

Jena: Implementing the Semantic Web
Recommendations

Jeremy J. Carroll, Ian Dickinson, Chris Dollin,
Dave Reynolds, Andy Seaborne, Kevin Wilkinson
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2003-146
December 24th , 2003*

E-mail: firstname.lastname@hp.com

RDF, Java API,
metadata,
ontology,
DAML, OWL,
triple stores,
RDQL, inference

The new Semantic Web recommendations for RDF, RDFS and
OWL have, at their heart, the RDF graph. Jena2, a second-
generation RDF toolkit, is similarly centered on the RDF graph.
RDFS and OWL reasoning are seen as graph-to-graph transforms,
producing graphs of virtual triples. Rich APIs are provided. The
Model API includes support for other aspects of the RDF
recommendations, such as containers and reification. The Ontology
API includes support for RDFS and OWL, including advanced
OWL Full support. Jena includes the de facto reference RDF/XML
parser, and provides RDF/XML output using the full range of the
rich RDF/XML grammar. N3 I/O is supported. RDF graphs can be
stored in-memory or in databases. Jena's query language, RDQL,
and the Web API are both offered for the next round of
standardization.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

 Jena: Implementing the Semantic Web Recommendations
Jeremy J. Carroll*
Dave Reynolds*

*HP Labs, Bristol

UK

Ian Dickinson*
Andy Seaborne*

firstname.lastname@hp.com

Chris Dollin*
Kevin Wilkinson†
†HP Labs, Palo Alto

CA. USA

ABSTRACT
The new Semantic Web recommendations for RDF, RDFS and
OWL have, at their heart, the RDF graph. Jena2, a second-
generation RDF toolkit, is similarly centered on the RDF graph.
RDFS and OWL reasoning are seen as graph-to-graph transforms,
producing graphs of virtual triples. Rich APIs are provided. The
Model API includes support for other aspects of the RDF
recommendations, such as containers and reification. The
Ontology API includes support for RDFS and OWL, including
advanced OWL Full support. Jena includes the de facto reference
RDF/XML parser, and provides RDF/XML output using the full
range of the rich RDF/XML grammar. N3 I/O is supported. RDF
graphs can be stored in-memory or in databases. Jena’s query
language, RDQL, and the Web API are both offered for the next
round of standardization.

Categories and Subject Descriptors
To find the list of ACM’s categories & descriptors, see:
http://www.acm.org/class/1998/

General Terms
Algorithms, Standardization, Languages.

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
The new recommendations for the Resource Description
Framework (RDF) and the Web Ontology Language (OWL) have
just been published1. They provide a simple triple based
representation of knowledge, with formal semantics allowing for
automated inference. RDFS and OWL also provide some useful
vocabulary, particularly for building schema and ontologies.
Jena is a leading Semantic Web programmers’ toolkit [22].
The heart of the Semantic Web recommendations is the RDF
Graph [20], as a universal data structure. An RDF graph is simply
a set of triples. Jena similarly has the Graph as its core interface
around which the other components are built.
This paper presents Jena2, concentrating on the key architectural
and design principles.
The two key architectural goals of Jena2 are:
• Multiple, flexible presentations of RDF graphs to the

application programmer. This allows easy access to, and
manipulation of, data in graphs enabling the application
programmer to navigate the triple structure. Particularly, the
Model API presents the graph using the terms and concepts
from the RDF recommendations, and the Ontology API presents
the graph using concepts from OWL and RDFS.

1 Note to referees, we hope this will be true by the time we need

the final copy!

• A simple minimalist view of the RDF graph to the system
programmer wishing to expose data as triples. This is
particularly useful for exposing RDFS and OWL reasoning.

The first is layered on top of the second, so that essentially any
triple source can back any presentation API. Triple sources may
be materialized, for example database or in-memory triple stores,
or virtual, for example resulting from inference processes applied
to other triple sources. This provides a general view mechanism
using view definitions in Java.
A Semantic Web query language RDQL [25] is supported, and
can be used either on top of materialized graphs, or on the virtual
results of RDFS or OWL reasoning.
A third presentation interface, the RDF WebAPI [32], provides
query-based access to RDF graphs to web clients. This query-
based access is also available at both the system and application
programmer interfaces, and acts as a further unifying theme of the
architecture. Queries from all levels are passed to relational
databases as SQL, and are hence visible to the SQL optimizer.
This paper starts with an overview of Jena and its architecture,
and then details those parts of the system with greatest
architectural significance.

1.1 The Semantic Web Standards
The RDF abstract syntax [20] provides triples as a universal data
structure. The vocabulary [8] from RDF and RDFS provide a core
set of properties and classes to use with these triples. These triples
can be serialized as RDF/XML [5]. The formal meaning [16] of
these triples and of the vocabulary permits entailments to be
drawn.
The RDF Schema vocabulary permits the definition of new
classes and properties to be used in the graph. These are
augmented by the Web Ontology Language (OWL) [12].
OWL provides three levels: OWL Lite, OWL DL and OWL Full.
OWL Full is the most expressive. OWL Lite is easiest to address
with complete reasoning services (which are not possible for
OWL Full). These levels are differentiated syntactically [26]. Two
compatible semantics are provided, one for OWL Full the other
OWL DL.
OWL Full builds on top of RDF, being a semantic extension.
OWL DL’s abstract syntax is mapped into RDF as the exchange
language.
The next round of Semantic Web standardization is likely to work
on query languages, and possibly Web APIs for the Semantic
Web.

1.2 What is Jena?
Jena1 was first released in 2000 and has had over 5,000
downloads. Jena2 was released in August 2003; and has had over
3,500 downloads.
The main contribution of Jena1 [22] is the rich Model2 API for
manipulating RDF graphs. Around this API, Jena1 provides
various tools, for example: an RDF/XML parser [10]; a query

2 The term “Model” is taken from the original RDF Model &

Syntax Recommendation [16], meaning data model.

language [25]; further I/O modules for N3 [7] and N-triple [13]
and RDF/XML output [9]. Using the API the user can choose to
store RDF graphs in memory or in persistent stores. Jena1
provides an additional API for manipulating DAML+OIL [33].
Jena2 provides additional functionality for general developers to
support RDFS and OWL [12]. There are new APIs for accessing
ontologies and processing vocabularies. Jena2 also offers two new
extension points to system programmers. The first allows the
development of new presentation APIs for new functionality to
developers. The second allows the development of new triple
sources, particularly of virtual triples that are generated
dynamically as a result of some processing, such as inference or
access to legacy data sources. Inference following the RDF
semantics [16] and the OWL semantics [26] is provided.

2. JENA2 ARCHITECTURE OVERVIEW
The heart of the Jena2 architecture is the RDF graph, a set of
triples of nodes. This is shown in the Graph layer (see figure 1).
This layer, following the RDF abstract syntax, is minimal by
design: wherever possible functionality is done in other layers.
This permits a range of implementations of this layer such as in-
memory or persistence triple stores.
The EnhGraph layer is the extension point on which to build
APIs: within Jena2 the functionality offered by the EnhGraph
layer is used to implement the Jena1 Model API and the new
Ontology functionality for OWL and RDFS, upgrading the Jena1
DAML API.
I/O is done in the Model layer, essentially for historical reasons.
The Jena2 architecture supports fast path query that goes all the
way through the layers from RDQL at the top right through to an
SQL database at the bottom, allowing user queries to be optimized
by the SQL query optimizer.
We give some more detail on the three layers below.

2.1 The Graph Layer: Triples as the
Universal Data Structure
The Graph layer is based on the RDF Abstract Syntax [20]. It is
straightforward to implement:
• triple stores, both in memory and backed by persistent storage;
• read-only views of non-triple data as triples, such as data read

from a computer file system hierarchy, or scraped from a web
page;

• virtual triples corresponding to the results of inference processes
over some further set of triples as premises.

Implementations of the Graph layer provided with Jena2 give a
variety of concrete (materialized) triple stores, and some built-in
inference: specifically for RDFS and for a subset of OWL.

2.2 The Model Layer: Views for Application
Programmers
Jena2 maintains the Model API from Jena1 as the primary
abstraction of the RDF graph used by the application programmer.
This gives a much richer set of methods for operating on both the
graph itself (the Model interface) and the nodes within the graph
(the Resource interface and its subclasses).
Further, the DAML API is updated and enhanced in Jena2 to form
an Ontology API that can be realized as a DAML API or an OWL
API.

2.3 The EnhGraph Layer:
Multiple Simultaneous Views
Both the Model and the Ontology layers lie on top of the Graph
layer via an intermediate layer: the EnhGraph layer.
This provides an extension point for providing views of graphs,
and views of nodes within a graph. This generalizes the needs of
both the Model and the Ontology APIs, and, significantly, makes
the design decision that such presentation layers must be stateless:
all state is kept within the graph. (Caching of state is permitted by
the presentation layers).The EnhGraph layer is designed to permit
multiple views of graphs and nodes which can be used
simultaneously. Java’s single inheritance model is sidestepped to
provide polymorphic objects within the EnhGraph layer. This
allows the multiple inheritance and typing of RDFS to be
reflected in Java.

3. THE GRAPH SPI
Jena’s implementation of RDF’s abstract syntax [20] is the Graph
SPI (System Programmer Interface), through which the triples of
all Jena graphs are accessed.

3.1 Overview
The Graph layer defines an interface representing RDF graphs.
The design goals for the Graph layer include:
• allowing collections of triples to be queried and updated

efficiently. In particular, querying triples held in databases
should be able to exploit the underlying database engine.

• being easy to reimplement, so that new triple collections can
be represented by Graphs with minimal programming effort.

• supporting some specialist operations from the Model API
when these cannot be easily constructed from the base
functionality, in particular, reification is one such operation.

The elements within a Graph are Triple s; each Triple
comprises three Nodes, the subject, predicate, and object fields. A

Ontology Models

Model Layer
Resource Model

API layer
Jena1 compatibility

Graph Layer
Node Graph

Triple
See [RDF Concepts]
Fast-Path Query
Reification

EnhGraph Layer
EnhNode EnhGraph

Nodes in context
Polymorphism
equality

ARP

RDQL

N3 I/O

in-memory
stores

SQL
database

materialized graphs

inferencing

virtual graphs

graph union

Statement

Figure. 1. The Jena2 Architecture

Node represents the RDF notion of a URI label, a blank node3, or
a literal; there are also two variable nodes, for named variables
and ANY , a match-anything wildcard, for use in the Query
interface.
The RDF restriction that a literal can only appear as an object, and
that a property can only be labelled with a URI is enforced by
Jena in the Model layer and not in the Graph layer.
Two implementations of the Graph layer are an in-memory triple
store and relational database (RDB) triple stores.
The core Graph interface supports modification (add and delete
triples) and access (test if a triple is present or list all triples
present matching some pattern). Graph implementations are free
to restrict the particular triples they regard as legal and to restrict
mutability – this is reflected through the use of Java exceptions.
The most significant part of the core Graph interface is the find
operation. The primitive find(Node S,Node P,Node O)
delivers an iterator over all the triples of the Graph which
"match" the triple (S, P, O) . To "match" means to be equal to
or for the S/P/O node to be ANY .�This allows the Graph to be
queried for e.g. all the properties of some particular subject, all
the predicates with some particular object, or indeed all the triples
in the Graph . This is the extensibility point that the inference
engines and Graph combinators use for generating virtualized
triples.

3.2 Fast Path Query
One of the goals of the Graph layer is to allow queries to be
expressed which can exploit underlying efficient query engines,
and which can return different kinds of results - variable bindings
or subgraphs, for example.
Rather than add many operations to Graph itself, each Graph
has an associated query handler which manages the more complex
queries. A standard simple query handler is provided which
implements the complex queries in terms of the find primitive
for Graph s not offering more efficient possibilities.
A Query consists of a collection of triple patterns to be matched
against some Graph s. A triple pattern is a Triple that may
contain the extended ANY and Variable nodes mentioned above.
So a subgraph might contain

 (?x P ?y) (?y Q ?z)

to request all the bindings for ?x, ?y, and ?z for which matching
triples can be found in the Graph . The subgraph can be executed
so as to find either, all possible bindings of the variables or to
return4 the minimal matching subgraph.
Jena's memory-based Graph model simply implements the triple
pattern matches by iterating over the Graph using find . The
RDB-based Graph s instead compile the query into SQL4 to be
submitted to the database query engine.
The query handling operates over all the triples expressed by the
Graph , however they are generated - as base assertions or as
inferred consequences.
RDQL [25] uses this interface to do the non-constraint parts of its
query handling.

3.3 Reification
RDF Model & Syntax [21] suggests making statements about
statements by means of reification: i.e. representing the original
triple as four triples forming what is known as a reification quad.

3 Also known as an anonymous resource, or a bnode.
4 Feature under development.

The new RDF recommendations clarify that the reification syntax
does not completely achieve these goals, but continue to
recommend the use of reification for provenance. This is in
keeping with the practice of those Jena users who use reification
heavily, to be able to add metadata to triples.
An important optimization is to be able to treat reification quads
efficiently. This API-layer notion is reflected down into the
Graph interface.
Jena provides an API notion of a ReifiedStatement that
encodes a statement in a model as a reification quad.
Each Graph has an associated Reifier that is responsible for
storing reified Triple s. (This separation into a separate interface
and implementation keeps the Graph interface uncluttered and
allows different Graph implementations to share code.)
ReifiedStatement s may be created by a single API call; thus
users who explicitly reify many Statements need not pay a large
cost in reification quads.
A Graph implementation may choose how it makes reification
visible by picking a reification style. The default style,
Standard , is intended to conform to the RDF standard: the
quads of reified statements are visible to the find primitive and
to queries. The style Convenient suppresses all reification-
quad parts in query results and is compatible with the behaviour
of Jena 1. The style Minimal is useful for internal Graph s for
which reification is irrelevant.

3.4 Other Details of the Graph Layer
Datatypes. The requirements of RDF manipulation of typed
literals [16] differ from the Java norms. The same semantic value
can have multiple RDF representations (e.g. 1^^xsd:int and
1^^xsd:short). One is initially tempted to arrange the Java
equality operation on Literal s to take this value mapping into
account. However, this interferes with the use of Literal s in
indexed collections. Instead we introduced a separate notion of
sameValueAs and arrange that searches on Graph s default to
using this notion of equivalence in preference to Java equality.
Size. Graph s are sets of triples; a set naturally has a size
(possibly infinite). However, with the notion of inferencing
Graph s, implementing size is tricky and its behaviour non-
obvious. While Jena Graph s have a size method, its meaning is
unclear.
Transactions. Jena Graph s may support transactions such that
changes to a Graph may be committed or abandoned. At present
only RDB-based models offer this capability.
Bulk Update. If needed triples may be added to or removed en
masse rather than one at a time for efficiency reasons, e.g. for
initialising a database.

4. ADDING APIS
Within the Graph layer, it is easy to provide triples. However, it is
not easy to work with them at the application level (see [22]).
Thus Jena includes an API to act as a presentation layer above the
raw Graph, this is the Model API.
This provides programming abstractions for the RDF graph which
align with the abstractions found in the RDF Vocabulary [8].
A key abstraction in the Model API is the Resource . This
corresponds with rdfs:Resource. This is a URIref or blank
node seen as part of a graph. This is not merely a node but the
collection of facts about that node in a particular RDF graph.
From the point of view of the recommendations, a Resource

provides a view not of the node, which is merely a URIref, but of
its interpretation within an RDF graph.5
Sometimes it is useful at the application level to view and
manipulate a Resource with a richer set of primitives based on
extended functionality reflecting some aspect of its interpretation
in a particular graph. For example, if a URIref is known to have
type rdf:Bag, then viewing the corresponding Resource as a
Bag allows easier access to its members without having to
explicit access the rdf:_1, rdf:_2 … triples. In this way we find
direct support for RDF containers, as defined by the RDF
Vocabulary, within the Model layer. Similar API classes and
methods are provide in support of the RDF reification vocabulary,
which is implemented using the reification primitives in the graph
layer (see section 3.3).
The Model layer is shown in figure 1, along with an alternative
presentation layer: the Ontology layer. In the Ontology layer we
find explicit support for the concepts from RDF Schema and
OWL. Ontology support adds many additional views of a URIref
node within a particular graph, e.g. as an OntClass , as a
CardinalityRestriction etc. The functionality of the
Model layer has previously been published, for example [22]; the
Ontology layer is described below (section 9).

4.1 The Enhanced Graph Layer
Jena2 does not attempt to present one consolidated presentation
API onto an RDF graph. A consolidated API might be one in
which a URIref with rdf:type of owl:ObjectProperty
would be realized as a Java Object of class ObjectProperty ,
which would implement all the interfaces that were appropriate,
and inherit from some appropriate superclass. There is no
obviously correct class hierarchy for the different concepts within
the Model API and Ontology API. Moreover choosing which view
to take of a particular URIref in the graph tends to make a closed
world assumption: this resource is an RDFS class; later
information may cause us to reconsider. A direct mapping of the
class hierarchy of RDF onto that of Java would thus be a mistake.
To address this issue a framework for using many different
presentation layers is provided, with two built-in instantiations,
the Model API and the Ontology Model API.

4.1.1 Presentation Layers and Personalities
Each presentation layer consists of some interfaces and some
implementation classes, and a mapping from interfaces to factory
methods that invoke the implementation classes. This mapping is
known as the Personality of the presentation layer. These
presentation layers are stateless. All state is stored in Graph s.
The implementation classes either extend EnhGraph or
EnhNode. EnhGraph is a simple wrapper around a Graph ,
with a pointer to the Personality . EnhNode is a wrapper
around a Node, with an additional field pointing to an
EnhGraph . This is the context in which the EnhNode is seen.
For example, Model extends EnhGraph , and Resource
extends EnhNode.
Each subclass of EnhGraph provides a set of operations that can
be performed on a Graph . Thus an instance acts as a view of a
Graph .
Each subclass of EnhNode provides a set of operations that can
be performed on a Node in a Graph . Thus an instance acts as a

5 The interpretation according to the RDFS semantics requires is

only reflected when an RDFS reasoner is used, see section 5.

view of a Node in a specific Graph . It is often appropriate to
take different views of the same Node.

4.1.2 Polymorphism
RDFS permits any resource to have multiple types, which may or
may not be related. rdfs:subClassOf can be used to express
multiple inheritance and not just a simple hierarchy. In contrast,
Java objects have a single Java class, from a tree of classes with
single inheritance. Jena2 implements polymorphic resources to
model within Java the RDFS style of multiple typing.
Given a Node or an EnhNode it is always possible to use the
factory methods in the Personality to create a view (an
instance of a subclass of EnhNode) of the Node that implements
a particular interface. The constraint that these EnhNodes are
stateless ensures that it is always safe to create more than one
identical EnhNode. It also permits caching of EnhNodes for
performance reasons. Thus a key method on an EnhNode is
as(interface) , which returns a view of that Node which
implements the given interface. If the desired result is not in a
simple cache, then the view is created using the factory methods
found in the Personality .
This method as is used while implementing a presentation API
such as the Model or the Ontology layer as part of an extended
casting idiom e.g.
(OntClass) ontProp.as(OntClass.class);

This is particularly useful for implementing OWL Full [27], in
which there is no separation of vocabulary.

4.2 User defined Presentation APIs
Applications may well want to have their own specialized views
of Resource s. Within the Jena2 architecture these views can be
generated from an RDF Schema or an OWL Ontology and
incorporated within the overall framework. That is, while the
figure shows two instantiations of the top layer, other
instantiations can be added.

5. INPUT/OUTPUT
The de facto reference parser for RDF/XML [5] is part of Jena.
This is used at the W3C RDF validator site.
Jena I/O is provided at the Model layer. The basic primitives are
to read and write models, in a choice of Semantic Web languages.
The languages supported are RDF/XML [5], N3 [7] and N-Triple
[13].

5.1 Parsing RDF/XML
The RDF/XML parser uses Xerces to parse the XML, and
validates the RDF input against a range of standards incorporated
by reference into RDF/XML. Specifically, input is checked for
conformance with RFC 2396 (URIs), RFC 3066 (languages,
including ISO 601 and ISO 3166 checking), and the W3C
Character Model.
The parser architecture, described in [10], cleanly separates the
RDF processing and the XML processing, which has permitted
the parser to closely track the revised RDF/XML working drafts
as they evolved to the new Recommendation.
In Jena2, the realization of that architecture has been improved,
using Xerces in pull-parsing mode, which permits the co-routine
architecture to be realized in a single Java thread, rather than two
threads (for the XML parser and the RDF parser) as in Jena1.

5.2 Unparsing RDF/XML
RDF/XML output can be performed either in a basic mode, which
is preferred for large files, or in a pretty writer mode. The former
groups the triples of the graph by subject and then writes each

triple using a simple property element. This does not use the
striped syntax. The abbreviations provided in RDF/XML are not
utilized.
The pretty writer format, intended more when the output may be
seen by people, is significantly more expensive, and uses all the
productions in the revised syntax. Striping, as described in the
recommendation [5], is the default. One of the options to control
the output switches off rules as specified in the revised syntax.
This option takes as an argument the URL references of the
productions which are not to be used: e.g.

RDFWriter w = m.getWriter(“RDF/XML-ABBREV”);
String rdfSyntax =
 “http://www.w3.org/TR/rdf-syntax-grammar”;
w.setProperty(“blockRules”,
 rdfSyntax+”#idAttr,”+
 rdfSyntax+”#parseTypeCollectionPropertyElt”);

The URL references used link directly into the W3C rec., tying
the software behaviour with the formal specification.
Since, as described in [9], the code closely follows the formal
grammar in the recommendation, it is straightforward to provide
this behaviour which can be understood by the users in terms of
that grammar.

6. INFERENCE SUPPORT
The treatment of schema and ontologies in the formal semantics of
both RDF [16] and OWL [26] makes it clear that entailment is a
core feature of the Semantic Web recommendations. This is also
reflected in the hundreds of entailments tests provided [11], [13].
Jena supports this by giving access to a range of inference
capabilities. A core set of such capabilities are available “out of
the box”, particularly RDFS inference, and OWL inference
(supporting the subset of OWL Full, roughly corresponding to the
union of OWL Lite and RDFS); whilst the architecture permits
plug-in connections to engines being developed by the wider
community, such as Racer [15], FaCT [18] and the Java Theorem
Prover [14]. It is planned that using such plug-ins complete OWL
Lite and improved OWL DL reasoning will be supported.
The design center for Jena2’s inference API is to enable
applications to access RDF data that has been enriched by
additional assertions entailed from a set of relevant ontologies –
that is we emphasize Abox queries over Tbox queries [2]. This
bias influences our choice of API, architecture and inference
engines.

6.1 Inference access API and architecture
In Jena2, inference engines are structured as Graph combinators
called Reasoner s. An instance of a Reasoner combines one
or more RDF Graphs and exposes the entailments from them as
another RDF Graph in which some of the retrievable triples are
virtual entailments rather than materialized data (see figure 2).
The input Graph s contain both the ontology and instance data,
with optional separation between the two. In particular, it is
possible to partially-bind a Reasoner to an ontology and then
use the resulting specialized Reasoner to access multiple
different data Graph s – reusing the ontology inferences.
This layering offers great flexibility. For example, an OWL Lite
Reasoner can be stacked on top of an RDFS Reasoner with
the latter being used to infer the type statements required by the
OWL Lite syntax but deducible from the domain/range
declarations of the OWL Lite properties. An RDQL query can be
issued to an inferred Graph , just like any other Graph , thus
allowing query over the entailments. For instance an inferred
RDFS graph can be used by RDQL to do schema directed queries,
and hence have functionality more like RQL [19], without any

additional query syntax, and with better alignment with the RDF
recommendation.
Different APIs can be bound to the inferred Graph allowing the
results to be viewed at the RDF level or though the convenience
ontology API.

Figure 2. The inference API layering

Many entailments are easily accessible through the Graph or
Model APIs in this way. For example finding all instances of a
given class is a simple triple query:

(?x rdf:type C)

where C is a Node representing an rdfs:Class in the ontology
Graph (and can be either a bnode or a named class).
There are several limitations of this API approach that we had to
address.
First, arbitrary class expressions introduced by the comprehension
axioms of OWL [27] are not directly supported. We addressed the
same requirement by extending the find operation to take an
optional parameter, for additional premises. This parameter is a
Graph containing expressions whose Nodes can be used within
the query triples; the intended use is with expressions known to be
valid from the comprehension axioms.
Second, for transitive relations it is often convenient to be able to
query the direct (or minimal) as well as the transitively closed
version of the relations. We handle this by introducing additional
RDF properties to represent the direct version of any transitive
property. This style of extension, introducing additional RDF
properties to represent inferable relationships, makes the triple-
based API very flexible.
Thirdly, to give convenient access to consistency information we
added a validate method which returns a report containing a
list of all warnings or errors identified within the Graph . This is
more convenient than the property introduction technique, in this
case, because validity reports may need to refer to statements or
groups of statements and not simply to Nodes.

6.2 Built-in reasoners
As part of the default distribution we include a selection of
inference engines, which conform to this architecture.
Transitive Reasoner. This reasoner provides the transitive

closure of the rdfs:subClassOf and
rdfs:subPropertyOf relationships contained in the source
graphs, dealing correctly with cases such as declaring sub-
properties of the rdfs:subClassOf property. This
relatively simple functionality corresponds quite closely to the
hard coded inference implemented by the Jena1 DAML+OIL
API, enabling applications to make similar queries in Jena2
with similar performance without needing to invoke more
sophisticated inference engines.

RDFS Reasoner. This provides an implementation of the RDFS
closure rules [16]. It strikes a balance between eager and lazy
processing. The sub-class and sub-property lattices are cached

using an embedded TransitiveReasoner . Each domain,
range, sub-property and sub-class declaration is eagerly
translated into a single query rewrite rule. The result of a query
to the graph will be the union of the results from applying the
query plus all the rewritten versions of the query to the
underlying graphs.

Rubrik 6 Reasoner. This reasoner supports rule based RDF
inferences. Rule clauses are either extended triple patterns or
procedural callouts to primitives defined in Java. The triple
patterns are extended in the sense that the objects of the triple
can be functor-like data structures. This allows rule authors to
control the combinatorics of graph pattern matching by having
one rule map a subgraph pattern into compact data structure and
later rules fire off that data structure. Both forward chaining and
memoized backward chaining rule engines are provided, with
some hybridization in that forward rules are able to create and
install new backward rules.
These rule engines may be used with application-specific rule
sets or with prepackaged rule sets for RDFS and for the OWL
Lite subset of OWL Full. The rule-based approach corresponds
well to our emphasis on ABox reasoning, indeed we handle
class-subsumption checking by introducing prototypical
instances of classes and letting the instance rules determine the
other type labels for the prototype.

In addition to these inference engines we have found it useful to
provide a set of operators (union, multi-union, intersection,
difference, delta) for combining data Graph s.

6.3 External reasoners
By using such a generic, triple-based, interface onto inference
results it becomes possible to expose the capability of a wide
range of reasoning engines through the same API. We enhance
this flexibility by providing a ReasonerRegistry in which
available reasoners can be registered along with an identifying
URI and a reasoner capability description (expressed in RDF). In
this way applications can be made somewhat independent of the
particular inference engine being used.
We intend to construct adaptors for several openly available
reasoners, to enable their use from within Jena.

7. RDQL – RDF QUERY
RDQL (RDF Data Query Language) was pioneered in Jena1. The
Jena implementation is the de facto reference implementation. A
full description is found in [30], the original paper is [25].
An RDQL consists of a graph pattern, expressed as a list of triple
patterns. Each triple pattern is comprised of named variables and
RDF values (URIs and literals). An RDQL query can additionally
have a set of constraints on the values of those variables, and a list
of the variables required in the answer set.

SELECT ?x
WHERE (?x,
<http:// www.w3.org/1999/02/22-rdf-syntax-ns# type>,
<http://example.com/someType>)

This triple pattern matches all statements in the graph that have
predicate http://www.w3.org/1999/02/22-rdf-syntax-

ns#type and object http://example.com/someType . The
variable "?x" will be bound to the label of the subject resource.
All such "x" are returned
An RDQL query treats an RDF graph purely as data. If the
implementation of that graph provides inferencing to appear as

6 RDF basic rule inference kit.

"virtual triples" (i.e. triples that appear in the graph but are not in
the ground facts) then an RDQL will include those triples as
possible matches in triple patterns. RDQL makes no distinction
between inferred triples and ground triples.
The next phase of the Semantic Web activity by the W3C is likely
to address RDF query. We hope that this work will take our
positive experinces with RDQL into account. Jena’s RDQL
implementation will evolve as a result of the new work at the
W3C.

8. PERSISTENT STORAGE
As in Jena1, the database subsystem in Jena2 supports persistent
storage of RDF Models in a conventional database [29].
Implemented at the Graph layer, it provides all the usual Graph
operations (add, delete, find) and efficiently supports reification.

8.1 Denormalized Schema
Jena2 stores each triple either in a general purpose triple table or a
property table, for a specific property.
The schema trades-off space for time. It uses a denormalized
schema in which resource URIs and simple literal values are
stored directly in the triple table. A separate literals table is used
only to store literal values whose length exceeds a threshold or
that are typed or have a language tag. This makes it possible to
process a large class of queries without a join. However, a
denormalized schema uses more database space because the same
value (literal or URI) is stored repeatedly.
The increase in database space consumption is addressed in
several ways. First, common prefixes in URIs, such as
namespaces, are stored in a separate table and the prefix in the
URI is replaced by a reference. This prefix table will be cacheable
in memory so expanding a prefix does not require a database join.
Second, a literals table is used so that long literals are stored only
once. Third, Jena2 supports property tables as described below.
Property tables offer a modest reduction in space consumption in
that the property URI is not stored.

8.2 Configuration
Configuration parameters are specified as RDF statements in a
memory model that is passed as an argument when creating a new
persistent model. Jena2 includes default models containing the
default configuration parameters for all supported databases.
Specifying configurations in RDF makes configurations easy to
search, share and re-use since they can be manipulated with Jena’s
existing operations.

8.3 Property Tables
A property table (also known as attribute tables [1]) holds
statements for a specific property. They are stored as subject-value
pairs in a separate table. Triple tables and property tables are
disjoint - a statement is only stored once. For properties with a
maximum cardinality of one, it is possible to cluster multiple
properties together in a single table. A single row of the table
stores property values for a common subject. For example, a
Dublin Core [6] property table might store dc:title ,
dc:publisher , dc:description .
Multi-valued properties, e.g., dc:creator , cannot be clustered
and must be stored in separate tables. Note that if the datatype of
the object value is known, it may be possible7 to make the
underlying database column for the value match the property type.

7 Not all XSD types correspond to an SQL datatype.

A property class table is a special kind of property table that
stores properties associated with a particular class and also
records all instances of that class. Each property must have the
class as its domain. Jena2 implements reification as a property
class table. The properties are rdf:subject ,
rdf:predicate , rdf:object and the class is constrained to
be rdf:Statement . The subject of the property class table is
the URI that reifies the statement.

8.4 Query Processing
Queries are executed against graphs which may have multiple
statement tables. For each statement table there is a handler to
convert between the graph view of Jena and the tuple view of
SQL. To evaluate a triple pattern, the query processor passes the
pattern, in turn, to each table handler for evaluation.
A goal of Jena2 is support for fast path query processing for
RDQL (see section 3.2). In Jena1, an RDQL query is converted
into a pipeline of triple pattern queries. This is evaluated in a
nested-loops fashion in Java by using the results of one triple
pattern to bind values to variables and then generating new triple
patterns for evaluation. The goal of fast path query processing is
to use the database engine to move more of this processing to the
database engine.
A full discussion of fast path query processing is beyond the
scope of the paper. Here, we present two simple cases and
mention the difficulties for the general case. For the first simple
case, assume that all the triple patterns reference only the triple
table. As mentioned above, a single triple pattern can be
completely evaluated over a table by a single SQL query. To
evaluate multiple patterns in the database engine, it is sufficient to
combine the SQL statements for the individual patterns and add
additional join conditions for the linking variables.
The second simple case is when all patterns can be completely
evaluated by a single property table. This is similar to the first
case. However, here it may be possible to eliminate joins if the
patterns reference properties stored together (since the property
values for the same subject are stored in the same row).
When the triple patterns for a query apply to multiple tables, it is
more difficult to construct a single SQL query to satisfy all
patterns. The Jena1 nested-loops approach is applied in this case.
We are currently investigating optimized solutions for the general
case.

9. ONTOLOGY SUPPORT
Since Jena is, at heart, an RDF platform, we restrict ourselves to
ontology formalisms built on top of RDF. Specifically this means
RDFS [8], the varieties of OWL [12] and DAML+OIL [33].
While OWL builds on top of the RDF specifications, it is possible
to treat OWL as a separate language in its own right, and not
something that is built on an RDF foundation, see for example the
OWL API [3], which merely uses RDF as a serialisation syntax;
the RDF-centric view treats RDF triples as the core of the OWL
formalism. While both views are valid, in Jena we take the RDF-
centric view. As such, the ontology support within Jena addresses
OWL Full features that are not present in OWL DL: e.g. the
ability to use a single URIref to denote a class, a property and a
participant in some other ontological schema.
The Ontology layer defines the interface OntModel which
extends the Model interface from the Model API.
Rather than having Java classes which are tightly bound to the
language being processed (e.g. DAMLClass ,
DAMLObjectProperty , etc.), the ontology API is language-
neutral (thus the classes are OntClass and

ObjectProperty). To support this, each of the languages has
a profile, which lists the permitted constructs and the URI's of the
classes and properties. Thus in the DAML profile, the URI for
object property is daml:ObjectProperty , in the OWL
profile is it owl:ObjectProperty and in the RDFS profile it
is null since RDFS does not define object properties.
The profile is bound to an ontology model, which is an extended
version of Jena's Model class. The general Model allows access to
the statements in a collection of RDF data. OntModel extends this
by adding support for the kinds of objects expected to be in an
ontology: classes (in a class hierarchy), properties (in a property
hierarchy) and individuals. The properties defined in the ontology
language map to accessor methods. For example, an OntClass
has a method to list its super-classes, which corresponds to the
values of the subClassOf property. No information is stored in
the OntClass object itself. When the OntClass
listSuperClasses() method is called, the information is
retrieved from the underlying RDF statements. Similarly adding a
subclass to an OntClass asserts an additional RDF statement
into the model.
The statements that the ontology Java objects see depend on both
the asserted statements in the underlying RDF graph, and the
statements that can be inferred by the reasoner being used (if any).

Figure 3. The statements seen by the OntModel

The asserted statements are held in the base graph. This presents
the simple internal interface, Graph . The reasoner, or inference
engine, can use the contents of the base graph and the semantic
rules of the language, to show a more complete set of statements -
i.e. including those that are entailed by the base assertions. This is
also presented via the Graph interface, so the model works only
with that interface. This allows us to build models with no
reasoner, or with one of a variety of different reasoners, without
changing the ontology model. It also means that the base graph
can be an in-memory store, a database-backed persistent store, or
some other storage structure altogether (e.g. an LDAP directory)
again without affecting the ontology model.

9.1 RDF-level polymorphism and Java
Consider the following RDF sample:

<rdfs:Class rdf:ID="DigitalCamera">
</rdfs:Class >

This declares that the resource with the (relative) URI
#DigitalCamera is an ontology class. It might be appropriate
to model declaration in Java with an instance of an OntClass .
Now suppose we augment the class declaration with some more
information:

<rdfs:Class rdf:ID="DigitalCamera">
 <rdf:type owl:Restriction />
</rdfs:Class>

Now we are saying that #DigitalCamera is an OWL
Restriction (which is a subclass of rdfs:Class). A
problem we have is that Java does not allow us to dynamically
change the Java class of the object modeling this resource. The
resource has not changed: it still has URI #DigitalCamera .
But the appropriate Java class we might choose to model it has
changed from OntClass to Restriction . Conversely, if we
remove the rdf:type Restriction from the model, the use
of a Restriction Java class is no longer appropriate.
Even worse, OWL Full allows us the following (rather
counterintuitive) construction:

<rdfs:Class rdf:ID="DigitalCamera">
 <rdf:type owl:ObjectProperty />
</rdfs:Class>

That is, #DigitalCamera is now a class and a property. While
this may not be a very useful operation, it illustrates a basic point
that we cannot rely on a consistent or unique mapping between an
RDF resource and the appropriate Java abstraction.

9.2 Imports
The imports mechanism of OWL and DAML+OIL are usually
handled as shown:

Figure 4. Ontology internal structure including imports

We see that each imported ontology document is held in a
separate graph structure. If we did not do this, once the imports
had been processed it would be impossible to know where a
statement came from. It is possible to switch off imports
processing.

9.3 OntResource
All of the classes in the ontology API that represent ontology
values have OntResource as a common super-class.
OntResource contains shared functionality for the ontology
classes, example properties are annotations, such as label , and
sameAs.
For each of these properties there is a standard pattern of available
methods, to set and get a singleton value or modify or inspect a
multivalue.
OntResource also provides methods for listing, getting and
setting the RDF types of a resource. The rdf:type property is
one for which many entailment rules are defined in the semantic
models of the various ontology languages. Therefore, the values
that listRDFTypes() returns is more than usually dependent
on the actual reasoner bound to the ontology model. For example,
suppose we have class A, class B which is a subclass of A, and
resource x whose asserted rdf:type is B. With no reasoner,
listing x's RDF types will return only B. If the reasoner is able to
calculate the closure of the subclass hierarchy (and most can), X's
RDF types would also include A. Furthermore, complete

reasoners might also infer that x has type owl:Thing and
rdf:Resource .
For some tasks, getting a complete list of the RDF types of a
resource is exactly what is needed. For other tasks, this is not the
case. An ontology editor, for example, might want to distinguish
in its display between inferred and asserted types. In the above
example, only x rdf:type B is asserted, everything else is
inferred. One way to make this distinction is to make use of the
base model or of the union graph containing the base model and
the imported graphs (see Figure 4). Getting the x resource from
the base model and listing the type properties there would return
only the asserted values.

9.4 Other Aspects
As one might expect, the Ontology API contains classes
corresponding to the main concepts within OWL, and the ability
to inspect and manipulate the principal properties of these classes.
The same API can be used for DAML+OIL, and a subset of the
API is useful for RDFS.
Moreover, the base model can be stored in a database, if required.
A further independent module is an OWL Syntax Checker,
conforming with the specification given in the OWL Test Cases
[11]. It inspects a set of triples and determines whether they fit
within the OWL Lite or OWL DL or OWL Full syntactic species
of OWL. It’s triple oriented operation is described in [4].

10. VIEWS IN JENA2
We have seen that the Graph interface acts as a uniform interface
into triples, both actual, as found in documents or databases, or
virtual, as defined by arbitrary Java code, in particular reasoners.
Similar but more constrained mechanism are found in TRIPLE
[24] and are proposed as RVL [23]. In each of these, views of
virtual triples are defined using a high-level view definition
language in terms of other views or collections of materialized
triples.

It would be possible to translate such high-level view definition
languages into Java code, and, with care, features of Jena2 such as
fast-path query could be utilized. Moreover, the Jena2 architecture
shows a continuum between such view languages and inference.
The rule language in Jena2 can be seen in itself as a view
definition language, although with a somewhat different intent
from RVL or TRIPLE views. In particular, the reasoners in Jena
add triples, whereas an RVL or TRIPLE view both adds new
triples and hides the old triples.

11. JOSEKI
A further feature of Jena that we hope will be standardized in the
next round of the Semantic Web activity is that of a WebAPI [31].

Joseki takes the RDF graph as the primary design concept and
makes it accessible to remote clients and applications. The RDF
WebAPI provides a simple, universal access mechanism for an
application on one machine to extract information from an RDF
repository hosted by another machine. The access mechanism is
graph-based query where the access to the remote knowledge base
is a query and the results are expressed in terms of a single graph.

11.1 Query as access primitive
The WebAPI fits into the Jena paradigm by providing access to a
graph. This graph may be ground data or it may be a graph where
inference is performed to yield entailed triples. This is not visible
to the remote client application. The contract between
information consumer and the information publisher is that the
graph is a set of triples expressing some information. How this

information is derived is purely a matter for the information
provider and not part of the contract between provider (publisher)
and the client application.
Query forms the access paradigm because it is not desirable to
copy such knowledge bases across networks, This may be
because they are large, and the client application is only interested
in a small part of the overall graph, or because the knowledge
base is frequently changing, making locally caching ineffective.
A query returns a single subgraph. Unless the query further
modifies the request with additional parameters, the contract is
that the subgraph returned should yield the same matching results
as the original query would on the entire knowledge base. The
minimal complete subgraph is the smallest such graph. In a
conjunctive query language such as RDQL [25], this is equivalent
to calculating the result triples by substituting each of the query
solutions into the graph pattern and merging into a single graph.
The graph returned does not have to be minimal. A sophisticated
cache could return a precomputed, or previous computed,
subgraph that is larger than the minimal matching subgraph but
still meets the completeness requirement.
Query provides a sufficiently coarse-grained operation for
efficient application use. Direct triple access would cause large
numbers of fine-grained network accesses leading to excessive
overhead.

11.2 The RDF WebAPI
To make RDF repositories available across the Internet, the RDF
WebAPI requires each graph to have a URL for the purposes of
naming and routing query traffic to the repository providing that
graph. One host repository may have several RDF graphs
available, so it is necessary to direct queries to the right one based
on both network location and on name. URLs provide the
mechanism for this.
The protocol used for query is HTTP, specifically the GET verb.
In order to provide compatibility with regular web use, a plain
GET (no query string provided) is interpreted as fetching the
whole RDF graph. A query string provides refinement of the
GET to extract a subgraph of the target graph. The query string
consists of identification of the query language and a query-
language specific string giving the query itself.
The full details of this can be found in the member submission to
the W3C [31].

11.3 Joseki – Client Library
The client library provides integration with the rest of the Jena2
API in two ways. First, the primitive operation of querying and
returning the minimal, complete subgraph is provided where the
remote query processor is expected to compute a complete
subgraph. Second, a remote query engine, matching the standard
QueryEngine interface in the Graph layer is also provided. This
latter access mechanism yields an iterator of bound variables just
like a local query. The variable bindings are locally calculated
based on the complete subgraph returned by the remote operation.

12. CONCLUSION
Jena2 provides integrated implementations of the W3C Semantic
Web Recommendations, centred on the RDF graph. Moreover,
additional features of Jena: the query language and the WebAPI,
are ones that we hope will be finalized in the next phase of the
Semantic Web activity.
The Jena2 architecture cleanly separates presentational issues,
concerning what the application programmer wishes to do with an
RDF graph, from the system programming issues such as how to

store concrete triples or derive virtual triples. This enables the
following new features in Jena2:
• RDFS inference support, following the RDF Semantics.
• Full integration of the Ontology support with other Jena

components. The Ontology presentation API can be layered,
with or without any inference support, over any triple store.

• RDQL can be used to query the virtual triples resulting from
RDFS or OWL inferences.

• Adding a new extensibility point in Jena for integrating DL
reasoners such as Racer and FACT, as part of improving the
ontology support and, in particular, support of OWL.

• Integration of query optimizers, for example, by passing
back-end relational databases complex SQL queries
representing the user level query, rather than merely using a
relational database as a triple store.

• Seamless extension to access over the web.
Jena2 is available under a BSD-style license from
http://sourceforge.net/project/showfiles.php?group_id=40417.

13. ACKNOWLEDGEMENTS
Jena2 is the work of the whole Jena team: Harumi Kuno, Brian
McBride, Craig Sayers and the authors. Thanks too, to other
participants on the jena-devel mailing list.

14. REFERENCES
[1] S. Alexaki, V. Christophides, G. Karvounarakis, D.

Plexousakis, K. Tolle, The ICS-FORTH RDFSuite:
Managing Voluminous RDF Description Bases, 2nd Intl
Workshop on the Semantic Web (SemWeb'01, with
WWW10), pp. 1-13, Hongkong, May 1, 2001.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-
Schneider The Description Logic Handbook, 2003, CUP.

[3] S.Bechhoffer, R. Volz, P. Lord. Cooking the Semantic Web
with the OWL API, Proceedings of ISWC 2003, pp 659-675.

[4] S.Bechhoffer, J.J.Carroll, Validating OWL Syntax submitted
to WWW2004.

[5] Beckett RDF/XML Syntax Revised
[6] Beckett, D., Miller E., Brickley, D., Expressing Simple

Dublin Core in RDF/XML, DCMI Recommendation, 2002.
http://dublincore.org/documents/2002/07/31/dcmes-xml/

[7] T. Berners-Lee et al. Primer: Getting into RDF & Semantic
Web using N3, http://www.w3.org/2000/10/swap/Primer.html

[8] D.Brickley, R.V.Guha, RDF Vocabulary Description
Language 1.0: RDF Schema, W3C8.

[9] J.J. Carroll, Unparsing RDF/XML, WWW2002.
[10] J.J. Carroll Pulling XML Events to Parse RDF, submitted

ISWC 03.
[11] J.J. Carroll, J. De Roo, OWL Test Cases, 2003, W3C8.
[12] M. Dean, G. Schreiber, OWL Reference, 2003, W3C8.
[13] J. Grant, D. Beckett, RDF Test Cases, 2003, W3C8.
[14] Gleb Frank A General Interface for Interaction of Special-

Purpose Reasoners within a Modular Reasoning System, in:
"Question Answering Systems. Papers from the 1999 AAAI
Fall Symposium," pp. 57-62.

[15] Volker Haarslev, Ralf Möller Description of the RACER
System and its Applications, Intl Workshop on Description
Logics (DL-2001), Stanford, USA, 1.-3. August 2001

[16] P. Hayes, RDF Semantics, 2003, W3C8
[17] I. Horrocks, J. Hendler (eds) The Semantic Web - ISWC

2002, First International Semantic Web Conference,
Sardinia, Italy, June 9-12, 2002. Proceedings, Springer.

[18] I. Horrocks. “Using an expressive description logic: FaCT or
fiction?” In A. G. Cohn, L. Schubert, and S. C. Shapiro,

editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixth International
Conference (KR'98), pages 636-647. Morgan Kaufmann
Publishers, San Francisco, California, June 1998.

[19] G. Karvounarakis, V. Christophides, D. Plexousakis, S
Alexaki, Querying Community Web Portals, SIGMOD2000.

[20] G. Klyne, J.J. Carroll, RDF Concepts and Abstract Syntax,
2003, W3C8.

[21] O. Lassila, R.R. Swick, RDF Model & Syntax 1999, W3C8.
[22] B. McBride Jena IEEE Internet Computing, July/August,

2002.
[23] A. Magkanaraki, V. Tannen, V. Christophides, D.

Plexousakis. Viewing the Semantic Web through RVL Lenses,
Proc. of ISWC 2003 pp 96-112.

[24] Z. Miklós, G. Neumann, U. Zdun, M. Sintek Querying
Semantic Web Resources Using TRIPLE Views, Proc. of
ISWC 2003 pp 517-532.

[25] L. Miller, A. Seaborne, and A. Reggiori Three
Implementations of SquishQL, a Simple RDF Query
Language, 2002, p 423 ff. in [17].

[26] P.F. Patel-Schneider, P. Hayes, I. Horrocks, OWL Semantics
& Abstract Syntax, 2003, W3C8.

[27] P.F. Patel-Schneider, P. Hayes, I. Horrocks, OWL: RDF-
Compatible Model-Theoretic Semantics 2003, in [26]

[28] D. Reynolds, Jena Relational Database Interface –
Performance Notes, in Jena 1.6.1 download:
http://www.hpl.hp.com/semweb/download.htm

[29] Craig Sayers, Harumi Kuno, Kevin Wilkinson, Jena
Persistence — Design and Implementation, HP Laboratories
Technical Report HPL-2003-xxx, in preparation.

[30] A. Seaborne RDQL— A Query Language for RDF, 2003, in
preparation (expected publication Nov 2003).

[31] A. Seaborne RDF Net API, 2003,
http://www.w3.org/Submission/2003/SUBM-rdf-netapi-20031002/

[32] A. Seaborne An RDF NetAPI, 2002, p. 399 ff in [17]
[33] F. van Harmelen, P. F. Patel-Schneider I. Horrocks,

Reference description of the DAML+OIL (March 2001)
ontology markup language,
http://www.daml.org/2001/03/reference

8 W3C Technical Reports can be found at http://www.w3.org/TR/

