mb of memory. Whilst
this model is based on [3] it is considerably more complex, allowing page variation and more fonts.
However, on comparable computation resource, the model construction time is much shorter. The
abstraction over resource saves a factor of 88. The state costs of the various resources having a
multiplicative effect proc resource being 2, the memory 11 and the page limit 4.

4 Further abstraction

The above approach admits an interesting question. Since we have been able to account for resources
seperately can we perform our overall resource usage calculations in a more compositional manner?

10

In the printer model we could replace the explicit font construction calls with a probability
from run averages, and replace the page lifetimes with the appropriate averages, taking account
of the font wait periods. Equally font lifetimes could be introduced as probabilities. In other
words abstract the activities of the memory and font managers as probabilities and move the
responsibility onto the respective components. In this instance we could factor the system into
Personalities, Pages and Fonts. We could then calculate the stable distributions for each of these
elements seperately and then combine the dervied distributions for memory usage. Obviously this
distribution could well exceed our hard memory limit. However, the amount of distribution lying
above the limit can be calculated and the aditional stalled time that this represents added to the
performance parameters that we are calculating. This approximation approach should be valid so
long as the usage model of the resources does not include hysterysis.

5 Conclusions

By representing the use of resources in a different fashion we have been able to greatly reduce
the amount of intermediate states needed within a graph construction. Furthermore we save the
extra cost imposed by the presence of an explicit process representing the resource. As in our large
example if we have resources in a system of size 1, 3 and 10 then the state saving is 2*4*11 or a
factor of 88 in the size of the graph that has to be constructed.

Our resource representation actually required no changes to be made to the underlying processes
calculus. Simply be exploiting the standard operators in a novel way we have achieved a resource
represenation that is compositional, allows tracking, is easy to vary within a tool and avoids the
need for state duplication within the model.

References

[1] G. Birtwistle, DEMOS — discrete event modelling on Simula. Macmillen, 1979.

[2] G. Birtwistle. The Demos Implementation Guide and Reference Manual. Technical Report,
260 pages, Computer Science Department, University of Calgary, 1983.

[3] A. Christodolou, Formal Solutions to Large Scale Performance Problems, PhD Thesis, Uni-
versity of Leeds, 1999.

[4] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems. ACM Transactions on Programming Lan-
guages and Systems, 15(1), 1993.

[5] G. Birtwistle and C. Tofts, A Denotational Semantics for Process Orientated Simulation Lan-
guages, ACM ToMACS 281 - 305:8(3),1998.

[6] R. Milner, Calculus of Communicating System, LNCS92, 1980.

[7] R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Computer Science 25(3), pp
267-310, 1983.

[8] R. Milner, Communication and Concurrency, Prentice Hall, 1990.

[9] R. de Simone, Higher-level synchronising devices in Meije-SCCS. Transactions in Computer
Science 37, 245-267, 1985.

11

[10] C. Tofts, A Synchronous Calculus of Relative Frequency, CONCUR ’90, Springer Verlag, LNCS
458.

[11] C. Tofts, Processes with Probabilities, Priorities and Time, FACS 6(5): 536-564, 1994.

[12] C. Tofts, Analytic and locally approximate solutions to properties of probabilistic processes,
Proceedings TACAS ’95, LNCS 1019, 1995.

[13] C. Tofts, Symbolic approaches to probability distributions in process algebra, BCS FACS
12:392-415, 2000.

12

