

Appliance Aggregation Architecture (A3)

Dejan Milojicic1, Philippe Bernadat1, Rick Corben2, Ira Greenberg2,
Rajnish Kumar3, Alan Messer4, Dan Muntz5, Eamonn O’Brien-Strain1,
Vahe Poladian6, Jim Rowson1
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2003-140
July 3rd , 2003*

Email: dejan@hpl.hp.com

appliance,
aggregation,
distributed
systems,
architecture

Technology is advancing and bringing personal IT appliances into every
aspect of our life, with the intention of making life easier and better for
users. Wireless phones, digital cameras, and tablet PCs are examples of
personal appliances available today. In the near future, it is envisioned
that watches, jewelry, and clothes will be connected in a personal area
network, providing new opportunities to owners of these devices.
Unfortunately, technology has become so complex for an average user
that it is more often a burden than a benefit. For example, applications are
hard to configure, administer, and use; appliances can be stolen, losing
information that is often more valuable than the appliance itself; data is
often on one of the appliances that is not currently being used; and
applications and interfaces differ from appliance to appliance.

We propose the notion of an ensemble of aggregated appliances that
presents a user with a common model of ownership, shared state, shared
applications, and shared functionality. A united ensemble makes it easier
for users to control their appliances; it provides users with transparently
synchronized data and continuous access to applications and functionality
from any appliance. We bring back the ease of use of fewer devices and
fewer services, enabling users to focus on their lives and their needs rather
than on technology. Appliance aggregation converts technology back to
being an enabler rather than a friction.

* Internal Accession Date Only Approved for External Publication
1 HP Labs, 2 Independent Contractor, 3 Rice, 4 Samsung Research, 5 CoroSoft Inc., 6 CMU
 Copyright Hewlett-Packard Company 2003

May 25, 2003 5:24 pm

1 Introduction
The number of IT appliances available to users is in-
creasing as computing technology improves. These de-
vices come in two forms: personal—those you own,
and environmental—those in the locale. Examples in-
clude cell phones, cameras, server appliances, and
printers. In the future, users will carry one or more de-
vices in an environment full of embedded appliances.
This large number of devices creates several problems
for users. First, today each device is designed to run
alone. Even if it does connect to other devices, the con-
nection is simplistic, pair-wise, low-level, and typically
proprietary (e.g., Microsoft’s ActiveSync). If some
data or a password is used on a device, it is difficult to
use it from/on other devices. Second, by acting alone,
each device is limited to its own interface. It is not pos-
sible to use the larger screen with a cell phone. A more
general problem is the ability to use the right device or
resource for the task at hand. Finally, the number of de-
vice types is overwhelming in different sizes, weights,
and interaction models.

However, multiple devices also present an opportunity
for additional functionality and performance. They can
be used for combined functionality and their resources

can be used in concert. For example, aggregating a PDA
(address book, dialing, messaging), personal server (net-
work connection), and a headset (voice I/O) to make a
phone call instead of using a limited cell-phone (see Fig-
ure 1). A wireless LAN connection may provide im-
proved voice quality and other media types, or the
personal server may run complex tasks to save the PDA
batteries. By combining personal and environmental de-
vices together in an ensemble, devices become easier to
use and offer more functionality and performance.

The rest of the paper is organized as follows. In
Section 2, aggregation is put in a historical perspective.
Section 3 presents a few scenarios. In Section 4, we dis-

Figure 1: Example of Aggregation Use: Composed Appli-
ance.

storage

output

input
Internet/
network

application

identity

Appliance Aggregation Architecture (A3)

Abstract

Technology is advancing and bringing personal IT appliances into every aspect of our life, with the intention of mak-
ing life easier and better for users. Wireless phones, digital cameras, and tablet PCs are examples of personal appli-
ances available today. In the near future, it is envisioned that watches, jewelry, and clothes will be connected in a
personal area network, providing new opportunities to owners of these devices. Unfortunately, technology has be-
come so complex for an average user that it is more often a burden than a benefit. For example, applications are hard
to configure, administer, and use; appliances can be stolen, losing information that is often more valuable than the
appliance itself; data is often on one of the appliances that is not currently being used; and applications and interfaces
differ from appliance to appliance.

We propose the notion of an ensemble of aggregated appliances that presents a user with a common model of owner-
ship, shared state, shared applications, and shared functionality. A united ensemble makes it easier for users to control
their appliances; it provides users with transparently synchronized data and continuous access to applications and
functionality from any appliance. We bring back the ease of use of fewer devices and fewer services, enabling users
to focus on their lives and their needs rather than on technology. Appliance aggregation converts technology back to
being an enabler rather than a friction.

Dejan Milojicic1, Philippe Bernadat1, Rick Corben2, Ira Greenberg2, Rajnish Kumar3, Alan Messer4,
Dan Muntz5, Eamonn O’Brien Strain1, Vahe Poladian6, and Jim Rowson1

dejan@hpl.hp.com (contact author)
1HP Labs 2Independent Contractor 3Rice 4Samsung Research 5CoroSoft Inc. 6CMU

2

cuss A3 characteristics. Section 5 presents the aggrega-
tion architecture and Section 6 presents prototype
implementations. In Section 7, we discuss the benefits of
A3. Section 8 compares our work to related work and
Section 9 summarizes the paper.

2 History

In some ways, appliance ensembles represent a natural
evolution in information technology (see Table 1). If we
consider computer history in terms of infrastructure and
access, then we can identify a sequence of generations,
each dominated by a particular architectural style. In the
earliest days, one machine executed one task. Then we
moved to multiple tasks on the same machine. Later,
there was some functional disaggregation so applications
ran on a primary processor supported by file servers,
printer servers, etc. As the need to support massive Inter-
net-based applications emerged, we have seen large data
centers built from hundreds or thousands of computers
wired together. More recently, Grids, as a notion of a
managed fabric of computers have been developed as a
more manageable, flexible way of achieving the same
thing.

There has been a similar evolution in devices for access-
ing information (on-ramps and off-ramps). Initially, one
device (e.g., line printer, card reader) connected to one
machine was shared by many users working around the
clock to lower the costs. Then, many users accessed one
machine through individual (dumb) terminals. Later,
dedicated PCs and workstations became the preferred ac-
cess method. As the cost and size of IT devices continued
to decline, individual users acquired multiple devices
(e.g., PCs, laptops, PDAs) that worked well individually
but not together. Finally, the concept of ensembles has
emerged as a way to get more value from the profusion
of IT devices.

3 Scenarios

This section illustrates levels of aggregation using four
business scenarios. However, these could be easily ex-
tended to include home devices—video projector,
RPTV, Hi-Fi, DVD, etc. People will encounter such de-
vices at home but also in hotels, cars, and airplanes.

Level-1 ensemble (“always-available-appliances”): shared
ownership and preferences; tailored for and works only for
owner.

Jamie Decker is a reporter at HP Labs. Before heading
out to interview Webb Conners,1 an HP executive, she
goes to the accessories room to get her equipment. She
needs a video camera, a smart pen, a phone, and a tablet
PC. Jamie’s earring acts as her identity appliance—it au-
thenticates her and permits her to enter the accessories
room. Her identity is used to configure all her new appli-
ances based on her preferences. In a few seconds before
she leaves the room, all of the appliances preload the
software required for today’s assignment. It is the newest
version of authoring software for imaging and annota-
tion. The new accessories Jamie picks up become part of
her ensemble along with the identity appliance that she
wears as an earring. In addition, device preferences are
shared across all her appliances: passwords, power-sav-
ing setting, time of the day, fonts, display background,
etc. Any new appliance added to the ensemble automati-
cally inherits the current ensemble preferences. While re-
turning the old accessories, she notices that her old smart
pen is missing together with the sensitive material stored
in it. However, she is not worried, because if it cannot au-
thenticate her as a user, the pen will not work and all the
data stored in it is encrypted. If she gets close to the pen,
she will be alerted to its location and will be able to re-
turn it to the accessory room later.

Level-2 ensemble (“always-available-information”): shared
state of appliances. User can access data from any appliance.

The web browsers running on Jamie’s tablet PC, her
camera, and her phone all have same set of favorites and
caches, and share the same data. If she starts editing and
saves changes on one device, the changes are available
on the others. The e-mail, instant-messaging, and tele-
phony applications all share the same contacts. She took
a few photographs with her camera before getting on a
crowded train. On the train, she just had enough room to
open her PDA to select the best photograph and rotate it
to the correct orientation. She spoke a quick description
about the subject of the photograph into her pen, and
used it to annotate the picture. Later, in her office, she
will use her tablet PC where the same photograph will be
accessible to adjust the color and crop the photo before
importing it into the interview.

Level-3 ensemble (“always-available-application”): single ap-
plication running on all appliances.

Table 1: Evolution of Processing Infrastructure and Access

device
type

“era”

early batch multi-user client/server ad hoc
utilities

planetary-scale
computing

infra-
structure

a computer a
job at a time

a computer,
multi-tasks

app. processor,
file/print server

hardwired
data centers

managed com-
puter fabric

access
devices

shared users,
CDR, LPT

terminal sha-
red by users

dedicated PC
& workstation

separate PC,
PDA, camera ensembles

1. Jamie Decker and Webb Conners are fictional people and the inter-
view is a fictional activity.

3

Jamie’s appliances run a new image authoring applica-
tion developed especially for ensembles. Jamie doesn’t
view the application as being installed on a particular de-
vice. Whichever device she opens will have the editing
application in the same state regardless of the device she
was previously using. She doesn’t have to save the file
when switching from one device to another. On the train,
using her tablet PC, she outlined the interview questions
and interspersed them throughout Webb’s bio and merg-
er history pictures. While walking along the corridor to
Webb’s office, she opened her phone and corrected the
punctuation. As she entered Webb’s office, her tablet PC
uses the very same application to display her questions
on the screen. She is almost ready to start the interview.

Level-4 ensemble, “always-available-functionality”: invisible
applications, intuitive interfaces.

As she walks into the room, Jamie’s ensemble automati-
cally attaches a high-resolution video camera in the cor-
ner, speakers on the ceiling, and a few displays closest to
the table. The camera automatically starts focusing on
Webb and frames Webb and Jamie correctly as they
move. It recognizes the context as an interview and
knows who she is, and therefore can decide that it should
film the other person as well. The audio and video clips
from the outline get reproduced unobtrusively in the
background as she proceeds with the interview. When
the interview ends, the ensemble discovers the closest
printer and prints the interview transcript while guaran-
teeing Jamie’s privacy.

Returning to the train station, Jamie speaks additional
impressions into her pen's microphone and the comments
are automatically appended to the interview file. While
standing on the crowded train, she previews her inter-
view on the camera and does the first edits. When a seat
becomes available, she opens her tablet PC, which has
automatically loaded the video footage for editing. She
does additional editing and annotates a note for the per-
son doing the more detailed editing in the office. She
marks it ready and the interview is automatically sent
back to the newsroom. Having the same functionality
and similar intuitive interfaces on all of her devices—
voice input on the pen, buttons on the camera, and a key-
board on the tablet PC—made Jamie's task more efficient
and enjoyable. She keeps thinking about Webb’s words:
“Today you came with a few appliances that harmoni-
ously accomplished your task. Tomorrow, I hope you
will only need to bring your earring and will be able to
conduct the same interview even more effectively”.

4 Aggregation Characteristics

This section introduces the design considerations that
must be addressed to achieve simplicity and other goals
of appliance aggregation.

Aggregation Levels. In the scenarios, we defined in-
creasing levels of appliance aggregation, from the simple
ones, to more extensive levels. As the levels of aggrega-
tion increase, additional user benefits, transparency, and
illusion are achieved. At the lowest level, level-1, appli-
ances share ownership across the whole ensemble. At
level-2, the aggregation is tighter and data is shared
across an ensemble, e.g., in the form of caching or a dis-
tributed file system. At level-3, applications are accessi-
ble from any appliance in the ensemble. Finally, at level-
4, the same functionality is accessible across an ensem-
ble. Transparency increases from appliance-level,
through external state and application requirements, to
user needs. Illusion ranges from a private network,
through a single computer/OS and a single application,
to a single service.

Different levels are targeted to different beneficiaries:
level-1 targets an ensemble, level-2 supports applica-
tions, level-3 supports users, and level-4 tailors an en-
semble for a particular user. The different levels are
addressed by different types of developers: level-1 is ad-
dressed at low-level system and hardware, level-2 at op-
erating system, level-3 at applications, and level-4 at
services. These and other aspects of aggregation are
compared in Table 2.

Table 2: Incremental Levels of Aggregation

Characteristic
Levels

1 (group
membership)

2 (shared
state) 3 (session) 4 (functional-

ity)
Aggregate ownership + system state + applic. state + service state

User Benefit single login
protection

+ shared files and
connections

+ shared app
space

+ shared func-
tionality space

Transparency appliance + external state + app require-
ments + user needs

Inherit logon
+ VPN, cookies,

caches
+ app preferenc-

es setup + user behavior

Illusion private
network

single computer/
OS single app single service

Access secure paths persistent data app session
state services

Target ensemble apps users You!

Developers low level sys-
tem, hardware

+OS +app model +UI

Data
propagated membership + committed data + dynamic data + dynamic info

Changes
propagated

when changed
membership

+ transaction
commit + user event + any event

User
interacts with appliance appliance ensemble ensemble

4

Ownership Models. A user can interact with appliances
in many ways. We developed an ownership model to
help understand these relationships. Our goal is to define
the concept of an ensemble and to determine how a user's
ensemble would aggregate with appliances outside of the
ensemble. The model specifies several broad categories
of ownership and control (see Figure 2).

We identified two kinds of ownership, personal and en-
vironmental (organizational). An appliance owned by a
person is automatically part of that person's ensemble. It
typically contains personal information that needs to be
protected from others. A user goes through some regis-
tration process to become the owner of an appliance. An
environment appliance is publicly available. It is as-
sumed that any information on an environment appliance
is suitable for any person present in the environment. Ex-
amples are printers, projectors, and mounted cameras.

We specify five ways that a user can relate to an appli-
ance. Own and borrow apply to personal appliances, and
share, control, and queue apply to environment appli-
ances.

• Own—If a user owns an appliance, the user has com-
plete control over the appliance.

• Borrow—A user can borrow an appliance and control
it as his or her own, except that the owner's data is pro-
tected and the user’s data is purged upon return.

• Share—Some appliances can be shared in parallel or
timeshared, e.g., a hotspot and a storage server.

• Control—Some appliances can be sequentially con-
trolled. Examples include a projector and a camera.

• Queue—Some appliances can receive a queue of in-
puts. The principle example is a printer.

A user's ensemble is defined as appliances owned or bor-
rowed by the user. To simplify the model further, shared
appliances were removed from consideration. Applianc-
es that support control or queuing cannot be part of an en-
semble, and represent a looser form of aggregation.

User Models. An important aspect of appliance aggrega-
tion is to provide a user model that is as simple, if not
simpler, than single devices. An ensemble of appliances
attempts to give the illusion of acting as one appliance.
While this illusion is a valuable one for the user as far as
complexity is concerned, it can present a challenge.

• Transparency should not be absolute. For example,
hiding details about the location of files from the user
adds location transparency. However, this will be con-
fusing to the user if arbitrary files seem to disappear/
reappear depending upon which devices are currently
present in the ensemble. Thus, unless all files can be
replicated or logical error messages can be issued
(“Sorry, file was located on PDA1”), then transparen-
cy will add more frustration than benefits.

• Owning a device and joining an ensemble must be sim-
ple. Before a device can join the ensemble it needs to
be “blessed,” causing it to be marked as owned. This
must be simple, yet secure enough that a shop may do
it or that a user can “bless” a device at home or at work.
Likewise, devices must join the ensemble in a seam-
less fashion. For example, the simplest device may just
have one button and a light to indicate joining the en-
semble. Pressing buttons simultaneously on multiple
owned devices makes them into an ensemble, with the
light indicating success.

• There must be a uniform view of personal and environ-
ment devices in the ensemble. Users do not want to dif-
ferentiate the network type of appliances, or the
protocol used to access them, unless needed. There-
fore, a shared projector should be usable the same way
as personal devices. Limitations will exist in the level
of functionality supported by some devices, for exam-
ple, a user cannot own a shared projector.

5 Architecture

Appliance aggregation is executed on top of the existing
appliance operating system (e.g., Linux or Windows
Pocket PC), and in particular on top of its communica-
tion stack and file system, upon which it builds (see

Figure 2: Ownership Model.

owned

borrowed

ensemble

shared
control queued

looser ensemble
not addressed

Figure 3: Appliance Aggregation Stacks.
legacy hardware legacy hardwareA3-enabled hardware

OS: comm., file sys, etc. OS: comm., file sys, etc. OS: comm., file sys, etc.

A3- level 1 A3- level 1 A3- level 1

A3- level 4
A3- level 3
A3- level 2A3- level 2

legacy apps and services A3-enabled apps/services A3-enabled apps/services

5

Figure 3). The architecture is peer-to-peer rather than cli-
ent-server, although there will be some centralized state,
such as owner private certificates. Users can differentiate
between different levels of A3, marking products with
differing levels of functionality. If a user buys a level-1
device and a level-2 device, the user should expect them
to work together with level-1 functionality (the lowest
common denominator). While A3 can execute on legacy
hardware, it can also take advantage of A3-enabled hard-
ware, e.g., in support of improved security. Similarly,
while A3 can support legacy applications and services, it
can also take advantage of A3-enabled applications and
services, e.g., for improved caching, security, or perfor-
mance.

The rest of this section defines A3 terms, functional re-
quirements, design principles, and components.

5.1 Definition of Terms
Within the scope of appliance aggregation, we define the
following terms:

• Appliance is a device (communicating on a network)
capable of aggregating with other devices; a smallest
unit of aggregation.

• examples include camera, PDA, laptop, watch, and
hotspot

• non-examples include communicationless, shared,
and queued devices

• Ensemble is a group of appliances aggregated to per-
form a function greater than their parts.

• examples include a camera, a PDA, and a watch
used in concert to capture, annotate, and communi-
cate pictures

• non-examples include a client-server relationship,
such as using a home PC to access Yahoo!

• Appliance aggregation represents an illusion of multi-
ple appliances operating as a single entity for a period
of time.

• examples include use the screen of another device
for display; execute a single application on/from
multiple appliances

• non-examples include execute a distributed algo-
rithm on a workstation cluster; send a presentation
to a printer

Even though we classify the traditional use of a printer as
a non-example for appliance aggregation, there is noth-
ing to prevent a looser form of printer aggregation, e.g.,
when there is a need to print over a longer period of time.

5.2 Functional Requirements
Appliance aggregation poses the following functional re-
quirements:

• Discover, communicate with, identify, and qualify ap-
pliances.

• Establish a secure communication channel between
appliances.

• Establish trust boundaries between two or more appli-
ances.

• Provide access to aggregated resources by creating
bindings between:

a) user appliances,
b) user and environmental appliances, and
c) environmental appliances.

• Present a user with the illusion of a “bigger” appliance,
consisting of aggregated resources from individual ap-
pliances.

• Partially and/or fully recover from temporary and per-
manent failure of a subset of aggregated appliances.

5.3 Design Principles
We define the following design principles for appliance
aggregations:

1. An appliance is either in or out of an ensemble.

2. All appliances inside an ensemble are owned or bor-
rowed.

3. A person can have multiple ensembles (e.g., per-
sonal and stereo).

4. An ensemble can be owned or not owned (can be
borrowed).

5. Ensembles are flat for now (not hierarchical).

6. Inter-ensemble interactions are based on webser-
vices.

7. Intra-ensemble interactions are based on secure
communication, data synchronization, and aggre-
gated behavior.

8. An ensemble as a whole has its own access policy.

9. Four levels of functionality are defined (see
Section 4).

10. There is a nested set of APIs for increasing aggrega-
tion levels.

5.4 High-Level Architecture
This section describes our preliminary appliance aggre-
gation architecture (see Figure 4).

Level-1 functionality relates to: identification, owner-
ship, and authentication; discovery; admission control;
membership; and security.

6

Appliance identification and ownership. An appliance is
uniquely identified by its producer. The identification is
a certificate containing the brand, model and serial num-
ber issued by the manufacturer. An ownership mecha-
nism at the hardware level signs data so that data
originating from the given appliance is trusted. The iden-
tification information is immutable. A single user owns
an appliance, but the owner may change over time. The
owner’s identification is registered in the appliance it-
self. Only the manufacturer or the current owner may
overwrite this information. The appliance refuses to op-
erate until its user is authenticated.

Appliance advertising and discovery. An appliance ad-
vertises itself when one of its network links come up by
broadcasting its identity along with its owner's identity
(certificates). If the owner is logged onto a nearby appli-
ance, the appliance will attempt to enroll the newly con-
nected appliance into its ensemble. Conversely, when a
user logs onto an appliance, a multicast message is issued
with its user identity and the neighboring appliances that
the user owns would respond with their identity. The end
user need not worry about network addresses and topol-
ogy.

Ensemble management (admission control). At level-1,
an ensemble is connected by the set of secure communi-
cation channels (VPN) between the appliances. An appli-
ance is authorized to join the ensemble as soon as it
establishes a secure communication channel with the ap-
pliance where the user is logged on. A membership pro-
tocol notifies ensemble members about changes in the
ensemble population in real time. Optionally, appliances
leaving the ensemble are detected when a communica-
tion failure occurs.

Secure communication channels. Establishing secure
communication channels relies on signed messages.
When two appliances communicate for the first time,

they exchange a secret key. To ensure the link is estab-
lished between an appliance and its owner, the remote
appliance issues a symmetric key that it encrypts with the
owner’s public key and signs it with the device’s private
key. At the other end, only the owner can decrypt the key
and authenticate the appliance. Extending the model for
users to borrow a device requires a list of the authorized
users signed by the owner. Each element of this list con-
tains information similar to ownership identity, signed
by an authorized user.

Level-2 functionality comprises the ability to share state
and resources across the ensemble. Examples of shared
state include files, cached data, browser bookmarks, cal-
endars, and preferences.

Shared file system. Much level-2 functionality can be
based on a shared file system. The file system provides
ensemble members access to shared data and metadata.
Special “device files” provide a hook for resource shar-
ing, permitting one device to access the resource of an-
other. The file system’s semantics enforce an appropriate
level of consistency for the shared data.

Shared computation, UI, and power. Device files in the
shared file system provide the interface to access re-
sources from other devices. A device file may be an RDF
description of a resource with information about acquir-
ing and using the resource. Sharing a user interface could
mean borrowing a keyboard resource from another de-
vice, or displaying a given UI on different displays in the
ensemble. Power can be shared by distributing computa-
tion and networking to optimize power usage.

Shared state and preferences. Preferences for each de-
vice are stored in the file system. When a new device is
introduced into the ensemble, it can examine the current
preferences of other devices, and attempt to choose pref-
erences that apply to itself. For example, if a new PDA
joins the ensemble, it may inherit the preferences of an-
other PDA.

Shared cache. Cached data (e.g., browser information)
can be stored in the shared file system, allowing ensem-
ble members to share it. The ability to combine storage
from different devices into a single directory (i.e., a
“union” mount) could increase the size of the cache as
the size of the ensemble increases, and eliminate redun-
dant cached data within the ensemble.

Access to external services. If one device has access to an
external service, other devices in the ensemble will be
able access the service—preferably sharing authentica-
tion and authorization information with the first device.
In some instances, the first device to access a service may
act as a proxy for other ensemble members.

Figure 4: A3 High Level Architecture. Levels starting bottom
up consist of L1: identity and membership, L2: shared resource
management, L3: shared application, and L4: shared function-
ality.

ensemble
network|
identity

functionality
mapper

task-intuitive
interfaces

user
preferences context

application
msg and event

distribution
multi-mode

UI

advertising
and discovery

shared
preferences

behavior

intra-
ensemble

VPN

access to
external
services

external
service

interface

identity
ownership and
authentication

ensemble
membership

manager

aggregated
service/app
description

service
manager

shared FS,
intra-ensemble

shared
computation,
UI, power,...

shared cache

7

Level-3 functionality presents the user with the illusion
that the entire ensemble is executing a single application.
It consists of intra-ensemble communication, a shared
user interface, service aggregation, service execution,
and an aggregated external interface.

Application message and event distribution. An A3 ap-
plication is inherently modularized in order to execute in
a distributed way on an ensemble. For these parts to com-
municate, some form of event propagation is required.
The A3 events have a limited range because they are only
sent to ensemble members. These events might contain
information or they are simply used to invalidate cached
information on other appliances.

Multi-mode UI. To present the illusion of coherent exe-
cution across the ensemble, the user needs to interact
with the application from a variety of appliances. Thus,
the UI of the application has to support distribution and
coordination. For instance, the user may assign a specific
function to each appliance within an ensemble. User in-
terface events from each single-purpose device have to
be coordinated with other appliances to construct aggre-
gated service requests.

Aggregated application description. An aggregated ap-
plication is comprised of the collection of appliances in
an ensemble. For example, a hi-fi functionality emerges
by putting together speakers and a tuner. Conversely, an
application is modularized so it can be executed on an
ensemble.

Service manager. The service manager is responsible for
balancing load and capability as an application is execut-
ed on an ensemble of appliances.

External service interface. An ensemble running an ap-
plication presents an aggregated external interface so
that global discovery and service composition schemes
can use the ensemble as a unit.

Level-4 deals with the automatic aggregation of services
to help a user accomplish a high-level task. To achieve
this goal, we take into consideration a user's preferences
and history of past behavior, and surrounding contextual
information.

Functionality Mapper. We describe the functionality
provided by an appliance as an <action, data> pair by
extending the notion of MIME-types. To facilitate the
automatic aggregation of functionality, we also describe
the requirements of an appliance in the same format. Our
runtime infrastructure can then use functionality descrip-
tions to aggregate appliances and services to automati-
cally meet the high-level task request.

Task-Intuitive User Interfaces. Because a user can ac-
complish a task with different appliances, not all user in-
terfaces will be appropriate in each situation. At certain
times, it would be better to use voice, while at other times
it would be better to use a traditional keyboard, special-
ized buttons, or a user’s intent. The purpose of this mod-
ule is to select the best available UI for the task.

User Preferences. Mobility can bring several challenges
to a user wishing to aggregate borrowed appliances in an
unfamiliar environment. Increasing the number of appli-
ances in an ensemble contributes to the combinatorial
growth of the number of alternative able to perform a
task. To help the user choose among these alternatives,
we propose eliciting preferences from the user about ap-
pliance properties, and then helping the user select the
optimal aggregation by scoring the aggregations accord-
ing to the preferences. Because acquiring preference can
be complex, we propose using declarative policies to en-
code a group of preferences together. Preference declara-
tion can be provided by the system or defined by
developers, administrators, and users.

Context. Context includes any information that can be
used to characterize an ensemble environment and that
can affect the users preferences. Examples include the
user task, the ensemble devices, the user location, and the
time of day. Context can be captured by using recent ad-
vances in sensor technology.

Behavior. The history of a user past choices, combined
with the present context can yield significant information
about the user preferences for appliance properties. If the
user is not willing to specify preferences for some task,
the preferences can be predicted by applying a classifier
based upon the historical data and the context.

6 Prototype Implementations

We have implemented prototypes of each aggregation
level.

Level-1. The goal of this prototype is to demonstrate the
formation of ensembles based on appliance ownership.
Each appliance has a pre-stored identity and ownership
certificate. Discovery is implemented using the SLP pro-
tocol and a distinct scope for each ensemble. Visualizing
the ensemble is performed through off-the-shelf web
browsers, configured to operate through a local proxy.
This proxy is responsible for gathering the ensemble
members and establishing secure HTTP links with other
appliances. This same proxy also acts as a web server for
each device and allows each ensemble member to
browse the appliance file space through the secure com-
munication channel. When opening the web browser, the

8

owner authenticates his own files. A web page displays
ensemble members and appliance descriptions.

Level-2. Our initial prototype, the Appliance Aggrega-
tion File System (AAFS), is based on NFSv2 (rfc1813)
combined with namespace conventions, dynamic group
configuration, and a leasing protocol. We use an AFS-
style namespace where files are referenced via a specific
device name (“cell” in AFS), for example, /aafs/dansJorna-
da/somefile or /aafs/plasma/dev/display. We rely on synchro-
nous I/O for a couple of reasons. Because appliances can
leave a group without notice, it is important for applica-
tions to detect I/O failures and respond appropriately.
Asynchronous writes make failure detection difficult or
impossible. For asynchronous operations to be effective,
there must be sufficient buffer space to store a significant
amount of written data, which is not available on re-
source-constrained devices. Because a server may also
leave and possibly never return, a client must be able to
interrupt operations and unmount non-responsive servers.
In a standard NFS configuration, with asynchronous op-
erations, “soft” mounts and interruptible operations can
lead to data corruption. Synchronous operations elimi-
nate this possibility for properly written applications.
Even though the operations are synchronous, they can ei-
ther be interrupted or timed-out to prevent an appliance
from being blocked forever. Leasing is used to address
file sharing and it simplifies recovery when devices leave
a group.

Level-3. We prototyped an approach to level-3 aggrega-
tion that we call Agile web services (see [17] for more
details). An Agile web service is similar to a normal web
service except that it executes locally on the appliance
rather than on a globally accessible server. To execute
such a service locally, each appliance must contain a
runtime environment. Our Agile runtime consists of a
proxy server, a cache, a template engine for generating
HTML pages, and an action language engine for han-
dling form POSTs. The cache-template-action combina-
tion provides the runtime components necessary for a
classic model-view-controller architecture. The proxy
enables a local browser to access the Agile service. In our
level-3 prototype, we assign a user-interface “role” to
each appliance. A display appliance might be assigned to
show the on-line status of a user’s buddies, for instance.
As roles, applications, and application data change, the
cache notification mechanism lets the appliance know
when to regenerate page views. This way we distribute
control without customizing inter-appliance communi-
cation. To demonstrate this idea, we created an applica-
tion that allows people to share music while using text
messaging to chat. We created a number of roles, such as

a buddy list showing who is present, and a room list
showing chat rooms in which the user is participating.

Level-4. We prototyped the CAFE system that provides
user-centric aggregation of device functionality in a dy-
namic environment. The system automatically aggre-
gates appliances based on existing description of
appliances and user requests. CAFE facilitates the selec-
tion of the aggregation that best matches a user’s prefer-
ences using declarative policies. In addition, it allows a
user to express trade-offs between the quality of device
attributes, user distraction, and aggregation stability. A
policy suggestion mechanism is employed to recom-
mend policies to the user based on the context and the us-
er’s aggregation history. The system has five main
components: a Service Lookup Protocol provider for ap-
pliance presence and functionality registration, a user in-
terface, an aggregator, a candidate selector, and a policy
recommender. All five components run on a designated
appliance, called the coordinator. A user interacts with
the system using the servlet-based user interface. A us-
er’s request is represented as an <action, data> direc-
tive, e.g., <play, MPEG>. The aggregator calculates all
possible aggregations for a given user task using a rule-
based engine. The system provides the user with the abil-
ity to specify preferences for devices and device proper-
ties. These preferences are used to guide the selection of
the best aggregation. If the user does not input preferenc-
es, the policy recommender module predicts preferences
based on the user’s past interactions with the system.
User preferences are used by the candidate selector mod-
ule to rank the aggregations. A more detailed discussion
can be found in [8].

7 Benefits of Appliance Aggregation

Appliance aggregation presents several key benefits over
standalone or proprietary appliances. It enables better
products, more opportunities for innovation, as well as
traditional benefits of an architecture.

Better products

• Ease of use. By reducing the barriers between devices
they will be easier to use. It will be possible to access
functionality and data arbitrarily and securely.

• Better security. It will be significantly easier to deploy
and to enforce security with a clearly defined aggrega-
tion and use model. A3 can enforce better protection of
user data scattered over many devices. It can establish
more robust ownership models.

• Increased interoperability and personalization. The
aggregation of devices opens up opportunities for bet-
ter matching of functionality to personal needs. Rather

9

than having a combined device, two more ergonomical
and/or smaller devices may be dynamically composed
for the precise task at hand. For example, a cellular ra-
dio, handset, and PDA can be combined to make a
phone call.

Innovation

• New combinations of appliances. Add-ons from ven-
dors and third parties can be used to combine devices
in novel, useful, and interesting ways. For example,
new software can make it possible to control the room
air conditioning from an appliance.

• New appliances. By making it possible to dynamically
combine appliances, new opportunities will present
themselves for improved appliance designs that are not
hampered by power supplies, I/O, and user models.

• New applications, distributed models, and functional-
ity. New models of appliance interaction will enable
new applications to emerge with new distributed mod-
els and new functionality.

Benefits of a common architecture

• Leverage industry through open standards (third party
developers, tools, applications, and so forth). By hav-
ing an open architecture, others can contribute in areas
where individual companies are not strong or do not
have an interest to lead, enabling others to innovate
and contribute, e.g., in case of low volume production
or specific markets.

• Enable platforms on top of architecture. Ensembles of
appliances present opportunities for a programming
environment platform supporting ensembles.

• Easier creation of brands, control points, and ecosys-
tems. These are traditional benefits of any architecture.

An example that might present a beachhead business op-
portunity is authenticated appliance use of expensive
mobile appliances in the enterprise market. Security is a
prime concern in these markets both for data access and
theft. Level 1 of our architecture provides support for au-
thenticated single sign-on use, which can be invaluable
for three reasons. First, without the ensemble password,
no device can be used when stolen (e.g. laptops). Second,
with the insecurity of wireless networks, some form of
shared log-on can form the basis for network security
(e.g. VPN) solutions. Third, past examples have shown
(802.11b networking, high-end PDAs) that getting wide
ranging solutions into the corporate market can eventual-
ly lead to wider adoption.

One concern is the cost of adding the functionality re-
quired for aggregation to appliances. Appliance aggrega-

tion requires at least one form of network support in each
device as well as a software stack to support it. General-
ly, devices are moving towards becoming networked, so
this cost is not exclusive to aggregation. In addition, by
breaking down the software architecture into self-con-
tained levels, cheap or simple devices need only support
lower levels of the architecture. For example, pen appli-
ances need only support level 1 of the architecture, be-
cause they do not need a file system.

8 Related Work

Several efforts have addressed making IT appliances
work better together. Sony’s MemoryStick, the Apple-
initiated IEEE 1394 standard, and home networking
standards such as HomeRF and PowerLine have all pro-
vided some basis for connectivity among consumer elec-
tronic devices. Infrared has been used for similar
purposes between PDAs, laptops, and printers; and is
now being replaced by Bluetooth. HP successfully intro-
duced interoperability between measurement devices
and promoted it as the IEEE 488 (HP IB) standard. These
standards all share a fairly low-level view of appliance
integration, supporting file transfer, and networking or
wireless cable replacements. Lack of broad industrial
adoption of these standards has resulted in market frag-
mentation, as exemplified by IEEE 1394 vs. USB, mem-
ory stick vs. flash memory, and interference in the
wireless communication standards (802.11b and cord-
less phones).

UPnP [19] and RendezVous [15] are a standard and an
emerging de facto standard at the networking level that
enable personal computers and appliances to plug into
the network, configure its addresses, and announce their
presence and services. Above the networking level, a few
systems have tried to provide some coordination of re-
sources or functionality. The most notable examples are
the Sony HAVi and Sun Jini. These systems provide sup-
port for remote control and coordination, but they do not
couple the devices tightly together. Instead, they provide
functionality similar to a traditional distributed system
(remote object invocation, naming, and so forth).

The benefits of aggregation have been recognized in
Grid Computing [6, 7] at the infrastructure level with re-
spect to aggregation of processing, storage, and virtual
wiring, as well as in a number of pervasive computing ef-
forts [5, 13, 16, 18, 20] where data, I/O, and computing
are distributed across many personal and environmental
computers.

Epson and camera producers are trying to make a best
match between printers and cameras in so-called Print
Image Matching (PIM) [14]. IBM’s Digital Jewelry [10]

10

envisions computers deployed on a user’s body and con-
nected in a personal area network. They require some
form of ensemble support and advanced UI, similar to
our proposal. There were a number of architectural ef-
forts in the past [9, 11, 12].

A3 is orthogonal to the super-appliance approach (inte-
grated PDA, phone, GPS, and so forth) because even su-
per-appliances can be aggregated with environment
appliances for additional functionality and performance.
It is important to point out that A3 functionality need not
primarily come in the form of software architecture, a lot
of components can be deployed in hardware, firmware or
downloadable drivers. It will be up to individual compa-
nies to choose the most suitable form of deployment.

9 Summary and Future Work
In this paper we presented a case for an appliance aggre-
gation architecture (A3) by motivating the needs for such
an architecture, and by discussing possible architectural
levels, ownership models, and user models. Then, we
presented a four-level architecture and preliminary pro-
totype implementations. Our work is an attempt to pro-
vide higher-level functionality, to allow increased
cooperation between appliances. In addition we provide
some extra functionality, such as multiple levels of secu-
rity and single sign-on. Together these provide for closer
and richer interactions between appliances in an ensem-
ble.

After our initial designs and prototyping, we took this
work to the GGF, where it continued as a part of the GGF
Appliance Aggregation Research Group (APPAGG) in
the P2P technical area. It is an attempt to bring together
various companies in the appliance space to come up
with a common strategy enabling appliance aggregation
[4].

ACKNOWLEDGMENTS

We are indebted to Tim Kindberg for providing feedback
on the initial versions of this paper. His comments signif-
icantly improved the content and presentation of the pa-
per. Christos Karamanolis, Ed Perry, and Rosanne
Wyleczuk contributed to the earlier phases of this effort.

REFERENCES

[4] Bhatia, et al. “Appliance Aggregation Architecture
Terminology, Survey, and Scenarios”, A GGF AP-
PAGG Research Group Working Document,
www.hpl.hp.com/hosted/ggf/AppAggSurveyApr03.doc.

[5] Dertouzos, M.L., “The future of computing,” Scien-
tific American, July 1999. oxygen.lcs.mit.edu.

[6] Foster, I. and Kesselman, C., “The Grid, Blueprint

for a New Computing Infrastructure”, Morgan
Kaufmann, 1999.

[7] Foster, I., Kesselman, C., Nick, J., Tuecke, S., “The
Physiology of the Grid: An Open Grid Services Ar-
chitecture for Distributed Systems Integration,”
Open Grid Service Infrastructure WG, Global Grid
Forum, June 22, 2002.

[8] Kumar, R., et al. “User-Centric Appliance Aggrega-
tion,” HPL Technical Report, HPL 2002-277, Sep-
tember 2002.

[9] IEEE Recommended Practice for Architectural De-
scription of Software-Intensive Systems.

[10] Miner, C., “Pushing Functionality into Even Smaller
Devices, “CACM, Volume 44, Number 3 (2001),
Pages 72-73.

[11] Morris, C., and Ferguson, C., “How Architecture
Wins Technology Wars,” Harvard Business Re-
view, 1993

[12] Nokia, “MITA – Mobile Internet Technical Archi-
tecture”, Nokia White Paper.

[13] Norman, D. A., “The Invisible Computer,” Cam-
bridge, MA, MIT Press, 1998.

[14] P.I.M., Print Image Matching, www.printimage-
matching.com/

[15] RendezVous, http://www.apple.com/macosx/jag-
uar/rendezvous.html

[16] Satyanarayanan, M. 2001., “Pervasive Computing:
Vision and Challenges,” IEEE Personal Communi-
cations, August 2001.

[17] Rowson, et al., “Agile Computing,” HPl Technical
Report.

[18] Thackara J., “The Design Challenge of Pervasive
Computing,” Interactions, vol 8, no 3, May/June
2001.

[19] UPNP, http://www.upnp.com/.

[20] Weiser, M., “Some Computer Science Problems in
Ubiquitous Computing,” CACM, July 1993, 75-8.

