

Applications of Multiple Trust Authorities
in Pairing Based Cryptosystems

Liqun Chen, Keith Harrison, David Soldera, Nigel Smart1

Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2003-17
February 6th , 2003*

E-mail: {liqun_chen, keith_harrison, david_soldera}@hpl.hp.com, nigel@cs.bris.ac.uk

multiple
trusted
authorities,
multiple
identifiers,
identity based
cryptography,
pairings

We investigate a number of issues related to the use of multiple
trust authorities and multiple identities in the type of identifier
based cryptography enabled by the Weil and Tate pairings. An
example of such a system is the Boneh and Franklin encryption
scheme. We present various applications of multiple trust
authorities. In particular we focus on how one can equate a trust
authority with a way to add contextual information to an identity.

* Internal Accession Date Only Approved for External Publication
1 Computer Science Dept., Woodland Road, University of Bristol, Bristol, BS8 1UB, U.K.
 Copyright Hewlett-Packard Company 2003

Applications of Multiple Trust Authorities in
Pairing Based Cryptosystems

L. Chen1, K. Harrison1, D. Soldera1, and N.P. Smart2

1 Hewlett-Packard Laboratories,
Filton Road,
Stoke Gifford,

Bristol, BS34 8QZ,
United Kingdom.

{liqun chen, keith harrison, david soldera}@hpl.hp.com
2 Computer Science Department,

Woodland Road,
University of Bristol,
Bristol, BS8 1UB,
United Kingdom.

nigel@cs.bris.ac.uk

Abstract. We investigate a number of issues related to the use of mul-
tiple trust authorities and multiple identities in the type of identifier
based cryptography enabled by the Weil and Tate pairings. An exam-
ple of such a system is the Boneh and Franklin encryption scheme. We
present various applications of multiple trust authorities. In particular
we focus on how one can equate a trust authority with a way to add
contextual information to an identity.

1 Introduction

In 1984 Shamir [11] introduced the concept of identity based cryptography and
proposed a signature scheme based on the RSA assumption. Over the years a
number of researchers tried to propose secure and efficient identity based en-
cryption algorithms, but with little success. This state of affairs changed in 2001
when two identity based encryption algorithms were proposed, one by Cocks
[6] based on the quadratic residuosity assumption and another by Boneh and
Franklin based on the Weil pairing, although using a variant based on the Tate
pairing is more efficient. A number of identity based signature algorithms based
on the Tate pairing also exist, e.g. [5], [9] and [10].

In this paper we investigate the applications of the Boneh and Franklin
scheme in more detail. In particular we examine how the key structure can
lead to interesting applications. Due to our later applications we prefer to talk
about identifier based cryptography rather than identity based cryptography.
This is because the word identity seems to imply the name of someone (such
as their email address), whilst the schemes actually associate keys with strings.

Each string being able to represent anything, such as legal terms and conditions,
and not just a persons identity.

We shall use the additive property of keys of the pairing based systems to
define a way of expressing groupings in a clear and concise manner. We then
use this to define policies which are then enforced via the means of possession
of certain keys. This results in a kind of “key calculus”.

The “key calculus” we present is different from, but inspired by, the ideas of
Desmedt [7] and Boyd [3] [4] who presented the notion of group oriented cryp-
tography. Usually, one sees group oriented cryptography in the context of group
signatures, we shall be concerned in this paper with applications to encryption.
Much of our discussion will, however, also apply to identifier based signature
schemes as well.

The paper is organised as follows, first we recap on the the Boneh-Franklin
encryption scheme. Then we go through a number of applications which are
enabled due to the additive property of the keys in the scheme. Finally we give
the semantics of the resulting key calculus which will describe precisely what
sets of keys can be singled out in any given application.

2 Notation and Pairing Based Schemes

2.1 The Tate Pairing

LetG1 andG2 denote two groups of prime order q in which the discrete logarithm
problem is believed to be hard and for which there exists a computable bilinear
map

t : G1 × G1 −→ G2.

We shall write G1 with an additive notation and G2 with a multiplicative nota-
tion, since in real life G1 will be the group of points on an elliptic curve and G2
will denote a subgroup of the multiplicative group of a finite field.

Since the mapping is bilinear, we can move exponents/multipliers around at
will. For example if a, b, c ∈ Fq and P,Q ∈ G1 then we have

t(aP, bQ)c = t(aP, cQ)b = t(bP, cQ)a = t(bP, aQ)c = t(cP, aQ)b = t(cP, bQ)a

= t(abP,Q)c = t(abP, cQ) = t(P, abQ)c = t(cP, abQ)
= . . .

= t(abcP,Q) = t(P, abcQ) = t(P,Q)abc

These tricks will be used repeatedly throughout this document.
We define the following cryptographic hash functions

H1 : {0, 1}∗ −→ G1,

H2 : G2 −→ {0, 1}∗.

2.2 Types of Public/Private Key Pairs

We require the following two types of keys:

– A standard public/private key pair is a pair (R, s) where R ∈ G1 and s ∈ Fq

with
R = sP

for some given fixed point P ∈ G1.
– An identifier based key pair is a pair (QID, SID) where QID, SID ∈ G1 and
there is some trust authority (TA) with a standard public/private key pair
given by (RTA, s), such that the key pair of the trust authority and the key
pair of the identifier are linked via

SID = sQID and QID = H1(ID),

where ID is the identifier string.

2.3 Identifier Based Encryption

We recap on the Boneh and Franklin encryption algorithm. Although much of
what we will discuss also applies to other pairing based schemes such as the
short signature scheme of Boneh, Lynn and Shacham [2] or the identity based
signature schemes to be found in [5], [9] and [10].

The scheme of Boneh and Franklin [1], allows the holder of the private part
SID of an identifier based key pair to decrypt a message sent to her under the
public part QID. We present only the simple scheme which is only ID-OWE, for
a ID-CCA scheme one applies the Fujisaki-Okamoto transformation [8].

Let m denote the message to be encrypted

– Encryption :
Compute U = rP where r is a random element of Fq. Then compute

V = m ⊕ H2(t(RTA, rQID))

Output the ciphertext (U, V).
– Decryption :
Decryption is performed by computing

V ⊕ H2(t(U, SID)) = V ⊕ H2(t(rP, sQID))
= V ⊕ H2(t(P,QID)

rs)
= V ⊕ H2(t(sP, rQID))
= V ⊕ H2(t(RTA, rQID))
= m.

3 Applications of the Addition of Keys

The main observation of this section is that we can add trust authorities public
keys or users identifier based public keys together. We in this way obtain corre-
sponding “virtual” secret keys to obtain an exponential number of keys. We shall
go on to show a number of applications of this ability to add keys, a property
which does not hold in standard cryptographic systems. We consider only the
simplest case, other cases are possible but lead to more complicated protocols.
In a later section we shall extend the notion and explain precisely which virtual
keys one can obtain.

We first present the case where there are n trust authorities each with their
own standard public/private key pair

RTAi
= siP.

We assume that all the public keys RTAi
are trusted by all parties in the system.

In addition, suppose we have a fixed identifier ID and we obtain the n private
keys corresponding to this identifier from the relevant trust authorities, i.e. we
have

SIDi
= siQID

where
QID = H1(ID).

Given an n bit string b = (b1, . . . , bn) we can then form the private key

SID,b =
n∑

i=1

biSIDi

corresponding to the “virtual” trust authority with public key

RTA,b =
n∑

i=1

biRTAi

and private key

sb =
n∑

i=1

bisi.

In this way we can produce 2n different public/private key pairs given only n
trust authorities.

As a second case assume we have one fixed trust authority with its standard
public/private key pair

RTA = sP.

Now assume we have n identifier’s IDi, with private keys given by

SIDi
= sQIDi

where
QIDi

= H1(IDi).

Given an n bit string b = (b1, . . . , bn) we can then form the private key

SID,b =
n∑

i=1

biSIDi

corresponding to the “virtual” identifier

QID,b =
n∑

i=1

biQIDi
.

This two situations open up a large number of possible application areas
which we shall now explore.

3.1 Escrowing of Keys

The first, obvious, application of key addition is that one does not need to
have a single point of failure with a single trust authority. With identifier based
cryptography the trust authority is always able to either decrypt messages (with
an encryption scheme) or to sign messages (with a signature scheme). By using
the key addition property one can distribute this key amongst a number of trust
authorities, such that no single trust authority ever obtains more than their
own portion. Indeed users, both encryptors and decryptors, can perform this
operation themselves on the fly by selecting which subsets of trust authorities
they will use in any given message. This property of identifier based systems in
that the encryptor can choose, at the time of encryption, which trust authorities
it is willing to trust we feel gives a significant advantage to using multiple trust
authorities.

3.2 Contexts for Identities

A major problem when using an identity as a means to deduce a public key is
that “names” for identities are not unique. There may be many “Ron Rivest”s
in the world, so which one do I mean when I send an encrypted message to
the person with identity “Ron Rivest”? We seem to have the same global name
hierarchy problems that traditional PKI technologies come with.

Using multiple trust authorities we can add some context to each identity. For
example suppose the International Association of Cryptologic Research (IACR)
was a trust authority with public/private key pair

RIACR = rP.

They could issue all cryptographers with the name “Ron Rivest” the same pub-
lic/private key pair

SRon Rivest,IACR = rQRon Rivest,

where
QRon Rivest = H1(Ron Rivest).

Now, suppose there was also a trust authority for the US government with
public/private key pair given by

RUS = sP.

This trust authority would issue all US citizens with a public/private key pair
corresponding to their name, i.e. Ron Rivest would be given the key pair

SRon Rivest,US = sQRon Rivest.

In addition suppose there is a trust authority for the Massachusetts Institute of
Technology with public/private key pair

RMIT = tP.

They would issue all employees with the public/private key corresponding to
their name as

SRon Rivest,MIT = tQRon Rivest.

Suppose some third party wished to send an encrypted message to Ron Rivest.
They may know that Ron Rivest is an US national and a cryptographer who
works at MIT. They therefore create the “virtual” trust authority public key
corresponding to what context they wish to put the identity of Ron Rivest in,
i.e. they can create

Rvirtual = RIACR +RUS +RMIT.

Note, the corresponding secret key for the virtual trust authority is

r + s+ t,

but no party knows this key (and no two colluding parties can determine this
key). The third party now encrypts the data for Ron Rivest using the virtual
trust authorities public key and the public key

QRon Rivest.

The encrypted data is then sent, along with some information to encode which
contexts the identity is being considered in.

Ron Rivest can then decrypt the information using the private key

SRon Rivest,IACR + SRon Rivest,US + SRon Rivest,MIT.

Clearly this use of contexts to narrow down the possibilities for sending data
to the wrong Ron Rivest also comes with the added benefit that no single trust
authority can decrypt the encrypted message.

A similar technique can also be applied to any form of group membership, for
example in access control systems where the rights to do some task may depend
on whether the principal is a member of a number of different groups.

3.3 Legal Hoop Jumping

One can use a similar idea to create legal hoops through which people must jump
before a certain action can be performed. We give an example, which may be
peculiar to the United Kingdom, although others can be easily created.

In the United Kingdom every car needs to display a tax disk. This is pur-
chased each year for a nominal fee, and essentially proves that at a given point
in the year the owner of the car had car insurance and a certificate of road
worthiness for the car. We describe a possible online car tax disk dispenser.

We note the three obvious trust authorities

– The ownership of the car is recorded by the Driver and Vehicle Licensing
Agency (DVLA).

– The insurance certificate is produced by an insurance company, say AXA.
– The certificate of road worthiness is produced by an accredited garage, say
Joes Garage.

The three trust authority public keys we denote by

RDVLA, RAXA, RJoes.

Suppose the owner of the car with registration number X 675 AHO wished to
obtain a new tax disk from the government. They could then log into some web
site and claim that they owned the car, that they had insured it through AXA
and that Joes Garage had issued them with a certificate of road worthiness. The
government could then email the user an encrypted version of the tax disk, upon
payment of some fee, where the encryption is under the virtual trust authority

RDVLA +RAXA +RJoes,

and the identifier is

QX 675 AHO.

The owner would need to obtain from each trust authority the corresponding
private key (clearly date/year information needs to be added but we ignore that
issue here for simplicity),

SX 675 AHO,DVLA, SX 675 AHO,AXA, SX 675 AHO,Joes.

The owner now adds these private keys together to form another private key,

SX 675 AHO,virtual,

with which they can decrypt the electronic form of the tax disk and print it on
their printer.

3.4 Concurrency Issues

One can imagine a situation where there is a trust authority which reveals the
secret key corresponding to the identifier given by the time and date, at given
time intervals. The secret key is broadcast to all, anyone who then uses the
secret key in combination with others is therefore proving that they did so after
a certain time. One should think of this trust authority acting like a Greenwich
Pips signal. In this way issues of concurrency can be brought into applications.

One application would be that of press releases. Suppose a press release
related to a companies accounts needs to be released simultaneously at 12.00 on
June 1st to a group of financial journalists. To do this one takes the two public
keys

Qjournalists = H1(journalists),

Q1200:01:06 = H1(1200:01:06),

and forms the sum

Q = Qjournalists +Q1200:01:06.

If the trust authority for both identifies is the same RTA, then using RTA and
Q one can encrypt the press release and distribute it before the event, knowing
that only after 12.00 on June 1st a given group of people (namely journalists)
will be able to read the press release. Later we shall see a more general solution
to this problem, which does not require the trust authorities to be the same.

3.5 Advantages over Traditional Solutions

Whilst in standard discrete logarithm based schemes one can still add keys to-
gether to form a “virtual” private key, the difference with identifier based schemes
is that the public keys need to exist before the addition takes place. This is be-
cause the only way traditional keys are trusted is via a digital certificate. Hence,
the trust authority (or CA for traditional schemes) needs to certify the public
key before it is added to another one.

With identifier based schemes one knows the public key by simply knowing
the identifier. Hence, one can add the public keys or TA keys together and
encrypt the message before the entity singled out by the identifier has gone to
the trust authority to obtain their private key.

4 A “Key Calculus”

In this section we formally define our key calculus which formed the basis of the
examples above. The following formalism is richer than the examples above. We
assume a set of “atomic” identifies I, these are identifiers which correspond to
true identifier based public keys,

QIDi
= H1(IDi),

where IDi ∈ I.
We also assume a set of “atomic” trust authorities T . These are trust au-

thorities which possess public/private key pairs,

RTAi
= siP,

where TAi ∈ T , for which the value of si is explicitly known by at least one party
(i.e. the trust authority). We shall assume all parties in the system have trusted
copies of the TA’s public keys RTAi

.
To each pair (ID, TA) of atomic identifier/trust authority keys, called an

atomic pair, there is a corresponding secret key denoted by

SID,TA = sTAQID,

although it may be the case that no one in the system, bar the trust authority,
knows the value of SID,TA.

The goal is to encrypt a message m to a set of people who know a given
subset of keys. We would like to do this in as short a message as possible and
be able to describe completely exactly which set of keys are needed to decrypt
the message.

4.1 Naive Conjunction of Sets

We let S denote a set of atomic pairs (IDi, TAj). We first wish to encrypt a
message so that it can be decrypted only by people who possess, for every pair in
S, the equivalent atomic secret key. This can be trivially done using an onion form
of encryption where each encryption is applied in turn to obtain the ciphertext.
Not only is this trivial technique wasteful of computing resources it also implies
that the decryptor needs to apply the necessary decryptions in the same order
that the encryptor applied the encryptions.

We will try and be more efficient, but this will come at the price of not being
able to deal with all possible sets S. First we define an operation of sets of atomic
pairs S1, S2

S1 ⊗ S2 = {(IDi, TAj) : (IDi, TA
′) ∈ S1 ∪ S2, (ID′, TAj) ∈ S1 ∪ S2} .

A set S will be called admissible if

– S = {(ID, TA)} consists of a single atomic pair.
– or S is built up from two admissible sets S1 and S2 using the operation

S = S1 ⊗ S2.

We let ID(S) denote the set of identifiers and TA(S) denote the set of trust
authorities contained in an admissible set S. The “virtual” trust authority cor-
responding to S is given by

RS =
∑

TA∈TA(S)

RTA,

and the “virtual” identifier is given by

QS =
∑

ID∈ID(S)

QID.

Encrypting using these two public keys, namely RS and QS, means that only
recipients who possess every private key corresponding to every pair in S will
be able to decrypt the message. Equivalently, the decryptor needs to know

SS =
∑

ID∈ID(S)

 ∑
TA∈TA(S)

SID,TA

 .

Hence, we call this secret key the virtual secret key corresponding to the admis-
sible set S.

Example To see the use of the special conjunction operation ⊗ consider the
case of two trust authorities and two identifiers. We form the admissible atomic
sets

S1 = {(ID1, TA1)}, S2 = {(ID2, TA2)},
where RTAj

= sjP . Then

S = S1 ⊗ S2 = {(ID1, TA1), (ID2, TA1), (ID1, TA2), (ID2, TA2)}.
Suppose a cryptogram (U, V) is sent, in the Boneh-Franklin scheme, to the vir-
tual trust authority and identifier corresponding to the admissible set S. This
cryptogram corresponds to the public key of the trust authority

R = RTA1
+RTA2

,

and the “identifier” given by

Q = QID1
+QID2

.

To decrypt the cryptogram we need to compute

t(R, rQ) =
2∏

i,j=1

t(RTAj
, rQIDi

) =
2∏

i,j=1

t(sjP, rQIDi
),

=
2∏

i,j=1

t(rP, sjQIDi
) =

2∏
i,j=1

t(U, SIDi,TAj
),

= t(U,
2∑

i,j=1

SIDi,TAj
).

Hence, we need to know the four secret keys SIDi,TAj
for 1 ≤ i, j ≤ 2, or in other

words we need to know the “virtual” secret key

SS =
2∑

i,j=1

SIDi,TAj
.

We have seen in Section 3 examples where either IDi = IDi′ for all i, i′ or
TAj = IDj′ for all j, j′. We leave it to the reader to check all our previous examples
correspond to admissible sets.

4.2 General Conjunction of Sets

We have seen that encryption to the virtual trust authorities and virtual iden-
tifier represented by an admissible set S is equivalent to encryption to an entity
which possesses the virtual secret key SS. From now on we will drop the usage
of the word “virtual” when dealing with the trust authority and identifier based
keys represented by an admissible set S.

The above form of conjunction of keys is too restrictive in that it does not
allow us to encrypt to someone who holds the secret key corresponding to the
pairs (ID1, TA1) and (ID2, TA2), without knowing also knowing the secret keys
corresponding to (ID2, TA1) and (ID2, TA1).

To enable this we change the encryption algorithm slightly. Suppose we have
admissible sets Si, corresponding to the pairs (IDi, TAi). To encrypt to the con-
junction S1 ∨ S2 ∨ . . . ∨ Sn we transmit U = rP and

V = m ⊕ H2

(
n∏

i=1

t(RTAi
, rQIDi

)

)
.

Decryption is performed by computing

m = V ⊕ H2

(
t(U,

n∑
i=1

SIDi,TAi
)

)
.

So for decryption we still add private keys together, but for encryption we need
to multiply ephemeral keys together, after they have been passed through the
pairing.

We can now return to our press release example. Using an authority for time,
which simply issues the private key according to the current time at given time
intervals, and another (different) authority to issue private keys to all journalists,
we can encrypt a press release so that the intended recipients can only read it
at some point in the future. Notice, how this is simple using identifier based
systems since the encryptor does not need to know in advance what the time
authority will do. The encryptor need only know that the authority will issue
the private key corresponding to a given identifier.

With a traditional public key system one could obtain the same effect but
only by knowing the public key corresponding to the private key at the encryp-
tion stage, but this would involve the encryptor asking the time authority for
precisely which public key should be used.

4.3 Naive Disjunction of Sets

The use of variable identifiers has little use unless one is able to define a disjunc-
tion operation. For example one may wish to send an encrypted email to either

the president or CEO of the ACME company. Hence, using the trust authority
ACME one would want to encrypt to either

(PRESIDENT, ACME) or (CEO, ACME).

We now show how to modify the Boneh-Franklin encryption scheme so that we
can encrypt to a disjunction of admissible sets, in a way which is akin to the
naive conjunction above, in the next subsection we shall deal with a general form
of disjunction which only works for two admissible sets. The following idea of a
naive disjunction will work for an arbitrary collection of trust authorities and/or
identifiers but we present, for ease of exposition, the case where we have two
trust authorities and two identifiers.

Suppose the two trust authorities have public keys

RT1 = s1P and RT2 = s2P.

Let the two identifiers be
QA and QB .

Hence, there are a total of four secret keys

SA,1 = s1QA, SA,2 = s2QA,

SB,1 = s1QB , SB,2 = s2QB .

We would like to encrypt a message so that a party who has any one of these
secret keys is able to decrypt the message. We make the assumption that there
are four fixed integers

x1, x2, y1, y2 ∈ F∗
q

known to all parties, such that x1 �= x2 and y1 �= y2. We then form the virtual
public keys given by

RV = RT1 + y1RT2 and QV = QA + x1QB .

We also form the “auxiliary” keys,

TR = RT1 + y2RT2 and TQ = QA + x2QB .

The cryptogram is then formed by computing, for some random r ∈ F∗
q ,

U1 = rP, U2 = rTQ, U3 = rTR,

V = m ⊕ H2(t(RV , rQV)).

To decrypt the message (U1, U2, U3, V) we will make use of the identities,

RV = αRT1 + βTR or RV = γRT2 + TR,
QV = δQA + εTQ or QV = ζQB + TQ,

where
α = (y2 − y1)/y2, β = y1/y2, γ = y1 − y2,
δ = (x2 − x1)/x2, ε = x1/x2, ζ = x1 − x2.

The precise identities one uses will depend on which of the secret keys the de-
cryptor has access to.

Decryptor knows SA,1 We first show how to decrypt assuming the recipient
has the private key SA,1. The decryptor needs to compute t(RV , rQV), which
with knowledge of SA,1 they can do via:

t(RV , rQV) = t (αRT1 + βTR, r(δQA + εTQ)) ,
= t(αRT1 , rδQA) · t(αRT1 + βTR, rεTQ) · t(βTR, rδQA),
= t(rs1αP, δQA) · t(αRT1 + βTR, εU2) · t(rβTR, δQA),
= t(rαP, s1δQA) · t(αRT1 + βTR, εU2) · t(βU3, δQA),
= t(αU1, δSA,1) · t(αRT1 + βTR, εU2) · t(βU3, δQA).

Decryptor knows SA,2 We first show how to decrypt assuming the recipient
has the private key SA,2. The decryptor needs to compute t(RV , rQV), which
with knowledge of SA,2 they can do via:

t(RV , rQV) = t (γRT2 + TR, r(δQA + εTQ)) ,
= t (γRT2 , r(δQA + εTQ)) · t(rTR, δQA + εTQ),
= t(γrs2P, δQA) · t(γRT2 , rεTQ) · t(U3, δQA + εTQ),
= t(γU1, δSA,2) · t(γRT2 , εU2) · t(U3, δQA + εTQ).

The other two cases we leave for the reader, since they are computed in a similar
way.

4.4 General Disjunction of Sets

Just as with our earlier naive conjunction, which led to the construction of the
admissible sets, the above naive disjunction has a number of problems. The
main being that when encrypting to the disjunction of the two pairs (ID1, TA1)
and (ID2, TA2), the above construction will allow anyone with the secret key
corresponding to the pair (ID1, TA2) to decrypt. This may not be the effect we
are after.

In this subsection we show how a proper disjunction can be created between
two identifier/authority pairs, such that only the desired recipients can decrypt
the resulting ciphertext. Once again we are looking for a more efficient solution
than simply encrypting the message twice to different possible recipients. Our
solution however does not extend to forming a disjunction of more than two
identifier/authority pair, unlike the naive form of disjunction above.

Suppose I have the two pairs (ID1, TA1) and (ID2, TA2). To encrypt to either
of these pairs one forms the virtual identifier/trust authority keys given by

RV = QB + x1RT1 and QV = QA + y1RT2 ,

and the auxiliary keys given by

TR = QB + x2RT1 and TQ = QA + y2RT2 ,

again assuming some globally fixed integers x1, x2, y1, y2 ∈ F∗
q .

The cryptogram is then formed by computing, for some random r ∈ F∗
q ,

U1 = rP, U2 = rTQ, U3 = rTR,

V = m ⊕ H2(t(RV , rQV)).

To decrypt the message (U1, U2, U3, V) we will make use of the identities,

RV = αRT1 + TR or RV = βQB + γTR,
QV = δQA + εTQ or QV = ζRT2 + TQ,

where
α = x1 − x2, β = (x2 − x1)/x2, γ = x1/x2,
δ = (y2 − y1)/y2, ε = y1/y2, ζ = y1 − y2.

The precise identities one uses will depend on which of the secret keys the de-
cryptor has access to.

If the decryptor has knowledge of SA,1 they use the identities

RV = αRT1 + TR and QV = δQA + εTQ

to decrypt using

t(RV , rQV) = t(αRT1 + TR, rδQA + rεTQ),
= t(αrP, δSA,1) · t(αRT1 , rεTQ) · t(rTR, QV),
= t(αU1, δSA,1) · t(αRT1 , εU2) · t(U3, QV).

If the decryptor has knowledge of SB,2 they use the identities

RV = βQB + γTR and QV = ζRT2 + TQ

to decrypt using

t(RV , rQV) = t(βQB + γTR, rζRT2 + rTQ),
= t(βSB,2, ζrP) · t(βQB , rTQ) · t(γrTR, QV)
= t(βSB,2, ζU1) · t(βQB , U2) · t(γU3, QV).

Finally notice if the decryptor uses the other two combinations of the identities
then they recover no information since, for example, using

RV = βQB + γTR and QV = δQA + εTQ

we obtain

t(RV , rQV) = t(βQB + γTR, δrQA + εrTQ),
= t(βQB , δrQA) · t(γU3, δQA) · t(RV , εU2)

Hence, to decrypt, one would need knowledge of either rQA or rQB neither of
which is available to the decryptor.

5 Conclusion

We have seen how multiple trust authorities combined with conjunctions of keys
can be used in a variety of applications. We have explained how various conjunc-
tions of keys (or essentially access rights) can be created in an efficient manner.
The use of identifier based systems with multiple trust authorities and multi-
ple identifiers we believe opens up simplified ways of specifying access rights, a
number of possible real life examples we have given in the text.

We have shown how to build up so called ‘admissible sets’ of identifier/trust
authority pairs, via a form of specialised conjunction. These admissible sets
can then be used to form general conjunctions, and or a special form of naive
disjunction. The general form of disjunction is only possible for two such sets.
A general form of disjunction for arbitrary numbers of admissible sets we leave
as an open research problem.

References

1. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing.
Advanced in Cryptology - CRYPTO 2001, Springer-Verlag LNCS 2139, 213–229,
2001.

2. D. Boneh, B. Lynn and H. Shacham. Short signatures from the Weil pairing.
Advances in Cryptology - ASIACRYPT 2001, Springer-Verlag LNCS 2248, 514–
532, 2001.

3. C. Boyd. Some applications of multiple key ciphers. Advances in Cryptology -
EUROCRYPT ’88, Springer-Verlag LNCS 330, 455–467, 1988.

4. C. Boyd. A new multiple key cipher and an improved voting scheme. Advances in
Cryptology - EUROCRYPT ’89, Springer-Verlag LNCS 434, 617–625, 1989.

5. J. C. Cha and J. H. Cheon. An Identity-Based Signature from Gap Diffie-Hellman
Groups. Preprint 2002.

6. C. Cocks. An identity based encryption scheme based on quadratic residues. Cryp-
tography and Coding, Springer-Verlag LNCS 2260, 360–363, 2001.

7. Y. Desmedt. Society and group oriented cryptography: A new concept. Advances
in Cryptology - CRYPTO ’87, Springer-Verlag LNCS 293, 120–127, 1987.

8. E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric en-
cryption schemes. Advances in Cryptology - CRYPTO ’99, Springer-Verlag LNCS
1666, 537–554, 1999.

9. F. Hess. Efficient identity based signature schemes based on pairings. To appear
Selected Areas in Cryptography – 2002.

10. K. Paterson. ID-based Signatures from Pairings on Elliptic Curves. Preprint 2002.
11. A. Shamir. Identity based cryptosystems and signature schemes. Advanced in

Cryptology - CRYPTO ’84, Springer-Verlag LNCS 196, 47–53, 1985.

