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ABSTRACT

The new Semantic Web recommendations for RDF, RBRS
OWL have, at their heart, the RDF graph. Jena2ge@orsl-
generation RDF toolkit, is similarly centered ore tRDF graph.
RDFS and OWL reasoning are seen as graph-to-grapkforms,
producing graphs of virtual triples. Rich APIs @mvided. The
Model API includes support for other aspects of tRBF
recommendations, such as containers and reificatidhe
Ontology API includes support for RDFS and OWL, lirting
advanced OWL Full support. Jena includesdbdactoreference
RDF/XML parser, and provides RDF/XML output usirige tfull
range of the rich RDF/XML grammar. N3 1/O is supedr RDF
graphs can be stored in-memory or in databases’'sleuery
language, RDQL, and the Web API are both offeredte next
round of standardization.

Categories and Subject Descriptors
To find the list of ACM’'s categories & descriptorsee:
http://www.acm.org/class/1998/

General Terms
Algorithms, Standardization, Languages.

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION

The new recommendations for
Framework (RDF) and the Web Ontology Language (OWdye
just been publishéd They provide a simple triple based
representation of knowledge, with formal semangilbswing for
automated inference. RDFS and OWL also provide soseful
vocabulary, particularly for building schema andabdogies.

Jena is a leading Semantic Web programmers’ tof@Rit

The heart of the Semantic Web recommendations ésRBF
Graph [20], as a universal data structure. An RE#plg is simply
a set of triples. Jena similarly has the Graphtsasare interface
around which the other components are built.

This paper presents Jena2, concentrating on therotytectural
and design principles.

The two key architectural goals of Jena2 are:

Multiple, flexible presentations of RDF graphs tdet
application programmer. This allows easy access atod
manipulation of, data in graphs enabling the apphbn
programmer to navigate the triple structure. Paldidy, the

Model API presents the graph using the terms and coscept

from the RDF recommendations, and @wtologyAPI presents
the graph using concepts from OWL and RDFS.

! Note to referees, we hope this will be true bytihre we need
the final copy!
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* A simple minimalist view of the RDF graph to thessm
programmer wishing to expose data as triples. Tisis
particularly useful for exposing RDFS and OWL redng.

The first is layered on top of the second, so #ssentially any

triple source can back any presentation API. Trggerces may

be materialized, for example database or in-meniple stores,

or virtual, for example resulting from inferenceopesses applied
to other triple sources. This provides a generalwwvinechanism
using view definitions in Java.

A Semantic Web query language RDQL [25] is supmhrend

can be used either on top of materialized graphendhe virtual

results of RDFS or OWL reasoning.

A third presentation interface, the RDF WebAPI [3Rtovides

query-based access to RDF graphs to web clients. query-

based access is also available at both the systdnagplication
programmer interfaces, and acts as a further ungfiieme of the
architecture. Queries from all levels are passedrefational

databases as SQL, and are hence visible to theop@izer.

This paper starts with an overview of Jena andhithitecture,

and then details those parts of the system withatgse

architectural significance.

1.1 The Semantic Web Standards

The RDF abstract syntax [20] provides triples amizersal data
structure. The vocabulary [8] from RDF and RDFSvjate a core
set of properties and classes to use with thgsedriThese triples
can be serialized as RDF/XML [5]. The formal mean[t6] of
these triples and of the vocabulary permits entilts to be
drawn.

The RDF Schema vocabulary permits the definition nefv
classes and properties to be used in the graphseTlaee
augmented by the Web Ontology Language (OWL) [12].

OWL provides three levels: OWL Lite, OWL DL and OVWAull.
OWL Full is the most expressive. OWL Lite is easiesaddress
with complete reasoning services (which are notsibtes for
OWL Full). These levels are differentiated syntzatty [26]. Two
compatible semantics are provided, one for OWL FEudl other
OWL DL.

OWL Full builds on top of RDF, being a semantic emdion.
OWL DL’s abstract syntax is mapped into RDF as ¢kehange
language.

The next round of Semantic Web standardizatioikéyl to work
on query languages, and possibly Web APIs for tBmaditic
Web.

1.2 What is Jena?

Jenal was first released in 2000 and has had o0y@¥05
downloads. Jena2 was released in August 2003; andhdd over
3,500 downloads.

The main contribution of Jenal [22] is the rigtodef API for

manipulating RDF graphs. Around this API, Jenalvioes

various tools, for example: an RDF/XML parser [1@];query

2 The term “Model” is taken from the original RDF kel &
Syntax Recommendation [16], meaning data model.



language [25]; further 1/0O modules for N3 [7] andtriple [13]
and RDF/XML output [9]. Using the API the user camose to
store RDF graphs in memory or in persistent stodesial
provides an additional API for manipulating DAMLHO[33].
Jena2 provides additional functionality for genetalielopers to
support RDFS and OWL [12]. There are new APIs fareasing
ontologies and processing vocabularies. Jena2offlss two new
extension points to system programmers. The filisiwa the
development of new presentation APIs for new fuomality to
developers. The second allows the development of wmiple
sources, particularly of virtual triples that areengrated
dynamically as a result of some processing, sucinfasence or
access to legacy data sources. Inference follovhy RDF
semantics [16] and the OWL semantics [26] is pregid

2. JENA2 ARCHITECTURE OVERVIEW

The heart of the Jena2 architecture is the RDFhgrapset of
triples of nodes. This is shown in tBraph layer (see figure 1).
This layer, following the RDF abstract syntax, isnimal by
design: wherever possible functionality is doneother layers.
This permits a range of implementations of thietaguch as in-
memory or persistence triple stores.

The EnhGraphlayer is the extension point on which to build
APIs: within Jena2 the functionality offered by tEBmhGraph
layer is used to implement the Jenlslbdel APl and the new
Ontologyfunctionality for OWL and RDFS, upgrading the Jena
DAML API.

I/0 is done in théMlodellayer, essentially for historical reasons.
The Jena2 architecture suppdist path quenthat goes all the
way through the layers from RDQL at the top ridirough to an
SQL database at the bottom, allowing user quenié® toptimized
by the SQL query optimizer.

We give some more detail on the three layers below.

2.1 The Graph Layer: Triples as the

Universal Data Structure

The Graph layer is based on the RDF Abstract Syntax [20is It

straightforward to implement:

« triple stores, both in memory and backed by pemsisttorage;

« read-only views of non-triple data as triples, sashdata read
from a computer file system hierarchy, or scrapednfa web
page;

« virtual triples corresponding to the results oem@ince processes
over some further set of triples as premises.

Implementations of th&raph layer provided with Jena2 give a

variety of concrete (materialized) triple storesd aome built-in

inference: specifically for RDFS and for a subSeD@L.

2.2 The Model Layer: Views for Application

Programmers

Jena2 maintains thé&lodel APl from Jenal as the primary
abstraction of the RDF graph used by the applingtimgrammer.
This gives a much richer set of methods for opegatin both the
graph itself (theModel interface) and the nodes within the graph
(theResource interface and its subclasses).

Further, the DAML API is updated and enhanced ima2eto form
an Ontology API that can be realized as a DAML AP&n OWL
API.

RDQL

l Ontology Models
Model Layer

l Model H Resource l

ARP

N3 1/0

API layel

-~ lStatement l
Jenal compatibilit

EnhGraph Layer v A
EnhGraph H EnhNode

Nodes in conte
Polymorphisr
equality

Graph Layer v v
l Graph l Node l

See [RDF Concepts]
FastPath Query
Reificatior

materialized graphs
in-memory SQL
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stores
Figure. 1. The Jena2 Architecture

2.3 TheEnhGraph Layer:

Multiple Simultaneous Views

Both theModel and theOntologylayers lie on top of th&raph
layer via an intermediate layer: teB@hGraphlayer.

This provides an extension point for providing véeef graphs,
and views of nodes within a graph. This generalthesneeds of
both theModel and theOntologyAPIs, and, significantly, makes
the design decision that such presentation layest be stateless:
all state is kept within the graph. (Caching ofesia permitted by
the presentation layers). TEmhGraphlayer is designed to permit
multiple views of graphs and nodes which can beduse
simultaneously. Java’'s single inheritance moddidestepped to
provide polymorphic objects within thEnhGraph layer. This
allows the multiple inheritance and typing of RDRS& be
reflected in Java.

3. THE GRAPH SPI

Jena’s implementation of RDF’s abstract syntax [@heGraph
SPI (System Programmer Interface), through whiehttiples of
all Jena graphs are accessed.

3.1 Overview

The Graph layer defines an interface representing RDF graphs

The design goals for tHeraphlayer include:

e allowing collections of triples to be queried anddated
efficiently. In particular, querying triples held idatabases
should be able to exploit the underlying databaggne.

e being easy to reimplement, so that new triple ctibes can
be represented Wgraphs with minimal programming effort.

e supporting some specialist operations from thedel API
when these cannot be easily constructed from thee ba
functionality, in particular, reification is oneduoperation.

The elements within a&raph are Triple s; eachTriple

comprises threBlodes, the subject, predicate, and object fields. A

virtual graphs
inferencing graph unior ]




Node represents the RDF notion of a URI label, a blao#é, or

a literal; there are also two variable nodes, famad variables
and ANY, a match-anything wildcard, for use in ti@@uery
interface.

The RDF restriction that a literal can only appesan object, and
that a property can only be labelled with a URlerfforced by
Jena in théModellayer and not in th&raph layer.

Two implementations of th&raph layer are an in-memory triple
store and relational database (RDB) triple stores.

The coreGraph interface supports modification (add and delete
triples) and access (test if a triple is presentigirall triples
present matching some patter@raph implementations are free
to restrict the particular triples they regard egal and to restrict
mutability — this is reflected through the use afa exceptions.
The most significant part of the caBaph interface is thdind
operation. The primitivdind(Node S,Node P,Node O)

delivers aniterator over all the triples of th&raph which
"match" the triplg(S, P, O) . To "match" means to be equal to
or for the S/P/O node to beny. This allows theGraph to be
queried for e.g. all the properties of some paldicsubject, all
the predicates with some particular object, or @tlall the triples
in the Graph. This is the extensibility point that the inferenc
engines andGraph combinators use for generating virtualized
triples.

3.2 Fast Path Query

One of the goals of th&raph layer is to allow queries to be
expressed which can exploit underlying efficienexyuengines,
and which can return different kinds of resultsariable bindings
or subgraphs, for example.

Rather than add many operationsGoaph itself, eachGraph
has an associategiery handlewhich manages the more complex
queries. A standard simple query handler is praVigehich
implements the complex queries in terms of find primitive
for Graph s not offering more efficient possibilities.

A Query consists of a collection of triple patterns torbatched
against somésraph s. A triple pattern is &riple  that may
contain the extendedNy and Variable nodes mentioned above.
So a subgraph might contain

(?x P ?y) (?y Q ?2)

to request all the bindings for ?x, ?y, and ?zwbich matching
triples can be found in th@raph . The subgraph can be executed
so as to find either, all possible bindings of tragiables or to
returrf the minimal matching subgraph.

Jena's memory-bas&taph model simply implements the triple
pattern matches by iterating over tBgaph usingfind . The
RDB-basedGraph s instead compile the query into SQib be
submitted to the database query engine.

The query handling operates over all the triplgsressed by the
Graph, however they are generated - as base assertioas o
inferred consequences.

RDQL [25] uses this interface to do the non-corstraarts of its
query handling.

3.3 Reification

RDF Model & Syntax [21] suggests making statemeatisut

statements by means of reification: i.e. represgnthe original
triple as four triples forming what is known asetfication quad.

8 Also known as an anonymous resource, or a bnode.
4 Feature under development.

The new RDF recommendations clarify that the raffan syntax
does not completely achieve these goals, but ocoatito
recommend the use of reification for provenanceis Tk in
keeping with the practice of those Jena users vegoreification
heavily, to be able to add metadata to triples.

An important optimization is to be able to treafication quads
efficiently. This APIl-layer notion is reflected dawinto the
Graph interface.

Jena provides an API notion of ReifiedStatement
encodes a statement in a model as a reificatiod.qua
EachGraph has an associatdReifier  that is responsible for
storing reifiedTriple s. (This separation into a separate interface
and implementation keeps tl@aph interface uncluttered and
allows different Graph implementations to share code.)
ReifiedStatement s may be created by a single API call; thus
users who explicitly reify many Statements need pwt a large
cost in reification quads.

A Graph implementation may choose how it makes reification
visible by picking a reification style The default style,
Standard , is intended to conform to the RDF standard: the
quads of reified statements are visible tofind primitive and

to queries. The styl€onvenient suppresses all reification-
quad parts in query results and is compatible with behaviour

of Jena 1. The stylblinimal is useful for internaGraph s for
which reification is irrelevant.

3.4 Other Details of the Graph Layer

Datatypes. The requirements of RDF manipulation of typed
literals [16] differ from the Java norms. The saseenantic value
can have multiple RDF representations (&4'xsd:int and
1"xsd:short ). One is initially tempted to arrange the Java
equality operation ohiteral s to take this value mapping into
account. However, this interferes with the useLibéral s in
indexed collections. Instead we introduced a sepanation of
sameValueAs and arrange that searches®raph s default to
using this notion of equivalence in preferenceaealequality.

Size. Graphs are sets of triples; a set naturally has a size
(possibly infinite). However, with the notion of farencing
Graph's, implementing size is tricky and its behavioumno
obvious. While Jen&raph s have &ize method, its meaning is
unclear.

Transactions. JenaGraph s may supportransactionssuch that
changes to &raph may be committed or abandoned. At present
only RDB-based models offer this capability.

Bulk Update. If needed triples may be added to or removed en
masse rather than one at a time for efficiencyomsmse.g. for
initialising a database.

4. ADDING APIS

Within theGraphlayer, it is easy to provide triples. However sit i
not easy to work with them at the application le(sde [22]).
Thus Jena includes an API to act as a presentatyen above the
raw Graph this is theModel API.

This provides programming abstractions for the Rjbdph which
align with the abstractions found in the RDF Vodaby[8].

A key abstraction in théModel API is the Resource . This
corresponds withr df s: Resour ce. This is a URIref or blank
node seen as part of a graph. This is not merelgde but the
collection of facts about that node in a particURDF graph.
From the point of view of the recommendationsR@source

that



provides a view not of the node, which is merelyRiref, but of
its interpretation within an RDF graph.

Sometimes it is useful at the application level iew and
manipulate &Resource with a richer set of primitives based on
extended functionality reflecting some aspect sfiiterpretation
in a particular graph. For example, if a URIrekisown to have
type r df : Bag, then viewing the correspondirResource as a
Bag allows easier access to its members without having
explicit access thedf: _1,rdf: _2 ... triples. In this way we find
direct support for RDF containers, as defined bg RDF
Vocabulary, within theModel layer. Similar APl classes and
methods are provide in support of the RDF reifmatvocabulary,
which is implemented using the reification primésvin the graph
layer (see section 3.3).

The Model layer is shown in figure 1, along with an alteiveat
presentation layer: th@®ntologylayer. In theOntology layer we
find explicit support for the concepts from RDF 8pofa and
OWL. Ontologysupport adds many additional views of a URIref
node within a particular graph, e.g. as @mtClass , as a
CardinalityRestriction etc. The functionality of the
Model layer has previously been published, for examp®;[the
Ontologylayer is described below (section 9).

4.1 The Enhanced Graph Layer

Jena2 does not attempt to present one consoligmesgntation
API onto an RDF graph. A consolidated APl might dree in
which a URIref withrdf:itype of owl:ObjectProperty

would be realized as a Java Object of clabgectProperty
which would implement all the interfaces that wampropriate,
and inherit from some appropriate superclass. Thereno
obviously correct class hierarchy for the differeahcepts within
theModel API andOntologyAPI. Moreover choosing which view
to take of a particular URIref in the graph tendlsitake a closed
world assumption: this resources an RDFS class; later
information may cause us to reconsider. A direcppireg of the
class hierarchy of RDF onto that of Java would theis mistake.
To address this issue a framework for using marfierdint
presentation layers is provided, with two builtiirstantiations,
theModel API and theOntology ModeAPI.

4.1.1 Presentation Layers and Personalities

Each presentation layer consists of some interfaces some
implementation classes, and a mapping from integfdo factory
methods that invoke the implementation classess Wi@pping is
known as thePersonality of the presentation layer. These
presentation layers are stateless. All state redtmGraph s.

The implementation classes either extefithhGraph or
EnhNode. EnhGraph is a simple wrapper around Graph,
with a pointer to thePersonality . EnhNode is a wrapper
around a Node, with an additional field pointing to an
EnhGraph . This is the context in which thenhNode is seen.
For example, Model extends EnhGraph, and Resource
extend€EnhNode.

Each subclass &nhGraph provides a set of operations that can
be performed on &raph . Thus an instance acts as a view of a
Graph.

Each subclass dnhNode provides a set of operations that can
be performed on Alode in aGraph. Thus an instance acts as a

® The interpretation according to the RDFS semanégsiires is
only reflected when an RDFS reasoner is used,esd@®s 5.

view of aNode in a specificGraph . It is often appropriate to
take different views of the sarode.

4.1.2 Polymorphism

RDFS permits any resource to have multiple typésclivmay or
may not be relateddfs:subClassOf can be used to express
multiple inheritance and not just a simple hiergrdin contrast,
Java objects have a single Java class, from afrelsses with
single inheritance. Jena2 implements polymorpheoueces to
model within Java the RDFS style of multiple typing

Given aNode or anEnhNode it is always possible to use the
factory methods in théPersonality to create a view (an
instance of a subclass BhhNode) of theNode that implements
a particular interface. The constraint that th&sdNodes are
stateless ensures that it is always safe to cmeate than one
identical EnhNode. It also permits caching dEnhNodes for
performance reasons. Thus a key method orEahnNode is
as(interface) , which returns a view of thallode which
implements the given interface. If the desired ltesunot in a
simple cache, then the view is created using tbfg methods
found in thePersonality

This methodas is used while implementing a presentation API
such as théModel or the Ontology layer as part of an extended
casting idiom e.g.

(OntClass) ontProp.as(OntClass.class);

This is particularly useful for implementing OWL IF{27], in
which there is no separation of vocabulary.

4.2 User defined Presentation APIs

Applications may well want to have their own spbzéd views

of Resource s. Within the Jena2 architecture these views can be
generated from an RDF Schema or an OWL Ontology and
incorporated within the overall framework. That ishile the
figure shows two instantiations of the top layerthes
instantiations can be added.

5. INPUT/OQUTPUT

The de factoreference parser for RDF/XML [5] is part of Jena.
This is used at the W3C RDF validator site.

Jena /O is provided at tHdodel layer. The basic primitives are
to read and write models, in a choice of Semangb\fdnguages.
The languages supported are RDF/XML [5], N3 [7] &kdriple
[13].

5.1 Parsing RDF/XML

The RDF/XML parser uses Xerces to parse the XMLd an
validates the RDF input against a range of starsdencbrporated
by reference into RDF/XML. Specifically, input ishvecked for
conformance with RFC 2396 (URIs), RFC 3066 (langsag
including ISO 601 and ISO 3166 checking), and th&QN
Character Model.

The parser architecture, described in [10], cleadparates the
RDF processing and the XML processing, which hasnjted
the parser to closely track the revised RDF/XML kiog drafts
as they evolved to the new Recommendation.

In Jena2, the realization of that architecture b@sn improved,
using Xerces in pull-parsing mode, which permits tlo-routine
architecture to be realized in a single Java thresttier than two
threads (for the XML parser and the RDF parseip denal.

5.2 Unparsing RDF/XML

RDF/XML output can be performed either in a basadm which
is preferred for large files, or in a pretty writeode. The former
groups the triples of the graph by subject and tiveites each



triple using a simple property element. This does use the
striped syntax. The abbreviations provided in RO¥[Xare not
utilized.

The pretty writer format, intended more when thépatimay be
seen by people, is significantly more expensive ases all the
productions in the revised syntax. Striping, ascdbeed in the
recommendation [5], is the default. One of the @ito control
the output switches off rules as specified in theised syntax.
This option takes as an argument the URL referemdethe

productions which are not to be used: e.qg.
RDFWriter w = m.getWriter(“RDF/XML-ABBREV");
String rdfSyntax =
“http:/iwww.w3.org/TR/rdf-syntax-grammar”;
w.setProperty(“blockRules”,
rdfSyntax+"#idAttr,"+
rdfSyntax+"#parseTypeCollectionPropertyElt");

The URL references used link directly into the WR4C., tying
the software behaviour with the formal specificatio

Since, as described in [9], the code closely fodlaive formal
grammar in the recommendation, it is straightfoowver provide
this behaviour which can be understood by the useterms of
that grammar.

6. INFERENCE SUPPORT

The treatment of schema and ontologies in the fbseraantics of
both RDF [16] and OWL [26] makes it clear that édntant is a
core feature of the Semantic Web recommendatiohis. i$ also
reflected in the hundreds of entailments testsigeai/[11], [13].
Jena supports this by giving access to a rangenfefreince
capabilities. A core set of such capabilities arailable “out of
the box”, particularly RDFS inference, and OWL nefece
(supporting the subset of OWL Full, roughly cori@sging to the
union of OWL Lite and RDFS); whilst the archite@upermits
plug-in connections to engines being developed t®y wider
community, such as Racer [15], FaCT [18] and tiva Jdheorem
Prover [14]. It is planned that using such pluggénsmplete OWL
Lite and improved OWL DL reasoning will be suppdrte

The design center for Jena2’'s inference API is twmbée
applications to access RDF data that has been hedriby
additional assertions entailed from a set of reiewmtologies —
that is we emphasize Abox queries over Thox qud@gsThis
bias influences our choice of API, architecture anférence
engines.

6.1 Inference access API and architecture

In Jena2, inference engines are structureGraph combinators
called Reasoner s. An instance of &easoner combines one
or more RDF Graphs and exposes the entailments them as
another RDF Graph in which some of the retrievdhdes are
virtual entailments rather than materialized datee(figure 2).

The inputGraph s contain both the ontology and instance data,

with optional separation between the two. In pattg it is
possible to partially-bind &easoner to an ontology and then
use the resulting specializeReasoner to access multiple
different dataGraph s — reusing the ontology inferences.

This layering offers great flexibility. For examplan OWL Lite
Reasoner can be stacked on top of an RDR8asoner with
the latter being used to infer the type statemesqsired by the
OWL Lite syntax but deducible from the domain/range
declarations of the OWL Lite properties. An RDQLegyican be
issued to an inferre@raph, just like any otheiGraph, thus
allowing query over the entailments. For instance irferred
RDFS graph can be used by RDQL to do schema ditegteries,
and hence have functionality more like RQL [19]theut any

additional query syntax, and with better alignmeith the RDF
recommendation.

Different APIs can be bound to the inferr@daph allowing the
results to be viewed at the RDF level or thoughdtwevenience
ontology API.

ModelFactory

Ont/Model API
find

InfGraph
Reasoner
! Reasoner
RGQISfW create

bind bindRuleset (optional)

GFQPh - base assertions ‘ GFQPh — ontology definitions

Figure 2. The inference API layering

Many entailments are easily accessible through Ghaph or
Model APIs in this way. For example finding all instascef a
given class is a simple triple query:

(?x rdf:type C)
whereCis aNode representing ardfs:Class in the ontology
Graph (and can be either a bnode or a named class).
There are several limitations of this API approéut we had to
address.
First, arbitrary class expressions introduced leydbmprehension
axioms of OWL [27] are not directly supported. Wiglgessed the
same requirement by extending tfied operation to take an
optional parameter, for additional premises. Thasameter is a
Graph containing expressions whobkdes can be used within
the query triples; the intended use is with expoessknown to be
valid from the comprehension axioms.
Second, for transitive relations it is often corieet to be able to
query the direct (or minimal) as well as the tréwmsly closed
version of the relations. We handle this by intrtidg additional
RDF properties to represent the direct version rof wansitive
property. This style of extension, introducing diudial RDF
properties to represent inferable relationshipskesahe triple-
based API very flexible.
Thirdly, to give convenient access to consistemégrimation we
added avalidate  method which returns a report containing a
list of all warnings or errors identified withinglGraph . This is
more convenient than the property introduction mégphe, in this
case, because validity reports may need to refstai@ments or
groups of statements and not simply\\tedes.

6.2 Built-in reasoners

As part of the default distribution we include desdon of

inference engines, which conform to this architextu

Transitive Reasoner. This reasoner provides the transitive
closure of the rdfs:subClassOf and
rdfs:subPropertyOf relationships contained in the source
graphs, dealing correctly with cases such as deglasub-
properties of the rdfs:subClassOf property. This
relatively simple functionality corresponds quitesely to the
hard coded inference implemented by the Jenal DAML+
API, enabling applications to make similar queriesJena2
with similar performance without needing to invokeore
sophisticated inference engines.

RDFS Reasoner.This provides an implementation of the RDFS
closure rules [16]. It strikes a balance betweegeeand lazy
processing. The sub-class and sub-property latdoesached



using an embeddetiransitiveReasoner . Each domain,
range, sub-property and sub-class declaration igerba
translated into a single query rewrite rule. Thauleof a query
to the graph will be the union of the results frapplying the
query plus all the rewritten versions of the queoy the
underlying graphs.

Rubrik® Reasoner. This reasoner supports rule based RDF

inferences. Rule clauses are either extended tppteerns or
procedural callouts to primitives defined in JaWée triple
patterns arextendedn the sense that the objects of the triple
can be functor-like data structures. This allowe ruthors to
control the combinatorics of graph pattern matctbgchaving
one rule map a subgraph pattern into compact diatetsre and
later rules fire off that data structure. Both fard/ chaining and
memoized backward chaining rule engines are prayigéth
some hybridization in that forward rules are albleteate and
install new backward rules.
These rule engines may be used with applicationipeule
sets or with prepackaged rule sets for RDFS andhi®OWL
Lite subset of OWL Full. The rule-based approachresponds
well to our emphasis on ABox reasoning, indeed wadhe
class-subsumption checking by introducing protatgpi
instances of classes and letting the instance ddesmine the
other type labels for the prototype.

In addition to these inference engines we havedatimseful to

provide a set of operators (union, multi-union, emsection,

difference, delta) for combining da@&aph s.

6.3 External reasoners

By using such a generic, triple-based, interfacto anference
results it becomes possible to expose the capalufita wide
range of reasoning engines through the same APlelance
this flexibility by providing aReasonerRegistry in which
available reasoners can be registered along witlidantifying
URI and a reasoner capability description (expi$serRDF). In
this way applications can be made somewhat indegdnaf the
particular inference engine being used.

We intend to construct adaptors for several opemdgilable
reasoners, to enable their use from within Jena.

7. RDQL — RDF QUERY

RDQL (RDF Data Query Language) was pioneered imDemhe
Jena implementation is thie factoreference implementation. A
full description is found in [30], the original papis [25].

An RDQL consists of a graph pattern, expressedlas af triple
patterns. Each triple pattern is comprised of riawaiables and
RDF values (URIs and literals). An RDQL query ealditionally
have a set of constraints on the values of thodgablas, and a list
of the variables required in the answer set.

SELECT ?x

WHERE (?x,

<http://  www.w3.0rg/1999/02/22-rdf-syntax-ns#
<http://example.com/someType>)

type>,

This triple pattern matches all statements in treplg that have
predicate  http://www.w3.0rg/1999/02/22-rdf-syntax-

ns#type and objecthttp://example.com/someType The

variable "?x" will be bound to the label of the gdb resource.
All such "x" are returned

An RDQL query treats an RDF graph purely as datehé

implementation of that graph provides inferencingappear as

® RDF basic rule inference Kkit.

"virtual triples" (i.e. triples that appear in tgeaph but are not in
the ground facts) then an RDQL will include thosplés as
possible matches in triple patterns. RDQL makedistinction

between inferred triples and ground triples.

The next phase of the Semantic Web activity byWa€ is likely

to address RDF query. We hope that this work veket our
positive experinces with RDQL into account. Jen&BQL

implementation will evolve as a result of the newrkvat the
Wa3C.

8. PERSISTENT STORAGE

As in Jenal, the database subsystem in Jena2 ssimeosistent

storage of RDF Models in a conventional databas].[2
Implemented at the Graph layer, it provides all tiseal Graph

operations (add, delete, find) and efficiently sopp reification.

8.1 Denormalized Schema

Jena2 stores each triple either in a general parpigge table or a
property table, for a specific property.

The schema trades-off space for time. It usedemaormalized
schema in which resource URIs and simple literdues are
stored directly in the triple table. A separaterhis table is used
only to store literal values whose length exceedBrashold or
that are typed or have a language tag. This makesssible to
process a large class of queries without a joinwéi@r, a
denormalized schema uses more database space édvasame
value (literal or URI) is stored repeatedly.

The increase in database space consumption is ssedrein
several ways. First, common prefixes in URIs, suab
namespaces, are stored in a separate table arutefie in the
URI is replaced by a reference. This prefix tabik lve cacheable
in memory so expanding a prefix does not requilatabase join.
Second, a literals table is used so that longaliseare stored only
once. Third, Jena2 suppomsoperty tables as described below.
Property tables offer a modest reduction in spacesuemption in
that the property URI is not stored.

8.2 Configuration

Configuration parameters are specified as RDF regtés in a
memory model that is passed as an argument whatingea new
persistent model. Jena2 includes default model¢agung the
default configuration parameters for all supportgatabases.
Specifying configurations in RDF makes configuraticeasy to
search, share and re-use since they can be maeghwéh Jena’s
existing operations.

8.3 Property Tables

A property table (also known as attribute table$) [tholds
statements for a specific property. They are stasesubject-value
pairs in a separate table. Triple tables and ptpp@bles are
disjoint - a statement is only stored once. Fompprbes with a
maximum cardinality of one, it is possible to clrsimultiple
properties together in a single table. A single rofathe table
stores property values for a common subject. Famgle, a
Dublin Core [6] property table might storelc:title ,
dc:publisher  , dc:description

Multi-valued properties, e.gdc:creator , cannot be clustered
and must be stored in separate tables. Note thia¢ iflatatype of
the object value is known, it may be possibte make the
underlying database column for the value matciptbperty type.

" Not all XSD types correspond to an SQL datatype.



A property classtable is a special kind of property table that
stores properties associated with a particularsclasd also
records all instances of that class. Each propmugt have the
class as its domain. Jena2 implements reificat®rm groperty
class  table. The properties  are rdf:subject ,
rdf:predicate , rdf:object and the class is constrained to
be rdf:Statement . The subject of the property class table is
the URI that reifies the statement.

8.4 Query Processing

Queries are executed against graphs which may haugple
statement tables. For each statement table thesehiandler to
convert between the graph view of Jena and theetug@w of
SQL. To evaluate a triple pattern, the query precepasses the
pattern, in turn, to each table handler for evadumat

A goal of Jena2 is support fdast pathquery processing for
RDQL (see section 3.2). In Jenal, an RDQL quermpisverted
into a pipeline of triple pattern queries. Thiseigaluated in a
nested-loops fashion in Java by using the resdltsne triple
pattern to bind values to variables and then g¢ingraew triple
patterns for evaluation. The goal of fast path gyepcessing is
to use the database engine to move more of thieepsing to the
database engine.

A full discussion of fast path query processingbiesyond the
scope of the paper. Here, we present two simplescasd
mention the difficulties for the general case. Huo first simple
case, assume that all the triple patterns referenbethe triple
table. As mentioned above, a single triple pattean be
completely evaluated over a table by a single S@kerg To
evaluate multiple patterns in the database endiresufficient to
combine the SQL statements for the individual pateand add
additional join conditions for the linking varialle

The second simple case is when all patterns cacobwletely
evaluated by a single property table. This is simib the first
case. However, here it may be possible to elimijaites if the
patterns reference properties stored together gsine property
values for the same subject are stored in the sawje

When the triple patterns for a query apply to npldtitables, it is
more difficult to construct a single SQL query tatisfy all
patterns. The Jenal nested-loops approach is dppliis case.
We are currently investigating optimized solutidosthe general
case.

9. ONTOLOGY SUPPORT

Since Jena is, at heart, an RDF platform, we mstrirselves to
ontology formalisms built on top of RDF. Specifigathis means
RDFS [8], the varieties of OWL [12] and DAML+OIL 83.

While OWL builds on top of the RDF specificatioiitss possible
to treat OWL as a separate language in its ownt,righd not
something that is built on an RDF foundation, seeskample the
OWL API [3], which merely uses RDF as a serialsatsyntax;
the RDF-centric view treats RDF triples as the aofréghe OWL
formalism. While both views are valid, in Jena \aket the RDF-
centric view. As such, the ontology support witliena addresses
OWL Full features that are not present in OWL DLg.ethe
ability to use a single URIref to denote a claspr@perty and a
participant in some other ontological schema.

The Ontology layer defines the interfac©ntModel
extends the Model interface from thtodel API.

Rather than having Java classes which are tighdlynd to the

which

language being processed (e.g. DAMLClass,
DAMLODbjectProperty , etc.), the ontology API is language-
neutral (thus the classes areOntClass and

ObjectProperty ). To support this, each of the languages has
aprofile, which lists the permitted constructs and the §f'the
classes and properties. Thus in the DAML profitee tJRI for
object property isdaml:ObjectProperty , in the OWL
profile is it owl:ObjectProperty and in the RDFS profile it
isnull since RDFS does not define object properties.

The profile is bound to an ontology model, whichais extended
version of Jena's Model class. The general Modelvalaccess to
the statements in a collection of RDF data. OntMeatends this
by adding support for the kinds of objects expedtedbe in an
ontology: classes (in a class hierarchy), propeftie a property
hierarchy) and individuals. The properties defiirethe ontology
language map to accessor methods. For examplenalass
has a method to list its super-classes, which spameds to the
values of thesubClassOf property. No information is stored in
the OntClass object itself. When the OntClass
listSuperClasses() method is called, the information is
retrieved from the underlying RDF statements. Sirfyladding a
subclass to a®ntClass asserts an additional RDF statement
into the model.

The statements that the ontology Java objects egend on both
the asserted statements in the underlying RDF grapt the
statements that can be inferred by the reasoneg lisied (if any).

Ontology model

:

[ Jena Graph interface

Reasoner

'

[ Jena Graph interface

Base RDF graph

Figure 3. The statements seen by the OntModel

The asserted statements are held in the base grhjshpresents
the simple internal interfac&raph . The reasoner, or inference
engine, can use the contents of the base graphhansemantic
rules of the language, to show a more completefsgatements -
i.e. including those that aentailedby the base assertions. This is
also presented via thi@raph interface, so the model works only
with that interface. This allows us to build modeldéth no
reasoner, or with one of a variety of differents@aers, without
changing the ontology model. It also means thatbihse graph
can be an in-memory store, a database-backed teatssore, or
some other storage structure altogether (e.g. afFLDirectory)
again without affecting the ontology model.

9.1 RDF-level polymorphism and Java
Consider the following RDF sample:

<rdfs:Class rdf:ID="DigitalCamera">

</rdfs:Class >
This declares that the resource with the (relativéiRrl
#DigitalCamera  is an ontology class. It might be appropriate
to model declaration in Java with an instance obDanClass .
Now suppose we augment the class declaration wittesmore

information:
<rdfs:Class rdf:ID="DigitalCamera">
<rdf:type owl:Restriction />
</rdfs:Class>



Now we are saying thatDigitalCamera is an OWL
Restriction (which is a subclass ofdfs:Class ). A
problem we have is that Java does not allow usytwmtically
change the Java class of the object modeling #geurce. The
resource has not changed: it still has WURligitalCamera
But the appropriate Java class we might chooseddeint has
changed fronOntClass to Restriction . Conversely, if we
remove thedf:itype Restriction from the model, the use
of aRestriction Java class is no longer appropriate.
Even worse, OWL Full allows us the following (rathe
counterintuitive) construction:

<rdfs:Class rdf:ID="DigitalCamera">

<rdf:type owl:ObjectProperty />

</rdfs:Class>
That is,#DigitalCamera  is now a clasanda property. While
this may not be a very useful operation, it illagts a basic point
that we cannot rely on a consistent or unique nm@ppetween an
RDF resource and the appropriate Java abstraction.

9.2 Imports
The imports mechanism of OWL and DAML+OIL are usyal
handled as shown:

‘ Ontology model ‘

}

Jena Graph interface

[ Reasoner ]

[ Jena Graph interface l

[ Union Graph ‘
[ Jena Graph interface | [ Jena Graph interface } [ Jena Graph interface }
I Base RDF graph l [ Imported ontology A ] I Imperted ontology B l

Figure 4. Ontology internal structure including imports

We see that each imported ontology document is el
separate graph structure. If we did not do thiseotihe imports
had been processed it would be impossible to kndwrev a
statement came from. It is possible to switch afiports
processing.

9.3 OntResource

All of the classes in the ontology API that représentology
values have OntResource as a common super-class.
OntResource contains shared functionality for the ontology
classes, example properties are annotations, seel , and
sameAs.

For each of these properties there is a standdterpaf available
methods, to set and get a singleton value or matifiynspect a
multivalue.

OntResource also provides methods for listing, getting and
setting the RDF types of a resource. Tdktype property is
one for which many entailment rules are definedhim semantic
models of the various ontology languages. Therefitre values
that listRDFTypes()
on the actual reasoner bound to the ontology mdaelexample,
suppose we have class A, class B which is a subofg, and
resource x whose assertedf:type is B. With no reasoner,
listing x's RDF types will return only B. If theasoner is able to
calculate the closure of the subclass hierarchg (aost can), X's
RDF types would also include A. Furthermore, con®le

returns is more than usually dependent

reasoners might also infer that x has typel:Thing and
rdf:Resource

For some tasks, getting a complete list of the Rijfes of a
resource is exactly what is needed. For other taklksis not the
case. An ontology editor, for example, might wamtistinguish
in its display between inferred and asserted typeshe above
example, onlyx rdfitype B is asserted, everything else is
inferred. One way to make this distinction is tokeause of the
base model or of the union graph containing the magdel and
the imported graphs (see Figure 4). Getting thesource from
the base model and listing the type propertiesetinayuld return
only the asserted values.

9.4 Other Aspects

As one might expect, the Ontology API contains s#as
corresponding to the main concepts within OWL, #mel ability
to inspect and manipulate the principal propeniethese classes.
The same API can be used for DAML+OIL, and a sulb$dhe
APl is useful for RDFS.

Moreover, the base model can be stored in a daafasquired.
A further independent module is an OWL Syntax Cleeck
conforming with the specification given in the OWIlest Cases
[11]. It inspects a set of triples and determindeetiver they fit
within the OWL Lite or OWL DL or OWL Full syntactispecies
of OWL. It's triple oriented operation is described4].

10. VIEWS IN JENAZ2

We have seen that tl@&raph interface acts as a uniform interface
into triples, both actual, as found in documentsiatabases, or
virtual, as defined by arbitrary Java code, inipalar reasoners.
Similar but more constrained mechanism are found RiPLE
[24] and are proposed as RVL [23]. In each of thesmws of
virtual triples are defined using a high-level viadefinition
language in terms of other views or collectionsnadterialized
triples.

It would be possible to translate such high-levielwdefinition
languages into Java code, and, with care, featfrésna2 such as
fast-path query could be utilized. Moreover, theaRarchitecture
shows a continuum between such view languages rdacknce.
The rule language in Jena2 can be seen in itselé agew
definition language, although with a somewhat d#fg intent
from RVL or TRIPLE views. In particular, the reagos in Jena
add triples, whereas an RVL or TRIPLE view both addsvn
triples and hides the old triples.

11. JOSEKI

A further feature of Jena that we hope will be dtadized in the
next round of the Semantic Web activity is thahd/ebAPI [31].

Joseki takes the RDF graph as the primary desigweg and
makes it accessible to remote clients and appbicati The RDF
WebAPI provides a simple, universal access mechafis an

application on one machine to extract informaticonf an RDF
repository hosted by another machine. The acceshanism is
graph-based query where the access to the remotddaige base
is a query and the results are expressed in tefmsiagle graph.

11.1 Query as access primitive

The WebAPI fits into the Jena paradigm by providangess to a
graph. This graph may be ground data or it mag geaph where
inference is performed to yield entailed triplé&his is not visible
to the remote client application. The contract ween

information consumer and the information publisieithat the
graph is a set of triples expressing some infolmnati How this



information is derived is purely a matter for theformation
provider and not part of the contract between mtewi{publisher)
and the client application.

Query forms the access paradigm because it is esitable to
copy such knowledge bases across networks, Thig lbea
because they are large, and the client applicaionly interested
in a small part of the overall graph, or because khowledge
base is frequently changing, making locally cachiaifective.

A query returns a single subgraph. Unless the yqfietther
modifies the request with additional parameters, ¢bntract is
that the subgraph returned should yield the santehimg results
as the original query would on the entire knowlettgse. The
minimal complete subgraph is the smallest such hgrdp a
conjunctive query language such as RDQL [25], ihisquivalent
to calculating the result triples by substitutirercle of the query
solutions into the graph pattern and merging instngle graph.
The graph returned does not have to be minimasophisticated
cache could return a precomputed, or previous coedpu
subgraph that is larger than the minimal matchiniggsaph but
still meets the completeness requirement.

Query provides a sufficiently coarse-grained openatfor
efficient application use. Direct triple accesswibcause large
numbers of fine-grained network accesses leadingxt®ssive
overhead.

11.2 The RDF WebAPI

To make RDF repositories available across the rietethe RDF
WebAPI requires each graph to have a URL for thegses of
naming and routing query traffic to the repositprpviding that

graph. One host repository may have several RDéphgr
available, so it is necessary to direct querigbearight one based
on both network location and on name. URLs provibe

mechanism for this.

The protocol used for query is HTTP, specificaltg tGET verb.

In order to provide compatibility with regular welse, a plain
GET (no query string provided) is interpreted akHimg the

whole RDF graph. A query string provides refineimeh the

GET to extract a subgraph of the target graph. diery string

consists of identification of the query languagel an query-

language specific string giving the query itself.

The full details of this can be found in the membalomission to
the W3C [31].

11.3 Joseki— Client Library

The client library provides integration with thestef the Jena2
API in two ways. First, the primitive operation qéierying and

returning the minimal, complete subgraph is prodgigénere the

remote query processor is expected to compute apleten
subgraph. Second, a remote query engine, matchagtandard
QueryEngine interface in th@&raph layer is also provided. This
latter access mechanism yields an iterator of baamibles just

like a local query. The variable bindings are lbcaalculated

based on the complete subgraph returned by theteesperation.

12. CONCLUSION

Jena?2 provides integrated implementations of the€V88mantic
Web Recommendations, centred on the RDF graph. &ere
additional features of Jena: the query languageta@dVebAPI,
are ones that we hope will be finalized in the naxése of the
Semantic Web activity.

The Jena2 architecture cleanly separates presmmdhtissues,
concerning what the application programmer wisbegot with an
RDF graph, from the system programming issues sischow to

store concrete triples or derive virtual tripledhisT enables the

following new features in Jena2:

* RDFS inference support, following the RDF Semantics

¢ Full integration of the Ontology support with othdena
components. The Ontology presentation API can Yerdal,
with or without any inference support, over anplgistore.

« RDQL can be used to query the virtual triples rixsglfrom
RDFS or OWL inferences.

¢ Adding a new extensibility point in Jena for intatyng DL
reasoners such as Racer and FACT, as part of inmgrdie
ontology support and, in particular, support of OWL

* Integration of query optimizers, for example, bysgsiag
back-end relational databases complex SQL queries
representing the user level query, rather than Ijneeng a
relational database as a triple store.

e Seamless extension to access over the web.

Jena2 is available under a BSD-style license

http://sourceforge.net/project/showfiles.php?gradp40417.
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