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Abstract

We consider an array of lb Cooper Pair Boxes, each of which is
coupled to a superconducting reservoir by a capacitive tunnel junc-
tion. We discuss two effects that probe not just the quantum nature of
the islands, but also of the superconducting reservoir coupled to them.
These are analogues to the well-known quantum optical effects ‘super-
radiance,’ and ‘revival.’ When revival is extended to multiple systems,
we find that ‘entanglement revival’ can also be observed. In order to
study the above effects, we utilise a highly simplified model for these
systems in which all the single-electron energy eigenvalues are set to
be the same (the strong coupling limit), as are the charging energies
of the Cooper Pair Boxes, allowing the whole system to be represent-
ed by two large coupled quantum spins. Although this simplification
is drastic, the model retains the main features necessary to capture
the phenomena of interest. Given the progress in superconducting box
experiments over recent years, it is possible that experiments to inves-
tigate both of these interesting quantum coherent phenomena could be
performed in the forseeable future.

1 Introduction

Recently there has been much interest, both theoretical [1, 2] and experi-
mental [3, 4, 5, 6], in superconducting islands coupled to superconducting
reservoirs through Josephson tunnel barriers. Such structures can be man-
ufactured with energy levels such that the islands approximate two - level
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systems, and may have applications as qubits [7]. In particular, work has
focussed on demonstrating the quantum mechanical nature of these systems
relevant to quantum computing.

In this paper, we discuss two effects that probe not just the quantum
nature of the islands, but also of the superconducting reservoir coupled to
them. The first is an analogue to superradiance in quantum optics [8], which
we call the super-Josephson effect, and the second is the phenomenon known
in quantum optics as revival. In the former, the current in or out of an array
of Cooper Pair Boxes scales as l2b , the square of the number of boxes, rather
than linearly. In the latter, the coherent superposition properties of an initial
quantum state decay through coupling to the quantum degrees of freedom
of the reservoir, and then ‘revive’ at a later time.

When revival is extended to two or more two-level systems we discovered
a new phenomenon: ‘entanglement revival.’

In order to study the above effects, we utilise a highly simplified model
for these systems that allows the easy investigation of these phenomena.
Although the principle simplification, which is to set all the single-electron
energy eigenvalues to be the same, is drastic, the model retains the main
physical features necessary to capture the phenomena of interest. For ex-
ample, the essential feature needed to observe revival is the discreteness of
the energy levels of the small superconductors and the reservoir.

2 The Model

2.1 Motivation

The Josephson effect is an intrinsically quantum mechanical phenomenon,
as is superconductivity itself. However, in the BCS approximation for a
bulk superconductor the phase of the order parameter is usually treated as
a classical variable [9], in the sense that fluctuations about it are considered
negligible. When the size of the superconductor is reduced, these fluctua-
tions become relevant, and the mean-field treatment is no longer valid. This
deviation from mean field has been observed in experiments on supercon-
ducting nanoparticles by Ralph, Black and Tinkham (RBT) [10], which are
discussed in [11].

In what follows we shall be concerned with the same fluctuations about
the mean field theory, albeit for slightly larger superconducting samples,
∼ 100nm, than in the RBT experiment [10].

In general, to go beyond the BCS approximation is quite difficult even
for a single bulk superconductor. Although an exact solution exists, [12, 13],
this returns a set of coupled equations which rapidly becomes intractable for
a superconductor with more than a few levels.

In our case the difficulty will be compounded by the fact that we wish
to treat an array of small superconductors individually coupled to a large
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Figure 1: An array of lb superconducting islands, or Cooper Pair Boxes,
that are individually coupled to a superconducting reservoir, r, through
capacitive Josephson tunnel junctions (with no inter-box coupling).

one. Thus, to render the problem tractable we shall introduce a highly
simplified description of each component of our system. Nevertheless, we
shall endeavour to retain sufficient realism to capture some generic features
of a number of surprising novel phenomena. The model will be introduced
in subsections 2.2 and 2.3. The two new phenomena whose description is
the principle aim of this paper, namely the superconducting analogues of the
quantum optical phenomena of ‘superradiance’ and ‘revival,’ will be treated
in sections 3 and 4 respectively.

2.2 The Cooper Pair Boxes

The system we shall study is depicted, schematically, in Figure 1. It consists
of an uncoupled array of small superconductors, which we shall refer to as
Cooper Pair Boxes, each of which is coupled through tunnel junctions to the
same bulk superconductor which we shall call the reservoir. The number of
Cooper Pair Boxes will be denoted by lb.

The hamiltonian of the system is:

H = Hb + Hr + HT (1)

where the individual hamiltonians refer to the array of Cooper Pair boxes,
the reservoir, and the tunneling between the two respectively. The first term
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is the hamiltonian of the boxes:

Hb =
lb∑

i=0

Ech
i σz

i (2)

Each Cooper Pair Box is described as a two-level system where the two
states are zero or one excess Cooper pair on the box, with Ech

i the charging
energy of each, as in the experiments of Nakamura et. al. [3, 5].

The second term Hr is the well known BCS hamiltonian [9] (see section
2.3), and the final term:

HT = −
∑

k,i

Ti,k (σ+
i c−k↓ck↑ + σ−i c†k↑c

†
−k↓) (3)

describes the tunnelling of Cooper pairs from each of the boxes to the reser-
voir (this form can be derived from single-electron tunnelling [14] with Ti,k

proportional to the square of the single electron tunnelling energy, t2i,k).
The charging energy of each box can effectively be tuned by applying a gate
voltage to that box, and a tuneable tunnelling energy can be achieved by
adjusting the flux through a system of two tunnel junctions in parallel [2].
If the charging energies Ech

i and tunnelling elements Ti,k of each box are all
adjusted to be the same, then the charging energy for all the boxes acts like
the z-component of a quantum spin with J = lb/2. Similarly the sum over
all the raising (lowering) operators acts like a large-spin raising (lowering)
operator.

lb∑

i=0

σZ
i → SZ

b

lb∑

i=0

σ±i → S±b (4)

If we consider transitions caused by only these operators, then the sym-
metrised number states form a complete set. The eigenstates of SZ

b represent
states where a given number of the boxes are occupied, with m = Nb− lb/2.
We now have a description of the Cooper-pair boxes in terms of a single
quantum spin:

Hb = Ech
b SZ

b

HT =
∑

k

−Tk(S+
b c−k↓ck↑ + S−b c†k↑c

†
−k↓) (5)
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2.3 The Cooper Pair Reservoir

The quantum properties of the reservoir will also be of interest and hence
we must simplify its description as well. To do this we start with the BCS
Hamiltonian written in terms of the Nambu spins [15], (σZ

k = 1
2(c†k↑ck↑ +

c†−k↓c−k↓ − 1), σ+
k = c†k↑c

†
−k↓):

Hr =
∑

k

2(εk − µ)σZ
k −

kF +ωc∑

k=kF−ωc

(σ+
k ∆ + σ−k ∆∗)

(6)

where k is a generic label (not the wavevector) of the single-electron eigen-
states and the pairing field, for an electron-electron coupling constant V , is
given by ∆k = V 〈σ−k 〉 = V 〈c−k↓ck↑〉. As usual, this has to be determined
self-consistently.

We shall now make the approximation that the pairing fields, ∆k, ∆∗
k,

are independent of k, and that the term 2(εk − µ) is also the same for all
k. Remembering that the interaction only occurs in a small region around
the Fermi energy, εF ± ωc, the approximation that all the εk are equal is
equivalent to taking the limit ωc ¿ V (see appendix A). Clearly this is a
drastic, strong coupling, approximation [16, 17], but we will demonstrate
that it nevertheless retains some important features of the superconducting
state. The gain in making this approximation is that now the Nambu spins
can be treated as a single spin. Further discussion of the justification of
this model and its relation to the Richardson solution can be found in [17].
Note however, that Yuzbashyan et. al. [17] are concerned only with isolated
islands with a constant number of Cooper pairs and therefore discard the
diagonal term SZ

r (KZ).
This representation of a sum over Nambu spins as a single spin was used

by Lee and Scully in 1971 [18], but that paper considered the case when
the Josephson junction was large and the commutator [S+

r,n̂, S−r,n̂] = 2SZ
r,n̂

negligible. The size of the spin is given by Sr = lr/2 where lr is the number
of levels within the cutoff region.

In the above limit the hamiltonian (6) becomes:

Hr = 2ξFrS
Z
r − S+

r ∆− S−r ∆∗

(7)

Where (εFr − µ) is written as ξFr for convenience.
Before treating the coupled system of boxes plus reservoir, we investi-

gate the behaviour of the reservoir alone, in order to demonstrate that our
description still makes sense even after the above approximation.
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The hamiltonian of the reservoir (7) is composed of the SZ
r , S+

r and S−r
operators, and so can be written as the component of spin along some other
direction n̂.

Thus we attempt to diagonalise Hr by defining SZ
r,n̂ by γrS

Z
r,n̂ = Hr.

Then the commutation relations [SZ
r,n̂, S+

r,n̂] = S+
r,n̂ and [S+

r,n̂, S−r,n̂] = 2SZ
r,n̂

lead us to the raising and lowering operators in this direction:

γrS
Z
r,n̂ = 2ξFrS

Z
r − S+

r ∆− S−r ∆∗

S+
r,n̂ = dSZ

r,n̂ + eS+
r,n̂ + fS−r,n̂

|d| = |∆|/EF

e =
−d∆

2ξFr − 2EF

f =
−d∆

2ξFr + 2EF

(8)

Where γr = EF =
√

ξ2
Fr + |∆|2, i.e. the quasiparticle energy evaluated at

the Fermi energy.
The ground state of the hamiltonian is, obviously, the m = −lr/2 eigen-

state in the new basis. In the old basis, this is the spin coherent state [19]:

|α〉 =
1√

1 + |α|2
lr∑

Nr=0

(α∗S+
r )N

r

Nr!
|0〉 (9)

which can be rewritten as:

|α〉 =
1√

1 + |α|2
∏

k

(1 + α∗σ+
k )|0〉 (10)

As can be readily ascertained using SZ
r,n̂|α〉 = −lr/2 |α〉, choosing α =

ξFr−EF
∆ ensures that this is the ground state.
In the second expression for |α〉 we have explicitly rewritten the coherent

state as a product over k. In this form it is clear that this state is identical
to the BCS state in the limit ωc ¿ V , when uk = vk = 1

√
2. The pairing

parameter ∆ and the chemical potential µ are determined self consistently.
In the conventional BCS theory [9]:

∆
V

=
1
2

∑

k

∆
Ek

N̄r =
1
2

∑

k

(
1− ξk

Ek

)
(11)
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For our simplified spin model, the fact that the εk are equal allows us to
evaluate the sums in (11), giving two coupled algebraic relations instead of
integral equations. Thus we can evaluate ∆ and µ exactly. We find:

|∆|2 = V 2N̄r(lr − N̄r) (12)
εFr − µ = V (lr/2− N̄r) (13)

In order to check the validity of these relations, we solve the gap equa-
tions for a general BCS case, and then take the limit where all the levels
have the same energy. To take this limit, we consider a top-hat density of
states centred around εF with width w and height l/w. This allows the limit
where the bandwidth w → 0 to be taken whilst keeping a constant number
of levels, l. As shown in appendix A, at zero temperature the integrals can
be calculated exactly. We find:

∆2 = (ξFr)2
(

(x + 1)2

(x− 1)2
− 1

)
+

(w

2

)2
(

(x− 1)2

(x + 1)2
− 1

)
(14)

N̄r =
lr
w

(
w

2
−

√
(ξFr +

w

2
)2 + ∆2 +

√
(ξFr − w

2
)2 + ∆2

)
(15)

With x = e
2w
V lr and n = N̄r

lr
. These two equations can be solved to give

∆ and ξFr. When the limit V/w →∞ (the strong coupling limit) is taken,
we find that we obtain the same results as given by the spin model, (12, 13).

Evidently, the fact that this spin representation reproduces the BCS
results, albeit only in the strong coupling limit, lends credibility to our
simplified model and allows us to consider the situation we wish to describe,
namely that of a series of Cooper Pair Boxes coupled individually to a single
superconducting reservoir. The problem is then that of two finite quantum
spins, one for the array of Cooper Pair Boxes (labelled b) and one for the
reservoir (labelled r). In short, we shall consider the hamiltonian:

Ĥ = Ech
b SZ

b

+ 2ξFrS
Z
r − S+

r ∆− S−r ∆∗

− T (S+
b S−r + S+

r S−b ) (16)

3 The Super - Josephson Effect

The first effect we consider is an analogy of superradiance (see e.g. [8]). In
quantum optics, this refers to the fact that lb atoms, placed in a particular
state and coupled to a mode of the electromagnetic field will emit radiation
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proportional to the square of the number of atoms. The initial state is one
of the form:

|ψ(0)〉 = {|000..111..〉+ |001..110..〉+ · · ·+ |111..000〉} (17)

where 0 and 1 indicate that an atom (identified by the place of these numbers
in the array which specifies the state |n1, n2, n3 . . . 〉) is in its ground or
excited state. Clearly, this state is an eigenstate of the operator for the
total number of excited states (SZ

b ), but not of the individual σZ
i operators.

Note that it is the symmetrised state with a total number of excited states
Nb. Evidently, these are exactly the states described by the model in section
2.2. It is also interesting from the quantum information theoretic point of
view that these are highly entangled states. These states could, in principle,
be generated by tuneable inter-box coupling [2].

In the superconducting analogue we consider three cases. The first is
when the system is in an eigenstate of both the number operator of the large
superconductor, and the operator measuring the total number of Cooper
pairs on the boxes. This is an artificial case if we think of the boxes coupled
to a bulk superconductor, but instead would represent many boxes coupled
to an island with only a few levels. It is, however, the closest to superra-
diance, where the atoms are in a symmetrised number eigenstate, and the
field contains a given number of photons. The second case is when the boxes
are in a number eigenstate and the reservoir in a coherent state, and finally
we consider when the boxes are in a coherent state as well as the reservoir.

3.1 Superradiant Tunnelling Between Number Eigenstates

The simplest case is when both the boxes and the reservoir are in eigenstates
of the number operators SZ

b , SZ
r respectively. The unperturbed hamiltonian

is:

H = Ech
b SZ

b + 2ξFrS
Z
r (18)

The eigenstates of this hamiltonian are product states of the number
states |Nr〉 and |Nb〉. These states are equivalent to the usual quantum spin
eigenstates |J,m〉 with J = l/2 and m = N − l/2.

This hamiltonian is perturbed by the tunnelling hamiltonian:

HT = −T (S+
b S−r + S−b S+

r ) (19)

and the current, i.e. the rate of change of charge on the island, is given by
the commutator of the number operator with the hamiltonian:

dN̂b

dt
=

dŜZ
b

dt
=

1
i~

[ŜZ
b ,H]

Î = T (S+
b S−r − S−b S+

r ) (20)
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The expectation value of the current operator with the ground state is
equal to zero, so we go to time dependent perturbation theory:

|ψ(t)〉 = U(t)|ψ(0)〉

|ψ(t)〉 =


1 +

1
i~

t∫

0

e−iHt′/~HT e−iHt′/~dt′ + · · ·

 |ψ(0)〉 (21)

The expectation value of any operator at a given time is, to first order
in HT :

〈ψ(t)|Î|ψ(t)〉 = 〈ψ(0)|Î|ψ(0)〉

+ 2<{〈ψ(0)|Î 1
i~

t∫

0

eiHt′/~HT e−iHt′/~dt′|ψ(0)〉} (22)

The tunnelling hamiltonian and current contain only raising and lowering
operators, and so their action on a number eigenstate produces a simple sum
over two other number eigenstates, with a time dependent factor from the
exponentials.

The current is:

〈ψ(t)|Î|ψ(t)〉 =
−2T 2

(i~)2

t∫

0

cos
(
(Ech

b − 2ξFr) t′/~
)
dt′

× (〈Nb|S+
b S−b |Nb〉〈Nr|S−r S+

r |Nr〉 − 〈Nb|S−b S+
b |Nb〉〈Nr|S+

r S−r |Nr〉
)

(23)

The time dependence is determined by the energy difference between
adjacent number eigenstates, i.e. by Ech

b and 2ξFr. If we evaluate the
expectation values, we find terms like Nb(lb−Nb)(lr−2Nr) which is quadratic
in lb and linear in lr (and vice versa, i.e. terms quadratic in lr and linear in
lb). In particular, to have the largest effect, we set Nb = lb/2 i.e. half the
boxes are occupied.

〈ψ(t)|Î|ψ(t)〉 =
−2T 2

(i~)2
sin

(
(Ech

b − 2ξFrt/~
)

(
(Ech

b − 2ξFr/~
)

(
lb
2

(
lb
2

+ 1)(lr − 2Nr)
)

(24)

We see that the current is proportional to l2b , the square of the number of
Cooper Pair boxes. This is in contrast to the situation where the initial state
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of the boxes is a product state of lb independent wavefunctions, in which
any current can be at most linear in the number of boxes. The current is
also proportional to (2Nr − lr), i.e. how far away the large superconductor
is from Nr = lr

2 , or m = 0 in the spin language.

3.2 Superradiant Tunnelling Between a Number Eigenstate
and a Coherent State

The second case we consider is when the Cooper Pair boxes are in an eigen-
state of the number operator, and the large superconductor is in a coherent,
that is to say BCS-like, state. We ensure the coherent state of the large
superconductor by introducing a pairing parameter into the unperturbed
hamiltonian:

H = Ech
b SZ

b + 2ξFrS
Z
r −∆rS

+
r −∆∗

rS
−
r (25)

The ground state of the large superconductor is a coherent state and
∆r = 〈S−r 〉 can now be found self-consistently.

We make a basis transform and write the hamiltonian in terms of this
new basis, n̂:

H = Ech
b SZ

b + 2EFrS
Z
r,n̂ (26)

This basis transform makes the unperturbed hamiltonian simpler, but at
the expense of making the perturbation more complicated in the new basis:

HT = −T (S+
b S−r + S−b S+

r )

= −TS+
b (

2∆r

EFr
SZ

r,n̂ + f∗r S+
r,n̂ + erS

−
r,n̂)

−TS−b (
2∆∗

r

EFr
SZ

r,n̂ + e∗rS
+
r,n̂ + frS

−
r,n̂) (27)

Again, the tunnelling current is zero to first order in T, as the boxes are
in a number eigenstate. With this basis transform, we can easily calculate
the second-order current. Following the same procedure as before, we get:
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〈ψ(t)|Î|ψ(t)〉 =
−2T 2

(i~)2
|∆r|2
E2

Fr

〈0r,n̂|SZ
r,n̂SZ

r,n̂|0r,n̂〉
t∫

0

dt′ cosEch
b t′/~

×(〈Nb|S+
b S−b |Nb〉 − 〈Nb|S−b S+

b |Nb〉)

− 2T 2

(i~)2
〈0r,n̂|S−r,n̂S+

r,n̂|0r,n̂〉 ×

{|e|2
t∫

0

dt′ cos (2EFr − Ech
b ) t′/~〈Nb|S+

b S−b |Nb〉

−|f |2
t∫

0

dt′ cos (2EFr + Ech
b ) t′/~〈Nb|S−b S+

b |Nb〉}(28)

The time dependence is again given by the level spacing, but for the large
superconductor this is now given by EFr =

√
ξ2
Fr − |∆|2 rather than (εFr −

µ).
If we assume the levels of the large superconductor are much more finely

spaced than those of the boxes, i.e. EFr ¿ Ech
b , then:

〈ψ(t)|Î|ψ(t)〉 (29)

=
−2T 2

(i~)2
sinEch

b t/~
Ech

b /~
|∆r|2
E2

Fr

(
lr
2

)2

(lb − 2Nb)

− 2T 2

(i~)2
sinEch

b t/~
Ech

b /~
lr

{ ξFr

EFr
Nb(lb −Nb) + |e|2Nb − |f |2(lb −Nb)

}

Remembering that lrξFr/EFr = lr/2 − N̄r, and setting Nb = lb/2, we
find this is proportional to:

(lr − 2N̄r)
lb
2

(
lb
2

+ 1) (30)

This is very similar to the case described in (24) where both the boxes
and the reservoir are in number eigenstates. In both cases, the effect is
largest when the boxes are at half-filling, and the large superconductor is
far from half-filling. The difference is that here it is the average number
that is relevant, not the number eigenvalue.

3.3 Superradiant Tunnelling Between Coherent States

The third case is where both the boxes and the large superconductors are
in the coherent state. Pairing parameters are introduced for each:
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H = 2ξFbS
Z
b −∆bS

+
b −∆∗

bS
−
b

+ 2ξFrS
Z
r −∆rS

+
r −∆∗

rS
−
r (31)

The ground state of this hamiltonian is for both superconductors to be
in a coherent state, which again is determined self consistently. As before
we make a change of basis, this time for both the boxes and the large su-
perconductor, which makes the unperturbed hamiltonian:

H = 2EFbS
Z
b,n̂ + 2EFrS

Z
r,n̂ (32)

The tunnelling hamiltonian becomes:

HT = −T (S+
b S−r + S−b S+

r ) (33)

= −T (
∆∗

b

EFb
SZ

b,n̂ + e∗bS
+
b,n̂ + fbS

−
b,n̂)(

∆r

EFr
SZ

r,n̂ + f∗r S+
r,n̂ + erS

−
r,n̂)

−T (
∆b

EFb
SZ

b,n̂ + f∗b S+
b,n̂ + ebS

−
b,n̂)(

∆∗
r

EFr
SZ

r,n̂ + e∗rS
+
r,n̂ + frS

−
r,n̂)

If we insert this into (22) we find that we do have a non-zero term linear
in T , i.e. the expectation value of Î with |ψ(0)〉. To second order in T we
have terms proportional to lr and quadratic in lb and vice versa, and terms
linear in both, i.e.

〈ψ(t)|Î|ψ(t)〉 = 〈ψ(0)|Î|ψ(0)〉+ 〈ψ(t)|Î|ψ(t)〉l2b lr

+〈ψ(t)|Î|ψ(t)〉lbl2r + 〈ψ(t)|Î|ψ(t)〉lblr (34)

The first term is just the expectation value of Î with the ground state:

〈ψ(0)|Î|ψ(0)〉 =
T

i~
|∆b|
2EFb

|∆r|
2EFr

lb lr 2 sin (φb − φr)

=
T

i~
|∆b|
Vb

|∆r|
Vr

2 sin (φb − φr) (35)

where φb, φr are the phases of ∆b, ∆r. This is the usual Josephson effect.
The term quadratic in lb is:

〈ψ(t)|Î|ψ(t)〉l2b lr (36)

=
−T 2

(i~)2
l2b lr

sin 2EFrt/~
2EFr/~

|∆b|2
2E2

Fb

ξFr

EFr

−T 2

(i~)2
l2b lr

cos 2EFrt/~
2EFr/~

|∆b|2
4E2

Fb

|∆r|2
4E2

Fr

2 sin 2(φb − φr) (37)
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The first term is proportional to |∆b|2/E2
Fb and ξFr/EFr, and so is largest

when the boxes are half occupied and the large superconductor is far from
half occupied. This term is also phase-independent and is like the effects
seen in sections 3.1 and 3.2

The second term is largest when both are half occupied, and also depends
on the phase difference of the two pairing parameters with a frequency twice
that of the usual Josephson effect. As such, it can be considered a higher
harmonic in the Josephson current. The term quadratic in lr is identical
apart from an anti-symmetric exchange of the labels, b, r.

Finally, the term linear in both contains a phase - independent term that
is largest when both the boxes and the reservoir are far from half-filling, and
a term that is phase dependent with twice the Josephson frequency that is
largest at half filling.

〈ψ(t)|Î|ψ(t)〉lblr (38)

=
−T 2

(i~)2
lblr

sin 2(EFb + EFr)t/~
2(EFb + EFr)/~

(
ξ2
Fb

4E2
Fb

ξFr

EFr
− ξ2

Fr

4E2
Fr

ξFb

EFb

)

+
T 2

(i~)2
lb lr

cos 2(EFb + EFr)t/~
2(EFb + EFr)/~

( |∆b|2
4E2

Fb

|∆r|2
4E2

Fr

2 sin 2(φb − φr)
)

In summary we conclude that tunnelling into or out of a Cooper pair
reservoir from a coherent ensemble of Cooper Pair Boxes can lead to a
tunnelling current proportional to the square of the number of ‘boxes.’ In-
terestingly, an observation of such scaling, in turn, could be taken as a
demonstration of coherence and entanglement of the the ‘boxes’ as such
states are necessary to produce the phenomena.

4 A ‘Superconducting Jaynes-Cummings Model’
and Revival

4.1 The Superconducting Analogue of the Jaynes-Cummings
Model

Another well-known quantum optical phenomena is that of quantum revival
(e.g. [8]), which occurs when an atom is coupled to a single mode of the
electromagnetic field. The initial state of the atom decays, but reappears
at a later time. This apparent decay and subsequent revival occur because
the environment of the atom is a discrete quantum field. Here we examine
a Josephson system analogue. We consider a hamiltonian with unbroken
symmetry, and the standard form for the tunnelling:
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H = Ech
b SZ

b + 2ξFrS
Z
r

HT = −T (S+
b S−r + S−b S+

r ) (39)

We can write a general state of the system in terms of the number
eigenstates:

|ψ(t)〉 =
lr,lb∑

Nr,Nb=0

aNr,Nb
(t)|Nr〉|Nb〉 (40)

For a single two level system, lb = 1, but we can also do the calculations
for a general number of symmetrised boxes. The solution of this model is
found by noting that the total number operator N̂r + N̂b commutes with the
hamiltonian, and that the state |Nr〉|Nb〉 is only coupled to the two states
|Nr + 1〉|Nb − 1〉 and |Nr − 1〉|Nb + 1〉.

With this in mind, we find that the Schrödinger equation gives us lr sets
of lb coupled differential equations:

i~
d aNr,Nb

(t)
dt

= aNr,Nb
(t)

(
Ech

b (Nb − lb
2

) + 2ξFr(Nr − lr
2

)
)

− aNr+1,Nb−1(t)T
√

Nb(lb −Nb + 1)
√

(Nr + 1)(lr −Nr)

− aNr−1,Nb+1(t)T
√

(Nb + 1)(lb −Nb)
√

Nr(lr −Nr + 1)
(41)

If the boxes were coupled to a field, rather than a finite reservoir, we
would have an infinite number of lb coupled equations.

These equations can be restated in terms of an eigenvalue problem. Each
level Nr has a set of eigenvectors for the boxes. If the boxes and the reservoir
are initially in a product state, the probability to be in a given value of Nb

(regardless of Nr) is:

PNb
=

lb∑

Nb=0

|aNr(0)|2
∣∣∣∣∣
∑

i

〈Nb|νi,Nr〉e−iEi,Nr t/~〈νi,Nr |ψNb
(0)〉

∣∣∣∣∣
2

(42)

Where |νi,Nr〉 (Ei,Nr) are the eigenvectors (values) of the Nb-level system
associated with the reservoir level |Nr〉, aNr(0) are the initial amplitudes of
|Nr〉, and |ψNb

(0)〉 is the initial state of the boxes.
This may not be exactly solvable in general, but can be solved for few-

level systems, lb. For example, if we have a single two level system and
specify the initial state to be a product state of the box state |0b〉 with some
state

∑
aNr(0)|Nr〉 of the reservoir, we have the probabilities that the box

and reservoir are in a given state:
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P1,Nr−1(t) = |aNr(0)|2 T ′Nr

2

ΩNr
2 sin2(ΩNr t/~)

P0,Nr(t) = |aNr(0)|2 (1− P1,Nr−1(t)) (43)

With T ′Nr
= T

√
Nr(lr −Nr + 1) and ΩNr =

√
(Ech

b − 2ξFr)2/4 + T ′2.
This is the same result as in quantum optics, except that the photon cre-
ation/ annihilation operators give T ′Nr

= T
√

Nr .

4.2 Quantum Revival of the Initial State

In quantum optics, the phenomenon of revival is seen when the electromag-
netic field is placed in a coherent state (i.e. |aN |2 = exp(−N̄)N̄N/N !, with
the sum over N running to infinity). We place the reservoir in the spin
coherent state, i.e.

|aNr(0)|2 = |α|2Nr
lr!

(lr −Nr)!Nr!
(44)

Where α is determined by the average number |α| =
√

N̄r/(lr − N̄r).
The probability of the box being in the state |0b〉 at a given time is:

P0(t) =
lr∑

Nr

|aNr(0)|2P0,Nr(t) (45)

For simplicity we consider the case when Ech
b = 2ξFr, i.e. ΩNr = T ′Nr

.
This is shown in Figure 2, for the values N̄r = 10, lr = 50. The initial state
dies away, to be revived at a later time.

The revival occurs when the terms in the sum are in phase. We can
make an estimate of this by requiring the terms close to N̄r to be in phase:

2π = 2T
√

(N̄r + 1)(lr − N̄r) trev − 2T
√

N̄r(lr − N̄r + 1) trev

trev =
2π

T

N̄
1/2
r (lr − N̄r)1/2

(lr − 2N̄r)
(46)

We can find an analytic form for the initial decay, and also demonstrate
the equivalence of this ‘spin revival’ to the well known quantum optics re-
vival, in the limit of large average number.

The coefficients, aNr(0) for the coherent and spin-coherent states are the
poisson and binomial distributions respectively, and both can be approxi-
mated by a gaussian distribution.
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Figure 2: Spin Coherent State Revival for Nr = 10, lr = 50 (solid line).
The faint line indicates the usual quantum optical coherent state revival
with Nr = 10, scaled along the t axis by

√
lr and the vertical dash-dot line

indicates the calculated revival time.

exp(−N̄r)N̄Nr
r /Nr! ' (2πN̄r)−1/2 exp

[−(Nr − N̄r)2/2N̄r

]

|α|2Nr
lr!

(lr −Nr)!Nr!
' (2πN̄r)−1/2 exp

[−(Nr − N̄r)2/2N̄r

]
(47)

For the coherent state we have taken the limit N̄r À 1. For the spin-
coherent case we have also assumed lr À N̄r so that |α|2 ' N̄r/lr. The
gaussian factor suppresses any terms not around the average N̄r, so we can
expand Nr ' N̄r + (Nr − N̄r).

In the limit, the spin coherent state gives:

P0(t) =
1
2

+
1

2(2πN̄)1/2

∫
dN exp

(
−(Nr − N̄r)2

2N̄r

)

× cos
[
2T (lrN̄r)1/2t

(
1 +

(Nr − N̄r)2

2N̄r

)]
(48)

This is the same as for the coherent state apart from the factor of l
1/2
r if

the frequency. Doing the integral gives:

P0(t) =
1
2

+
1
2

cos(2T (lrN̄r)1/2t) exp(−(T lrt)2

2
) (49)
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Figure 3: The large N̄r, lr limit: Solid line indicates single box revival for
Nr = 10, lr = 100, and the dashed line indicates the asymptotic form for
the decay.
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Figure 4: Two Cooper Pair Box Spin Coherent State Revival for Nr = 10,
lr = 50. The solid line represents the probability that, when the system is
initialised in the state |00〉, one of the cooper pair boxes is in the state |0〉
at time t, after tracing over the other box. The dashed line indicates the
revival of a single isolated Cooper Pair box connected to a reservoir. Note
that the revivals occur at the same time, but out of phase.

This is plotted in Figure 3.
Thus the phenomenon of quantum revival has a direct analogy in our

‘spin superconductor’ model. In both cases, the revival is due to constructive
interference between the terms in the sum over the reservoir (field) number
states. When the limit of small level spacing (lr, N̄r → ∞) is taken, the
revival time becomes infinite and the effect disappears.

4.3 Revival of Entanglement

Revival is usually considered for single two-level systems, but the formula
in (42) gives the state for a general system. In particular, the dynamics of
a pair of two-level systems can be easily calculated, either numerically, or
analytically, remembering that the singlet state is uncoupled due to radiation
trapping.

Starting in the state |00〉, we find a very similar effect to the single-island
case. When one island is traced out, the revival of the other occurs at the
same time as a single island, but with opposite phase (Figure 4).

If we do not trace over one island, but consider the revival of the state
|00〉, we find oscillations in the probability of returning to this state earlier
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Figure 5: Two Cooper Pair Box Spin Coherent State Revival for Nr = 10,
lr = 50. The dashed line represents the probability that the Cooper Pair
boxes have returned to their initial state (|01〉 + |10〉)/√2 at time t. The
dashed line indicates the negativity of the boxes as a function of time.

than in the case of a single island.
To investigate the revival of entanglement, we start the system in the

state (|01〉+ |10〉)/√2. As before we note that the oscillations in the prob-
ability of being in the state (|01〉 + |10〉)/√2 decay and then revive. It is
interesting to note, however, that in this case the initial state is an entangled
one. One measure of entanglement is the negativity [20], i.e. the sum of the
negative eigenvalues of the partially transposed density matrix. If we plot
the negativity over time, we see that it dies away at first, as do the oscilla-
tions. As the oscillations revive, we also see an revival in the negativity of
the two islands (Figure 5).

This revival of entanglement, an initially counterintuitive phenomenon,
is of course due to the fact that we have considered the entanglement be-
tween the two islands only. When the entanglement ‘disappears,’ it is only
the entanglement between the islands that has disappeared. If we were to
consider the whole system, including the reservoir, the evolution would be
unitary and the entanglement would remain constant.

It is worth noting that this ‘entanglement revival’ is not a unique feature
of our spin model, and would be expected whenever two-level systems are
coupled to a field with (a possibly infinite number of) discrete energy levels.
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5 Conclusions

We have presented a simple model of a superconductor that allows an easy
investigation of various phenomena associated with fluctuations around the
BCS, mean field, behaviour. By taking the limit where all the single-electron
energy levels are equal, we can represent the superconducting hamiltonian
in terms of the operators of a large, finite quantum spin. Comparison of
results using this model in the mean field with the limit of BCS results gives
us confidence that whilst the model can be regarded as a caricature of a
realistic description it retains some generic features of quantum fluctuations.
Furthermore, we have demonstrated that the simplicity of the model allows
the easy investigation of several surprising physical phenomena.

As the first of these we considered an analogue of the quantum optical
effect of superradiance, where the emitted intensity of a number of atom-
s coupled to an electromagnetic field is proportional to the square of the
number of atoms.

In the analogous ‘Super-Josephson effect,’ the current from a set of Coop-
er Pair boxes connected to a reservoir is proportional to the square of the
number of boxes lb. This effect is due to the entangled nature of the initial
state. Any product state (or mixture of product states) would produce a
current at most linear in lb. The effect also relies on the reservoir being away
from the Nr = lr/2 or m = 0 state, i.e. away from half-filling.

The analogy has been extended to the case where the reservoir is in a
coherent state. As before we have no current to first order in T , but have
a current proportional to l2b to second order. Also as in the previous case,
the effect requires the reservoir to be far from half-filling, but here it is the
average number N̄r that must be far from lr/2.

Finally we considered the effect when both the reservoir and the boxes
are initially in a coherent state. In addition to the usual Josephson current,
we observe effect described above and also find a current that is dependent
on the phase difference between the superconductors, with twice the phase
dependence of the usual Josephson effect.

Interestingly, the above discussion suggests that an observation of a
Josephson current which scales quadratically with the number of small su-
perconductors (qubits) can be taken as evidence for their entanglement. As
experiments are now at the level of entangling two charge qubits [5], and
these effects can be detected by making only current measurements, it is
possible these phenomena could be observed in the not too distant future.

We have also studied an analogue of quantum revival, in which the oscil-
lations (of the type observed in [3, 4, 5, 6]) in the probability of occupation
of an island decay at first, only to revive at a later time. This effect can
also be seen when we have two Cooper Pair boxes coupled to a reservoir. If
we place these boxes in an entangled state and calculated the entanglement
over time, we see that the entanglement between the boxes dies away at first,

20



only to revive later. This remarkable effect demonstrates and measures the
quantum fluctuations of the reservoir superconductor about the BCS mean
field theory.

Both these effects reveal not only the quantum nature of the Cooper
Pair boxes, but also of the superconducting reservoir they are coupled to.
In particular, a discrete energy spectrum is needed for these effects to be
seen. As such it is possible that these effects could also be used as a probe
of the nature of the energy levels of the reservoir.
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A Appendix: Limit of BCS Self Consistency E-
quations

As confirmation of the validity of our spin model, we wish to compare it
with the standard BCS theory. In particular, we wish to check that solving
the gap equations from the spin model gives the same result (12, 13) as if we
solve the usual BCS gap equations (11) first, and then take the limit. We
wish to take the limit where the single-electron energy levels, εk are equal.
To do this we consider a density of states which is a top-hat function centred
around εF with width ω and height lr/ω. Taking the limit ω → 0 ensures
that the interaction occurs in a narrow region around εF whilst ensuring
the integral is over a constant number of levels, lr. We have two integral
equations that must be solved self-consistently. The first is an equation for
the pairing parameter, ∆:

∆
V

=
1
2

εF +ω∫

εF−ω

dε
∆

((ε− µ)2 + |∆|2)) 1
2

(50)

and the second is an equation for the average number of Cooper Pairs, N̄ :

N̄ =
1
2

εF +ω∫

εF−ω

dε

(
1− ε− µ

((ε− µ)2 + |∆|2)) 1
2

)
(51)

As we are at zero temperature, both these integrals can be done exactly:

1
V

=
l

2ω
ln

(
(ξF + ω/2) +

√
(ξF + ω/2)2 + |∆|2

(ξF − ω/2) +
√

(ξF − ω/2)2 + |∆|2

)
(52)

N̄ =
l

ω

(ω

2
−

√
(ξF + ω/2)2 + |∆|2 +

√
(ξF − ω/2)2 + |∆|2

)
(53)
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Again, ξF is shorthand for εF − µ. These can be rearranged to give two
equations for |∆|2 (54, 55), or two equations for ξ2

F (57, 58). The equations
for |∆|2 are:

|∆|2 = (ξF )2
(

(x + 1)2

(x− 1)2
− 1

)
+

(w

2

)2
(

(x− 1)2

(x + 1)2
− 1

)
(54)

|∆|2 =
N̄(l − N̄)

l2(l − 2N̄)2
(
4ξF

2l2 − ω2(l − 2N̄)2
)

(55)

Equating the two and rearranging gives us an expression for ξF
2:

ξF
2 =

(ω

2

)2
(

(x + 1)2

(x− 1)2
− 1 + 4(1− 2n)2

)/(
4n(1− n)
(1− 2n)2

− (x− 1)2

(x + 1)2
+ 1

)

(56)
where x = e

2w
V l and n = N̄

l . If we rearrange eqns. (52, 53) for ξF we get:

ξF
2 =

(ω

2

)2 (x + 1)2

(x− 1)2
− |∆|2 (x + 1)2

4x
(57)

ξF
2 =

(ω

2

)2
(1− 2n)2 + |∆|2 (1− 2n)2

4n(1− n)
(58)

Which yield:

|∆|2 =
(ω

2

)2
(

(x + 1)2

(x− 1)2
− (1− 2n)2

)/ (
(1− 2n)2

4n(1− n)
+

(x + 1)2

4x

)
(59)

From eqns. (56, 59), it is clear that the correct limit to take is ω/V → 0.
Taking this limit of eqns. (56, 59), we get:

ξF
2 =

V 2l2

4
(1− 2n)2 (60)

|∆|2 = V 2l2n(1− n) (61)

That is, we have regained the forms for ∆ and ξ given by the spin model
(12, 13).
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