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We examine three possible implementations of non-deterministic linear optical cnot gates with
a view to an in-principle demonstration in the near future. To this end we consider demonstrating
the gates using currently available sources such as spontaneous parametric down conversion and
coherent states, and current detectors only able to distinguish between zero or many photons. The
demonstration is possible in the co-incidence basis and the errors introduced by the non-optimal
input states and detectors are analysed.
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INTRODUCTION

Optics is a natural candidate for implementing a va-
riety of quantum information protocols. Photons make
beguiling qubits: at optical frequencies the qubits are
largely decoupled from the environment and so experi-
ence little decoherence, and single qubit gates are easily
realised via passive optical elements. Some protocols,
notably quantum computation, also require two-qubit
gates. Until recently this was regarded as optically in-
feasible, since the required nonlinear interaction is much
greater than that available with extant materials. How-
ever, it is now widely recognised that the necessary non-
linearity can be realised non-deterministically via mea-
surement, and that deterministic gates can be achieved
by combining such non-deterministic gates and telepor-
tation [1].

There are a number of proposals for implementing a
non-deterministic cnot gate with linear optics and pho-
todetectors [1–6]. The proposals require deterministic,
or heralded, single photon sources, and/or selective de-
tectors, that can distinguish with very high efficiency
between zero, one and multiple photons. Current com-
mercial optical sources and detectors fall well short of
these capabilities. Although there are a number of active
research programs aimed at producing both efficient se-
lective detectors [7, 8], and deterministic photon sources
[9–11], nonselective avalanche photodiodes, spontaneous
parametric downconversion (SPDC) and coherent states
remain the best accessible laboratory options. While we
could side-step the single photon source problem by using
an SPDC source conditioned on the detection of a photon
in one arm if we had selective detectors, demonstrating a
four-photon cnot gate without quantum memory would
be frustratingly slow.

In this paper we examine three proposals which allow
a cnot to be implemented non-destructively on the con-
trol and target modes, to ascertain under what conditions
it is possible to demonstrate and characterise the gates
operation using SPDC sources, coherent states and non-

selective detectors (detectors only able to resolve zero and
multiple photons). The aim is to identify a scheme that
allows a scalable cnot implementation to be initially
examined with current sources and detectors, and into
which we can easily incorporate single photon sources
and selective detectors as they become available.
Typically the gates involve four photons with the qubit

states are encoded in the polarisation state of the con-
trol and target modes c and t, and the cnot operation
is implemented with the aid of some ancillary modes a,
b etc. We will consider starting with the control and tar-
get modes each in a general superposition (we could also
consider initially entangled states though these may be
more difficult experimentally)

|ψin〉ct = (Ahĉ
†
h +Avĉ

†
v)(Bht̂

†

h +Bv t̂
†

v)|0〉 (1)

with |Ah|2 + |Av|2 = |Bh|2 + |Bv|2 = 1, and where ĉ
†
h,v

and t̂
†

h,v are bosonic creation operators for mode ch,v and
th,v etc. In the interest of brevity we will use the nota-
tion above where we write the state in terms of creation
operators acting on the vacuum state.
The modes are first entangled with a linear optics net-

work Ucnot comprised of beamsplitters , phase shifters,
waveplates, and polarising beam splitters. Finally the
gate is conditioned on detecting the ancillary modes in
some appropriate state, which leaves the state of the con-
trol and target modes as if a cnot had been applied.
The key simplification for our purposes is to detect

in the ‘coincidence basis’ — where we detect the out-
put of the ancillary modes and also of the target and
control modes and postselect out those events that do
not simultaneously register a photon in all four modes.
The advantage of this configuration is that now we can
use non-selective detectors, since if we get a “click” on
all four detectors we’ve accounted for all the photons
in the system. This is a much less stringent require-
ment on the detectors and in particular can be fulfilled
by existing avalanche photodiodes. We model the non-
selective detectors with a positive-operator-valued mea-
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sure (POVM), with the POVM elements associated with
detecting no photons or photons (one or more) simply
being Π0 = |0〉〈0| and Πm =

∑∞
n=1 |n〉〈n| respectively.

The output state of a type-I SPDC can be described
as

|λ〉 = Mλ(|00〉+ λ|11〉+ λ2|22〉+ · · · ) (2)

= Mλ

∞
∑

n = 0
(even)

(λâ†b̂
†
)

n
2

n
2 !

|0〉 (3)

whereMλ = (1−λ2)−1 and the sum is over even n where
n is the number of photons in each term.
Now suppose that our input state to the optical circuit

is some initial pure state |ψin〉, and that after passing
through the linear optical elements we are left in the state
|ψout〉 = Ucnot|ψin〉. The probability that we get a count
simultaneously in modes c, t, a and b with non-selective
detectors is

P = 〈ψout|Π(c)
m ⊗Π(t)

m ⊗Π(a)
m ⊗Π(b)

m |ψout〉 (4)

For the ideal case where we had single photon inputs to
the gate, we will label this probability as P1. We can
now introduce the “single photon visibility” as a figure
of merit for how close the gate operates to the ideal:

V = 1
2

(

s− e
s+ e

+ 1

)

(5)

where s is the product of the probability of obtaining the
single photon terms from the source, with P1 the proba-
bility of the gate functioning. The “error” e = max(s−P )
where P is the actual probability of obtaining a count on
the detectors. The maximisation is over all qubit input
states to the gate. Hence if the error totally dominates
the visibility is close to zero, if the noise is small the
visibility is close to one. As a guide a visibility of 0.8
corresponds to an error a quarter of the size of the single
photon “signal” s.

SIMPLIFIED KLM CNOT

In the originally proposed non-deterministic cnot gate
[1] the nonlinear sign shift elements were interferometric:
these elements can be replaced by sequential beamsplit-
ters to make a simplified cnot gate [2], one example of
which is

Û sklm = B̂thtv (
π

4
)B̂cvth(

π

4
)B̂bth(θ2)B̂acv

(θ2)

B̂cvth(
π

4
)B̂thv2(θ1)B̂thtv (

π

4
)B̂v1cv

(θ1) (6)

where B̂ab represents a beam splitter with the following
action

B̂ab(θ)âB̂
†

ab(θ) = â cos θ + b̂ sin θ (7)

B̂ab(θ)b̂B̂
†

ab(θ) = â sin θ − b̂ cos θ (8)

and cos2 θ is the reflectivity. The angle choices for

the gate are given by θ1 = cos−1
√

5− 3
√
2 and θ2 =

cos−1
√

(3−
√
2)/7; c and t are the control and target

modes and a, b, v1 and v2 are independent ancillary
modes. The gate is conditioned on detecting a single
photon in the modes a and b and detecting no photons
in the modes v1 and v2.

Consider the case where both the control, target and
ancillary photons are supplied by two independent SPDC
sources. The input state is |λ〉ct|ε〉ab which can be written
as a sum over total photon number

|φin〉 = MλMε

∞
∑

n = 0
(even)

Q̂n|0〉 (9)
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The control and target horizontal and vertical polarisa-
tion modes are then each mixed on a beamsplitter so that
we achieve the input state (1) for those modes.

Since we are postselecting on getting a ‘click’ at four
detectors then the terms with n < 4 will always get post-
selected out. Similarly, the terms with n > 4 will get
postselected out if we used selective detectors otherwise
they represent error terms. In the latter case, so long as
ε, λ ¿ 1 these terms will be small. For the case were
n = 4, three input terms contribute:

|ψ(4)
in 〉 = (λεâ†b̂

†
ĉ†t̂

†
+
λ2

2!
ĉ†2t̂

†2
+
ε2

2!
â†2b̂

†2
)|0〉 (10)

While the first of these terms is equivalent to having four
initial Fock states, the remaining two terms have the pos-
sibility of surviving the postselection criteria and skewing
the statistics observed. Fortunately these last two terms
lead to output terms which all get postselected out in the
coincidence basis (e.g. two photons in the control mode).
This means that with selective detectors we could in prin-
ciple postselect out all terms that do not correspond to
single photon inputs from the output statistics. With
non-selective detectors the error terms will scale at least
as λ3 in amplitude (due to the n > 4 terms) so the figure
of merit will scale with λ (taking ε = λ) as V ∼ 1/(1+λ2)
and λ is typically very small.

Now consider the situation where a SPDC supplies the
two photons for the control and target modes and weak
coherent states are used for the ancillary modes. The in-

put state is then |φin〉 = |λ, α, β〉 where â† and b̂
†
will be

the creation operators for the coherent states. After rear-
ranging the state as a primary sum over photon number



3

10
- 5

10
- 4

10
- 3

1.0

10
- 7

10
- 6

10
- 5

10
- 4

- 8
10

ν

10
- 6

0.9

0.8

λ

ε
10

- 5

10
- 4

10
- 3

1.0

10
- 7

10
- 6

10
- 5

10
- 4

10
- 8

10
- 6

0.9

0.8

ν

λ

ε

a) b)

FIG. 1: The single photon visibility with non-selective detec-
tors as a function of the strengths of the SPDC sources. (a)
the entangled ancilla gate, (b) the Knill gate. In both cases
the input state was truncated at six photon terms, and the
maximisation of the error was performed numerically.

we get

|φin〉 =
∞
∑

n=0

n
∑

p = 0
(even)

n−p
∑

q=0

(λĉ†t̂
†
)

p
2

p
2 !

(αâ†)q

q!

(βb̂
†
)n−p−q

(n− p− q)! |0〉

(11)
Again, terms with n < 4 will get postselected out and

terms with n > 4 will be weak error terms. The ex-
tra freedom from two independent coherent states means
that now there will be nine terms with n = 4 and only
one of these is equivalent to using single photon inputs.
The terms were a single coherent state supplies all the

photons always gets postselected out. By setting β = iα
the two terms where a single coherent state supplies two
photons and the paramp supplies two will cancel each
other due to the symmetry in the circuit. Finally the
term where the paramp supplies all the photons is post-
selected out as before. This means that we will still get
errors arising from the input terms:

iα4

6
(â†3b̂

† − â†b̂
†3
)|0〉 (12)

Note that these do not depend on the input state that is
encoded on the control and target modes and by setting
α ¿ λ we can scale away these terms relative the single
photon terms. Unfortunately this means that we cannot
beat the photon collection rate that could be achieved
using two independent SPDC sources.
It should be noted that all the observations made for

the simplified KLM cnot also hold for the full KLM
cnot in the coincidence basis. However from the per-
spective of an initial demonstration of the gate the sim-
plified version is more desirable. In the following two
sections we will compare these results against two other
implementations of optical cnot gates.

ENTANGLED ANCILLA CNOT

In a recent paper, Pittman, Jacobs and Franson [6]
proposed using entangled ancilla to further simplify im-

plementation of the cnot. Consider that we have at our
disposal an entangled state |φ〉 = (âhb̂h + âvb̂v)/

√
2|0〉,

then we can implemented the cnot between modes c and
t by first applying the unitary

Û ent = P̂ bdP̂ aeŴ aŴ tŴ bP̂ btŴ tŴ bP̂ ac (13)

where Ŵ a represents a half-wave plate on mode a and
P̂ ab is a polarising beam splitter in modes a and b with
the effect that ah → ah, bh → bh, av → bv, and bv →
av. Finally the resulting state is then conditioned on
detecting a single photon in modes a and b. The raw
success probability of this gate is 1/16 which rises to 1/4
if fast feed-forward and correction is used.
Consider that the entangled pair in modes a and b

are provided by two type-I parametric downconverting
crystals sandwiched together. We’ll fix the relative phase
to get a particular Bell pair for the two photon term:

|ε2〉 = M2
ε(|00〉+ ε|11〉+ · · · )(|00〉+ ε|11〉+ · · · )

= M2
ε [· · ·+ ε(|0011〉+ |1100〉) + · · · ] (14)

where the modes are ah, bh, av, and bv respectively. Such
sources have been previously built and provide a rel-
atively bright source of polarisation entangled photons
[12, 13]. We can write this source succinctly as

|ε2〉 = M2
ε

∞
∑

n = 0
(even)

L̂n|0〉 (15)

L̂n =

n/2
∑

m=0

ε
n
2 (â†

hb̂
†

h)
m(â†

vb̂
†

v)
n
2
−m

m!(n2 −m)!
(16)

With another independent paramp, |λ〉, supplying the
photons for the control and target modes, the input state
becomes

|φin〉 ≡ M2
εMλ

∞
∑

n = 0
(even)

n
∑

q = 0
(even)

L̂q
λ

n−q
2 (ĉ†t̂

†
)

n−q
2

n−q
2 !

(17)

where we will encode the qubits in the polarisation state
of the control and target modes, as in (1).
Again all terms with n < 4 will get postselected out.

There are six terms with n = 4 of which two terms rep-
resents our single photon input terms, the rest are error
terms due to the sources. With non-selective detectors
terms with n > 4 will also contribute to the error.
The four photon terms in the output state that do not

get postselected out are

|out〉 = 1

2
√
2
λâ†b̂

†
(AvBhεĉ

†
v t̂

†

v +AvBvεĉ
†
v t̂

†

h

+Ah[AvB
2
hλ−AvB2

vλ+Bvε]ĉ
†
ht̂

†

v

+Ah[AvB
2
hλ−AvB2

vλ+Bhε]ĉ
†
ht̂

†

h)|0〉(18)



4

and by making λ ¿ ε we can recover the single photon
terms and the action of the cnot with selective detectors.
This of course means that the count rate with this gate
would be considerably less than with the simplified KLM
gate. With non-selective detectors, if we make λ too
small the error due to the six photon input terms will
dominate, so there is an optimum λ for a given ε see
figure 1 (a).
There does not appear to be a way of using two co-

herent states to replace one of the SPDC sources. If we
replace either the control or target mode then it is hard
to see how the |02〉 and |20〉 terms could cancel as with
the simplified KLM cnot since these terms will have
factors that depend on the encoded qubit. Similarly re-
placing the source of entangled photons would then mean
we would have to entangle the single photon components
which is difficult.

KNILL CNOT

A recent numerical search for optical gates by Knill
yielded a cnot gate [14] which operates with a probabil-
ity of 2/27 and is described by the following unitary,

ÛKnill = B̂tvth(
π

4
)B̂ab(θ3)B̂cvtv (θ2)B̂tvb(θ1)

B̂cva(θ1)B̂tvth(
π

4
)F̂ a(π) (19)

where F̂ a(θ) is a phaseshift of θ on mode a and the re-
flectivities are given by θ1 = cos

−1
√

1/3, θ2 = −θ1 and
θ3 = cos

−1
√

1/2 + 1/
√
6. The gate requires two ancil-

lary modes a and b initially in Fock states to be finally
detected also in single Fock states.
Consider the case where both the control, target and

ancillary photons are supplied by two independent SPDC
sources. The input state is given by (9) with the usual
qubit encoding as in equation (1). We will again get the
three terms (10) possibly contributing to the error for
n = 4. The last term again leads to output terms which
all get postselected out in the coincidence basis. Unfor-
tunately the output terms produced by the second term
do not get postselected out leading to inherent errors in
the statistics we will observe. Notice however that all
these terms will be proportional to λ2 so again by mak-
ing λ ¿ ε we can scale these terms away with selective
detectors at the expense of the count rate. With non-
selective detectors there will again be an optimum λ, see
figure 1 (b), which is very similar to the previous gate.

CONCLUSION

We have examined three possible implementations for
linear optics cnot gates with a view to experimentally

demonstrating their operation in the near future. In con-
sidering demonstrating the gates with SPDC and coher-
ent state sources and non-selective detectors there is a
clear advantage to the simplified KLM cnot gate, where
the inherent symmetries in the gate allow the use of two
independent SPDC sources to supply the control, tar-
get and ancillary photons, with errors from the use of
non-Fock states making little contribution. The other
two implementations suffer from errors introduced by the
non-Fock state inputs which cannot be postselected out.
While the situation may be mitigated somewhat by using
a weak SPDC source this would occur at the expense of
the count rate of valid events that may be collected from
the gate.

The conclusion we arrive at is that an experimen-
tal program focusing on the simplified KLM cnot gate
would then allow immediate characterisation of the gate
with current sources and detectors, with the operation
of the gate in a non-destructive fashion becoming pos-
sible when single photon sources and selective detectors
become available.
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