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ABSTRACT  
The new Semantic Web recommendations for RDF, RDFS and 
OWL have, at their heart, the RDF graph. Jena2, a second-
generation RDF toolkit, is similarly centered on the RDF graph. 
RDFS and OWL reasoning are seen as graph-to-graph transforms, 
producing graphs of virtual triples. Rich APIs are provided. The 
Model API includes support for other aspects of the RDF 
recommendations, such as containers and reification. The 
Ontology API includes support for RDFS and OWL, including 
advanced OWL Full support. Jena includes the de facto reference 
RDF/XML parser, and provides RDF/XML output using the full 
range of the rich RDF/XML grammar. N3 I/O is supported. RDF 
graphs can be stored in-memory or in databases. Jena’s query 
language, RDQL, and the Web API are both offered for the next 
round of standardization. 

Categories and Subject Descriptors 
To find the list of ACM’s categories & descriptors, see: 
http://www.acm.org/class/1998/ 

General Terms 
Algorithms, Standardization, Languages. 

Keywords 
Keywords are your own designated keywords. 

1. INTRODUCTION 
The new recommendations for the Resource Description 
Framework (RDF) and the Web Ontology Language (OWL) have 
just been published1. They provide a simple triple based 
representation of knowledge, with formal semantics allowing for 
automated inference. RDFS and OWL also provide some useful 
vocabulary, particularly for building schema and ontologies. 
Jena is a leading Semantic Web programmers’ toolkit [22].  
The heart of the Semantic Web recommendations is the RDF 
Graph [20], as a universal data structure. An RDF graph is simply 
a set of triples. Jena similarly has the Graph as its core interface 
around which the other components are built. 
This paper presents Jena2, concentrating on the key architectural 
and design principles. 
The two key architectural goals of Jena2 are: 
• Multiple, flexible presentations of RDF graphs to the 

application programmer. This allows easy access to, and 
manipulation of, data in graphs enabling the application 
programmer to navigate the triple structure. Particularly, the 
Model API presents the graph using the terms and concepts 
from the RDF recommendations, and the Ontology API presents 
the graph using concepts from OWL and RDFS. 

                                                                 
1 Note to referees, we hope this will be true by the time we need 

the final copy! 

• A simple minimalist view of the RDF graph to the system 
programmer wishing to expose data as triples. This is 
particularly useful for exposing RDFS and OWL reasoning. 

The first is layered on top of the second, so that essentially any 
triple source can back any presentation API. Triple sources may 
be materialized, for example database or in-memory triple stores, 
or virtual, for example resulting from inference processes applied 
to other triple sources. This provides a general view mechanism 
using view definitions in Java. 
A Semantic Web query language RDQL [25] is supported, and 
can be used either on top of materialized graphs, or on the virtual 
results of RDFS or OWL reasoning. 
A third presentation interface, the RDF WebAPI [32], provides 
query-based access to RDF graphs to web clients. This query-
based access is also available at both the system and application 
programmer interfaces, and acts as a further unifying theme of the 
architecture. Queries from all levels are passed to relational 
databases as SQL, and are hence visible to the SQL optimizer.  
This paper starts with an overview of Jena and its architecture, 
and then details those parts of the system with greatest 
architectural significance. 

1.1 The Semantic Web Standards 
The RDF abstract syntax [20] provides triples as a universal data 
structure. The vocabulary [8] from RDF and RDFS provide a core 
set of properties and classes to use with these triples. These triples 
can be serialized as RDF/XML [5]. The formal meaning [16] of 
these triples and of the vocabulary permits entailments to be 
drawn. 
The RDF Schema vocabulary permits the definition of new 
classes and properties to be used in the graph. These are 
augmented by the Web Ontology Language (OWL) [12].  
OWL provides three levels: OWL Lite, OWL DL and OWL Full. 
OWL Full is the most expressive. OWL Lite is easiest to address 
with complete reasoning services (which are not possible for 
OWL Full). These levels are differentiated syntactically [26]. Two 
compatible semantics are provided, one for OWL Full the other 
OWL DL. 
OWL Full builds on top of RDF, being a semantic extension. 
OWL DL’s abstract syntax is mapped into RDF as the exchange 
language. 
The next round of Semantic Web standardization is likely to work 
on query languages, and possibly Web APIs for the Semantic 
Web. 

1.2 What is Jena? 
Jena1 was first released in 2000 and has had over 5,000 
downloads. Jena2 was released in August 2003; and has had over 
3,500 downloads. 
The main contribution of Jena1 [22] is the rich Model2 API for 
manipulating RDF graphs. Around this API, Jena1 provides 
various tools, for example: an RDF/XML parser [10]; a query 
                                                                 
2 The term “Model” is taken from the original RDF Model & 

Syntax Recommendation [16], meaning data model. 



language [25]; further I/O modules for N3 [7] and N-triple [13] 
and RDF/XML output [9]. Using the API the user can choose to 
store RDF graphs in memory or in persistent stores. Jena1 
provides an additional API for manipulating DAML+OIL [33]. 
Jena2 provides additional functionality for general developers to 
support RDFS and OWL [12]. There are new APIs for accessing 
ontologies and processing vocabularies. Jena2 also offers two new 
extension points to system programmers. The first allows the 
development of new presentation APIs for new functionality to 
developers. The second allows the development of new triple 
sources, particularly of virtual triples that are generated 
dynamically as a result of some processing, such as inference or 
access to legacy data sources. Inference following the RDF 
semantics [16] and the OWL semantics [26] is provided.  

2. JENA2 ARCHITECTURE OVERVIEW  
The heart of the Jena2 architecture is the RDF graph, a set of 
triples of nodes. This is shown in the Graph layer (see figure 1). 
This layer, following the RDF abstract syntax, is minimal by 
design: wherever possible functionality is done in other layers. 
This permits a range of implementations of this layer such as in-
memory or persistence triple stores. 
The EnhGraph layer is the extension point on which to build 
APIs: within Jena2 the functionality offered by the EnhGraph 
layer is used to implement the Jena1 Model API and the new 
Ontology functionality for OWL and RDFS, upgrading the Jena1 
DAML API. 
I/O is done in the Model layer, essentially for historical reasons.  
The Jena2 architecture supports fast path query that goes all the 
way through the layers from RDQL at the top right through to an 
SQL database at the bottom, allowing user queries to be optimized 
by the SQL query optimizer. 
We give some more detail on the three layers below. 

2.1 The Graph Layer: Triples as the 
Universal Data Structure 
The Graph layer is based on the RDF Abstract Syntax [20]. It is 
straightforward to implement: 
• triple stores, both in memory and backed by persistent storage; 
• read-only views of non-triple data as triples, such as data read 

from a computer file system hierarchy, or scraped from a web 
page; 

• virtual triples corresponding to the results of inference processes 
over some further set of triples as premises. 

Implementations of the Graph layer provided with Jena2 give a 
variety of concrete (materialized) triple stores, and some built-in 
inference: specifically for RDFS and for a subset of OWL. 
 

2.2 The Model Layer: Views for Application 
Programmers 
Jena2 maintains the Model API from Jena1 as the primary 
abstraction of the RDF graph used by the application programmer. 
This gives a much richer set of methods for operating on both the 
graph itself (the Model  interface) and the nodes within the graph 
(the Resource  interface and its subclasses). 
Further, the DAML API is updated and enhanced in Jena2 to form 
an Ontology API that can be realized as a DAML API or an OWL 
API. 

2.3 The EnhGraph Layer:  
Multiple Simultaneous Views 
Both the Model and the Ontology layers lie on top of the Graph 
layer via an intermediate layer: the EnhGraph layer. 
This provides an extension point for providing views of graphs, 
and views of nodes within a graph. This generalizes the needs of 
both the Model and the Ontology APIs, and, significantly, makes 
the design decision that such presentation layers must be stateless: 
all state is kept within the graph. (Caching of state is permitted by 
the presentation layers).The EnhGraph layer is designed to permit 
multiple views of graphs and nodes which can be used 
simultaneously. Java’s single inheritance model is sidestepped to 
provide polymorphic objects within the EnhGraph layer. This 
allows the multiple inheritance and typing of RDFS to be 
reflected in Java. 

3. THE GRAPH SPI 
Jena’s implementation of RDF’s abstract syntax [20] is the Graph 
SPI (System Programmer Interface), through which the triples of 
all Jena graphs are accessed.  

3.1 Overview 
The Graph layer defines an interface representing RDF graphs. 
The design goals for the Graph layer include: 
• allowing collections of triples to be queried and updated 

efficiently. In particular, querying triples held in databases 
should be able to exploit the underlying database engine. 

• being easy to reimplement, so that new triple collections can 
be represented by Graphs with minimal programming effort. 

• supporting some specialist operations from the Model API 
when these cannot be easily constructed from the base 
functionality, in particular, reification is one such operation. 

The elements within a Graph  are Triple s; each Triple  
comprises three Nodes, the subject, predicate, and object fields. A 
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Figure. 1.  The Jena2 Architecture 



Node represents the RDF notion of a URI label, a blank node3, or 
a literal; there are also two variable nodes, for named variables 
and ANY , a match-anything wildcard, for use in the Query  
interface. 
The RDF restriction that a literal can only appear as an object, and 
that a property can only be labelled with a URI is enforced by 
Jena in the Model layer and not in the Graph layer. 
Two implementations of the Graph layer are an in-memory triple 
store and relational database (RDB) triple stores. 
The core Graph  interface supports modification (add and delete 
triples) and access (test if a triple is present or list all triples 
present matching some pattern). Graph  implementations are free 
to restrict the particular triples they regard as legal and to restrict 
mutability – this is reflected through the use of Java exceptions.  
The most significant part of the core Graph  interface is the find  
operation. The primitive find(Node S,Node P,Node O)  
delivers an iterator over all the  triples of the Graph  which 
"match" the triple (S, P, O) . To "match" means to be equal to 
or for the S/P/O node to be ANY .�This allows the Graph  to be 
queried for e.g. all the properties of some particular subject, all 
the predicates with some particular object, or indeed all the triples 
in the Graph . This is the extensibility point that the inference 
engines and Graph  combinators use for generating virtualized 
triples.  

3.2 Fast Path Query 
One of the goals of the Graph layer is to allow queries to be 
expressed which can exploit underlying efficient query engines, 
and which can return different kinds of results - variable bindings 
or subgraphs, for example.  
Rather than add many operations to Graph  itself, each Graph  
has an associated query handler which manages the more complex 
queries. A standard simple query handler is provided which 
implements the complex queries in terms of the find  primitive 
for Graph s not offering more efficient possibilities. 
A Query  consists of a collection of triple patterns to be matched 
against some Graph s. A triple pattern is a Triple  that may 
contain the extended ANY  and Variable nodes mentioned above. 
So a subgraph might contain 

    (?x P ?y) (?y Q ?z) 

to request all the bindings for ?x, ?y, and ?z for which matching 
triples can be found in the Graph . The subgraph can be executed 
so as to find either, all possible bindings of the variables or to 
return4 the minimal matching subgraph. 
Jena's memory-based Graph  model simply implements the triple 
pattern matches by iterating over the Graph  using find . The 
RDB-based Graph s instead compile the query into SQL4 to be 
submitted to the database query engine. 
The query handling operates over all the triples expressed by the 
Graph , however they are generated - as base assertions or as 
inferred consequences.  
RDQL [25] uses this interface to do the non-constraint parts of its 
query handling. 

3.3 Reification 
RDF Model & Syntax [21] suggests making statements about 
statements by means of reification: i.e. representing the original 
triple as four triples forming what is known as a reification quad.  
                                                                 
3 Also known as an anonymous resource, or a bnode. 
4 Feature under development. 

The new RDF recommendations clarify that the reification syntax 
does not completely achieve these goals, but continue to 
recommend the use of reification for provenance. This is in 
keeping with the practice of those Jena users who use reification 
heavily, to be able to add metadata to triples.  
An important optimization is to be able to treat reification quads 
efficiently. This API-layer notion is reflected down into the 
Graph  interface. 
Jena provides an API notion of a ReifiedStatement  that 
encodes a statement in a model as a reification quad.  
Each Graph  has an associated Reifier  that is responsible for 
storing reified Triple s. (This separation into a separate interface 
and implementation keeps the Graph  interface uncluttered and 
allows different Graph  implementations to share code.) 
ReifiedStatement s may be created by a single API call; thus 
users who explicitly reify many Statements need not pay a large 
cost in reification quads. 
A Graph  implementation may choose how it makes reification 
visible by picking a reification style. The default style, 
Standard , is intended to conform to the RDF standard: the 
quads of reified statements are visible to the find  primitive and 
to queries. The style Convenient  suppresses all reification-
quad parts in query results and is compatible with the behaviour 
of Jena 1. The style Minimal  is useful for internal Graph s for 
which reification is irrelevant. 

3.4 Other Details of the Graph Layer 
Datatypes. The requirements of RDF manipulation of typed 
literals [16] differ from the Java norms. The same semantic value 
can have multiple RDF representations (e.g. 1^^xsd:int  and 
1^^xsd:short ). One is initially tempted to arrange the Java 
equality operation on Literal s to take this value mapping into 
account. However, this interferes with the use of Literal s in 
indexed collections. Instead we introduced a separate notion of 
sameValueAs  and arrange that searches on Graph s default to 
using this notion of equivalence in preference to Java equality. 
Size. Graph s are sets of triples; a set naturally has a size 
(possibly infinite). However, with the notion of inferencing 
Graph s, implementing size is tricky and its behaviour non-
obvious. While Jena Graph s have a size  method, its meaning is 
unclear. 
Transactions. Jena Graph s may support transactions such that 
changes to a Graph  may be committed or abandoned. At present 
only RDB-based models offer this capability.  
Bulk Update. If needed triples may be added to or removed en 
masse rather than one at a time for efficiency reasons, e.g. for 
initialising a database.  

4. ADDING APIS 
Within the Graph layer, it is easy to provide triples. However, it is 
not easy to work with them at the application level (see [22]). 
Thus Jena includes an API to act as a presentation layer above the 
raw Graph, this is the Model API.  
This provides programming abstractions for the RDF graph which 
align with the abstractions found in the RDF Vocabulary [8]. 
A key abstraction in the Model API is the Resource . This 
corresponds with rdfs:Resource. This is a URIref or blank 
node seen as part of a graph. This is not merely a node but the 
collection of facts about that node in a particular RDF graph. 
From the point of view of the recommendations, a Resource 



provides a view not of the node, which is merely a URIref, but of 
its interpretation within an RDF graph.5 
Sometimes it is useful at the application level to view and 
manipulate a Resource  with a richer set of primitives based on 
extended functionality reflecting some aspect of its interpretation 
in a particular graph. For example, if a URIref is known to have 
type rdf:Bag, then viewing the corresponding Resource  as a 
Bag allows easier access to its members without having to 
explicit access the rdf:_1, rdf:_2 … triples. In this way we find 
direct support for RDF containers, as defined by the RDF 
Vocabulary, within the Model layer. Similar API classes and 
methods are provide in support of the RDF reification vocabulary, 
which is implemented using the reification primitives in the graph 
layer (see section 3.3). 
The Model layer is shown in figure 1, along with an alternative 
presentation layer: the Ontology layer. In the Ontology layer we 
find explicit support for the concepts from RDF Schema and 
OWL. Ontology support adds many additional views of a URIref 
node within a particular graph, e.g. as an OntClass , as a 
CardinalityRestriction  etc. The functionality of the 
Model layer has previously been published, for example [22]; the 
Ontology layer is described below (section 9). 

4.1 The Enhanced Graph Layer 
Jena2 does not attempt to present one consolidated presentation 
API onto an RDF graph. A consolidated API might be one in 
which a URIref with rdf:type  of owl:ObjectProperty  
would be realized as a Java Object of class ObjectProperty , 
which would implement all the interfaces that were appropriate, 
and inherit from some appropriate superclass. There is no 
obviously correct class hierarchy for the different concepts within 
the Model API and Ontology API. Moreover choosing which view 
to take of a particular URIref in the graph tends to make a closed 
world assumption: this resource is an RDFS class; later 
information may cause us to reconsider. A direct mapping of the 
class hierarchy of RDF onto that of Java would thus be a mistake.  
To address this issue a framework for using many different 
presentation layers is provided, with two built-in instantiations, 
the Model API and the Ontology Model API.  

4.1.1 Presentation Layers and Personalities 
Each presentation layer consists of some interfaces and some 
implementation classes, and a mapping from interfaces to factory 
methods that invoke the implementation classes. This mapping is 
known as the Personality  of the presentation layer. These 
presentation layers are stateless. All state is stored in Graph s. 
The implementation classes either extend EnhGraph  or 
EnhNode. EnhGraph  is a simple wrapper around a Graph , 
with a pointer to the Personality . EnhNode is a wrapper 
around a Node, with an additional field pointing to an 
EnhGraph . This is the context in which the EnhNode is seen. 
For example, Model  extends EnhGraph , and Resource  
extends EnhNode. 
Each subclass of EnhGraph  provides a set of operations that can 
be performed on a Graph . Thus an instance acts as a view of a 
Graph .  
Each subclass of EnhNode provides a set of operations that can 
be performed on a Node in a Graph . Thus an instance acts as a 

                                                                 
5 The interpretation according to the RDFS semantics requires is 

only reflected when an RDFS reasoner is used, see section 5. 

view of a Node in a specific Graph . It is often appropriate to 
take different views of the same Node. 

4.1.2 Polymorphism  
RDFS permits any resource to have multiple types, which may or 
may not be related. rdfs:subClassOf  can be used to express 
multiple inheritance and not just a simple hierarchy. In contrast, 
Java objects have a single Java class, from a tree of classes with 
single inheritance. Jena2 implements polymorphic resources to 
model within Java the RDFS style of multiple typing. 
Given a Node or an EnhNode it is always possible to use the 
factory methods in the Personality  to create a view (an 
instance of a subclass of EnhNode) of the Node that implements 
a particular interface. The constraint that these EnhNodes are 
stateless ensures that it is always safe to create more than one 
identical EnhNode. It also permits caching of EnhNodes for 
performance reasons. Thus a key method on an EnhNode is 
as(interface) , which returns a view of that Node which 
implements the given interface. If the desired result is not in a 
simple cache, then the view is created using the factory methods 
found in the Personality . 
This method as  is used while implementing a presentation API 
such as the Model or the Ontology layer as part of an extended 
casting idiom e.g. 
(OntClass) ontProp.as(OntClass.class); 

This is particularly useful for implementing OWL Full [27], in 
which there is no separation of vocabulary.  

4.2 User defined Presentation APIs 
Applications may well want to have their own specialized views 
of Resource s. Within the Jena2 architecture these views can be 
generated from an RDF Schema or an OWL Ontology and 
incorporated within the overall framework. That is, while the 
figure shows two instantiations of the top layer, other 
instantiations can be added. 

5. INPUT/OUTPUT 
The de facto reference parser for RDF/XML [5] is part of Jena. 
This is used at the W3C RDF validator site. 
Jena I/O is provided at the Model layer. The basic primitives are 
to read and write models, in a choice of Semantic Web languages. 
The languages supported are RDF/XML [5], N3 [7] and N-Triple 
[13].  

5.1 Parsing RDF/XML 
The RDF/XML parser uses Xerces to parse the XML, and 
validates the RDF input against a range of standards incorporated 
by reference into RDF/XML. Specifically, input is checked for 
conformance with RFC 2396 (URIs), RFC 3066 (languages, 
including ISO 601 and ISO 3166 checking), and the W3C 
Character Model. 
The parser architecture, described in [10], cleanly separates the 
RDF processing and the XML processing, which has permitted 
the parser to closely track the revised RDF/XML working drafts 
as they evolved to the new Recommendation. 
In Jena2, the realization of that architecture has been improved, 
using Xerces in pull-parsing mode, which permits the co-routine 
architecture to be realized in a single Java thread, rather than two 
threads (for the XML parser and the RDF parser) as in Jena1. 

5.2 Unparsing RDF/XML 
RDF/XML output can be performed either in a basic mode, which 
is preferred for large files, or in a pretty writer mode. The former 
groups the triples of the graph by subject and then writes each 



triple using a simple property element. This does not use the 
striped syntax. The abbreviations provided in RDF/XML are not 
utilized. 
The pretty writer format, intended more when the output may be 
seen by people, is significantly more expensive, and uses all the 
productions in the revised syntax. Striping, as described in the 
recommendation [5], is the default. One of the options to control 
the output switches off rules as specified in the revised syntax. 
This option takes as an argument the URL references of the 
productions which are not to be used: e.g. 

RDFWriter w = m.getWriter(“RDF/XML-ABBREV”); 
String rdfSyntax =  
   “http://www.w3.org/TR/rdf-syntax-grammar”; 
w.setProperty(“blockRules”, 
   rdfSyntax+”#idAttr,”+ 
   rdfSyntax+”#parseTypeCollectionPropertyElt”); 

The URL references used link directly into the W3C rec., tying 
the software behaviour with the formal specification.  
Since, as described in [9], the code closely follows the formal 
grammar in the recommendation, it is straightforward to provide 
this behaviour which can be understood by the users in terms of 
that grammar. 

6. INFERENCE SUPPORT  
The treatment of schema and ontologies in the formal semantics of 
both RDF [16] and OWL [26] makes it clear that entailment is a 
core feature of the Semantic Web recommendations. This is also 
reflected in the hundreds of entailments tests provided [11], [13]. 
Jena supports this by giving access to a range of inference 
capabilities. A core set of such capabilities are available “out of 
the box”, particularly RDFS inference, and OWL inference 
(supporting the subset of OWL Full, roughly corresponding to the 
union of OWL Lite and RDFS); whilst the architecture permits 
plug-in connections to engines being developed by the wider 
community, such as Racer [15], FaCT [18] and the Java Theorem 
Prover [14]. It is planned that using such plug-ins complete OWL 
Lite and improved OWL DL reasoning will be supported. 
The design center for Jena2’s inference API is to enable 
applications to access RDF data that has been enriched by 
additional assertions entailed from a set of relevant ontologies – 
that is we emphasize Abox queries over Tbox queries [2]. This 
bias influences our choice of API, architecture and inference 
engines. 

6.1 Inference access API and architecture 
In Jena2, inference engines are structured as Graph  combinators 
called Reasoner s. An instance of a Reasoner  combines one 
or more RDF Graphs and exposes the entailments from them as 
another RDF Graph in which some of the retrievable triples are 
virtual entailments rather than materialized data (see figure 2). 
The input Graph s contain both the ontology and instance data, 
with optional separation between the two. In particular, it is 
possible to partially-bind a Reasoner  to an ontology and then 
use the resulting specialized Reasoner  to access multiple 
different data Graph s – reusing the ontology inferences. 
This layering offers great flexibility. For example, an OWL Lite 
Reasoner  can be stacked on top of an RDFS Reasoner  with 
the latter being used to infer the type statements required by the 
OWL Lite syntax but deducible from the domain/range 
declarations of the OWL Lite properties. An RDQL query can be 
issued to an inferred Graph , just like any other Graph , thus 
allowing query over the entailments. For instance an inferred 
RDFS graph can be used by RDQL to do schema directed queries, 
and hence have functionality more like RQL [19], without any 

additional query syntax, and with better alignment with the RDF 
recommendation. 
Different APIs can be bound to the inferred Graph  allowing the 
results to be viewed at the RDF level or though the convenience 
ontology API. 

 

Figure 2.  The inference API layering 

Many entailments are easily accessible through the Graph or 
Model APIs in this way. For example finding all instances of a 
given class is a simple triple query: 

(?x rdf:type C) 

where C is a Node representing an rdfs:Class  in the ontology 
Graph  (and can be either a bnode or a named class). 
There are several limitations of this API approach that we had to 
address.  
First, arbitrary class expressions introduced by the comprehension 
axioms of OWL [27] are not directly supported. We addressed the 
same requirement by extending the find  operation to take an 
optional parameter, for additional premises. This parameter is a 
Graph  containing expressions whose Nodes can be used within 
the query triples; the intended use is with expressions known to be 
valid from the comprehension axioms.  
Second, for transitive relations it is often convenient to be able to 
query the direct (or minimal) as well as the transitively closed 
version of the relations. We handle this by introducing additional 
RDF properties to represent the direct version of any transitive 
property. This style of extension, introducing additional RDF 
properties to represent inferable relationships, makes the triple-
based API very flexible. 
Thirdly, to give convenient access to consistency information we 
added a validate  method which returns a report containing a 
list of all warnings or errors identified within the Graph . This is 
more convenient than the property introduction technique, in this 
case, because validity reports may need to refer to statements or 
groups of statements and not simply to Nodes. 

6.2 Built-in reasoners 
As part of the default distribution we include a selection of 
inference engines, which conform to this architecture. 
Transitive Reasoner. This reasoner provides the transitive 

closure of the rdfs:subClassOf and 
rdfs:subPropertyOf  relationships contained in the source 
graphs, dealing correctly with cases such as declaring sub-
properties of the rdfs:subClassOf  property. This 
relatively simple functionality corresponds quite closely to the 
hard coded inference implemented by the Jena1 DAML+OIL 
API, enabling applications to make similar queries in Jena2 
with similar performance without needing to invoke more 
sophisticated inference engines. 

RDFS Reasoner. This provides an implementation of the RDFS 
closure rules [16]. It strikes a balance between eager and lazy 
processing. The sub-class and sub-property lattices are cached 



using an embedded TransitiveReasoner . Each domain, 
range, sub-property and sub-class declaration is eagerly 
translated into a single query rewrite rule. The result of a query 
to the graph will be the union of the results from applying the 
query plus all the rewritten versions of the query to the 
underlying graphs. 

Rubrik 6 Reasoner. This reasoner supports rule based RDF 
inferences. Rule clauses are either extended triple patterns or 
procedural callouts to primitives defined in Java. The triple 
patterns are extended in the sense that the objects of the triple 
can be functor-like data structures.  This allows rule authors to 
control the combinatorics of graph pattern matching by having 
one rule map a subgraph pattern into compact data structure and 
later rules fire off that data structure. Both forward chaining and 
memoized backward chaining rule engines are provided, with 
some hybridization in that forward rules are able to create and 
install new backward rules.  
These rule engines may be used with application-specific rule 
sets or with prepackaged rule sets for RDFS and for the OWL 
Lite subset of OWL Full. The rule-based approach corresponds 
well to our emphasis on ABox reasoning, indeed we handle 
class-subsumption checking by introducing prototypical 
instances of classes and letting the instance rules determine the 
other type labels for the prototype. 

In addition to these inference engines we have found it useful to 
provide a set of operators (union, multi-union, intersection, 
difference, delta) for combining data Graph s.  

6.3 External reasoners 
By using such a generic, triple-based, interface onto inference 
results it becomes possible to expose the capability of a wide 
range of reasoning engines through the same API. We enhance 
this flexibility by providing a ReasonerRegistry  in which 
available reasoners can be registered along with an identifying 
URI and a reasoner capability description (expressed in RDF). In 
this way applications can be made somewhat independent of the 
particular inference engine being used. 
We intend to construct adaptors for several openly available 
reasoners, to enable their use from within Jena. 

7. RDQL – RDF QUERY 
RDQL (RDF Data Query Language) was pioneered in Jena1. The 
Jena implementation is the de facto reference implementation. A 
full description is found in [30], the original paper is [25]. 
An RDQL consists of a graph pattern, expressed as a list of triple 
patterns.  Each triple pattern is comprised of named variables and 
RDF values (URIs and literals).  An RDQL query can additionally 
have a set of constraints on the values of those variables, and a list 
of the variables required in the answer set. 

SELECT ?x 
WHERE (?x,   
<http:// www.w3.org/1999/02/22-rdf-syntax-ns# type>, 
<http://example.com/someType>)  

This triple pattern matches all statements in the graph that have 
predicate http://www.w3.org/1999/02/22-rdf-syntax-

ns#type  and object http://example.com/someType .  The 
variable "?x" will be bound to the label of the subject resource.  
All such "x" are returned 
An RDQL query treats an RDF graph purely as data. If the 
implementation of that graph provides inferencing to appear as 

                                                                 
6 RDF basic rule inference kit. 

"virtual triples" (i.e. triples that appear in the graph but are not in 
the ground facts) then an RDQL will include those triples as 
possible matches in triple patterns. RDQL makes no distinction 
between inferred triples and ground triples. 
The next phase of the Semantic Web activity by the W3C is likely 
to address RDF query. We hope that this work will take our 
positive experinces with RDQL into account. Jena’s RDQL 
implementation will evolve as a result of the new work at the 
W3C. 

8. PERSISTENT STORAGE  
As in Jena1, the database subsystem in Jena2 supports persistent 
storage of RDF Models in a conventional database [29]. 
Implemented at the Graph layer, it provides all the usual Graph 
operations (add, delete, find) and efficiently supports reification. 

8.1 Denormalized Schema 
Jena2 stores each triple either in a general purpose triple table or a 
property table, for a specific property. 
The schema trades-off space for time. It uses a denormalized 
schema in which resource URIs and simple literal values are 
stored directly in the triple table. A separate literals table is used 
only to store literal values whose length exceeds a threshold or 
that are typed or have a language tag. This makes it possible to 
process a large class of queries without a join. However, a 
denormalized schema uses more database space because the same 
value (literal or URI) is stored repeatedly.  
The increase in database space consumption is addressed in 
several ways. First, common prefixes in URIs, such as 
namespaces, are stored in a separate table and the prefix in the 
URI is replaced by a reference. This prefix table will be cacheable 
in memory so expanding a prefix does not require a database join. 
Second, a literals table is used so that long literals are stored only 
once. Third, Jena2 supports property tables as described below.  
Property tables offer a modest reduction in space consumption in 
that the property URI is not stored. 

8.2 Configuration 
Configuration parameters are specified as RDF statements in a 
memory model that is passed as an argument when creating a new 
persistent model. Jena2 includes default models containing the 
default configuration parameters for all supported databases. 
Specifying configurations in RDF makes configurations easy to 
search, share and re-use since they can be manipulated with Jena’s 
existing operations.  

8.3 Property Tables 
A property table (also known as attribute tables [1]) holds 
statements for a specific property. They are stored as subject-value 
pairs in a separate table. Triple tables and property tables are 
disjoint - a statement is only stored once. For properties with a 
maximum cardinality of one, it is possible to cluster multiple 
properties together in a single table. A single row of the table 
stores property values for a common subject. For example, a 
Dublin Core [6] property table might store dc:title , 
dc:publisher , dc:description . 
Multi-valued properties, e.g., dc:creator , cannot be clustered 
and must be stored in separate tables. Note that if the datatype of 
the object value is known, it may be possible7 to make the 
underlying database column for the value match the property type.  

                                                                 
7 Not all XSD types correspond to an SQL datatype. 



A property class table is a special kind of property table that 
stores properties associated with a particular class and also 
records all instances of that class. Each property must have the 
class as its domain. Jena2 implements reification as a property 
class table. The properties are rdf:subject , 
rdf:predicate , rdf:object  and the class is constrained to 
be rdf:Statement . The subject of the property class table is 
the URI that reifies the statement.  

8.4 Query Processing 
Queries are executed against graphs which may have multiple 
statement tables. For each statement table there is a handler to 
convert between the graph view of Jena and the tuple view of 
SQL. To evaluate a triple pattern, the query processor passes the 
pattern, in turn, to each table handler for evaluation.  
A goal of Jena2 is support for fast path query processing for 
RDQL (see section 3.2). In Jena1, an RDQL query is converted 
into a pipeline of triple pattern queries. This is evaluated in a 
nested-loops fashion in Java by using the results of one triple 
pattern to bind values to variables and then generating new triple 
patterns for evaluation. The goal of fast path query processing is 
to use the database engine to move more of this processing to the 
database engine. 
A full discussion of fast path query processing is beyond the 
scope of the paper. Here, we present two simple cases and 
mention the difficulties for the general case. For the first simple 
case, assume that all the triple patterns reference only the triple 
table. As mentioned above, a single triple pattern can be 
completely evaluated over a table by a single SQL query. To 
evaluate multiple patterns in the database engine, it is sufficient to 
combine the SQL statements for the individual patterns and add 
additional join conditions for the linking variables. 
The second simple case is when all patterns can be completely 
evaluated by a single property table. This is similar to the first 
case. However, here it may be possible to eliminate joins if the 
patterns reference properties stored together (since the property 
values for the same subject are stored in the same row).  
When the triple patterns for a query apply to multiple tables, it is 
more difficult to construct a single SQL query to satisfy all 
patterns. The Jena1 nested-loops approach is applied in this case. 
We are currently investigating optimized solutions for the general 
case. 

9. ONTOLOGY SUPPORT  
Since Jena is, at heart, an RDF platform, we restrict ourselves to 
ontology formalisms built on top of RDF. Specifically this means 
RDFS [8], the varieties of OWL [12] and DAML+OIL [33].  
While OWL builds on top of the RDF specifications, it is possible 
to treat OWL as a separate language in its own right, and not 
something that is built on an RDF foundation, see for example the 
OWL API [3], which merely uses RDF as a serialisation syntax; 
the RDF-centric view treats RDF triples as the core of the OWL 
formalism. While both views are valid, in Jena we take the RDF-
centric view. As such, the ontology support within Jena addresses 
OWL Full features that are not present in OWL DL: e.g. the 
ability to use a single URIref to denote a class, a property and a 
participant in some other ontological schema. 
The Ontology layer defines the interface OntModel  which 
extends the Model interface from the Model API.  
Rather than having Java classes which are tightly bound to the 
language being processed (e.g. DAMLClass , 
DAMLObjectProperty , etc.), the ontology API is language-
neutral (thus the classes are OntClass  and 

ObjectProperty ). To support this, each of the languages has 
a profile, which lists the permitted constructs and the URI's of the 
classes and properties. Thus in the DAML profile, the URI for 
object property is daml:ObjectProperty , in the OWL 
profile is it owl:ObjectProperty  and in the RDFS profile it 
is null  since RDFS does not define object properties. 
The profile is bound to an ontology model, which is an extended 
version of Jena's Model class. The general Model allows access to 
the statements in a collection of RDF data. OntModel extends this 
by adding support for the kinds of objects expected to be in an 
ontology: classes (in a class hierarchy), properties (in a property 
hierarchy) and individuals. The properties defined in the ontology 
language map to accessor methods. For example, an OntClass  
has a method to list its super-classes, which corresponds to the 
values of the subClassOf  property. No information is stored in 
the OntClass  object itself. When the OntClass 
listSuperClasses()  method is called, the information is 
retrieved from the underlying RDF statements. Similarly adding a 
subclass to an OntClass  asserts an additional RDF statement 
into the model.  
The statements that the ontology Java objects see depend on both 
the asserted statements in the underlying RDF graph, and the 
statements that can be inferred by the reasoner being used (if any). 

 
Figure 3. The statements seen by the OntModel 

The asserted statements are held in the base graph. This presents 
the simple internal interface, Graph . The reasoner, or inference 
engine, can use the contents of the base graph and the semantic 
rules of the language, to show a more complete set of statements - 
i.e. including those that are entailed by the base assertions. This is 
also presented via the Graph  interface, so the model works only 
with that interface. This allows us to build models with no 
reasoner, or with one of a variety of different reasoners, without 
changing the ontology model. It also means that the base graph 
can be an in-memory store, a database-backed persistent store, or 
some other storage structure altogether (e.g. an LDAP directory) 
again without affecting the ontology model. 

9.1 RDF-level polymorphism and Java  
Consider the following RDF sample:  

<rdfs:Class rdf:ID="DigitalCamera"> 
</rdfs:Class > 

This declares that the resource with the (relative) URI 
#DigitalCamera  is an ontology class. It might be appropriate 
to model declaration in Java with an instance of an OntClass . 
Now suppose we augment the class declaration with some more 
information:  

<rdfs:Class rdf:ID="DigitalCamera"> 
  <rdf:type owl:Restriction /> 
</rdfs:Class>  



Now we are saying that #DigitalCamera  is an OWL 
Restriction  (which is a subclass of rdfs:Class ). A 
problem we have is that Java does not allow us to dynamically 
change the Java class of the object modeling this resource. The 
resource has not changed: it still has URI #DigitalCamera . 
But the appropriate Java class we might choose to model it has 
changed from OntClass  to Restriction . Conversely, if we 
remove the rdf:type Restriction  from the model, the use 
of a Restriction  Java class is no longer appropriate.  
Even worse, OWL Full allows us the following (rather 
counterintuitive) construction:  

<rdfs:Class rdf:ID="DigitalCamera"> 
  <rdf:type owl:ObjectProperty /> 
</rdfs:Class>  

That is, #DigitalCamera  is now a class and a property. While 
this may not be a very useful operation, it illustrates a basic point 
that we cannot rely on a consistent or unique mapping between an 
RDF resource and the appropriate Java abstraction. 

9.2 Imports 
The imports mechanism of OWL and DAML+OIL are usually 
handled as shown:  

 
Figure 4. Ontology internal structure including imports 

We see that each imported ontology document is held in a 
separate graph structure. If we did not do this, once the imports 
had been processed it would be impossible to know where a 
statement came from. It is possible to switch off imports 
processing. 

9.3 OntResource 
All of the classes in the ontology API that represent ontology 
values have OntResource as a common super-class. 
OntResource  contains shared functionality for the ontology 
classes, example properties are annotations, such as label , and 
sameAs. 
For each of these properties there is a standard pattern of available 
methods, to set and get a singleton value or modify or inspect a 
multivalue. 
OntResource  also provides methods for listing, getting and 
setting the RDF types of a resource. The rdf:type  property is 
one for which many entailment rules are defined in the semantic 
models of the various ontology languages. Therefore, the values 
that listRDFTypes()  returns is more than usually dependent 
on the actual reasoner bound to the ontology model. For example, 
suppose we have class A, class B which is a subclass of A, and 
resource x whose asserted rdf:type  is B. With no reasoner, 
listing x's RDF types will return only B. If the reasoner is able to 
calculate the closure of the subclass hierarchy (and most can), X's 
RDF types would also include A. Furthermore, complete 

reasoners might also infer that x has type owl:Thing  and 
rdf:Resource .  
For some tasks, getting a complete list of the RDF types of a 
resource is exactly what is needed. For other tasks, this is not the 
case. An ontology editor, for example, might want to distinguish 
in its display between inferred and asserted types. In the above 
example, only x rdf:type B  is asserted, everything else is 
inferred. One way to make this distinction is to make use of the 
base model or of the union graph containing the base model and 
the imported graphs (see Figure 4). Getting the x resource from 
the base model and listing the type properties there would return 
only the asserted values.  

9.4 Other Aspects 
As one might expect, the Ontology API contains classes 
corresponding to the main concepts within OWL, and the ability 
to inspect and manipulate the principal properties of these classes. 
The same API can be used for DAML+OIL, and a subset of the 
API is useful for RDFS. 
Moreover, the base model can be stored in a database, if required. 
A further independent module is an OWL Syntax Checker, 
conforming with the specification given in the OWL Test Cases 
[11]. It inspects a set of triples and determines whether they fit 
within the OWL Lite or OWL DL or OWL Full syntactic species 
of OWL. It’s triple oriented operation is described in [4]. 

10. VIEWS IN JENA2 
We have seen that the Graph interface acts as a uniform interface 
into triples, both actual, as found in documents or databases, or 
virtual, as defined by arbitrary Java code, in particular reasoners. 
Similar but more constrained mechanism are found in TRIPLE 
[24] and are proposed as RVL [23]. In each of these, views of 
virtual triples are defined using a high-level view definition 
language in terms of other views or collections of materialized 
triples.  

It would be possible to translate such high-level view definition 
languages into Java code, and, with care, features of Jena2 such as 
fast-path query could be utilized. Moreover, the Jena2 architecture 
shows a continuum between such view languages and inference. 
The rule language in Jena2 can be seen in itself as a view 
definition language, although with a somewhat different intent 
from RVL or TRIPLE views. In particular, the reasoners in Jena 
add triples, whereas an RVL or TRIPLE view both adds new 
triples and hides the old triples. 

11. JOSEKI 
A further feature of Jena that we hope will be standardized in the 
next round of the Semantic Web activity is that of a WebAPI [31].   

Joseki takes the RDF graph as the primary design concept and 
makes it accessible to remote clients and applications.  The RDF 
WebAPI provides a simple, universal access mechanism for an 
application on one machine to extract information from an RDF 
repository hosted by another machine.  The access mechanism is 
graph-based query where the access to the remote knowledge base 
is a query and the results are expressed in terms of a single graph. 

11.1 Query as access primitive 
The WebAPI fits into the Jena paradigm by providing access to a 
graph.  This graph may be ground data or it may be a graph where 
inference is performed to yield entailed triples.  This is not visible 
to the remote client application.  The contract between 
information consumer and the information publisher is that the 
graph is a set of triples expressing some information.  How this 



information is derived is purely a matter for the information 
provider and not part of the contract between provider (publisher) 
and the client application. 
Query forms the access paradigm because it is not desirable to 
copy such knowledge bases across networks,  This may be 
because they are large, and the client application is only interested 
in a small part of the overall graph, or because the knowledge 
base is frequently changing, making locally caching ineffective. 
A query returns a single subgraph.  Unless the query further 
modifies the request with additional parameters, the contract is 
that the subgraph returned should yield the same matching results 
as the original query would on the entire knowledge base.  The 
minimal complete subgraph is the smallest such graph. In a 
conjunctive query language such as RDQL [25], this is equivalent 
to calculating the result triples by substituting each of the query 
solutions into the graph pattern and merging into a single graph.  
The graph returned does not have to be minimal.  A sophisticated 
cache could return a precomputed, or previous computed, 
subgraph that is larger than the minimal matching subgraph but 
still meets the completeness requirement. 
Query provides a sufficiently coarse-grained operation for 
efficient application use.  Direct triple access would cause large 
numbers of fine-grained network accesses leading to excessive 
overhead. 

11.2 The RDF WebAPI 
To make RDF repositories available across the Internet, the RDF 
WebAPI requires each graph to have a URL for the purposes of 
naming and routing query traffic to the repository providing that 
graph.  One host repository may have several RDF graphs 
available, so it is necessary to direct queries to the right one based 
on both network location and on name.  URLs provide the 
mechanism for this. 
The protocol used for query is HTTP, specifically the GET verb. 
In order to provide compatibility with regular web use, a plain 
GET (no query string provided) is interpreted as fetching the 
whole RDF graph.  A query string provides refinement of the 
GET to extract a subgraph of the target graph.  The query string 
consists of identification of the query language and a query-
language specific string giving the query itself. 
The full details of this can be found in the member submission to 
the W3C [31]. 

11.3 Joseki – Client Library 
The client library provides integration with the rest of the Jena2 
API in two ways. First, the primitive operation of querying and 
returning the minimal, complete subgraph is provided where the 
remote query processor is expected to compute a complete 
subgraph. Second, a remote query engine, matching the standard 
QueryEngine interface in the Graph layer is also provided.  This 
latter access mechanism yields an iterator of bound variables just 
like a local query. The variable bindings are locally calculated 
based on the complete subgraph returned by the remote operation. 

12. CONCLUSION  
Jena2 provides integrated implementations of the W3C Semantic 
Web Recommendations, centred on the RDF graph. Moreover, 
additional features of Jena: the query language and the WebAPI, 
are ones that we hope will be finalized in the next phase of the 
Semantic Web activity. 
The Jena2 architecture cleanly separates presentational issues, 
concerning what the application programmer wishes to do with an 
RDF graph, from the system programming issues such as how to 

store concrete triples or derive virtual triples. This enables the 
following new features in Jena2: 
• RDFS inference support, following the RDF Semantics.  
• Full integration of the Ontology support with other Jena 

components. The Ontology presentation API can be layered, 
with or without any inference support, over any triple store.  

• RDQL can be used to query the virtual triples resulting from 
RDFS or OWL inferences.  

• Adding a new extensibility point in Jena for integrating DL 
reasoners such as Racer and FACT, as part of improving the 
ontology support and, in particular, support of OWL. 

• Integration of query optimizers, for example, by passing 
back-end relational databases complex SQL queries 
representing the user level query, rather than merely using a 
relational database as a triple store. 

• Seamless extension to access over the web. 
Jena2 is available under a BSD-style license from 
http://sourceforge.net/project/showfiles.php?group_id=40417. 
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