

From Security Protocols to Systems Security:
Making a case for systems security modeling+

Brian Monahan
Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2003-147
August 4th , 2003*

E-mail: brian.monahan@hp.com

security
protocols,
systems
security,
SSML

When applying information security, we need to go beyond the
analysis of individual security protocols and consider how they are
used within distributed systems, software applications and services.
Important as they are, security protocols only form a part of the
overall security engineering design for a particular distributed
system. The effective use of any security protocol will typically
depend upon certain structural data such as key information being
available for use by some - and at the same time made unavailable
to others. Systems need to be designed with requirements like these
in mind.

* Internal Accession Date Only Approved for External Publication
This report is the extended version of a paper entitled, 'From Security Protocols to Systems Security,' presented at
the 11th International Cambridge Workshop on Security Protocols, Sidney Sussex College, Cambridge, UK. 2-4th
April, 2003
 Copyright Hewlett-Packard Company 2003

From Security Protocols to Systems Security

Making a case for systems security modelling

Brian Monahan (brian.monahan@hp.com)

Trusted E-Services Lab, HP Laboratories
Filton Road, Bristol, BS34 8QZ, UK

July 2003

Abstract. When applying information security, we need to go beyond the analysis of individual se-
curity protocols and consider how they are used within distributed systems, software applications and
services. Important as they are, security protocols only form a part of the overall security engineering
design for a particular distributed system. The effective use of any security protocol will typically
depend upon certain structural data such as key information beingavailable for use by some - and at
the same time made unavailable to others. Systems need to be designed with requirements like these
in mind ([1–4]).

1 Introduction

When applying information security, we need to go beyond the analysis of individual security protocols
and consider how they are used within distributed systems, software applications and services. Important
as they are, security protocols only form a part of the overall security engineering design for a particular
distributed system. The effective use of any security protocol will typically depend upon certain structural
data such as key information beingavailable for use by some - and at the same time made unavailable to
others. Systems need to be designed with requirements like these in mind ([1–4]).

This report1 describes work-in-progress that suggests extending the theory and analysis of security proto-
cols towards a modelling approach for describing, analysing and algebraically simulating security aspects
of systems.

We would argue that this involves using a software-supportable notation specifically designed for use by
security trained professionals to design and explore the security aspects of systems. To this end, we are
investigating an experimental notation, called here Systems Security Modelling Language (or SSML) to
embody these systems designs. A variety of tools could be contemplated for investigating the security
consequences of these designs within particular usage scenarios, to check resistance to particular attacks
and to formulate specific trace and state properties which capture more precisely the security-related
aspects of a system design.

Such an approach allows the system design, together with its security-related properties, to be iteratively
evolved and pragmatically developed as a series of descriptions. The purpose of this evolution is to
establish by pragmatic means a certain level of insight and confidence in the resulting final description.
At that stage, it should by then be much clearer what the security-related properties of the design have to
be and how each part contributes to establishing the security goals of a system. By evolution of a design,
we mean a process of exploration and extension of designs, each of which better capture intention and
functionality.

In addition to the system’s security goals, the design development should have established what the
initial assumptions are and have firmed up what structural data needs to be available at each processing
stage. Even so, it is only entities contributing somehow to the security aspects of the system that need
be modelled - the design needs only to besufficient to establish the security case. Other entities that
don’t affect or somehow influence the system’s security case need not be included in the model. In fact,
once some entity has been shown to be irrelevant to the security case, the model could be simplified by
removing that entity. Thus, security designs tend not to be completely definitive in every respect, but
must be sufficient to capture the overall security situation that the system will find itself within.

1 This report is the extended version of a paper [5] presented at the 11th International Cambridge Workshop on
Security Protocols, held at Sidney Sussex College, Cambridge, on 2nd – 4th April, 2003.

To recap, we gain some “lightweight” assurance, via the tools supporting the security-modelling notation,
that the evolved design achieves certain overall goals and functionality relevant to security. To gain a
stronger degree of assurance and confidence in the design, it may be necessary to formally describe
the kernel of a system in terms of mathematical logic and then formally prove that the most important
security-related properties hold for that kernel.

However, constructing these formal specifications and proofs is a subtle and complex task, requiring
significant logic-modelling skills. Furthermore, this will only be typically attempted for a stable system
kernel where a highly assured verification of security and correctness is required. As the design has al-
ready been captured in the SSML modelling framework and has hopefully been matured into something
already having a high level of confidence, this could provide an excellent starting point from which to
extract a logically precise formal specification of a suitable system kernel. This formally represented ver-
sion of the system kernel provides the basis for formally showing the security-related properties claimed
for it, perhaps using tools for theorem-proving [6, 7] or symbolic model-checking [8].

Most of the remainder of this report discusses aspects of an experimental security-modelling language
and accompanying tools by means of a short example. Before that, we briefly look at protocol descriptions
(i.e Message Sequence Charts) and then consider approaches to the security analysis of protocols.

1.1 Protocol description notation – Message Sequence Charts

Security protocols have typically been described using the Message Sequence Chart (MSC) notation. For
example, Fig 1 contains a classical MSC description of the well-known Needham-Schroeder public key
authentication protocol.

A --> B : �A, Na�Pub(B)

B --> A : �Na, Nb�Pub(A)

A --> B : �Nb�Pub(B)

Fig. 1. Excerpt from the Needham-Schroeder Public Key Authentication Protocol

This intuitively conveys what the message flow is and broadly what each principal needs to do at each
stage of the protocol. However, as recognised by Abadi in [9], this does not adequately document certain
important aspects of the protocol such as:

– The goals of the protocol and what each participant expects to be jointly achieved.

– The initial assumptions made by each principal.

– What parts of each message were freshly generated and by whom.

Lowe showed in [10] that the particular protocol illustrated above is possible by essentially allowing
the attacker to be an ‘insider’ (i.e. have the same access to authentication keys as the honest principles).
This permits the attacker to perform a classic middle-person attack. However, as pointed out in [11],
the original protocol design assumed that attacks would be mounted by external agents. This nicely
illustrates how flaws in complex systems can arise, even for the best designed systems - a subsystem
intended for one set of circumstances may eventually get used in another set of circumstances unintended
or foreseen by the designers, leading to inappropriate behaviour. This further suggests that complex,
distributed systems may need to be adaptive or evolutionary in their design, if they are to be successful
in a changing environment.

The variation of a protocols’ initial assumptions may easily lead to different attacks, and this was il-
lustrated in [12] using an automated protocol analysis tool. This emphasises how security in complex,
distributed systems depends upon context and the manner in which protocols are deployed and used.

1.2 Approaches to security protocol analysis

There are currently two main approaches to the attack and analysis of security protocols. Both of these
approaches start from the classic Needham-Schroeder paper [1] on authentication in large networks. This
landmark paper contains many of the basic principles and underlying issues of security protocol analysis
from which all modern work has flowed.

Probability and complexity-based analysis In the probabilistic and complexity-theoretic approach
favoured by cryptographers (e.g. [13–16]), the attacker tries to exploit protocol interactions in some way
so as to reveal covert information about the underlying crypto primitives - the objective is to break the
crypto primitives by subversion or by extracting key information. Whichever way is taken, if successful,
the attacker would achieve full control.

The outcome of such an analysis is typically some estimate of thework factor required by the attacker
in order to achieve their goal. This work factor may be the probability of extracting useful information,
expressed in terms of a function of a given number of trials (i.e. attack runs) or it may be the number of
trials required to extract particular information. A typical feature of this type of analysis has been the use
of the Random Oracle assumption in which hash functions are modelled as functions randomly chosen
from a uniformly distribution.

Algebraic and formal logic-based analysisIn the algebraic and formal logic-based approach, begun by
Dolev and Yao [17], and continued by many researchers e.g. [18, 7, 19, 20, 9, 21–28], the attacker tries to
gainreward or advantage by playing different protocol players off against other protocol players, each of
which may be using differing protocols. This usually involves some deceptive use of an honest principals
role, where the attacker can exploit some inherent ambiguity within the protocols. Relative to given keys,
the attacker can analyse and synthesise arbitrary messages, based upon what the attacker explicitly knows
and subsequently uncovers. However, the attacker is only permitted to do cryptographic operations (e.g.
encryption, signing) using those keys it has gotexplicit access to.

Process algebraic and trace theoretical approaches to protocol security have played a fundamental role
in defining many important security concepts [29, 9, 24, 7, 30, 31, 28, 32–42], such as determinism, non-
interference and correspondence properties. Security-related properties via typing within the Spi calculus
framework have been investigated in [43, 29, 44–46]. The Multiset Rewriting approach is another emerg-
ing formalism for cryptographic protocols [22, 47, 48]. A good recent tutorial survey and overview for
this entire research area maybe found in the proceedings of FoSAD 2000 [49–54].

Reconciliation of approaches Abadi and Rogaway began in [55] to draw these approaches more to-
gether, emphasising that assumptions of each model have corresponding assumptions in the other. Further
work in combining these approaches has been actively pursued by Pfitzmann and Waidner [56, 57].

It is also known, however, that the analytic techniques dealing with security protocols mentioned above
have their limitations. For example, it is widely acknowledged that the BAN logic approach does not ad-
equately capture causation and emphasises what is known (believed) by the principles involved. Equally,
there are digital signature schemes that have been proven secure within the Random Oracle approach,
but where every implementation is equally insecure in their sense [15]. Proofs of security for a protocol
only typically givepartial assurance concerning integrity.

It is clear that currently nosingle approach to security protocol analysis has yet emerged that adequately
captures the full richness and diversity of the way that systems are used and the security threats they
face. This suggests that further work is needed to combine the efforts across several approaches when
analysing and assessing systems security.

2 The classic Web service example

We now give the example we use to motivate the security-modelling notation. This example is a simplified
variant of the well-known “single sign-on” problem, depicted in the form of a Web service. In the informal
description, there are three distinct phases of operation:

Registration: Client registers and joins the Web Service, by interacting with the Registration
Service.

Start a new session with Web Service:Client has to prove their membership in order to initiate
a long-lived, but interruptible, session with the Web Service. The Client is given a time-limited
token (a cookie) that allows them to rejoin the session later on.

Continue an existing session with Web Service:Client continues an existing session by send-
ing the cookie back to the Web Service. If the cookie has time-expired, the session is closed.

The example given in Fig 2 contains a number of ambiguities and undefined notions that are typical
of requirements descriptions. By their nature, requirements descriptions are necessarily informal - they
contain the “germ” of the need to be fulfilled by some (designed) solution. The act of design itself
involves imposing some order and structure to create a space of potential solutions, some of which can
hopefully fulfil the spirit of the requirement that was originally expressed informally.

This example was chosen because it is somewhat typical of an applied service occurring naturally in its
“raw” state, rather than something pre-packaged that is already well understood by the security protocols
community, such as Kerberos.

A partial answer to that question is to provide ways for exploring and investigating security designs. Our
approach is to capture the security aspects of a design in terms of a model that can be analysed in an
effective way, supported by software tools. This approach involves capturing thetransactional behaviour
of the design in terms of structured data, events and so on. The purpose of any design modelling activity
is to gain insight and establish confidence in the content of the design. It is important to try and keep the
model as simple as possible - while retaining its essential relevance.

3 SSML - a notation for security modelling

Our notation, System Security Modelling Language, allows us to define entities representing systems
in terms of their behaviour. Although SSML is superficially close in appearance to well-known pro-
gramming languages (such as Java and Standard ML), its semantics does owe something to the process
calculus tradition of CSP and CCS. Appendix A contains more details on the current syntax of SSML.
Further discussion of the semantics underlying SSML is beyond the scope of this paper.

The intention is to capture aspects of the structural features of a security design together with pertinent
aspects of dynamic behaviour. Because we are focussing here on security aspects, we choose to em-
phasise certain details and de-emphasise others. For example, we de-emphasise fine-grained conditional
branching and case analysis, but focus instead upon the use of keys, encryption and so on. Such aspects,
although de-emphasised for security analysis purposes here, are of considerable interest and importance,
but at other stages of systems design and development.

For lack of space in this report, we will not present a full account of either the notation and its associated
tools or of the complete example. This is left to form the subject of further publication.

There are three main groups of entity that make up an SSML description. These are:

1. Contexts and types:These entities represent structured data types and are also used to represent the
state-space of each principal item that makes up a system.

2. Events, methods and functions:Each event is located at an instance of some context representing
a principal and typically consists of straight-line code with no branching i.e. neither conditionals
nor case analysis. Events can optionally receive an input, send an output, do both or even neither.
Methods generally represent state-modifying operations that may yield a result. Pure functions can
be specified algebraically in terms of conditional equations.

Let S be a Web service offering some online services over the Internet. Each potential customer C must
firstly register their membership to be able to access this service in future via a registration service RS.

Following registration, C gains access to the service by fully proving their membership at the beginning
of a session. Customer C then receives a time-limited token (a “cookie”) that permits re-admittance to S
quickly without going through the full access dialogue. Once logged in, C has a set of access privileges
allowing them to retrieve and/or update information.

The appropriate informal use-cases are diagrammed here:

Registration
service

RS

Background

checks Obtain blank form

Returned form

Decision report
C

Registration with service:

Web service
WS

Customer starts session with the Web service WS:

Contact + membership credentials

Acknowledgement + session cookie

C Access service : read/modify data etc.

Web service
WS

Customer rejoins ongoing session with the Web service WS:

Contact + send session cookie

C Access service : read/modify data etc.

…

Fig. 2. Informal description of the Web Service

3. Traces and system behaviours:Traces are finite sequences of events, the message exchanges that
are accepted and the state transitions that arise as a result. A system is defined in terms of (accepting)
finite sets of traces.

We now move to discussing our Web Service example and illustrating the features mentioned above. In
our design, the state-space for the Client, the Registration Service and the Web Service themselves will be
represented in terms of appropriatecontexts. Associated with these contexts will be a number of located
events that represent some part of the interaction with another principal. These events process the input
and output messages between principals. The overallsystem behaviours linking each of the Client’s, the
Registration Service and the Web Service are then defined in terms of traces.

We continue below with a more detailed description of the three main elements of SSML: contexts, events
and systems behaviours.

3.1 Contexts

Describing complex systems involves structured data, and rather than involve full-blown objects and
their semantic complexity (e.g. inheritance, overriding, etc.), we introducecontexts to represent this.
A context is a collection of named, typed entities. An example is given in Fig 3 to define the Client’s
context.

context
Client = �

fixed
visible String name; // Client’s name (not an Identity)

visible Asymkey custK; // Client’s public key
secret Asymkey privCustK; // Client’s private key

volatile
internal RegForm form; // Registration form
internal Nonce n; // A nonce value
internal Cookie ck; // A "cookie" value, for Web Service

persistent
internal Identity registerID; // Registration Service Identity
internal Identity serviceID; // Web Service Identity

internal Uint mem = undef; // Membership Number

constraint
(custK keypair privCustK); // Key relationship

�

type RegForm = unspecified; type Cookie = unspecified;

Fig. 3.Defining the Client’s context

The context consists of a number of named fields, followed by an (optional) constraint part. Each field has
a couple of classifiers. The first classifier is one offixed, volatile or persistent- which briefly indicates
how the field is used and initialised (or not). The second classifier is one ofvisible, internal or secret,
and this determines security visibility characteristics. These classifiers are explained further in Appendix
B. Each field is strongly typed - the typesIdentity,Asymkey,Nonce, String andUint are built-
in (there are others). The typesString andUint are conventional and stand for the type of strings and
unsigned integers, as you would expect. The other types represent security-relevantroles.

For example, values of type Identity represent “standard” names for entities - in practice this might be
a string containing a URI or some other systematically defined moniker. If A is a well-typed value, then

ident A is a value of type Identity. To be clear, Identity values are plaintext address-like references -
they have no inherent security characteristics. We show later how these identity values can be used to
access useful publicly visible information - such as public keys - bound to these identifiers. Values of
type Asymkey and Nonce represent asymmetric keys and nonces respectively. The user-defined type
RegForm is not further specified but is intended to represent a Registration Form of some kind (typically
implemented in terms of XML or HTML). The user-defined type Cookie represents cookie values that are
exchanged between Client and the Web Service and is not further specified. The order in which material
is introduced is not significant - in general, there should be no cyclic dependencies between definitions.

Finally, note how the constraint part states the relationship between the customer’s public key custK
and their private key privCustK in terms of the binary key-pairing relationship,keypair. In general, this
relation is regarded as being effectively intractable - even though it is classically definable. This relation
is statically restricted to occurrences within verification predicates like the constraint part here - it is not
permitted elsewhere.

3.2 Events

The dynamic behaviour of a security design is given in terms of events. Basically, an event represents
a small chunk of state-dependant behaviour, and can input or output messages using the anonymous
broadcast communication model, discussed further in Appendix B. Events are then strung together to
form traces - where sets of traces describe the dynamic behaviour of a system.

A simple illustrative example of an event is given in Fig 4. This event is located at instances of a

event
[Client A] acceptMembership �
Identity regID, rID, cID;
Binary encData;
Nonce nA;

input ["registered", regID, encData];

[nA, rID, cID, A.mem] =
decrypt (encData) with A.privCustK;

check nA == A.n & rID == regID & cID == ident A;
�

Fig. 4.Defining the acceptMembership event for the Client.

Client context - as specified by the “[Client A]” part. This effectively allows the event access to all of the
components of its context state, here an instance of Client, during its execution. What the above says is
that an input message can be accepted if it has the specified “shape” - it looks like: [“registered”, regID,
encData] This message has three components - the first being the string literal “registered”, the second is
an Identity value assignable to regID and the third is a Binary value assignable to encData. The effect of
a successful pattern-match is to match the string literal and to overwrite the two variables.

The second statement says that, using Client A’s private key privCustK, we can correctly decrypt the
encData Binary value to give a message containing four elements [nA, rID, cID, A.mem], where nA is
a Nonce value, rID and cID are both Identity values and A.mem is a field of type Uint associated with
Client A (go back to Fig 3 for the definition of mem). Any previous values in the variables are ignored and
overwritten if the whole statement successfully matches, with failure otherwise. Thus, partially successful
matching does not cause any effective corruption.

Finally, the check statement checks the logical predicate to see if it is true - with failure if not. In this
case, we check that:

1. The encrypted nonce nA is the same as A.n, a nonce sent previously and retained by Client A.

2. The identity rID is the same as regID, the identity quoted unencrypted in the main message.

3. The identity cID is the same as ident A, the identity corresponding to this Client.

An event can have at most one input statement and at most one output statement - typically, an event will
only use either an input or an output.

event
[StateContext ST] eventName �
statements;

input message;

statements;

output message;
�

Fig. 5. General form of an event.

The general form of an event is given in Fig 5. In effect, events are (partial) state functions that may
(optionally) input or output messages, while performing a constrained side effect upon the specified state
context. If an event inputs a message, this may be accepted, refused or rejected. Rejection means failure,
whereas refusal means the message could be accepted by some other event. Events are given by simple
straight-line pieces of code, having no recursion, no loops, no case/switch statements and no (explicit)
conditional branching via if statements familiar from programming languages like C and Java.

Typically, the input statement acts like a guard, allowing the selection of events that match the current
message - they are different from the check statements mentioned earlier that are used to reject, thus
yielding an (unrecoverable) failure. Other statement forms available include traditional assignment in
both conventional and pattern-matching variants. Data operations in the form of pure functions can also
be specified by conditional equations, and this includes recursive definition and conditional evaluation.
However, we do not encourage this level of detailed description, since the intention is not to completely
define all functional aspects of a system’s behaviour, but to just focus on matters impinging upon security.

event
[Client A] returnForm �
Registry RX = accessA.registerID as Registry;

String data = userinput;
String pw = userinput;

A.form = fillInForm(data, pw);

A.n = random;
Binary encForm =

encrypt ([A.n, ident A, A.form]) with RX.regK;

output ["return", ident A, ident RX, encForm];
�

function RegForm fillInForm (String data, String pw);

Fig. 6.Defining the returnForm event for the Client

We give a further example of an event in Fig 6. The returnForm event performs the act of filling in the
form using the (abstract) function fillInForm with data acquired by userinput, a data source that indicates
local interaction with a user. This takes the form data plus the user chosen password value, pw. Note that
the password value is not retained for later use by the Client context and so the user will have to supply
this value as required. The filled-in form is then embedded inside an encrypted message consisting of
three elements - a randomised nonce value A.n, an Identity value representing self, and finally the form.
The nonce value A.n is used here for two reasons - firstly, to introduce an ideal form of randomised
encryption (i.e. prevention of codebook attacks) and secondly, it is retained in the Client A for checking
freshness later on - as performed within the event acceptMembership in Fig 4.

This message is encrypted using a public key value (RX.regK) obtained by de-referencing the local proxy
value RX of type Registry. The encrypted data is then output, together with identities representing the
Client and the Registry.

The RX value mentioned above is defined by an access expression:

Registry RX = accessA.registerID as Registry;

Local proxy values constructed in this way only contain the fixed, visible fields of the entity that its
Identity refers to. All other fields are made undef. These access expressions could in practice be realised
by a number of different underlying mechanisms, such as Web Page lookup via URL, or LDAP access,
each having the same overall effect.

For completeness, we give the Registry context that represents the state-space for the Registration Service
in Fig 7 below. Also introduced there is the type HiSecurityKey which represents asymmetric keys whose
binary size is 2048 bits. In general, any base type like Asymkey can be qualified by size.

context
DataBase = unspecified; /* content to be determined */
RegForm = unspecified; /* content to be determined */
Registry = �

fixed
visible String name; // Registry name

visible HiSecurityKey regK; // Public key
secret HiSecurityKey privRegK; // Private key

volatile
internal Identity contact; // Contact identity
internal RegForm formData; // Form data

persistent
internal DataBase db; // Registration database

constraint
regK keypair privRegK;

�

type HiSecurityKey = <2048 Bit> Asymkey;

Fig. 7. Defining the Registry context

As described here, these events may appear somewhat isolated and unrelated to each other. What will
link events together are system behaviours - and these are described in the next section.

4 System behaviours

As mentioned earlier, we specify the behaviour of security systems, consisting of a number of different
principals or players, in terms of sets of traces - where a trace consists of a finite sequence of located
events. As an example of this, we define the (intended) system behaviour corresponding to the Registra-
tion Service in Fig 9.

system RegistrationService (Client C, Registry RS) �
init C.registerID == ident RS;

([C] sendHello;
[RS] receiveHelloSendForm;
[C] receiveForm;
[C] returnForm;
[RS] acceptProcessForm;
[C] acceptMembership

)
�

Fig. 8. System behaviour corresponding to the Registration Service

Corresponding to each sequence of events, there are also the sequences of messages that are output and
subsequently input. Accordingly, the above is essentially a (partial) function from the participants (i.e.
specified by the Client and Registry types) satisfying the init predicate to potentially accepting traces of
the system. If we instantiate this by giving particular instances of the Client and Registry, we obtain a
sequence of events - which may or may not succeed. Thus we recognise that there could be instances
that, although having the above form, will nonetheless lead to non-acceptance (rejection) due to failure.

A system description like the above is considered to be (weakly) well-formed if there is at least one
accepting trace for some choice of arguments, and strongly well-formed if there is at least one accepting
trace for every possible choice of arguments. In effect, strong well-formedness says that the system’s
description forms a total function.

There are other useful trace operators in addition to sequential composition�� �����, such as simple
choice������� and concurrent merge��������. These are useful in defining complex trace sequences
used in system behaviours and in trace predicates (equivalence and containment).

In the next section, we briefly consider how designs in SSML could be analysed using static analysis
concepts and ideas from algebraic simulation.

4.1 Analysing the design

The purpose of a security analysis of a design is to determine if the design achieves certain security goals.
Such goals are typically stated in terms of high-level concepts such as confidentiality, authentication, non-
repudiation, non-interference and so on. Although such concepts can be mathematically defined in terms
of trace, state and correspondence properties (e.g. [33, 20, 9, 34, 28, 58, 35, 7, 19]) translating these into
precise, verifiable statements that are pertinent to particular designs is not so straightforward.

For us, analysis involves two distinct phases:

– Checking of static integrity: The objective of this phase is to ensure that the design satisfies certain
static integrity constraints - and if not, to determine diagnostic information aiding the user in fixing
any violations. The analysis involves techniques such as type-checking the usage of data items and
flow analysis/abstract interpretation to ensure that information flows are suitably constrained [59, 46,
60, 39, 61].

Important aspects of this checking includes:

1. Checking that system designs can accept some traces - a system is malformed if it ends up
rejecting every trace (i.e. it has no behaviour of interest). This involves checking that message
flows are feasible - that for a message to be accepted as input by an event, it must have been
output by a preceding event. Additionally, the volatile fields must have been initialised before
they are used in each possible run. However, it is also clear that these trace acceptance conditions
could well involve general constraint satisfaction and hence need theorem-proving support.

2. Calculating the static set of valuable items as used by the system - for example, these are entities
that are declared secret or only transferred solely in an encrypted form and not deliberately
exposed. More subtly, this also includes indirectly valuable items because they can be used to
gain access to other material already known to be valuable.

In this fashion, we can detect when a system design makes certain kinds of security exposures.
In addition, the set of valuable items represents those items that could form targets for attackers
and thus need to be protected.

– Exploration of dynamic behaviour: System behaviour are defined here by sets of traces – where the
traces include state transitions and the messages sent and received. The objectives of this phase are to
examine, explore and where possible verify the dynamic characteristics of a system in combination
with an environment. For us, an environment is a system corresponding to “the rest of the system”
(i.e. the context) in which the system of interest operates.

In particular, the attacks come from the environment – a successful attack being any coordinated
set of actions controlled by the environment that provokes the entire system (i.e. environment and
system together) to enter a bad state or to perform an illegal act.

This type of analysis can usefully be viewed as exploring whether the system or the environment
“wins” a certain contest between them – the environment “wins” if it can obtain reward and advantage
in some systematic way, and the system of interest “wins” if it always defeats the best efforts of the
environment to cause it to fail - i.e. the system wins if it doesn’t lose.

We intend to use algebraic-based simulation and manipulation techniques to examine this behaviour and
investigate the security of certain combinations of environment and system.

The CAPSL Integrated Protocol Environment described in [62], has been developed by Jonathan
Millen and his team at SRI. This appears to be currently one of the most extensively developed security
protocol analysis tools. CAPSL2 provides an algebraic notation and tools for protocol analysis, which
are based upon an algebraic rewriting logic. Although CAPSL’s protocol notation essentially provides an
algebraic form of Message Sequence Charts, it also provides ways to precisely state the protocol goals
and initial assumptions for each principal. CAPSL descriptions are firstly translated into an intermediate
logic-based form called CIL (CAPSL Intermediate Language) [63] which is in turn related to the MultiSet
Rewriting formalism [22, 48]. CIL is principally used to provide a canonical protocol representation,
allowing CIL descriptions of protocols to be exchanged between a variety of algebraic formal analysis
tools, such as PVS and Maude

The CAPSL translator tools are currently available for Unix platforms.

5 Conclusions and further work

The purpose of this paper is to motivate interest in security-focused systems analysis and the need for
security modelling and simulation tools, using the example of a Web Service to illustrate the idea. Web
services are also used as an example in [45].

There is considerable natural scepticism about unconditional security or correctness arguments that ig-
nore the operating context or environment. Usually, a system design can only be shown “correct” (i.e.
meets its correctness obligations) under some assumptions about its mode of use and context - and the
same certainly holds of security-related properties. For this reason, exploring and studying the combi-
nation of systems operating within particular environments, from a security point of view, is of great

2 CAPSL stands for Common Authentication Protocol Specification Language.

interest. In other contexts, similar process-focused modelling approaches have also been advocated [64,
65].

We should be prepared to view a much richer landscape in which a system in one context is acceptably
secure and performs a useful functional role. However, when used as a subsystem in some other context,
the same system behaves insecurely and fails to operate as expected. Thus, the task of assessing the
security of a system is closely associated with assessing those classes of environments in which a system
operates safely.

Concerning the present form of SSML, some basic support tools already exist and a GUI-based analy-
sis tool is currently under development. The purpose of such tools are to (1) provide ways of capturing
models focusing upon the security aspects and (2) to explore their behaviour within particular environ-
ments using algebraic simulation and static analysis techniques. We hope to include goal statements that
describe security-related properties, in terms of trace, state and correspondence predicates, and allow
user-directed exploration of what happens under certain initial conditions (i.e. “what-if” scenarios).

6 Acknowledgements

I thank my colleagues Adrian Baldwin, Liqun Chen, Jonathan Griffin, Antonio Lain, Simon Shiu and
Mike Wray at HP Labs for their helpful remarks and comments relating to this work. In addition, I am
grateful for conversations with various protocol workshop participants which directly led to a number of
improvements.

References

1. R. Needham, M. Schroeder: Using encryption for authentication in large networks of computers. CACM12
(1978) 993–999

2. Anderson, R.: Security Engineering. Wiley (2001)
3. N. Ferguson, B. Schneier: Practical Cryptography. Wiley (2003)
4. W.R. Cheswick, S.M. Bellovin, A.D. Rubin: Firewalls and Internet Security. 2nd edn. Professional Computing

Series. Addison-Wesley (2003)
5. Monahan, B.: From Security Protocols to Systems Security. In: Proc. of 11th International Cambridge

Workshop on Security Protocols (2003). LNCS, Springer (2003) to appear.
6. T. Nipkow, L. C. Paulson, M. Wenzel: Isabelle/HOL - A proof assistant for Higher-Order Logic. Volume 2283

of LNCS. Springer (2002)
7. Paulson, L.: The inductive approach to verifying cryptographic protocols. Journal of Computer Security6

(1998) 85–128
8. Huth, M.: Secure Communicating Systems. Cambridge (2001)
9. Abadi, M.: Security Protocols and their Properties. In: Foundations of Secure Computation (F.L. Bauer and R.

Steinbrueggen, eds.). NATO Science Series, Marktoberdorf, Germany, IOS Press (2000) 39–60
10. Lowe, G.: An attack on the Needham-Schroeder public key authentication protocol. Information Processing

Letters56 (1995) 131–136
11. Gollmann, D.: What do we mean by Entity Authentication? In: Proc. IEEE Symposium on Security and

Privacy 1996, IEEE Computer Society (1996)
12. Monahan, B.: Introducing ASPECT - a tool for checking protocol security. Technical Report HPL-2002-246,

HP Labs (2002)http://www.hpl.hp.com/techreports/2002/HPL-2002-246.
13. M. Bellare, P. Rogaway: Entity authentication and key distribution. In: Advances in Cryptology - Crypto 93

(ed. D. Stinson). Volume 773 of LNCS., Springer (1993)
14. R. Cramer, V. Shoup: A practical public key cryptosystem provably secure against adaptive ciphertext attack.

In: Proc. of Advances in Cryptology - Crypto 98. Volume 1462 of LNCS., Springer (1998) 13–25
15. R.Cannetti, O.Goldreich, S.Halevi: The random oracle methodology, revisited (preliminary version). In: Proc.

30th Annual ACM Symp. On Theory of Computing, Perugia, Italy, ACM Press (1998) 209–218
16. R. Canetti, H. Krawczyk: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels.

In: Proc. of Eurocrypt 2001. Volume 2045 of LNCS., Springer (2001)
17. D. Dolev, A. Yao: On the security of public key protocols. Technical Report STAN-CS-81-854, Dept. of

Computer Science, Stanford University (1981) Also inTransactions on Information Theory, 29(2):198-208,
1983.

18. M. Burrows, M. Abadi, R. Needham: A logic of authentication. In: Proceedings of the Royal Society of
London A. Volume 426., Royal Society (1989) 233–271 Also publ. (condensed) in ACM Transactions on
Computer Systems, 8(1): 18-36, February 1990.

19. Paulson, L.C.: Inductive analysis of the Internet protocol TLS. ACM Transactions on Computer and System
Security2 (1999) 332–351

20. R. Anderson, R. Needham: Programming Satan’s Computer. In: Computer Science Today. Volume LNCS vol
1000., Springer (1995) 426–441http://www.cl.cam.ac.uk/ftp/users/rja14/satan.ps.gz.

21. H. Comon, V. Shmatikov: Is it possible to decide whether a cryptographic protocol is secure or not? To appear
in Journal of Telecommunications and Information Technology (2002)

22. N. A. Durgin, P. D. Lincoln, J. C. Mitchell, Scedrov, A.: Undecidability of bounded security protocols. Proc.
FLOC Workshop on Formal Methods in Security Protocols (1999)

23. Gollmann, D.: Mergers and Principals. In: Security Protocols, (ed. B. Christiansen et al.). Volume 2133 of
LNCS., Springer (2001) 5–13

24. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol using FDR. In: TACAS. Volume
1055 of LNCS., Springer-Verlag (1996) 147–166

25. P. Ryan, S. Schneider: Modelling and Analysis of Security Protocols. Addison-Wesley (2001)
26. M. Rusinowitch, M. Turuani: Protocol Insecurity with Finite Number of Sessions is NP-complete. In: Proc.

14th IEEE Computer Security Foundations Workshop, IEEE (2001) 174–187
27. J.K. Millen, Hai-Ping Ko: Narrowing Terminates for Encryption. In: 1996 IEEE Computer Society Computer

Security Foundations Workshop (CSFW9), County Kerry, Ireland, IEEE Computer Society Press (1996) 39–45
28. F. J. Thayer F´abrega, J. C. Herzog, J. D. Guttman: Strand Spaces: Proving Security Protocols Correct. Journal

of Computer Security7 (1999) 191–230
29. M. Abadi, A. Gordon: A calculus for cryptographic protocols: the Spi Calculus. Technical Report SRC-149,

DEC-SRC (1998)
30. Lowe, G.: Defining Information Flow. Technical Report 1999/3, Department of Mathematics and Computer

Science, University of Leicester (1999)
31. A. W. Roscoe, M.H. Goldsmith: What is intransitive non-interference? In: Proc. of 1999 IEEE Computer

Security Foundations Workshop, IEEE Computer Society Press (1999)
32. P.Y.A. Ryan, S. Schneider: Process algebra and non-interference. In: Proc. 1999 IEEE Computer Security

Foundations Workshop, Mordano, Italy, IEEE Press (1999)
33. Ryan, P.: A CSP formulation of non-interference. Cipher, IEEE Computer Society Press (1991) 19–27

34. Roscoe, A.W.: CSP and Determinism in Security Modelling. In: Proc. of 1995 IEEE Symposium on Security
and Privacy, IEEE Computer Society Press (1995) 114–127

35. T. Y. C. Woo, S. S. Lam: Verifying authentication protocols: Methodology and example. In: Proc. Int’l.
Conference on Network Protocols. (1993)

36. R. Focardi, R. Gorreri, F. Martinelli: Secrecy in Security Protocols as Non Interference. In: DERA/RHUL
Workshop on Secure Architectures and Information Flow (S. Schneider and P. Ryan ed.). Volume 32 of
Electronic Notes in Theoretical Computer Science., Elsevier, (1999)

37. J. Millen, V. Shmatikov: Constraint solving for bounded process cryptographic protocol analysis. In: Proc. 8th
ACM Conference on Computer and Communications Security, ACM (2001)

38. V. Cortier, J.K. Millen, H. Rueß: Proving Secrecy is Easy Enough. In: 14th IEEE Computer Security
Foundations Workshop (CSFW’01), Novia Scotia, Canada, IEEE Computer Society Press (2001) 97–109

39. H. Comon-Lundh, V. Cortier: Security properties: two agents are sufficient. In: Proc. 12th ESOP’2003.
Volume 2618 of LNCS., Warsaw, Poland, Springer (2003) 99–113

40. S. N. Foley: A Non-Functional Approach to System Integrity. IEEE Journal on Selected Areas in
Communications (2003)

41. F.Martinelli: Analysis of security protocols as open systems. TCS290(2003) 1057–1106
42. F. Martinelli: Symbolic Partial Model Checking for Security Analysis. In: Proc of MMM-ACNS 2003. LNCS,

St. Petersburg, Russia, Springer (2003)
43. M. Abadi: Secrecy by Typing in Security Protocols. Journal of the ACM46 (1999) 749–786
44. A.D.Gordon, A. Jeffrey: Types and effects for asymmetric cryptographic protocols. In: Proc. 15th IEEE

Computer Security Foundations Workshop (CSFW 2002), IEEE (2002) 77–91
45. A.D.Gordon, R. Pucella: Validating a web service security abstraction by typing. In: Proc. 2002 ACM

Workshop on XML Security, Fairfax VA, USA, ACM Press (2002)
46. C. Bodei, P. Degano, H. R. Nielson, F. Nielson: Static analysis for secrecy and noninterference in networks of

processes. In: Proc. PACT’01. Volume 2127 of LNCS., Springer (2001)
47. I. Cervesato, N. Durgin, J. C. Mitchell, P. Lincoln, A. Scedrov: Relating Strands and Multiset Rewriting for

Security Protocol Analysis. In: Proc. 15th IEEE Computer Security Foundations Workshop, IEEE (2000)
35–51

48. I. Cervesato: A Specification Language for Crypto-Protocols based on Multiset Rewriting Dependent Types
and Subsorting. In: Proc. of SAVE 2001, Paphos, Cyprus (2001)
http://www.disi.unige.it/person/DelzannoG/SAVE01/cer.ps.gz.

49. P.Y.A. Ryan: Mathematical Models of Computer Security. In: FOSAD 2000. Volume 2171 of LNCS., Springer
(2001) 1–62

50. P. Syverson, I. Cervesato: The Logic of Authentication Protocols. In: FOSAD 2000. Volume 2171 of LNCS.,
Springer (2001) 63–137

51. P. Samurati, S. de Capitani di Vimercati: Access Control: Policies, Models and Mechanism. In: FOSAD 2000.
Volume 2171 of LNCS., Springer (2001) 137–196

52. J. D. Guttman: Security Goals: Packet Trajectories and Strand Spaces. In: FOSAD 2000. Volume 2171 of
LNCS., Springer (2001) 197–261

53. A. D. Gordon: Notes on Nominal Calculi for Security and Mobility. In: FOSAD 2000. Volume 2171 of
LNCS., Springer (2001) 262–330

54. R. Focardi, R. Gorreri: Classification of Security Properties (Part 1: Information Flow). In: FOSAD 2000.
Volume 2171 of LNCS., Springer (2001) 331–396

55. M. Abadi, P. Rogaway: Reconciling Two Views of Cryptography (The Computational Soundness of Formal
Encryption). Journal of Cryptology15 (2002) 103–127

56. B. Pfitzmann, M. Waidner: A Model for Asynchronous Reactive Systems and its Application to Secure
Message Transmission. In: Proc. of IEEE Symposium on Security and Privacy, Oakland, California, IEEE
Computer Society Press (2001) 184–200

57. B. Pfitzmann, M. Schunter, M. Waidner: Cryptographic Security of Reactive Systems (Extended Abstract).
Electronic Notes in Theoretical Computer Science32 (2000)

58. J.D. Guttman, F.J.T.F.: Authentication tests and the structure of bundles. Theoretical Computer Science (2001)
59. F. Nielson, H.R. Nielson, C. Hankin: Principles of Program Analysis. Springer (1999)
60. D. Clark, C. Hankin, S. Hunt: Information flow for Algol-like languages. Journal of Computer Languages

(2002)
61. A. Sabelfeld, A. C. Myers: LanguageBased InformationFlow Security. IEEE Journal on selected areas in

Communications21 (2003)
62. G. Denker, J.K. Millen, H. Rueß: The CAPSL Integrated Protocol Environment. Technical Report

SRI-CSL-2000-02, SRI, Menlo Park, California, USA (2000)
63. G. Denker, J.Millen: CAPSL intermediate language. In: Proc. of FLoC Workshop on Formal Methods and

Security Protocols. (1999)
64. Bruns, G.: Distributed Systems Analysis with CCS. Prentice-Hall (1997)
65. G. Birtwistle, C. Tofts: Relating Operational and Denotational Descriptions of Demos. Simulation Practice and

Theory5 (1997) 1–33
66. F. Stajano, R. J. Anderson: The Cocaine Auction Protocol: On the Power of Anonymous Broadcast. In: Proc.

of 3rd Information Hiding Workshop, Dresden, Germany. LNCS, Springer (1999)
http://www-lce.eng.cam.ac.uk/ fms27/papers/cocaine.pdf.

A Appendix: A Systems Security Modelling Language

SSML is an experimental notation for expressing systems security designs and their properties. This
Appendix summarises and amplifies various details mentioned earlier in the paper. A simplified extract
from the full grammar is included below.

Types, Contexts and Fields

Types are conventional in that they constrain the range of values that expressions can denote. Contexts
consist of a collection of fields whose values may be constrained under some invariance . Examples can
be found in Fig 3 and 8. Contexts are used to provide both structured data types and state-spaces that are
associated with state-modifying events.

Each field is defined by two qualifiers, its type, its name and an optional initial value. The intention of
these qualifiers is given in more detail in the tables below.

Events

Events are state-based partial functions that can input a message or output a message (or both or neither).
They are associated with a context instance representing the state. On input, a message is read without
commitment and could either beaccepted, refused or rejected. Guard statements can be used to refuse
messages, allowing another event to run.Check statements can cause failure and message rejection.
Output messages are dispatched directly. Anonymous Broadcast is the communications model used and
is further explained below.

System Behaviour as Sets of Traces

System behaviour is defined in terms of sets of traces - where a trace is a sequence of events, state
transitions and accepted messages that are transferred between different partners. It is important to note
that the traces do not fully define the behaviour of any principal, but just defines relevant interactions
between principles.

Anonymous Broadcast Communications ModelThe Anonymous Broadcast communications model,
originally introduced by Stajano and Anderson in [66], essentially says that messages are sent and re-
ceived asynchronously, not involving a binary message handshake or rendezvous. The basic properties
of message transfer are in this model:

– Once a message is sent, it could be received later by anyone,

– Once a message is received, it has already been sent, but by anyone.

In other words, addressing information is advisory, but cannot be guaranteed from a security point of
view. Just because a message claims to have been sent by someone, it doesn’t mean that they necessarily
sent it. Equally, just because you send a message to someone, it doesn’t necessarily mean that only they
will see it.

We further assume that if Alice first sends m1, and then later sends m2, then if Bob receives both mes-
sages, then Bob will receive them in the order they were sent by Alice. This means that only “local”
send ordering is preserved on receipt. Naturally, this does not imply any other global temporal ordering
- only local temporal ordering. We also assume reliability of message sending in that any message sent
can be received eventually. Because we make no restrictions on who can receive a message once sent, we
assume implicitly that an “intended” recipient will see the message. From this we assume that attackers
cannot actively prevent messages from being received by the intended recipient.

We finally observe that, from a process theoretic point of view, we can assimilate the Anonymous Broad-
cast model in terms of primitive handshaking by postulating a universal process (called the Internet) that
accepts messages sent concurrently by processes, allowing then to be forwarded upon request to other
such processes. Although not particularly challenging, this idea can be made formally precise in terms of
well known process calculi such as CCS or CSP.

Partial grammar for System Security Modelling Language

context ::= ’context’ contextdefn 1 ... contextdefn n
contextdefn ::= id ’=’ contextexpr
contextexpr ::= ’unspecified’ ’;’ | ’�’ items constraint ’�’
constraint ::= empty | ’constraint’ expr ’;’

items ::= item 1 ... item n
item ::= itemclass itemdefn 1 ... itemdefn n
itemclass ::= ’fixed’ | ’volatile’ | ’persistent’
itemdefn ::= accessmod type id initvalue ’;’
accessmod ::= empty | ’visible’ | ’internal’ | ’secret’
initvalue ::= empty | ’=’ expr

event ::= ’event’ ’[’ statespec ’]’ id ’�’ inputpart outputpart ’�’
inputpart ::= empty | stmts ’input’ message ’;’
outputpart ::= stmts output
output ::= empty | ’output’ message ’;’
stmts ::= empty | stmt 1 ’;’ ... ’;’ stmt n ’;’
stmt ::= vdeclstmt | patstmt | checkstmt | guardstmt | methodcall
patstmt ::= pattern ’=’ expr
checkstmt ::= ’check’ expr
guardstmt ::= ’guard’ expr
vdeclstmt ::= simptype id 1 ’,’ ... ’,’ id n initvalue

system ::= ’system’ id ’(’ statespecs ’)’ ’�’ tracedefns sysdefn ’�’
tracedefns ::= empty | ’trace’ tracedefn 1 ... tracedefn n
tracedefn ::= id ’=’ trace expr ’;’
sysdefn ::= initpred trace expr acceptpred
initpred ::= empty | ‘init‘ expr ’;’
acceptpred ::= empty | ‘accept‘ expr ’;’

Lifetime qualifiers
fixed The variable’s value is long-lived and once defined, remains effectively con-

stant. Its value is not changed once defined (c.f.static, final in Java). It may be
assumed to have been well-defined in some way prior to system runs.In prac-
tice, these might be changed/modified - but so infrequently when compared to
the frequency of system runs.

In practice, these might be changed/modified - but so infrequently when com-
pared to the frequency of system runs.

volatile The variable’s value is short-lived and should befreshly (re-)initialised within
each run of the system before first use. However, its value will persist from
event to event inside a system run.

persistent The variable’s value is long-lived, it can be changed/modified within events.
Like fixed variables, it may be assumed to have been well-defined in some
way prior to system runs.

Accessibility qualifiers
visible The variable’s value is visible to external observers. It is usually important that

its value be highly available - it should be widely disseminated and published.

internal The variable’s value is regarded as internal and unavailable to external ob-
servers.

Such a variable is only accessable from within a “live” executing event or
method - it’s static value isundef.

internal The variable’s value is regarded as internal and unavailable to external ob-
servers. Additionally, this value cannot be assigned, passed as an argument
or used in any expression context, except by a specific crypto operation (e.g.
encryption, signing).

As for internal variables, such a variable is only accessable from within a
“live” executing event or method - it’s static value isundef.

Cryptographic Expressions
encrypt ������� with ��� Encrypt the message with the given encryption key.

We assume that labels indicating the appropriate al-
gorithm and the cryptographic scheme (i.e. asym-
metric vs symmetric) to use are all embedded within
the key data.

decrypt ������� with ��� Decrypt the message with the given decryption key.
We assume that labels indicating the appropriate al-
gorithm and the cryptographic scheme (i.e. asym-
metric vs symmetric) to use are all embedded within
the key data.

sign������� with ��� Construct a digital signature for the given data using
the given signature key.

verify ��������� �	�
����� with ��� Verify the given digital signature for the given mes-
sage against the given signature verification key.

���� keypair ���� The key-pair relation for given keys, where the key
data contains label information indicating the appro-
priate cryptographic scheme.

hash������� Standard cryptographic hash of given message.

hmac������� with ��� Key-dependent cryptographic hash of message using
a hashing key.

