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Abstract. Assuming P<GI<NP, the creation and verification of a digital
signature of an arbitrary RDF graph cannot be dongolynomial time.
However, it is possible to define a large classarfonicalizable RDF graphs,
such that digital signatures for graphs in thisglean be created and verified in
O(nlog(n)). Without changing its meaning, an arbitrary RDFaph can be
nondeterministically pre-canonicalized into a graplhis class, before signing.
The techniques in this paper are key enablershferuse of digital signature
technology in the Semantic Web.

1 Introduction

Digital signatures permit a user of a documentedfy that some named party has
vouched for it. This is a key technology for rechgcithe trust barriers to e-business
and e-commerce.

For use within the Semantic Web, it is necessaryhe user of an RDF graph [1]
to be able to verify a signature, either for thatpdy or for a subgraph.

All obvious methods for doing this have exponentialst-case behaviour.

We present a method that involves:

» aclass of canonical RDF documents,

» a canonicalization algorithm that runs innf@g(n)) but fails on worst-case inputs,
for which there is no corresponding canonical RDEuwmnent,

* a precanonicalization algorithm, applicable to aRy{pF graph, that makes
nondeterministic modifications to the input grajftthere is a danger that it is one
of the worst-case inputs.

Signing a graph then involves running the precasaiziation algorithm, which may

modify the graph, canonicalization the modified pdraand signing the resulting

canonical RDF.

Verifying a signature involves extracting the sigreabgraph, canonicalizing this
subgraph, and verifying the signature for the cas@rRDF. If the canonicalization
algorithms fails, then the graph was not signed.

It is crucial that we can make significant syntactiodifications to the graph that
are explicitly meaningless

Section 2 demonstrates that RDF canonicalizatiomgraph isomorphism (GI)
complete. Section 3 introduces some preliminaryonstneeded in sections 4 and 6
which contains the principle algorithm of this pap8ection 5 defines canonical
RDF, on the basis of the naive algorithm of sectio®ection 6 shows how to patch
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up the problems caused by the naivety. Sectiont@ilslesome more sophisticated
techniques which are not necessary but may beatiésirSection 8 shows that all the
techniques used are fggn). Section 9 focuses on practical use of the tephes and
reports on some test results.

2 Verifying Signatures of Arbitrary RDF

In a Semantic Web application, there is likely ® dn RDF graph. If we wish to
verify that either it, or a subgraph of it, has tekgitally signed in some way, then
we have to solve at least one well-known hard gnobINote this way of stating the
problem rules out one scenario which is tBatas read the graph from a file signed
by A. If B has done this, the can simply verify the signature on the file, arad imo
need to verify the signature for the graph, asaplyr

We follow [2] and assume the graph isomorphism lemobis strictly harder than
polynomial time, and strictly easier than nondetarstic polynomial time. (i.e.
P < Gl < NP). We also note that the subgraph isphiem problem is well known to
be NP complete. These results are applicable to, R&d-section 2.3.

Thus, if A wishes to sign an RDF graph aBdvishes to verify the signature, then
A needs to serialize the graph in some form, signstrialization, an@ needs to
verify that signature. This overall process of simme verification permits a
comparison (either for isomorphism or for subgrapéiween the graph thatsigns,
and the graph thaB verifies. This overall process solves the grammisrphism
problem or the subgraph isomorphism problem. Tlitleethe algorithm for signing
the graph, or the algorithm for verifying the sigme of the graph must be of
complexity class Gl or NP. It would possibly be toiesmake the signer do the hard
work. Messmer and Bunke [3] show that graph andgsapgh isomorphism with
respect to a fixed graph, of size m, comparing &ittarying graph of size n, can be
performed in O(f) time, but needs O3 space for the verification algorithm,
computed in O() time. Note thatA would calculate this large algorithm, aRd
would have to execute it (without downloading dllity. This method could be used
to give signature verification algorithms of cubtomplexity; but creating the
signature is of exponential complexity.

These worst-case scenarios are bad, and the soliaiosigning RDF needs to
avoid them. The solution we present is based onatteinpting to sign or verify
signatures oérbitrary RDF.

2.1 Meaningless Changes

The key insight of this paper is that while in getesigning RDF Graphs is Gl

complete, all interesting RDF graphs can be slghtbdified (typically by adding a

few, explicitly meaningless, triples) to be in asd of RDF graphs which can be
canonicalized, and hence both signed and verifre@(nlogn). Moreover, the class

of easily canonicalizable RDF graphs can be largrigh so that 90% of ‘interesting’

RDF graphs lie within it, and most of the otherenatsting graphs require only slight
modification.
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For the purpose of signing an RDF graph, since suoubdifications are
meaningless, the social act of signing the unmedlifiraph is the same as the social
act of signing the modified graph. Thus we alwags snodified graphs, that can be
canonicalized in Qfog(n)). For signature verification, if the graph reasr
modification, then the signature to be checked imasrrect, since the only graphs
that get signed have been modified and do not reduither modification.

The reader should judge whether these modificattmaanerely a dirty hack or an
elegant engineering compromise.

An alternative engineering approach of simply detgtproblematic parts of the
graph is also explored.

2.2 A Simple Example

Consider an RDF Graph with two triples, represeined-Triples [4] as either:

# Here is a graph or | _:ax <eg:prop>“5" .
_:aBlankNode <eg:prop> “3". _:ax <eg:prop>“3".
_:aBlankNode <eg:prop>"“5" .

The two files are different, but the graph theyalié® is the same. The differences
between the files armsignificant. These include: the comment; the whitespace; the
order of the lines; the choice of blank node ides (e.g.aBlankNode or ax)

Other aspects of the N-Triples aignificant in that they represent the intended
abstract RDF Graph [1]. Significant aspects inciutthe presence or absence of a
triple; the string in each literal; the URIs forcegoroperty or resource.

Our approach to signing a graph is to: specifyaasbf canonical RDF documents;
and to sign an RDF graph by signing a canonical RiDEument which is a
serialization of either that graph, or a differegraph which both entails and is
entailed by the graph to be signed.

Canonical RDF is chosen so that there is at mastrepresentation of that graph in
Canonical RDF. Thus, we can check that these twdte same by converting both
into canonical RDF and doing a character-by-charazdmparison. This might fail, if
the graph proves difficult (which the above exangies not).

Of the insignificant differences highlighted, ontwo present any interesting
difficulties: the order of the lines, and the blardde identifiers.

2.3 RDF C14N is Gl Complete

The techniques in this paper cannot canonicalizstrary RDF graphs without
making some modifications to them. This reflects tinderlying difficulty of RDF
canonicalization.

As discussed by Carroll [5], RDF graph equality ahé graph isomorphism
problem have equivalent complexity.

Any unlabelled undirected graph can be encodedDir Ry replacing each node
with a blank node, and replacing each arc by tws én each direction) always using
a single property (e.geg:x> ). So a simple triangle (three nodes, three am@s)be
encoded in N-Triples as:
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_a<egix>_:h. _a<egix>_:C.
_b<egx>_:a. _b<egix>_:c.
_c<eg:x>_:b. _c<eg:x>_a.

If we could fully solve RDF canonicalization in gabmial time, then we could
compare two RDF graphs for equality in polynomishg (by comparing their
canonical representations). This would providelariKely) polynomial time solution
to the Graph Isomorphism problem [2], [6], [7].

2.4 What's the Difficulty?

The graph isomorphism problem is deceptive. Itlyedbesn’t look hard! We will
informally explore the problem of a canonical regngtation of a simple graph, with
two disconnected components shown in Figure 1.

Figure 1 A 12 vertex graphs

The graph consists of 12 nodes and 18 edges. Eadh Ims three neighbours, and
two nodes at a distance of two away. Each node & ¢onnected component of six
nodes.

If we try and canonicalize this, we will start byitng some node before all the
other nodes. That node will either come from thegonent on the left or that on the
right. The canonicalization algorithm needs to makaeterministic choice. There is
no intuitively obvious rationale for choosing onetbe other, and which ever choice
we make seems to require considerations not justitathe node, but also its
neighbours, and their neighbours, and ...

A good solution to this problem is provided by MgK8&], [9]. He uses an analysis
of the automorphism group of a graph to constrtoaical representatives. His
solution is of non-polynomial complexity and congplied to program. It is not a
plausible candidate for an infrastructural compadnéthin the semantic web.

3 Preliminaries

3.1 Syntactic

For clarity of exposition the algorithms descriiadhis paper are based around the
lexicographic sorting of N-Triples [4] files. N-Tlies is an ASCII format.

We use numbered gensym identifiers during the dlgor These are created with
just sufficient leading zeros so that lexicograpdndering and integer ordering are the
same. (The number of leading zeros required is cb@dpfrom the number of blank
nodes in the RDF graph being considered).
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3.2 Semantic

The techniques in this paper rely on being ablen&dke meaningless changes to an
RDF graph. This is done in accordance with the Riwfal semantics [10], by using
a special property, which we conventionally reteasc14n:true  defined here:
<rdf:RDF xml:base="&c14n;” xmins:c14n="&cl4n;#">
<rdfs:Property rdf:ID="true">
<rdfs:description>This property is true whatever
resource is its subject, and whatever literal is its object.
Thus triples with literal objects, and c14n:true as
predicate, can arbitrarily be added to and deleted from an RDF
graph without changing its meaning. </rdfs:description>
</rdfs:Property>

<rdf:RDF>
(Omitting namespace declarations and the definibbrthe entity&cl4n; as the
URL http://mww-uk.hpl.hp.com/people/jjc/rdficl4n )

By specifying this predicate as being always tadding or deleting triples with
this predicate does not alter the entailments uttterRDF model theory. Formally
the semantics of the document are unchanged.

If desired, an alternative would be to use OWL lFtd define a trivially true
predicate which holds between all resources andoalyj integers. The following

cardinality constraint, in the OWL abstract synfhk], expresses this condition:
class(rdfs:Resource complete restriction(c14n:tr ue cardinality=2 &)
dataValuedProperty( c14n:true range( xsd:long ) )

3.3 N-Triples to Canonical XML

In this paper, we concentrate on creating canomégiesentations of RDF graphs in
N-Triples [4].

However, for full integration with tools built on aBonical XML [12] it is
necessary to transform these files into XML, andyreover, we wish the XML
produced to canonically depend on the original Rjdph.

This needs to be done by specifying a canonicahogefor turning an N-Triple
document into RDF/XML. This must: preserve the ordethe triples; prohibit the
many variants in the grammar; specify the whitesgaecisely.

3.4 RDF C14N without Blank Nodes

To create a canonical N-Triples file for an RDFgirawithout any blank nodes we
can simply reorder the lines in the N-Triples doeatto be in lexicographic order.
(This could be implemented simply with Unix™ort ). We may wish to
canonicalise the lexical forms of typed literalsffi

Isort in Unix uses a locale dependent ordering. To USeASCII order, it is necessary to set
the environment variableC_ALL=C.
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4 Labelling Blank Nodes

If we have blank nodes in the graph then life imewhat trickier.

In N-Triples blank nodes are represented usingkblatde identifiers, which can
appear in subject or object position.

Unfortunately, these identifiers are gensyms crkalaring the writing of the N-
Triples, and are not an intrinsic part of the graptence, it is an error if the
canonicalization depends on these gensyms. In agintthe canonicalization
algorithm must deterministically choose new blanki@identifiers.

In this part of our approach, we first write ouetfile using arbitrarily chosen
blank node identifiers; then we sort the documemtsly) ignoring those identifiers.
On the basis of this sorted document, we then renalihthe blank nodes, in a
(hopefully) deterministic fashion.

Since the level of determinism is crucial to therkinngs of the canonicalization
algorithm, we start by defining a deterministicridanode labelling algorithm. This
suffers from the defect of not necessarily labehilighe blank nodes.

Deterministic, in this context, means dependent only upon saamt parts of the
initial representation of the graph, andndeterministic means dependent, in part,
upon insignificant parts of the initial represeittatof the graph.

4.1 One-step Deterministic Labelling

In RDF [1], a single triple can contain zero, orretwo blank nodes (the property

must be specified by a URI reference).

We present an algorithm that labels some blank soole the basis of the
immediate neighbors of that blank node (the onp-stehe name of the algorithm).
1. Canonicalize the typed literals in the graphoading to XML Schema [13].

2. Write the graph as an N-Triples document. Edolh bf the document is a
complete distinct triple of the graph.

3. For each line with a blank node identifier irbjget position (e.g. :subj ),
replace the blank node identifier with” and add a commef# _:subj” to
the end of the line, indicating the original iddieti.

4. For each line with a blank node identifier irjemth position (e.g. :obj ), replace
the blank node identifier with~" and add a commef# _:obj” to the end
of the line, indicating the original identifier.

5. Reorder the lines in the N-Triples document éoirb lexicographic order. (This
could be implemented with Unix™brt ).

6. Use a gensym counter, initialized to 1, andakup table, initially empty. Go
through the file from top to bottom:

a. If this line is the same as the next or previmes excluding any trailing
comment, continue to the next line in the file.
b. |Ifthereis &" in object position:
i. Extract the blank node identifier from the fir@mment in the
line. Remove the comment.
ii. Look the identifier up in the table.
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iii. If there is no entry, insert a new entry fordnéfom “_:g
concatenated with the value of the gensym couitterement
the counter.

iv. Replace thé~" with the value from the table.

c. If there is a“~” in subject position, use the same subprocedure to
replace it with a consistently chosen gensym.
7. Using the same lookup table. Go through thefifden top to bottom:
a. |Ifthereis &” in object position:
i. Extract the blank node identifier from the finecdmment in the line.
Remove the comment.
ii. Look the identifier up in the table.
iii. If there is an entry, replace tlie” with the value from the table.
b. Ifthere is &~" in subject position, use the same subprocedupegsibly
replace it with a consistently chosen gensym.
8. Lexicographically sort the N-Triples again.
The only nondeterminism here is that the sort mepedd on the blank node labels in
pairs of triples for which the rest of the tripkeidentical. Such pairs are studiously
avoided (step 6.a) in the assignment of labels, ssmthe order in which such pairs
appear does not effect the labels chosen. Notetestep 7, which does deal with the
incomparable lines, does not choose any labelssameince deterministic.

The algorithm will deterministically label some tife blank nodes, for others it
leaves them unlabelled. These nodes are referrashtrd to label nodes.

The operation of the deterministic labeling aldartdepends on triples that can
distinguish one blank node from another. Thdisgnctive triples are characterized by
being unique in the graph even when all blank n@dedreated as identical.

The hard to label nodes do not participate in astjrittive triples.

Example ], is fully labeled by this algorithm:

<eg.a> <eg:foo> :a. <eg.a> <eg:foo> :gl.
_.a<eg:prop>"val" . - | <eg:b> <eg:prop>_:g2.
<eg:b> <eg:prop> _:b. .01 <eg:prop> "val" .

On the other hanaéxample 2is not fully labelled:

_ia<eg:zee> "why" . <eg:b> <eg:prop> _:gl.
_:a<eg:prop> "val" . N _:g2 <eg:prop> "val" .
<eg:b> <eg:prop> _:b. .02 <eg:zee> "why" .
_:b3 <eg:prop> "val" . ~ <eg:prop>"val" . # :b3

5 Canonical RDF

The algorithm above has the desired property ofgeif a low complexity class
O(nlog(n)), and hence optimizable to be sufficiently quick.
Thus we will define canonical RDF on the basishi$ tlgorithm.
A canonical N-Triples document is one (without angmments) which is
unchanged under the application of the one-stegrigdtistic labeling algorithm.
That is canonical RDF in N-Triples has the follogifeatures:
» There are no hard to label nodes.
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» Every blank node identifier has the form gNNN wh&®N is some number of
digits. The number of the digits is the same farg\blank node identifier. At least
one identifier has a non-zero first digit.

» After deleting all triples which are not distinativthe first occurrences of each
blank node identifier appear in numeric order,tstgrat 1, without gaps.

» The file is in lexicographic sort order.

Such files are unchanged under the one-step detistinilabeling.

If one-step deterministic labeling successfully elaball the nodes, then the
resulting output will be canonical RDF. In suchessone-step deterministic labeling
is idempotent. So the resulting file in examplebbe is in canonical RDF.

6 Pre-canonicalization

We seek to make such a definition useable in aésalnstead of defining the set of
canonical RDF documents, such thatery RDF document has a canonical
representative, we set out to modify RDF graphsclvido not have a canonical
representative into ones that do, by ensuringttieae are no hard to label nodes. This
process of making nondeterministic modificationsthie input in order to make it
easier to canonicalize is not acceptable in ad¢eu@nicalization algorithm. Thus we
refer to this step as precanonicalization. Wedryninimize the changes made; and to
be informed by the application needs as to what&ochanges are acceptable (this
paper concentrates on the digital signature agita

Since many of the steps involved in precanonictitinaare identical to those in the
one step deterministic labeling algorithm alreadgspnted, we continue to consider
complete algorithms involving both precanonicalizatand the labeling.

6.1 Nondeterministic Pre-canonicalization

Applications of digital signatures usually requibat the meaning of the document is
fully captured in the object that is signed. A (swhat tired) example would be
signing a purchase order. In terms of the RDF séo®ifil0], the signed object
should both entail and be entailed by the docunpeaesented for signature. The
clanitrue  predicate presented in section 3.2 has been dzbigo that arbitrary
triples with this predicate can be added or deletégthout modifying the meaning.
Using such triples we can make sure that nonesohttdes are hard to label.

The version described here uses many passes dfléehe the three important
passes:
* identify the hard to label nodes;
» create additional distinctive triples for those esd
» deterministically label the resulting graph.
Thus, we can perform the following steps:
A. Perform a one-step deterministic labeling
B. If there are no hard to label nodes, then s{&nsures idempotence]
C. Delete all triples with predicate4n:true . [B ensures idempotence]
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D. Perform a one-step deterministic labeling.
E. Using a new lookup table from step D, and a neunter, scan the file from top
to bottom, performing these steps on each line:
a. |Ifthereis &” in object position:
i. Extract the blank node identifier from the finebmment in the line.
Remove the comment.

ii. Look the identifier up in the table.

iii. If there is no entry: add an entfy” to the table; and add a new triple to
the graph with subject being the blank node idedifby the identifier
from the comment, predicate beimd4n:true  and object being the
string form of the counter; increment the counter.

b. If there is &~" in subject position, use the same subprocedup®ssibly
create a distinctive triple for the subject as well
F. Perform a one-step deterministic labeling (ef tlew modified graph, with a new
lookup table and counter). Since all nodes padieipn a distinctive triple, every
table lookup will find an entry.
This algorithm is nondeterministic in step E, whishhence the precanonicalization
step, but that nondeterminism is fairly limited,chase even with the rather naive
one-step deterministic labeling algorithm almostraldes in almost all (practically
occurring) RDF graphs will have been classified.
So again continuing with example 2, we find:
<eg:b> <eg:prop> _:gl.
_:g2 <eg:prop> "val" .
_:02 <eg:zee> "why" .
_:03 <eg:prop> "val" .
_:03 <http://www-uk.hpl.hp.com/peopleljjc/rdf/c14n#true> "1t
An application scenario in which this is useablethat of signing an OWL
ontology [14]. The ontologist creates the ontolagya tool, and then asks the tool to
generate a signature using a private key. The tool:
» applies this algorithm, possibly adding additiongdles to the ontology.
» creates a canonical RDF graph with the same measinige original ontology.
» computes the signature for the canonical RDF graph.
» adds additional triple(s) to the graph with theabmgy URI as subject, and the
signature as object.
The resulting graph (with additional triples both @ result of canonicalization and
reflecting the signature) then replaces the origamology. It is this graph (which
can be canonicalized without any changes) thaothelogist publishes. Users of this
ontology can then:
« find the signature in the graph.
« find the public key using some public key infrasture
» delete the triple(s) carrying the signature from giaph.
» apply the deterministic labeling to form a canohiepresentation of the graph
« verify the signature of this canonical RDF using gublic key.
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6.2 Further Discussion

The one-step deterministic labeling algorithm ulsad the following characteristics:

» Reasonably fast (subquadratic)

» Deterministic

» Labels ‘enough’ blank nodes in realistic RDF

» Easy to explain and implement

The last point is helpful in a paper, but not adheequirement. Thus in a deployed
system we can imagine using a variant of the algorhere.

It is a practical engineering problem to choose earfoptimal deterministic
classification algorithm that gets the best trafidetween speed of classification and
practical utility. The deterministic labeling algiim used in this paper is probably a
touch naive, but only a touch. We can be surethuste used by Mackay [8] are too
expensive, given their non-polynomial complexity.

7 Advanced Methods

The methods in the previous sections are suffidierdolve the problem of signing
RDF graphs. However, some additional techniques img@yove the solution. These
are discussed in this section.

7.1 Multistep Deterministic Labelling

The one-step deterministic labeling only considbesimmediate neighbours of any
node. In some graphs, particularly those arisin@WL ontology definitions [14],
this may leave too many nodes unlabelled.

A solution is to choose a fixed depth e.g. two lbre¢, and to consider the
neighbours of a node up to that distance away. Weusan consider the two-step and
three-step deterministic labeling algorithms. Sifarea fixed k a k-step method will,
in essence, be k applications of the one step rdethe will expect a linear slow
down as we increase k. The underlying complexigs€lremains @{ogn). (It is
straightforward to optimize k-step methods to méke slow down much less than
linear).

To consider neighbours at distance N+1 we resertptrtial labeled output of a
deterministic labeling based on neighbours at desaN.

Having resorted the output, which will take intocagnt those labels already
deterministically chosen, we can then apply the pass deterministic labeling
algorithm, which effectively considers neighboursua additional step removed.

For example, the full two-step deterministic labglis as follows:

A. Perform a one step deterministic labeling.
B. Repeat steps 6, 7, 8 from the one step detestitinabeling algorithm, without
reinitializing the table or counter.

For a k-step labeling, we need to repeat B k-1dime
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7.2  Optimizations

This paper has avoided issues to do with optimizimg algorithm presented, but
concentrates on the complexity class of the algorst

Systems would benefit from merging steps presehézd as sequential to reduce
the total number of passes of the graph requiretso,Agiven that most
canonicalization is for objects that are small egfoto fit in memory, the exposition
in terms of sorting files is probably misleading-rhemory structures such as b-trees
[15] should be used, and maintaining them in sadtg may be more efficient than
permitting them to become unsorted and resortiagnths a separate algorithmic step.

The multistep methods in particular are susceptibleptimization. Often the first
stage will completely label the blank nodes of ginaph. The subsequent stages are
then redundant. Moreover, during the first stagecae identify those triples in the
graph that require more work. The ones that daneet further work, play no further
role in the algorithm, except being included, ifinal merge, into the output.

7.3 Deterministic Precanonicalization

Other applications of digital signatures have aatgeneed for determinism than the
exact preservation of meaning. Lynch [16] argueat tbhanonicalization is a
“Fundamental Tool to Facilitate Preservation and ndtgement of Digital
Information.” The scenario he discusses is the needformat a digital object which
is being preserved in an electronic library. Thechéor reformatting occurs as the
software and hardware required to view the origaigéct become obsolete.

Lynch uses (lossy) canonicalization as a way ofinidefj the essence of a
document. This essence, if sufficient unimportaetails are discarded, will be
invariant with reformatting. Thus we can computés tlkessence of the original
document, and the original author can sign thisress to vouch for its authenticity.

Later, after the death of the author, and a sequehmany transformations of the
original byte sequence, the essence of the docuimanichanged, and we can still
verify that the author signed it.

With this application canonicalization is intendéal be lossy, but must be
deterministic. A variant precanonicalization is plynto delete all hard-to-label
nodes. This is deterministic, but loses meaning.

7.4  Multiple Arcs in a Single Comparison

The methods presented, have been constrainednfiptisity, to those that can easily
be implemented using Unsort andawk over N-Triples.

On larger graphs it may be the case that there@des that do not participate in
distinctive triples, but for which the set of tesl in which they participate is
distinctive. A simple example is:

_a<eg:eat>‘“apple”. _:a<eg:eat>‘“pear”.

_'b <eg:eat>"“apple”. _:b <eg:eat>“banana” .

_:C<eg:eat>“pear”. _:c<eg:eat>"“banana’.
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None of the triples is distinctive, buta is the only blank node eating both apples
and pears.

For some real RDF data (see section 9.1) it isrdggous to collect all the triples
in which a node participates and use the set adl$abn those triples as a key to
attempt to distinguish the node.

8 Complexity

All the steps in this paper either involve lexicagiically sorting a file, for which the
best known algorithms are @¢gn) [17] or involve stepping through a file line by
line and doing either the same simple modification,a modification involving a
table lookup (e.g. step 6.b.ii in section 4). Thenfer steps are @), the latter
O(nlogn) (table lookup is O(log), see [15]). Since any particular variant of the
techniques involves a constant number of suchaomodification steps the overall
complexity is Oflogn) wheren is the number of triples in the RDF graph.

9 Practical Issues

The nondeterministic algorithm potentially triplee size of the graph (worst case).
This paper is predicated on that potential occueenot actually happening. The
deterministic part of the algorithm will label alstoall the nodes in a typical RDF
graph

Both of the preconicalization methods, (addition daietion) change the RDF
graph. In this sense the algorithms presented atecanonicalization algorithms.
However, we have argued that for practical appbcatthese changes are acceptable,
as long as: they happen relatively rarely; they expected; and that the choice
between the deleting method or the adding methsdblean made appropriately for
the application.

A further difficulty is found when canonicalizing uttiple subsets of an RDF
graph, using the nondeterministic method. The requichanges for one such
canonicalization will most likely be incompatibleitiv the required changes for
another. This can be addressed by using super-piepefcl4n:true to create the
distinctive triples.

9.1 Test Results

To assess how often these changes are made, wedappie of the algorithms in
this paper to various test data sources. Spedifijcae use the one step, two step and
three step deterministic labeling algoritfmsn the test data; and then further
analyzed some of the problem cases.

2We used a small prototype implementation [18]temitinAwk on a Unix system.
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Source 1 2 3 *
RDF test data [4] 130 D 0 0
OWL test data [19] 45 2 D 0
OWL guide [20] 0 0 0 1
DAML ontology library [21] (part) 93 10 g 40

The last line shows that of the files tested freva DAML ontology library 93 were
deterministically labeled by the one-step algorithmA further 10 were
deterministically labeled using the two-step altjori, but that 40 were not fully
labeled even with the three step algorithm. Th&t fuvo lines show that the N-Triples
files include with test cases for RDF and OWL ao¢ sufficiently challenging to be
good tests for canonicalization.

The Baseball ontology [22] was one of the moreialiff ontologies. The specific
problem concerned the definition ofLineUpEvent and #Start. The four
restrictions shown each have a blank node, and abtte triples used in the four are
distinctive. This is a more complicated variantltd example in section 7.4.

<rdfs:Class <rdfs:Class
rdf:about="#LineupEvent"> rdf:about="#Start">
<rdfs:subClassOf> <rdfs:subClassOf>
<daml:Restriction> <daml:Restriction>
<daml:onProperty <daml:onProperty
rdf:resource="#position"/> rdf:resource="#position"/>
<daml:toClass <daml:toClass
rdf:resource ="#Position"/> rdf:resource ="#Position"/>
</daml:Restriction> </daml:Restriction>
</rdfs:subClassOf> </rdfs:subClassOf>
<rdfs:subClassOf> <rdfs:subClassOf>
<daml:Restriction> <daml:Restriction>
<daml:onProperty <daml:onProperty
rdf:resource="#player"/> rdf:resource="#player"/>
<daml:toClass <daml:toClass
rdf:resource="#Player"/> rdf:resource="#Player"/>
</daml:Restriction> </daml:Restriction>
</rdfs:subClassOf> </rdfs:subClassOf>
</rdfs:Class> </rdfs:Class>

This observation prompted the use of a multiplecaroparison algorithm.

The algorithm: first did an N-step deterministibéding (using single arcs); then
performed a single multiple arc labeling, only be as yet unlabelled nodes; then to
finish off did a further M-step deterministic lab®j. This algorithm was tested on the
56 files (from the DAML ontology library and the QWGuide) that had proved
difficult. The results were as in this table:

Post (M) The N and M values show the number of deterministic
0 | 1| 2| 3| labellings before and after the multiple arc lahgliThe
o |0l12[9][ 7] 6 entries show how many of the 56 files were not
g 119 716l 6/ completely labeled by such an approach.
> (218 [6] 6| 6 These show that the multiple arc method, even witho
~ 317 (6] 6| 6 theonestep method, was effective in all but teref’the

difficult cases. Since these were about a thirdthaf
sample from the ontology library, the multiple anethod, used by itself, may be
effective in 90% of the cases.
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9.2 Redundancy

The test results pointed to a core of six difficakamples. These were analyzed
further. One was the OWL Wine ontology from the OW@uide [20]. The specific
construct that caused the problem was the inndoeking:

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />
<owl:cardinality
rdf:datatype=
"http://www.w3.0rg/2000/10/XMLSchema#nonNegativel nteger"
>1</owl:cardinality>
</owl:Restriction>
</rdfs:subClassOf>

The problem with this construct is that, presumdiyerror, it is repeated and occurs
two times in the wine ontology. This gives risetteo blank nodes, one for each
restriction. Each participates in four triples (wipropertiesrdfs:subClassOf,
owl:onProperty, rdf:type, owl:cardinality ). These two blank nodes are
indistinguishable.

The other five difficult cases all had exampleswaéh repeated structures.

These repeated constructs add no meaning. Thetyéstected, could simply be
deleted. Unfortunately, detecting a repeated sutistre within an RDF graph can be
shown to be at least as hard as the graph isonsonpproblem. Mugnier and Chein
[23] show that the somewhat harder problem of rangall redundant arcs from a
conceptual graph is NP complete. (In the RDF cdritez would include deletion of
partial repeated substructures).

9.3 Problems concerning rdf:Collection

It is conjectured that lists formed with thdf:parseType="Collection”
construct may present greater problems than hasreegealed in this study.

The rdf:parseType="Collection” syntax [24] when used for lists with
two or more elements, creates a number of blanksiadich:

» Are the subject of a triple with predicat#f:type , and objectdf:List

» Are the subject of ardf:first triple with object being a blank node.

» Are the subject of ardf:rest triple with object being a blank node.

» Are the object of andf:rest triple with subject being a blank node.

Since none of these triples is distinctive, and itbele does not participate in any
others, the one pass deterministic labeling will latvel such nodes. Moreover the
multiple arc label (section 7.4) does not help.

Given the importance of OWL in the semantic weld Hre desire to canonicalize
and digitally sign ontologies, this is a disadvagetavith one-step methods. Moreover,
additional distinctive arcs on such nodes, added assult of the nondeterministic
precanonicalization algorithm, would cause the Itegugraph to be one that cannot
use the compactif:parseType="Collection” syntax.
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The multistep methods will often distinguish therrit nodes in a typical OWL
ontology (possibly requiring the multiple arc lalbeéthod). This is because while the
elements of the list may all be blank, for exanmgplest of restrictions, enough of these
elements will participate in distinctive triples,orf example, distinctive
owl:hasValue triples. When adding further distinctive tripléss best to try and
exploit the multistep canonicalization and to avaitling them to the blank nodes
carrying the list structure, but instead to addrthie the members of the list (e.g. to a
blank node of typewl:Restriction ).

9.4 Summary of Test Results

The test results show that:

» The one step deterministic algorithm is usable rhay require nondeterministic
modification of many graphs arising from OWL.

» Methods involving comparisons between multiple anes applicable to almost all
of the RDF data studied.

» Duplicate subgraphs could not be labeled detertigalfy, and cannot even be
detected in polynomial time. The approach of noadeinistic graph modification
to deal with these seems appropriate.

10 Conclusions

While we might expect that signing RDF graphs ifmes| exponential worse case
behaviour, this paper has shown that there anbo@q) solutions.

The key is a preparedness to modify the graph peisigning. Such modifications
can be justified by the observation that the sigraendorses the meaning of the
graph, rather than the graph itself. The modifaagi can be chosen so as not to
change the meaning of the RDF graph.

Judging from the test results, these modificatiares in practice, only needed for
handling the problem of duplication within the dgna be signed. These results
suggest that the naive definition of canonical RDBection 5 should be augmented
with considerations of labels from multiple arcsgton 7.4).
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