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processing and pattern classification, this paper systematically 
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We analyze the asymptotic characteristics, and the factors affecting 
frame-level classification. In addition, we introduce new methods to 
more accurately and efficiently combine frame-level decisions, 
including phoneme/power-based weighting and smart sampling. 
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Abstract-Speech metadata extraction can both improve 
speech recognition and enable novel Interactive Voice Response 
applications. Unlike the previous research, which concentrates 
on the frame-level signal processing and pattern classification, 
this paper systematically studies the behavior of decision 
combination at the utterance level. We analyze the asymptotic 
characteristics, and the factors affecting frame-level 
classification. In addition, we introduce new methods to more 
accurately and efficiently combine frame-level decisions, 
including phoneme/power-based weighting and smart sampling. 
Experimental results in gender classification are presented. 

I. INTRODUCTION 

Speech metadata extraction refers to the process of 
intelligently inferring information about the speaker from 
speech signals. The types of information can be the gender 
[1][13], language [2], accent/dialect [3][4], age [5], and 
identity of the speaker [6][8]. Speech metadata extraction 
can directly benefit automatic speech recognition (ASR) 
because acoustic and/or linguistic models can be refined for 
different types of speakers to offer better recognition [1]. In 
addition, novel Interactive Voice Response (IVR) systems 
can be directly built on top of speech metadata extraction. 
For example, customized services can be offered to different 
groups of users. 

Although some methods treat the utterance of a sentence 
or paragraph as a whole and directly make the final decision, 
many algorithms base the utterance-level result on the frame-
level recognition. Fig. 1 shows the workflow of those 
algorithms. First, the signals of the utterance are divided into 
frames, which may overlap each other. It is a common 
practice to have the frames spaced at around 10 milliseconds 
with a width of 20 to 30 milliseconds. Second, each frame is 
individually processed. Features such as Mel-Frequency 
Cepstral Coefficients (MFCC) and Perceptual Linear 
Prediction (PLP) [9] are extracted from each frame. 
Sometimes derivative features are also calculated by utilizing 
the features from neighboring frames (for example, the delta 
and delta-delta MFCC features). Then pattern classification 
is conducted based on those features. Various classifiers 
such as Gaussian Mixture Model (GMM) [6], Multi-layer 
Perceptron (MLP) [13] and Support Vector Machine (SVM) 
[8] can be applied to this step. Third, the results from 
individual frames are combined to make the final decision. 

Most existing research in this field is concerned with the 
first two steps: how to improve the signal processing to get 
more reliable features and how to build more accurate 
classifiers. Simple averaging or voting across all of the 
frames is usually used for the last step. In contrast, this paper 
attempts to analyze the combination step in depth and 
proposes better methods to combine frame-level decisions. 
In fact, there are many interesting questions on the 
combination side: How many frames are needed? What kind 
of information can benefit the combination? How can we 
design better combination functions? How can we reduce the 
computation load? This paper attempts to answer these 
questions.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Decision combination in speech metadata extraction  

II. INFORMATION LEVELS OF COMBINATION 

As Xu, et al, proposed in [10], combination can be carried 
out on three levels. The abstract level combination involves 
only the label of the best choice. The rank level combination 
utilizes the ranking information of candidates. The 
measurement level combination attempts to achieve better 
combination by taking into the confidence scores of 
individual results. Understandably, proper use of confidence 
scores will potentially lead to results no worse those 
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achievable on the other two levels. Now let us examine the 
situation of speech metadata extraction.  

A.  Experimental System 

Throughout this paper, we use gender classification to 
demonstrate the experimental results. The goal is to classify 
the speaker of an utterance as either male or female. Each 
utterance is first evenly segmented at an interval of 10 
milliseconds. The size of each frame is 25.6 milliseconds. 
Then the 13 MFCC features are extracted from each frame 
using the algorithm implemented in Carnegie Mellon 
University’s Sphinx 2.0 Speech Recognition System [11]. 
The first component only reflects the power density and thus 
is not useful in frame-level classification. The remaining 12 
features are fed into a 3-layer MLP classifier with a 20-node 
hidden layer. The training section of Linguistic Data 
Consortium’s (LDC) TIDIGITS (connected digits) database 
[12] is used to train the classifier, and the testing section 
(about 250,000 frames or 1,200 utterances) is used for 
evaluation.  

The frame-level recognition rate is 70.43% over the 
frames in the testing section. This performance is in line with 
published results [13]. Fortunately, we have hundreds of 
frames in a typical utterance and it is the collective behavior 
of those individual results that decides the final utterance-
level performance. 

B.  Combinations on Different Levels 

Using simple majority voting for the combination, we 
have achieved utterance-level recognition rate of 93.43%.  

Since a MLP neural net outputs continuous numbers 
ranging between 0 and 1 at the output nodes, we can do the 
confidence-level combination. The output values are first 
normalized. Then the following decision function is adopted: 

 label. class  theis i utterance,an in  frames ofnumber   theis M and

 network  MLP ofoutput  normalized  theis O  where,OD
M

1j
ijiji ∑

=

=       (1) 

Using (1), we have achieved utterance-level recognition 
rate of 95.43%. The use of the neural net outputs has reduced 
the error rate by 30% relatively. The difference is not 
difficult to understand. When only the label information is 
used, the classifier can only vote 1 or 0 for a class even if it 
is not confident about the results. When confidence scores 
are introduced, the classifier can express its opinion more 
precisely, for example, favoring “female” to “male” by 0.6 
vs. 0.4. Consequently, the final decision becomes more 
accurate. 

III. ASYMPTOTIC ANALYSIS 

In previous section, we have shown that the recognition 
rate can be dramatically increased from 70.43% on the frame 
level to 95.43% on the utterance level through combination 
over hundreds of frames (On average there are 208 frames 
per utterance in the testing data set). The next question we 
would like to answer is: How many frames are necessary to 

achieve reasonably good combination results? That is the 
motivation behind the asymptotic analysis. 

Pi is defined as the recognition rate under the condition 
that the first i frames of each utterance are used. Fig. 2 
displays how Pi is affected by i. One point worth mentioning 
is that the curve starts at about 50% instead of the frame-
level 70.43%. That is because the first few frames in most 
utterances are just silence, which does not carry any 
distinguishing information. The recognition rate increases 
dramatically during the first 70 frames. Then it levels off. 

This asymptotic characteristic is desirable in real-time 
applications. For example, IVR systems want to know the 
gender of the speaker as soon as possible to decide the 
emphasis of services. ASR engines also want to apply 
gender-dependent models from the very beginning. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Relationship between number of frames and recognition rate 
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IV. FRAME WEIGHTING 

In the previous sections, all of the frames in the same 
utterance are treated equally. However, some frames are 
more important than the others. If those critical frames are 
assigned larger weights, the utterance-level decision can be 
more accurate. The challenge is to decide what parameters 
are good indicators of individual frames’ importance. In this 
paper, two parameters are identified as reliable indicators. 

A.  Phonemes 

Phonetic research shows that characteristics of 
pronouncing phonemes dictate different speaking styles or 
dialects [14]. Generally speaking, vowels play a bigger role 
than consonants. Our experiments have confirmed this 
observation. Sphinx V2.0 ASR is used to group frames into 
phonemes. Then we count the percentage of correctly 
recognized frames for each phoneme Since TIDIGITS only 
contains utterances of digits, we need to count only the 20 
phonemes encountered in digits. It can be seen from Fig. 
3.that frames in vowels generally enjoy higher recognition 
rate.  
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Fig. 3. Recognition rate as function of phonemes 

B. Power Density 

One drawback associated with phonemes is that it takes a 
full-fledged ASR to accurately extract phonemes, and the 
system’s efficiency will be significantly compromised. Many 
real-world applications expect the metadata extraction to be 
a lightweight component running in the front end. So it is 
desired to find other indicators that can be more easily 
computed. The power density of each frame proves to be an 
ideal parameter in this regard. Conveniently, the first 
component of the 13 MFCC features reflects the absolute 
power density. In order to compensate for the volume 
variance among utterances, we adopt the relative difference 
(“PowerDiff”) between the maximal power density within an 
utterance and a frame’s absolute power density. To facilitate 
statistics, the continuous values are rounded off to the 
nearest integers. The recognition rates for different power 
densities are drawn in Fig. 4. For frames with very small 
PowerDiff, the frame-level recognition rate is around 88%. 
The rate drops to about 50% on frames with large 

PowerDiff. So we can see that the power density also serves 
as a good indicator of frame-level reliability. 
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Fig. 4. Recognition rate as function of PowerDiff 

C.  Frame Weighting 

Based on the analysis of previous subsections, the 
following equation is used to reflect the different roles 
played by individual frames: 

 label. class  theis i utterance,an in  frames ofnumber   theis M and

 network  MLP ofoutput  normalized  theis O  where,))Oicator(XWeight(IndD
M

1j
ijijji ∑

=
=

(2) 

For each frame Xj, we first find out the indicator 
correlated to the reliability. It can be the phoneme label, 
power density, or another parameter. Then the indicator is 
mapped to a weight that is used in the combination. The key 
issue is how to map indicators to weights. 

For an indicator with Q possible discrete values, Q 
weights are to be decided for each of them to maximize the 
utterance-level accuracy. A greedy algorithm is designed to 
do the optimization. As with any greedy algorithm, the initial 
condition can affect the final results, which can be locally 
optimal. So the optimization has been done under different 
initial conditions and the one leading to the highest accuracy 
is picked. When phonemes are used as indicators, the 
optimal weights are show in Fig. 5 and the resulting 
utterance-level recognition rate is 97.2%. When power 
densities are used, the optimal weights are show in Fig. 6 and 
the resulting utterance-level recognition rate is 97.8%. So in 
the two cases, the error rate is reduced by about 40% and 
50% relatively compared with that using equal weights. 
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Fig. 5. Weights for different phonemes 
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Fig. 6. Weights for different PowerDiff values 

V. SMART SAMPLING 

One finding of the previous section is that high-power-
density frames play a more important role in the 
combination. When the weights of low-power-density frames 
are set to 0, those frames can be discarded altogether. 
Accordingly, the time spent on extracting metadata can be 
reduced. Consequently, we can do “Smart Sampling” in 
speech metadata extraction. For each frame in the utterance, 
a fitness function (for example, F(X)=-PowerDiff(X)) is 
calculated.  If the output is below the given threshold TH, 
the frame is discarded. Otherwise, metadata are extracted 
from the frame and participate in the final combination. The 
value of TH controls the sampling rate. Basically, Smart 
Sampling is a fast algorithm of frame weighting.  

To demonstrate the effectiveness of the smart sampling, 
we have compared it with even sampling, in which the 
selected frames are equally spaced. Except for the sampling 
schemes, the other parts of the two tests are the same 
(Sampled frames are all assigned a weight of 1.0 and 
confidence scores are used). The results are shown in Fig. 7. 
The X-axis is the sampling rate. For example, a sampling 
rate of 5 means one of five frames will be selected. The Y-
axis reflects the utterance-level error rates. Obviously, under 
the same sampling rate, smart sampling achieves lower error 
rate than even sampling. More interestingly, we can also see 
a “sweet spot” of smart sampling: When the sampling rate is 
between 2 and 3, the error rate is lower than when all of the 
frames are classified (sampling rate of 1). The error rate is 
actually reduced by 40% (from 4.57% to 2.8%) relatively 
while the speed is increased by 3 times.  
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Fig. 7.  Comparison of smart sampling and even sampling 

Table I summarizes different combination strategies 
discussed in this paper. Although the error rate of smart 
sampling is a little higher than that achieved through power-
based weighting, the low computation cost makes it an ideal 
candidate for real-time applications. 

VI. CONCLUSIONS 

In this paper, we have demonstrated that combination 
using confidence scores can significantly reduce the error 
rate. We have also analyzed the asymptotic characteristic. 
We have correlated the frame-level decision reliability with 
other factors such as phonemes and power densities. Based 
on the correlation, weighting methods are introduced to 
further improve the combination. In addition, we have 
proposed a Smart Sampling technique, which is able to boost 
the recognition rate while reducing the computation cost. 
One future direction is to extend the work to other tasks such 
as accent/dialect classification, language identification, and 
speaker identity detection.  
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TABLE I   
COMPARISON OF DIFFERENT COMBINATION STRATEGIES 

 

No 1 2 3 4 5 6 

Confidence No Yes Yes Yes Yes Yes 
Weights Equal Equal Optimized on 

Phonemes 
Optimized on 

Power Densities 
Equal for Sampled 

Frames 
Equal for Sampled 

Frames 
Sampling No No No No 1:3 (Even) 1:3 (Smart Sampling) 

Utterance-level 
Error Rate (%) 

6.57 4.57 2.8 2.2 4.7 2.8 


