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1 Introduction

A color image f(z,y) is typically represented by three bands, each of which is a matrix of
values denoting the responses of an array of photo-sensors to a captured scene. Thus, each
image pixel is composed of three numbers often referred to as red (R), green (G), and blue
(B) according to the spectral sensitivity of their associated sensors. Most CCD cameras,
however, provide only a single value for each pixel due to their inability to position three
photo-sensors at the same location. In these cases, a mosaic image m(z,y) is acquired,
providing a single value per pixel. The sampled color values are arranged in the mosaic
image according to the layout of the color filter array (CFA) in the camera’s CCD. The
Bayer color filter array, given in Figure 1, is a common photo-sensor arrangement in CCD
arrays.

The demosaicing problem deals with the reconstruction of a full color image f(z,y), from
its partial sampling m(x,y). Obviously, the sampling operation is non-invertible, hence, the
reconstruction problem is under-determined. In order to obtain a unique solution some prior
information about the original color image f(z,y) must be introduced.

Several approaches have been introduced to solve the demosaicing problem (see e.g. [23,
11, 18, 37, 36, 9, 8]). These methods assume, either explicitly or implicitly, prior knowledge
about the probability of the input images Pr(f). Having such a prior, the Mazimum a
posteriori (MAP) estimator can be used which chooses from among all possible solutions the
one that maximizes the a posteriori probability Ppja(flm):

f = arg max Ppa(£lm)
Using the Bayes conditional rule, this maximization can be shown to be equivalent to:

f=arg max Py (m|f) Pr(f)
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Figure 1: A typical arrangement of photo-sensors in a CCD array. This arrangement provides
three color bands whose pixel values are partially sampled. Note that in this example, the
number of green samples is twice that of the red and the blue. This corresponds to the spatial
sensitivity of the human visual system at different spectral wavelengths.

The first term Py r depends solely on the noise that was introduced into the mosaic image
during sampling. Since we assume that the noise characteristics are known, the first term
can be easily derived. The second term, Pr(f), represents the a priori probability of having
an image f as an input. Approximating the prior Pr(f) is a complicated task, however, it is
critical and plays an important role in any reconstruction approach.

Over the last decade or so a lot of effort has been invested in an attempt to study the
underlying statistics of natural images [34, 40, 30, 10, 21]. Most of this effort, however,
dealt with gray-scale images, where a quite number of studies attempt to model the spatial
dependencies existing between pixel values in natural gray-scale images. The suggested
models have been used successfully in a large variety of problems, such as: image denoising,
image segmentation, textures analysis and synthesis, image reconstructions, compression,
perceptual grouping, and more. An excellent survey of the various models can be found in
[40]. Although impressive results have been achieved by applying prior models for gray-scale
images, only a few studies deal with prior models for color images. Some of these studies were
developed in the context of image demosaicing, where attempts were made to characterize
spatial as well as spectral (color) dependencies.

Demosaicing approaches that use linear shift-invariant interpolation, such as, nearest neigh-
bor, bilinear, or bi-cubic [27, 28, 26], implicitly assume that the original image is spatially
smooth. This prior stems from the inverse power law of natural images [32, 31, 14|, where
low frequencies are assumed to be more probable than higher frequencies. Unfortunately,
this simplified model is insufficient. In addition to the fact that such a model fails to capture
the spectral dependencies in color images, the smoothness assumption is far from correct



even in achromatic images especially near edges. Thus, resulting images are often smoothed
out and comprise color artifacts especially adjacent to edges.

In order to preserve sharp edges, various demosaicing techniques use adaptive filtering (e.g.
[11, 23, 18]), where weighted averaging schemes are applied. The weight values are typically
edge-dependent and thus calculated adaptively. These techniques implicitly assume that
natural images are composed of piecewise constant or piecewise linear functions [12, 25, 5].
Such techniques, although providing good reconstruction results, still do not exploit the
spectral dependencies existing between color bands.

A few studies attempt to exploit spectral correlations as well as spatial correlations in order
to improve reconstruction results. In a study presented by Jayanta [22], spectral dependen-
cies are exploited through the assumption that the cross-ratio of different color bands are
locally smooth. A Markov Random Field is then used to implement this characteristic in
a computational process. Kimmel [23] uses the assumption that common edges are aligned
along color bands. This information was derived from the assumption that a natural image
forms a minimal (smooth) 2D surface in a 5-dimensional space (i.e. R,G,B,x,y). In order
to enhance reconstruction results, Kimmel suggests an iterative scheme was proposed which
applies inverse diffusion along gradient directions.

Although, the latter algorithms are shown to outperform other demosaicing techniques [22],
the image prior assumptions are ad-hoc and are not based on statistical inference of the
image probability distribution. In the demosaicing literature, Brainard [9, 8] and Taubman
[36, 37] presented solutions that were derived explicitly from statistical inference on color
images. Both methods use the spatial-spectral correlations of natural images to define a
prior over the image population. In both of these approaches the image prior is assumed
to be a multivariate Gaussian distribution. This model of image prior was used to derive a
linear estimator resulting in a non-adaptive filtering scheme.

Although these attempts to derive optimal solutions from statistical inferences are important,
the underlying statistical models, as will be shown below, are not adequate and fail to capture
the entire statistical dependencies that exist between color bands.

This paper suggests a demosaicing technique that is derived directly from statistical infer-
ences on color images. Thus, the relevance of this paper is not limited to the demosaicing
problem per-se, and can be used for color image de-noising, compression, segmentation,
and more. The suggested technique presents a new Bayesian approach that better exploits
the spectral dependencies in color images. It takes advantage of the fact that spatial dis-
continuities in different color bands are correlated and that this characteristic is efficiently
exposed using the Canonical Correlation Analysis (CCA). The CCA scheme aims at finding
the optimal representation of each color band such that color plane correlation is maximized
[3, 19]. An introductory section about CCA, its properties, and derivations is given in the
next section.



It is an interesting fact that the suggested approach which was derived solely from the statis-
tical properties of natural images can also be derived independently from the characteristics
of the human visual system. This supports the idea that the human visual system has
adapted itself to the statistical properties of natural color images, and that the proposed
approach is appropriate and based on a reliable statistical model.

2 The Canonical Correlation Analysis

2.1 General Definitions

The Canonical Correlation Analysis (CCA) is a technique for finding linear dependencies
between two multidimensional variables. This technique which was developed by H. Hotelling
in 1936 [19] aims at finding two sets of basis vectors, one for each variable, such that the
correlations between the two variables in the new bases are mutually maximized. I.e., the
cross correlation matrix of the two variables in the new bases is diagonal, and at the same
time, the diagonal values are maximized.

In order to demonstrate the CCA operation assume two 2-dimensional variables x and y,
whose scatter diagrams are given in Figure 2 (diagrams A and B). The two variables are
linearly dependent through a linear relationship xy — o2 = 2y; + y», and thus, there are two
projection directions w, = (1, —1)" and w, = (2,1)” in which the values w] x and w]y are
highly correlated. These directions can be found using the CCA procedure. Diagram C in
Figure 2 shows a joint scatter diagram of the two variables after they have been projected
onto the directions found by the CCA procedure.

diagram A diagram B diagram C

Figure 2: Joint distributions of two 2-dimensional variables: Diagram A: a scatter diagram of x.
Diagram B: a scatter diagram of y. Diagram C: a scatter diagram of x v.s. y after projection onto
the canonical correlation directions. Diagram D: a scatter diagram of x v.s. y after projection onto
the direction obtained by the 1st principal component.

2.2 Calculating the Canonical Correlations

This section provides mathematical definitions and formulations for the Canonical Correla-
tion scheme. This part relies heavily on [7, 6] and the interested reader is referred to these



manuscripts for further discussion.

Consider two multidimensional random variables x and y with zero means. The augmented
covariance matrix C' is defined as:

=[G &)= )

where E{-} denotes expectation value.

Assume we are looking for two projection vectors w, and w, such that the correlation
between & = w.x and § = W,y is maximized, i.e.:

Wy
( ) = arg max p(w,, w,)

Wy W, Wy
where
) = E{zy} _ E{ngyTWy} _
v E{2?} E{y?} \/E{foxTWz}E{WgnyWy}
E{W:{O:vywy}

\/E{Wgcmwx}E{WyTnywy}

It can be shown [3, 7] that the solutions for w, and W, satisfy the eigenvalue equations:

Cra CoyCo 1 CpaWy = p*W, (1)

-1 -1 ~ . 2 A
ny Cymcxa: Cwywy = p Wy

Alternatively, defining matrices A and B:

A—[Cyz O]andB—[O ny]

the above two equations can be formulated as a single generalized eigenvalue problem:

AW = pBw  where w = [w,,w)]"
The set of eigenvectors satisfying the above equations are referred to as the canonical cor-
relation basis vectors where the corresponding eigenvalues p? are the squared canonical cor-
relations. The eigenvectors w, and w, corresponding to the greatest eigenvalue pi are the
directions of maximal correlation value p;. The subsequent 2 eigenvectors indicate the next
maximal correlation directions, which are de-correlated with the previous directions, and



so on. In addition to maximizing mutual correlations, the canonical correlation basis de-
correlates off-diagonal terms, i.e. C,, and C,, in the new basis are diagonal. It can be
shown [7] that in the case where the distributions of x and y are Gaussians, the CCA also
maximizes the mutual information between x and y.

There are several fundamental differences between CCA and the Principal Component Anal-
ysis (PCA). First, the CCA treats each variable as a separate entity while PCA works in
a single augmented space composed of the two variable spaces together. Additionally, the
CCA provides a basis which is independent of any affine transformation applied to each
variable individually. Thus it takes into account only the between variable correlation. On
the other hand, PCA provides a basis which depends also on the within variable correlations,
and thus, might fail to provide a basis where between variable correlations are exposed. This
behavior is illustrated in Figure 3. In this example, a 1D variable y is highly correlated with
a 2D variable x through a linear relationship: y = 1 — 29 + n, where n is a noise term.
Due to this correlation, all data points in the augmented space tend to be located on the
plane x5 +y — 1 = 0. As demonstrated in the figure, the within correlations of x influence
the solution of the PCA, and the 1st principal component (indicated by an arrow) does not
provide useful information about the cross-variable correlation. On the other hand, the CCA
provides the direction where the correlation is optimally exposed.

For the completeness of the comparison between PCA and CCA, Diagram D in Figure 2
shows the projected values of x and y (of diagrams A and B) onto the directions obtained
by the 1% principal component. It can be seen that these directions do not provide useful
information about the correlation of the two variables.

3 Image Prior and Color Representation

Modelling the probability distribution of gray-scale images is a challenging problem. Since
typical images are composed of thousands of pixels, the probability function Pg(f) is defined
over a very high dimensional space. Therefore, modelling the exact function is very demand-
ing and practically impossible. Fortunately, a natural image can be viewed as a realization of
a homogeneous Markov Random Field (MRF), in which the p.d.f. of a pixel value is directly
determined by its local spatial neighborhood [15, 2, 24], and this characterization is the same
over the entire image. Thus, although all pixels are mutually dependent, these dependen-
cies are defined through successive local interactions, allowing the global p.d.f. Pp(f) to be
decomposed into a product of factors. Modelling the global p.d.f. is then reduced to the
characterization of local interactions between spatial neighboring pixels. In color images the
local neighborhood is defined over the spatial as well as over the spectral domains. Hence,
a pixel neighborhood is a 3D cube of data, composed of two spatial dimensions and one
spectral dimension.

Although modelling the statistical characteristics of local spatial neighborhoods is much



Figure 3: Comparison between PCA and CCA. It can be seen that the CCA provides useful
information about the linear correlation between x and y, while the PCA fails to expose this
information.

less demanding than modelling the entire image, it is still a challenging task even for small
neighborhoods such as 3 x 3 x 3. For this reason, most of the MRF models for images use the
1st order Gauss-Markov model in which statistical dependencies are defined only between the
closest neighboring pixels. One approach to handling larger neighborhoods is to approximate
the neighborhood p.d.f. using marginal statistics. This is achieved by modelling the prior
only over a subspace of the original neighborhood space. This subspace is defined by a set
of directions onto which each image neighborhood is projected. If the dimensionality of the
subspace is manageable, statistical modelling becomes practical. Clearly, marginal statistics
does not necessarily provide a complete information about the global p.d.f. Therefore, it is of
great importance to choose an “informative” subspace such that important information will
not be lost. Using the PCA approach, the subspace with the maximal variance is chosen.
This, however, does not guarantee that valuable information with respect to the specific task
at hand is not lost by the projection. In our specific problem, where we are interested in
inferencing on one color band given other color bands, it is preferable to choose projection
directions in which the correlation between color bands is maximized. In order to achieve
this the CCA approach is used.

Define a color image as a three dimensional vector field f(x,y) = (R(z,v), G(x,y), B(z,y)T.
Throughout this paper we use the log of the linear s-RGB color values!. As an example

1The Gamma corrected values provided by digital-cameras can be used as well, as they are approximately similar to the log



Figure 4: A typical color image of a natural scene.

of a typical color image consider the image given in 4. The mutual dependencies between
color values in this image can be analyzed by studying their joint histograms. Figure 5
shows three joint histograms of Red v.s. Green values, Red v.s. Blue, and Green v.s.
Blue, as calculated for this image. Each of these histograms shows the joint distribution of
two spectral components, and thus characterizes only the statistical dependencies along the
spectral domain (neighborhood size of 1 x 1). Figure 6 shows the full 3D scatter diagram of
these RGB values. Each point in this diagram represents an RGB pixel value in the image of
Figure 4. It can be seen from these histograms that the color values are correlated. Note also
the line structures that appear in the scatter diagram. Table 1 shows the correlation found
between the Red and the Green bands. The mutual correlations between other bands were
found to be similar, and therefore were omitted from the table. The averaged correlation
between the Red and the Green bands was found to be 0.91 (See Table 1) over a set of 20
768x1024 natural images.

In order to better capture the statistical dependencies between color bands we must go
beyond the spectral domain and characterize the joint spatial-spectral domain. For this

values
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Figure 5: Joint histograms of the color values in the image of Figure 4. Left to right: Red v.s.
Green values, Red v.s. Blue value, and Green v.s. Blue values. The presented gray-scales are
proportional to the log of the histogram values.

end we calculated the CCA directions over which the correlations between color bands are
maximized. The CCA directions for the 2 x 1 and 1 x 2 neighborhood cases are given in
Figure 7. Again, only Red and Green components are presented as the other color couples
produce similar results.

It can be seen that the most correlated directions as given by the first CCA directions are the
x and y spatial derivatives. The correlation values of the first CCA projections for these cases
are given in Table 1, and are shown to be much higher than the pure spectral case. Figure
8 shows the joint histograms of the color values after they have been projected onto the
x-derivative direction. The left histogram shows R, v.s. (G, denoting the spatial x-derivative
of the red values and the green values, respectively. Similarly, the other two histograms
show R, v.s. B, and G, v.s. B,. The strong dependencies in the spatial derivatives is self
evident. For comparison, Table 1 displays also the correlation values that are maintained
after projecting each image neighborhood onto the first principal component using the PCA
approach. It can be verified that the CCA directions produce better informative subspaces
relative to those produced by the PCA.

The shape of the joint histograms, as presented in Figure 8, is typical for many natural
color images. It is robust over a large variety of natural images and over all pairs of color
bands. It is also robust over any directional derivative which is an outcome of the isotropic
property of natural images. The characteristic distribution of these histograms suggests that
directional derivatives of color images are highly probable to be located about the main
diagonal (1,1,1) of the derivatives coordinate system. This is demonstrated in Figure 9, in
which a 3D scatter diagram of f.(z,y) = (R.(z,y), Gz(x,y), B.(z,y)) is presented. Points
in this diagram represent RGB x-derivatives of pixels in the image of Figure 4. The main
diagonal is plotted as a red solid line.
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Figure 6: A scatter diagram of RGB color values.

The scatter diagram and the joint histograms illustrate several important aspects of the
characteristics of spatial derivatives in color images: First, the spatial derivatives of different
color bands, taken from the same image location, are highly probable to be similar to each
other. Note, that this is not correct for the color values themselves, as demonstrated above.
Second, the derivatives tend to be statistically independent if we represent the data in a
coordinate system which is aligned with the main diagonal of the derivative 3D space.

We now define a new color coordinate system (I, ¢y, ¢3):

l R 7 0 0 11 1
¢ |=T| G | where T=| 0 - 0 1 -1 0 |, (2)
Co B o 0 - 1 -2

This coordinate system is widely known as the luminance/chrominance color basis (double-
opponent space) where [ represents the pixel luminance, and ¢, ¢, the pixel chrominance [39].
This new coordinate system is a rotated version of the standard RGB coordinate system,
where the luminance axis is aligned with the main diagonal, and the two chrominance axes

10
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Figure 7: The Canonical Correlation basis vectors for the 2 x 1 and 1 x 2 cases. The upper
rows correspond to the Red basis while the lower rows correspond to the Green basis. The
CCA basis are ordered from the highest (left) to the lowest (right).

span the plane perpendicular to the main diagonal. The ¢; axis represents the red/green
component, and ¢y the blue-yellow component. Since spatial derivative is a commutative
operator we have:
R R R
v 0 0
B, "\ B v

T
- 1 - 1z
B Or Co Cog

thus (I, ¢1,, ¢2,) is also a rotated version of the (R,, G, B;) coordinate system. As explained
above, the spatial derivatives (I, ci,, co,) are, at a good approximation, statistically inde-
pendent. The independence in the new basis can also be verified by calculating the mutual
information which is 1.78 in the RGB-derivative basis, while only 0.06 in the new basis.
These values show that the marginal probabilities in the new basis are almost independent.
This observation is also in accord with [20] where applying an Independent Component Anal-
ysis (ICA) to color images yields a similar representation basis. Recall, that ICA schemes
aim to find a basis whose coefficients are the least mutually dependent.

Analyzing the histogram characteristics in the new coordinate system, it can be concluded
that it is highly improbable to have high derivative values in the chrominance directions. The
small derivatives in the chrominance components, or alteratively, the lack of high frequencies
in this domain, is demonstrated in Figure 10. It can be seen that the chrominance image
tends to be smooth with relatively few discontinuities, while the luminance image is of high
frequencies having a much richer collection of discontinuities.

It is interesting to relate this result to the characteristics of the human visual system. The
lack of chromatic spatial sensitivity in the visual cortex [39], is in accord with the charac-
teristics of natural color images. Thus, it may be argued that the human visual system has
adapted itself to the statistical distribution of natural images.

11



’ Subspace H Correlation ‘ Entropy ‘ Mutual Inf. ‘ Cond. Ent. ‘

Pure Spectral 0.91 8.60 1.75 6.84
PCA 2 x 1 0.94 8.19 1.78 6.40
PCA 1x2 0.94 8.24 1.76 6.48
PCA3x3 0.94 8.13 1.86 6.26
CCA2x1 0.99 5.03 1.65 3.38
CCA1x2 0.98 5.04 1.50 3.54
CCA2x2 0.99 4.64 1.72 2.92
CCA3x3 0.99 4.53 1.68 2.84

Table 1: Statistical values for various projected subspaces.

All values were

calculated for the Red and Green bands, and were averaged over 20 different
natural images. The statistical values are (left to right): a. The correlation be-
tween Red and Green values: Corr(R,G). b. The differential entropy H (R, G).
c. The mutual information I(R,G) = H(R,G) — H(R) — H(G). d. Two sided

conditional entropy H(R|G) + H(G|R) = H(R,G) — I(R,G).

4 Implementation: Image Demosaicing

In the following a basic statistical framework for image demosaicing is presented. Later on
this framework is implemented in conjunction with the image prior model to construct an

optimal solution for the demosaicing problem.

4.1 Image Acquisition Model

The acquisition model describes the process of acquiring an image by a digital camera.
The desired image to be reconstructed is a three band image f(z,y). The image f(x,vy)
is unavailable, however, a subset of its values is acquired by a digital camera after it has
been blurred by the camera’s lens. The acquired subset is determined by the layout of the
camera’s Color Filter Array (CFA). We represent the CFA arrangement by three sampling

masks, which can be viewed as a 3-dimensional vector at each pixel location:

where each mask satisfies:

w 1 if photo-sensor w is placed at position (x,y
o) - (@3]

0 otherwise

SR
S
SB

12

w € {R,G, B}
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Figure 8: Joint histograms of the color x-derivatives. Left to right: x-derivative of Red v.s.
x-derivative of Green, x-derivative of Red v.s. x-derivative of Blue, and x-derivative of Green
v.s. x-derivative of Blue. In all histograms, gray-scales are proportional to the log of the
histogram values.

When only a single color value is acquired at each pixel, Y, s“(z,y) = 1 for each (z,y).
The mosaic image m(x,y) is a result of blurring and partially sampling the original image

f(x,y):

where H is a linear operator representing the lens blur, n stands for the noise incorporated
during the acquisition process, and ’-’ represents a vectorial inner product. The blur operator
H and the statistics of the noise n are assumed to be known. Since the sampling operation
s(z,y) is non-invertible, the solution space may include infinite many possible images. In
order to obtain a unique solution, some prior information about the original color image
f(x,y) must be incorporated.

4.2 Divide and Conquer: Reconstruction vs. Enhancement

In this work we suggest a decomposition of demosaicing process into the reconstruction phase
and the enhancement phase. This concept is proven to be mathematically correct when the
blurring operator H is invertible. Define h as the noisy and blurred image:

h=H(f +n)

Note, that h is fully sampled so that m = s - h. Using the MAP estimation, the blurred
image h is first estimated from m:

h* = arg max Prar(him)

13
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Figure 9: A scatter diagram of the RGB derivative of the color image given in Figure 4. Each
point in this diagram represents 3 values which are the RGB x-derivative of a single pixel.
The red line plots a diagonal line directed toward (1,1,1) in the diagram coordinate system.

Since the mosaic image m is uniquely determined by h, the above maximization can be
rewritten:

h* = arg max Py(h) such that m=s-h (4)
This optimization is referred to as the reconstruction phase.

Next, using h*, the enhanced image f is estimated by:
f* = arg max Ppu(flh*)

This is referred to as the enhancement phase. The optimal solution f* using the above two
phases is proven to be equivalent to the optimal solution given by a single optimization
scheme (Appendix A):

f* = arg max Ppa(£lm)

Since the process can be separated into two successive phases, each part can be optimized
separately, enabling simple and accurate parameter settings. In our scheme, we implemented
the enhancement phase using standard techniques for sharpening, such as un-sharp masking
or Wiener filtering, while the reconstruction phase was implemented using a new scheme.

14



Figure 10: Left: The luminance component of the image presented in Figure 4. Right: One
of the chrominance components (c;)

4.3 Reconstruction of Color Images

In Section 3 it was demonstrated that spatial derivatives of color bands tend to be statistically
independent when represented in the (I, ¢;, ¢o) coordinate system. Denoting a fully sampled
color image

h(z,y) = (r(z,y), 9(z,y), bz,y))"
The image h is represented in the new color basis:

h(.’]i‘,y) =T h([l?,y) = (l(xay) cl(xay) 02(37’3/))

where T is defined in Equation 2. The representation in the (I, ¢1,¢2) color space allows the
p.d.f. of the x-derivative %h(w,y) to be approximated as a product of three statistically
independent Gaussian marginals:

" <%f‘($’y)> = g e (et e {—otelwa)} esp {~Ew0) =
- Z(o{7 3) P {_aZ(Cli(%y) + ez, y)) — 62l§(:c,y)}

15



where Z(«, 3) is a normalization factor and «, 3 are constants. Figure 11 shows a joint 2D
histogram of this multi-variate density function where a = 1/5 and 8 = 1/120. For com-
parison, the parametric density function is shown in the conventional (R, G, B) coordinate
system. Note the similarity between the parametric density function and the histogram plot-
ted in Figure 8. Nevertheless, the suggested density function approximates the histogram
only qualitatively. A closer look at the histogram marginals suggests a super-Gaussian den-
sity function, which is characterized by a sharply peaked distribution and heavy tails (see
Figure 12). Despite this, we chose to remain with the Gaussian model since it yields a
linear MAP estimator while still providing good results. Using a super-Gaussian density
model yields a non-linear MAP estimator, which can only be applied adaptively [33, 35, 16].
Non-linear schemes will be explored in future studies.

50 100 150 200 250 300 350 400 450 500

Figure 11: A parametric multivariate Gaussian probability function (see text) for representing
color derivatives. The variance ratio between the chrominance direction and the luminance
direction is 1:24.

As an outcome of the isotropic property of natural images, the xz and y derivatives are
statistically independent. This implies that the joint probability of both, x and y derivatives
at a particular location (x,y) can be expressed by their marginal products:

P (VAT (5,9)) = - exp {~a*(|Ves (@) + [ Vealo, ) ) - P19 0) 7} 5)

b
Z(a, p)

T
where V = (a%’ %) . Adopting the view that a natural image is a realization of a Markovian
random field, and using the second-order MRF neighborhood model, a color image prior can

16
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Figure 12: Plots of the marginal histograms of [, and c;, for the image given in Figure 4.
Note that the marginal distributions resemble super-Gaussian density functions.

then be modelled using the following density function:

Py = e {—a2 > (19 )P + [ Veste ) = 5 |rw<x,y>|12}

Referring again to the reconstruction equations (Equation 4), the (blurred) image h(z,v)
can be estimated:

h* = (I*, ¢, ¢5)" = argmax Pg(h) such that m =s-T'h
h

Using Py (h) as defined above and taking the log of the probability function, this maximiza-
tion can be expressed as a minimization problem:

(I",¢},¢)" = arg min {aQZ(IIVCl(%y)II“rHVCQ(fc,y)HQ)+522\|W(w,y)\l2} (6)

C1,C2
»C1 z,y z,y

such that m =s-7 'h

Borrowing the terminologies from the regularization framework [13], the penalty term to be
minimized is referred to as the prior term and the constraint equation is referred to as the
data term. This minimization problem can be solved using the Projection onto a Convex Set
(POCS) approach [4]. The approach consists of an iterative process, where at each iteration
the penalty term is minimized while the constraint is imposed by projecting the intermediate
results onto the constraint manifold. Since the penalty term is quadratic, the convergence is
guaranteed.

17



Minimizing the prior term using the steepest descent method, the following iterative scheme
is derived for time step ¢ + 1:

" zy) = Ha,y) — BV (z,y)
Az, y) = di(z,y) — a®V3e(z,y)

Az, y) = dlx,y) — a®Vieh(z,y)

where V? = 88722 + 88—;. Applying this solution to each pixel location, the iterative scheme
can be rewritten using filtering operations:

1 (x,y) = ki(r,y)« 14z, y)
A (x,y) = ke(w,y) * c(z,y)
Az, y) = k(x,y)*ch(z,y)

where

kl(xay) = (5(x,y)—ﬁ2V2)
ko(z,y) = (8(z,y) —a®V?)

and the symbol 'x’ denotes the convolution operation. There are two types of filters that are
applied: k;(x,y) which is applied to the luminance band, and k.(x,y) which is applied to
the two chrominance bands. Note, that the Laplacian V? represents a high pass filter with
a radial amplitude profile E(u,v) = u* 4+ v? in the frequency domain, where (u,v) are the
frequency indices. Subtracting the Laplacian filter from 6(z,y) is in fact a low pass filter.
However, since the value of « is an order of magnitude larger than 3, the two filters are
quite different. Figure 13 shows the frequency profile of these two filters in the 1D frequency
domain (a radial cross section). It is shown that kj(z,y) is a “soft” low pass filter while
k.(z,y) is a “stronger” low pass filter.

Referring back to the minimization scheme, at each iteration, the prior term is minimized
using the described filtering scheme. Following the minimization, a projection onto the
measurement constraint m = s - h must be applied. However, since the sampled values are
given in the original color space, the projection is performed by transforming the intermediate
result (171 ¢t cbt!) back into the (R, G, B) coordinate system:

7,15—0—1 lt+1
gttt | =771
bt+1 CéJrl

In this original system, the values at the sampled locations are easily replace by the original
mosaic image:

w (z,y) = (1 — s¥(2,y)) w(z,y) + (2, y) m(x,y) for w e {r,g,b}.
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Figure 13: The frequency profile of k; (left) compared to the frequency profile of k. (right).
Both graphs shows the radial cross section in the frequency domain.

The entire process iterates several times. Typically 4-5 iterations suffice to complete the
reconstruction phase. At the end of this phase the resulting image is an optimal approxi-
mation of the blurred noisy image h. The process then proceeds to the enhancement phase,
which considers the reconstructed image h as its input. The enhancement phase outputs
a sharper image obtained using standard sharpening techniques, such as wiener filter or
un-sharp masking. The entire algorithm is graphically illustrated in Figure 14.

An alternative approach which provides sharper results at the expense of non-linear oper-
ations can be applied as follows. Since the green band is commonly sampled more densely
than the other bands (see e.g. the Bayer CFA in Figure 1), its interpolation can repro-
duce high frequencies which cannot be reconstructed in the other bands. Therefore, it is
advantageous to treat the green band differently. In this algorithm, the green band is first
interpolated. This interpolation can use interpolation techniques which are adaptive and
non-linear. Among these techniques we mention the anisotropic diffusion [29], bilateral fil-
tering [38], or robust filtering [5], all of which were shown to be equivalent [25]. Various
anisotropic interpolation techniques specifically designed for the Bayer green component are
suggested in the literature and can be used (see e.g. [1, 11, 23]). Following this initial
step, the algorithm continues as before, with the exception that the imposed constraints are
now composed of both, the original sampled values as well as the interpolated green values.
Results for the two suggested algorithms are given in Section 7.

5 Perceptual Optimization

As mentioned above, it may be argued that the human visual system (HVS) has adapted
itself to the statistical characteristics of natural images. Thus, since occurrences of high
frequencies are improbable in the chrominance bands, the HSV spatial sensitivity in this
domain is limited [39]. On the other hand, the HVS shows high spatial sensitivity in the
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Figure 14: A block diagram describing the demosaicing algorithm.

luminance band. As a consequence, blurring the chrominance bands of a color image has
a negligible effect on the perceived image (see e.g. [39]). This characteristic alone can be
implemented for reducing color artifacts in demosaic images. One can simply reduce the
high frequencies in the chrominance bands, smoothing out color artifacts while maintaining
the luminance band unaffected. Recall, again, the minimization expression of Equation 6.
This equation can be interpreted as a perceptual penalty function: The image derivatives
serve as a non-smoothness measure of an image. Because natural images, in general, tend
to be smooth (the inverse power spectrum law), images are penalized in this expression for
being non-smooth. However, care must be taken since taking this into extreme will result
in a blurred image smoothing out sharp discontinuities. Since blurred chrominance channels
only slightly affect the perceived sharpness of the image, their penalty coefficient, o/, may be
high, permitting considerable blurring in these bands. In contrast, the penalty parameter of
the luminance channel is an order of magnitude smaller, and therefore defers solutions that
are perceived too blurred.
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6 Implementation

Implementation of the suggested approach is iterative. However, since each iteration is
linear, it is possible to concatenate all the linear operations into a single linear operation,
yielding a simple and fast solution. The concatenation of all linear operations can be easily
calculated using a modification of the shift invariant property of linear systems. The input
to our system is a mosaic input image, for which a shift invariant property is not valid. That
is, the kernel applied to a particular pixel differs from the kernels applied to neighboring
pixels. However, the same kernel is used at pixels with the same sampling configuration.
For example in Figure 1, pixel locations (x,y) and (x + 2i,y + 2j) for any real 7, j, have the
same sampling configurations. We call this property block shift-invariance. In a previous
study [17] a technique was developed for generating the filter kernels of block shift-invariant
systems. The study describes a generalization of the impulse response of shift-invariant
systems to block shift-invariant systems. The proposed technique takes as an input any
computer program which applies a linear block-shift-invariant algorithm, and produces as
output the equivalent set of filter kernels. These kernels can then be applied efficiently using
convolution. Using this scheme, the kernels required for the suggested demosaicing process
can easily be derived.

7 Demonstrated Results

In order to demonstrate the proposed technique, examples of results are shown along with
the results of the trivial bilinear interpolation.

Figure 15 shows the original image along with its mosaic image. The mosaic image was
sampled from the original image using the Bayer Color Filter Array.

Figure 16 shows three results of various demosaicing algorithms. The top image is the naive
bilinear interpolation algorithm. It can be seen that many color artifacts appear in the
image, mainly near edged areas. The middle image is the result of applying 5 iterations of
the algorithm suggested in this paper and presented in the diagram in Figure 14. The color
artifacts are drastically reduced, however the resulting image is slightly blurred relative to
the original. The bottom image is a result of applying adaptive interpolation to the green
component (we used bilateral filtering [38]), and applying the proposed algorithm to the red
and blue components, as described above. This result presents the best performance, with
almost no color artifacts, and a crisp image with sharp edges.

Using the linear block-shift-invariant properties of our algorithm, the corresponding filter
kernels were extracted using the technique presented in [17]. The 12 kernels that were
generated by the proposed technique, are shown in Figure 17. Each row has 4 kernels, for
block positions (1,1), (1,2),(2,1), and (2,2), from left to right. The rows show the kernels
for the Red, Green, and Blue images, from top to bottom. For comparison, Figure 18 shows
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Figure 15: Top: The original RGB image. Bottom: A mosaic image which was sampled from
the original image using the Bayer CFA.

the generated kernels for the bilinear algorithm.
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Figure 16: Top: The resulting image after applying bilinear interpolation to the mosaiced
image. Middle: The result of the proposed algorithm. Bottom: The result of applying the
proposed algorithm to the red and blue components while the green component is first inter-
polated using adaptive filtering (see text).
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Figure 17: The kernels that were calculated for the proposed demosaicing algorithm. 4 kernels
are given on each row, associated with block positions (left to right) (1,1),(1,2),(2,1), and
(2,2). The rows show the kernels for (top down) the Red, Green, and Blue images.
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Figure 18: The kernels that were calculated for the bilinear algorithm. 4 kernels are given
on each row, associated with block positions (left to right) (1,1),(1,2),(2,1), and (2,2). The
rows show the kernels for (top down) the Red, Green, and Blue images.
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Appendix A
Assume z is an unknown multivariate random vector whose distribution Px(z) is known. A

measurement y is given:
y=SHzx

where H and S are matrices. The MAP estimation for z yields:

= argmgxPX(x) st. SHx =y

Define z = Hx, the MAP estimation for z can be calculated as well:

" = argmax Py(z) st. Sz=y (7)

Theorem 1 If matriz H s invertible:
2" = Ha*
Proof 1: From the the MAP definition of x* we have
= argmanPX(m) st. SHx=y
Since z = Hx and H is invertible, we obtain:
Hz* = arg max Px(H'z) st. Sz=y
Multiplying the above equation by a constant will not change the maximum. Therefore,
Hzx* = arngaX—PX(Hflz) st. Sz=y

However, since Pyz(z) = |H| ' Px(H'z), from the above equation we obtain:

Haz" = arg max Py(z) st. Sz=y
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and from Equation 7 we conclude:

2= Hzx" O

This theorem justifies the separation of the demosaicing process into two phases, namely, the
reconstruction phase, and the enhancement phase. Defining z to be the noisy blurred image
h, we have: z = H(f +n) = h, and defining y to be the acquired mosaic image y = Sz = m,
the reconstruction phase is associated with Equation 7. The enhancement phase deals with
the estimation of f given h*, which can be solved using classical techniques.
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