A

invent

Design, Implementation and Test of an
Email Virus Throttle

Matthew M. Williamson

Information Infrastructure L aboratory
HP Laboratories Bristol
HPL-2003-118

June 30", 2003+

E-mail: matthew.williamson@hp.com

virusthrottle, This paper presents an approach to preventing the damage caused

email virus by viruses that travel via email. The approach prevents an infected
machine spreading the virus further. This directly addresses the two
ways that viruses cause damage: less machines spreading the virus
will reduce the number of machines infected and reduce the traffic
generated by the virus. The approach relies on the observation that
normal emailing behaviour is quite different from the behaviour of
a spreading virus, with the virus sending messages at a much higher
rate, to different addresses. To limit propagation a rate-limiter or
virus throttle is described that does not affect normal traffic, but
quickly slows and stops viral traffic. The paper includes an analysis
of norma emailing behaviour, and details of the throttle design. In
addition an implementation is described and tested with real
viruses, showing that the approach is practical.

* Internal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2003

Design, I mplementation and Test
of an Email Virus Throttle

Matthew M. Williamson
HP Labs Bristol, Filton Road, Stoke Gifford, BS34 8QZ, UK
matthew.williamson@hp.com

Abstract

This paper presents an approach to preventing the
damage caused by viruses that travel via email. The
approach prevents an infected machine spreading the
virus further. This directly addresses the two ways
that viruses cause damage: less machines spreading
the virus will reduce the number of machines infected
and reduce the traffic generated by the virus.

The approach relies on the observation that nor-
mal emailing behaviour is quite different from the
behaviour of a spreading virus, with the virus send-
ing messages at a much higher rate, to different ad-
dresses. To limit propagation a rate-limiter or virus
throttle is described that does not affect normal traffic,
but quickly slows and stops viral traffic. The paper in-
cludes an analysis of normal emailing behaviour, and
details of the throttle design. In addition an imple-
mentation is described and tested with real viruses,
showing that the approach is practical.

1 Introduction

Computer viruses and worms® are a continual headache for
all computer users. They cause damage to users’ machines,
tie up infrastructure and resources, and waste the time of IT
staff. Most approaches to viruses rely on detecting the “signa-
ture” of the virus, and as such need to be continually updated
as new viruses are released. While the signature is being gen-
erated the virus is able to spread unhindered, and if that delay
is long, the virus can cause significant damage.

This paper extends previous work on virus throttling
(Williamson, 2002) to email viruses. Virus throttling is an
approach that limits the damage caused by viruses by target-
ing the virus’ propagation. The technique essentially prevents
a machine infected with a virus from spreading that virus fur-
ther. Targeting propagation is a sensible approach because
it directly addresses the two ways that viruses cause dam-
age: fewer machines will become infected because fewer ma-
chines will be spreading the virus, and the load on network
infrastructure will be lower as the virus will generate less
traffic. In addition, by concentrating on the virus behaviour as

LIn this paper the terms are used interchangeably.

opposed to its exact form, a virus throttle works on previously
unknown viruses and needs no signature updates.

Virus throttling is based on the observation that the traffic
generated by a spreading virus is quite different from normal
traffic. A virus will send messages to many different des-
tinations as quickly as possible, but normal traffic is more
leisurely and there is more locality—messages are sent re-
peatedly to the same destinations. The throttle enforces a
limit on the rate that messages can be sent to different destina-
tions, so that normal traffic is passed but traffic from a virus
is slowed and stopped. The rate-limit is “soft” in the sense
that high rate messages are delayed not dropped in order to
enforce the limit. This means that false positives (when the
throttle would limit legitimate traffic) result in small delays to
messages not a loss of service.

Of course there are occasions when normal email traffic
will look like a virus, e.g. many messages to different desti-
nations in a short period of time. An inadvertent reply-to-all
is a good example of this. In those cases the user would be
contacted to say that the throttle was delaying the mail, and
could override the throttle. In addition there are some ap-
plications e.g. bulk mailers that could not be throttled. This
just means that should those machines become infected with
a virus, the virus could not be hindered as well as on other
machines.

The throttle is intended to rate-limit outgoing email mes-
sages from client machines, i.e. as the mail enters the email
routing system, so is best implemented at an outgoing mail
server. In that case the throttle would be effective against ma-
chines sending spam, as spam sent through the server would
be indistinguishable from a virus: they both consist of many
messages to different recipients at a high rate.

Other approaches to email viruses concentrate on try-
ing to deduce if incoming email messages contain viruses,
so protecting the machine from infection. This is com-
monly achieved using signatures e.g. products from Syman-
tec (2003), or using heuristic rules (Shipp, 2002), or by run-
ning the email in a sandbox (also known as behaviour block-
ing), Messmer (2002); Okena (2002). The throttle differs
from these approaches because it concentrates on outgoing
rather than incoming messages, attempting to prevent the
virus spreading further rather than preventing infection. A re-
lated product is the HAWK (Hostile Activity Watch Kernel)

from McAfee (2003), which prevents a virus sending mail to
a large number of addresses in a short period of time.

For spam there are a variety of approaches that attempt to
rate-limit messages, either from servers on a blacklist (Teer-
grube, 2003), or by using a tarpit (Cleaver, 2003).

The rest of the paper describes the characteristics of email
traffic that make it suitable for throttling and the design of
the throttle. The effect of the throttle on normal traffic is
then presented, showing that the effect is small. The imple-
mentation of an SMTP (see Postel (1982)) based throttle is
then described together with results of testing with real email
viruses. The paper concludes with predictions of the server
performance and more general conclusions.

2 Characteristics of Email Traffic

An email virus throttle is a rate-limiter on outgoing emails
to different destination addresses. The claim of this paper
is that normal traffic tends to be at a low rate so would be
largely unaffected by the rate-limiter, but a virus that sends
email at a high rate to different addresses would be limited
and stopped. The trick is to design the filter or throttle so that
is has minimal impact on normal traffic, but maximal impact
on viral traffic.

Previous work used a throttle which consists of two inde-
pendent processes (Williamson, 2002). One processing loop
checks outgoing messages to see if they are at lower rate than
allowed, and if so they are passed as normal. If not, they are
placed on a “delay queue”. A second process pops messages
off the delay queue at a fixed rate, so enforcing the rate limit.
If a virus infects the machine, it will attempt to send mes-
sages at a high rate and the queue will grow large. This is
easily detected and the onward propagation can be stopped.
The reason for using the queue and delays is to tolerate errors
in the detection mechanism—occasional bursts of high rate
traffic will be delayed slightly. In addition using the delay
allows the virus to be rate-limited even before it is stopped.
This is particularly important for email viruses as every email
sent is likely to go to a valid address (compared to IP based
viruses such as Nimda (CERT, 2001) where a random IP ad-
dress is not likely to resolve to a machine, and is thus less
likely to be harmful).

The exact design of the throttle depends on the character-
istics of normal traffic. To that end data was collected from
the “Sent Items” folders of 22 users, making sure that that
folder was an accurate record of that user’s emails activity.
The users’ roles spanned engineers, admins, managers and
IT staff. In all the data consisted of 33084 emails to 61749
recipients over a cumulative period of 18.2 years.

Since the throttle is a rate-limiter, the first issue is the rate
that emails are sent. Email traffic is bursty with long periods
of inactivity (e.g. during the night), so rather than calculating
a frequency, Figure 1 shows a plot of the time differences be-
tween subsequent mails. The top plot shows times for mails
to single recipients, and the lower plot for mails to multiple
recipients. These are treated differently because a multiple

[
IN o © o
S =] =) =}
T T T
I I I

% single mails

N
=}
T
I

o

0 1 2 3 4 5 6 7 8 9 10
100
80 R
K]
3
E 6ol 1
K]
s
2 40 —
s
20F —
E—
o : ; . . !
0 1 2 3 4 5 6 7 8 9 10

Time between mails in minutes

Figure 1: Time differences between subsequent mails. The z-axis is
the time between emails in minutes, and the y-axis the percentage
of emails that occur within that time period. The different lines cor-
respond to different users. The top plot is for single recipient mails,
and the lower for multiple. Single recipient mails tend to be sent
closer together than multiple mails, but overall a small proportion
of mails is sent quickly (> 1 per minute). The outlier in the lower
graph is a member of IT staff who occasionally sends messages us-
ing an automated script. The plot shows that this behaviour is quite
different from normal (human) emailing activity.

recipient mail is effectively the same mail to different recipi-
ents, and so could look like a virus. While present day viruses
do not send mail to multiple recipients, there is no reason why
they might not in the future.

The figure shows that there is considerable variation be-
tween users, but overall the percentage of mails that are sent
at a high rate (> 1 per minute) is low. Multiple mails tend to
be sent at a lower rate, e.g. 5-15% of multiple mails are sent
within 5 minutes as opposed to 10-40% of single recipient
mails

In order for a virus to spread, it needs to send itself to
different addresses (it makes no sense to re-infect the same
machine), but in normal mailing users mail the same ad-
dress repeatedly. This locality was exploited in previous work
(Williamson, 2002) to only rate-limit messages to destina-
tions different from those contacted recently.

Figure 2 shows a measure of locality for the email data.
The plot shows the percentage of emails sent to an address
which is the same as one in the previous n addresses mailed,
for different values of n. For example if n = 1, this is the pro-
portion of occasions that two mails we sent consecutively to
the same address. The plot shows that single recipient mails
have higher locality than multiple mails, but neither has the
kind of locality evident in other types of traffic (e.g. http traf-
fic described in (Williamson, 2002) has approximately 90%
of traffic to addresses in the previous 5).

While this data suggests that locality is not important, it

60 T
ingle
—— multiple

2

:

o
=)
T

I
o
T

Percentage with match within the frame
n w
o o
T T

10r-

Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20
size of locality frame

Figure 2: Percentage of emails with addresses the same as addresses
emailed recently. The x-axis is the number of previous addresses,
and the y-axis the percentage of emails with a match. The lines
represent the mean and one standard deviation above and below for
single recipient mails (diamonds) and multiple mails (lines). Single
recipient mails are more likely to be addressed to an address mailed
recently, but in neither is the effect particularly pronounced.

still makes sense to rate-limit messages to different addresses.
This is because such a filter is more likely to catch a slow
spreading virus, and in addition would allow repeated *“con-
versational” emails (where email is used more like instant
messaging) to occur without delay since that behaviour con-
sists of high rate messages to the same destination.

This data was collected in a corporate environment, but one
would expect to find similar characteristics of “consumer”
mail, i.e. mails sent at a low rate (they take time to compose),
with some locality. One difference might be if it were com-
mon for messages to be composed offline, and users connect
to send them. This would result in small burst of messages,
which might look like a virus. However if each burst is small,
the overall effect will not be large.

3 Email throttling algorithm

Given the characteristics of email traffic, the throttling algo-
rithm is shown in Figures 3 and 4.

All outgoing messages from a particular user are throttled.
If the message is to a single recipient, it is compared to a
short list of recently mailed addresses (the working set). If
the address is in the set, it is sent immediately. The working
set thus implements the locality effect as described above. If
the address is not in the set, then the value of the parameter
“slack” is checked.

The slack is a measure of the number of time periods over
which no mail has been limited. The user gets credit for not
having mail being limited, and can use that credit to send
mails. For example, if no mail has been limited for 10 min-

slack =
min(maxSlack, slack + 1)
mSlack =
min(maxM Slack, mSlack + 1)

Remove first mail
Send mail
Update working set

Remove first mail
Send mail to first recipient
Replace mail on queue

Figure 4: Processing of the delay queue. At regular intervals mails
are removed from the queue and sent. If the queue is empty, the
slack or “credit” is incremented up to its maximum.

utes, with an allowed rate of 1 mail per minute, the first
mail (or more generally the first maxSlack mails) is allowed
through without delay.

If there is some “slack”, i.e. slack > 0, then the mail is sent
immediately and the slack decremented. The working set is
updated by adding the new address and removing an old one.
A variety of replacement strategies can be used (e.g. first in
first out, or least recently used). If there is no “slack” then
the mail is placed on a queue (the delay queue) waiting to be
processed.

The slack essentially guarantees that the average rate of
mails will be no higher than the allowed rate. For multiple
mails, where the locality effect is less than for single recipi-
ent mails, the locality effect is ignored, and a separate slack
parameter is used to create a rate limit on the number of re-
cipients per minute (see Figure 3). This slack is calculated as
before, for example if no mail has been limited for 10 min-
utes, then a multiple mail with less than 10 recipients will
be sent immediately. A mail to more recipients will be split,
the message will go off to the first 10 immediately, and the
remainder will be queued on the delay queue.

Figure 4 shows the processing loop for the delay queue,
which at regular intervals removes the message at the head
of the queue, sends it, and updates the working set if it was
a single recipient mail. The figure also shows the calculation
of the slack parameters—if the queue is empty then the slacks
are incremented up their respective maximums.

As mentioned previously, if the delay queue gets large it is
evidence that a virus is attempting to spread, but might also
be due to legitimate activity, for example a message with an
unusually large number of recipients. A threshold on the de-
lay queue length is a reasonable means of detecting such an
event. Every time a message is added to the queue, its length
is checked (see Figure 3). If the length is greater than the
threshold the throttle will stop all further mails being sent (by
not accepting any new mails, and not processing the delay
queue), and contact the user. The user can then use some
other means (e.g. a web interface) to check the mails held at
the throttle and either delete them or release them to be sent
immediately.

single
recipient?

number recipien
< mSlack?

Send mail
mSlack =

Send mail to first mSlack
Send rest to delay queue
mSlack =0

Check queue length

,~~ working set "~
v / n=4 \

\
| EIERI[e[d]
7

~

A

Y
is address new?

Send mail

mSlack — numRecipients

Send mail
Update working set
slack = slack — 1

Add to delay queue
Check queue length

Figure 3: Processing loop for new requests. Each email message is checked through this process and either immediately sent or placed on the

delay queue to be processed later.

4 Throttle performance on normal traffic

The parameters of the throttle are the working set size, al-
lowed rate, maximum values for the slack and mSlack, and
the value of the stop threshold. This section gives results of
the effect of each of these parameters on normal email usage.
To best combat viruses all these parameters should be as low
as possible.

Figure 5 shows the delays for single recipient mails as a
function of working set size, with an allowed rate of 1 mail
per minute, and a maximum value of slack of 1. The delays
are shown with three different measures, the percentage of
mails that are delayed, the average delay per mail sent, and
the average delay incurred by mails that are delayed. The
graphs show that even with no working set at all the number
of delayed mails is low, and the delays themselves are low.
There is considerable variation between users. The effect of
the working set is not particularly strong (not surprising given
the locality results in Figure 2), but it does have some effect.
A reasonable value for working set size would be about 5.

Figure 6 shows the effect of the maxMSlack parameter on
the delays for multiple mails, with the same measures as be-
fore. The throttle is less effective at passing multiple mails
without delay, for example with maxMSlack = 15, most users
have under 5% of their mails delayed, but some have 20%.
However, the average delay per mail is generally low (well
under a minute for most users), and the actual delays are again
not large (mostly < 10 minutes). This does mean that any
email to more than 15 recipients it guaranteed to be delayed
slightly, so this parameter could be varied on a per user basis.
It is however important to keep this parameter low as it is the
number of “free” recipients an email virus could attempt to
infect.

Figure 7 shows the effect of the allowed rate on delays for
both single and multiple messages combined. For ease of im-

N
3

N
7
I

=
o
I

% mails delayed
-
T
L

o
&)

o

T T L !
1 2 3 4 5 6 7 8 9 10
Working Set size

o
o
=

IO = =4

o o 9

S © o

5 & ®
I /

average delay for
all mails (mins)

0.002 E

1 2 3 4 5 6 7 8 9 10
Working Set size

o
©

o
o
T
I

o
N

average delay for
delayed mails (mins)
o
iy
L

o

5 6 7 8 9 10
Working Set size

[,
N
w
IN

Figure 5: Delays for single recipient mails as the working set size
is varied. The plots show three different measures of delay: the
percentage of mails delayed (top), the average delay per mail sent
(middle) and the average delay of those mails delayed (bottom). The
different lines correspond to different users. The plots show that for
some users the effect of the working set is strong, but for others it
makes little difference. Overall the delays are small, with delays on
mails in the range of 10-25 seconds. For this plot maxSlack = 1
and the allowed rate was 1 per minute.

% mails delayed

0 5 10 15 20 25 30
maxMSlack

average delay for
all mails (mins)

N w S

T T T

[
T

0 5 10 15 20 25 30

maxMSlack
30
)
S £
ZE
85 201
85
) £
S L
= 10
s
T o
=]
0

maxMSlack

Figure 6: Delays for multiple mails as a function of maxMSlack.
This parameter is the maximum amount of “credit” that a user can
build up in order to allow a multiple recipient mail to be sent. It is
also the maximum size of multiple mail that can be sent without de-
lay. As this parameter increases the delays go down, with the value
of 15 giving reasonable delays for all users. The worst affected user
is an administrative assistant. The bottom plot is noisy for higher
values of maxMSlack because so few mails are delayed. For this
plot the allowed rate was 1 recipient per minute.

plementation the allowed rates are made the same for both
types of email (although there is no reason in principle why
they could not be different). The plot shows that a value of
approximately 1 mail/minute or 1 recipient/minute is reason-
able, giving delays of under 5 minutes for most users, and up
to 10 minutes for some, with around 0.5-3% of mails delayed.
Reducing the allowed rate to say 1 mail every 2 minutes in-
creases the number of mails delayed significantly.

The final parameter is the stop limit. Figure 8 shows the
number of false alarms (whether the throttle stops legitimate
mailing activity) per month that each user would experience
as a function of the threshold value. There is significant vari-
ation between users, so for example a threshold of 20 would
give no false alarms for most users, and occasional alarms for
some. One user would have one alarm per month, which is
again not excessive.

For reasonable settings of these parameters, the delays for
single and multiple mails are generally low (< 5 minutes for
most users), and only occur for a small proportion of emails.
The question is whether these delays are acceptable. They
are certainly of the same order as the transit time for emails

% mails delayed
N o ©
T T

N
T

o

4
©

T T T T

all mails (mins)
o o
iN o

o
N

average delay for

o

N
o

[
(&)

ol

average delay for
delayed mails (mins)
=
o

o

0.4 06 08 1 2 4 6 8 1IC
Allowed rate mails/minute

Figure 7: Delays for allowed rate, for both single and multiple mails
combined. The rate is shown on a logarithmic scale. The lower the
allowed rate, the worse the delays and vice versa.

Ind
o
T
L

Number of alerts per month
-
o N
T T
| |

0.5 q

| " :
0 5 10 15 20 25 30 35
Warning threshold

Figure 8: Effect of stop threshold. The plot shows the number of
false alarms per month that different users would experience for dif-
ferent values of the threshold. For most users a threshold of 15-20
would give no alarms, while for others the rate would be around
1 every 3-6 months. One user (an administrative assistant) would
have false alarms every month, due to sending an email to a large
number of recipients. While it is easiest if there is a single set of
parameters for all users, it is possible to customise parameters on a
per-user basis.

through the email system, and would to a large extent be
invisible to the sender (they occur after the mail has been
sent, and the sender does not normally know when the email
will be read by the recipient). A recent study of timings in
email (Tyler and Tang, 2003) showed that the speed that users
replied to mails was highly context dependent, e.g. they reply
quickly to senior managers, but slower to more lowly col-
leagues. Given that the delays from the throttle are not large,
and users can always override it if necessary, the delays in-
troduced by the throttle should not have a large effect on the
usability of the email system.

5 Implementation

In order to throttle email effectively, the throttle needs to be
able to determine the sender of each email so that it can en-
force the allowed rate per sender. If a virus could “spoof”
the sender then it could send messages at a higher rate than
allowed by making them appear to come from different users.

Reliably identifying the sender informs both where the
throttle should be implemented (best at the point where email
enters the email system as after even one hop reliable sender
information is lost), and how the sender is identified.

Figure 9 shows a schematic of outgoing mail systems. Mi-
crosoft Outlook clients use a proprietary protocol to send mail
to an Exchange server (Microsoft, 2003), which then for-
wards mail for remote delivery. To throttle this protocol the
throttle could either be installed on the client or inside the ex-
change server. While installing the throttle on the client is ap-
pealing because it would prevent any network traffic from the
virus, it would only guard against mail sent through the client
itself. While many viruses have exploited weaknesses in Out-
look (e.g. LoveLetter (CERT, 2002)), increasingly viruses are
using their own SMTP engines e.g. Klez and Yaha (Sophos,
2003a,c).

The non-Microsoft world uses SMTP, in which case the
throttle is best placed at the server. The SMTP routing infras-
tructure is flexible, allowing intermediate email relays to be
inserted in the flow of mail. The throttle can be easily im-
plemented as an extra server that sits between the mail client
and its normal outgoing mail server. This server would then
implement a copy of the throttle for each user sending mail
through that server.

As mentioned above, increasingly viruses are providing
their own SMTP engines, and not using the mailer on the
client. This begs the question of how they find SMTP servers
to send the mail. They have three strategies at present, to
use the servers configured for any existing mail clients, to
use “known” servers on the Internet pre-configured in the
virus, or to attempt to send mail to snt p. donai n for each
domai n of each email address found on the users machine.
This actually suggests that an IP based throttle (Williamson,
2002) could be quite effective at preventing this behaviour!

The second issue is how to identify the user. Unfortunately
the sender’s address can be easily spoofed (Klez (Sophos,
2003a) was one of the first viruses to do this) and so cannot be

Outlook Proprietary Exchange
Client @ Protocol Server
IMAP/POPS SMTP SMTP
Client (T) —= Server
Virus SMTP

Engine

Figure 9: Schematic of an email system for outgoing mail, with
suitable positions for an email throttle marked with a “T”. With Mi-
crosoft Exchange, the best position for the throttle is at the server,
although it would also be possible to implement it at the client. For
SMTP the logical place for a throttle is at the server, and it could
easily be implemented as an extra mail relay. This has the advantage
that email viruses with their own SMTP engines would be throttled.

relied on to verify the origin of the email. A second candidate
is the IP address of the sender’s machine. While IP addresses
are often dynamically assigned and do change, the throttle
does not need much state (working set and slack parameters)
and so could work effectively on transient addresses. How-
ever there is the difficulty of contacting the user?. Other than
using the sender’s address, which may or not be correct, the
alternative is an extra protocol and software on the client to
inform them that the throttle has stopped their mail.

The best solution is to use another mechanism to guar-
antee that the sender of the mail is registered with the mail
server. One such mechanism is authenticated SMTP (SMTP
AUTH (Myers, 1999)), where the client provides a user-
name/password pair when sending mail. While the protocol is
not particularly secure (e.g. the password is sent unencrypted)
the threat being addressed is a virus sending mail masquerad-
ing as another user in order to evade the throttle. Sniffing the
passwords of other users is possible but would be difficult to
automate reliably in a virus.

The advantage of SMTP AUTH is that users of the server
need to register with it, and so can provide contact details
etc.. The disadvantage is the extra complexity required both
at the client (one more configuration step) and at the server
(usernames and passwords to manage).

An email throttle was implemented as an SMTP relay us-
ing SMTP AUTH, building on top of the JAMES (Java Mail
Server) project (JAMES, 2003). This is a production qual-
ity open source mail server. The architecture of the modified
throttle server is shown in Figure 10.

2|t is also possible that a virus could use unused IP addresses to mas-
querade as many machines. This is more complicated than just spoofing the
sender’s IP. SMTP works over TCP, so the virus would have to really “adopt”
the false IP addresses in order to receive the TCP acks, and be able to send
messages.

Mail Mail
—— SMTP Processing Pipeline T
in Sarver g Fp out
Spool Delay Queue |« | ook
M anager Manager Manager

User Del ay
Repos tory Queue

Figure 10: Figure showing the architecture of the email throttle.
Incoming mail is placed in the Spool, and then processed by the
pipeline, which implements the throttle logic. A DelayQueueMan-
ager object is responsible for all requests to the queue itself (simply
a store of emails), as well as processing the queue regularly.

Incoming mail is handled by an SMTP server that uses de-
tails of users stored in the UsersRepository to to authenticate
the sender, and places incoming mail in the Spool. A flexible
processing pipeline is then used to process the mail. This con-
sists of a variety of components to select mail messages and
perform operations on them. The throttle logic of Figure 3
is implemented in this pipeline. The delay queue is imple-
mented in similar way to the Spool as a store of emails, with
a DelayQueueManager object responsible for all interactions
with the delay queue as well as processing the queue (Fig-
ure 4) regularly. The user state (working set, slack, mSlack,
etc.) is stored in the UsersRepository. The program is eas-
ily configurable using an XML configuration file that allows
for example the setting of parameters, the configuration of the
pipeline, and the choice of using the file system or a relational
database to store the emails and user information.

The servers uses the email address in the message and so
does not differentiate between addresses that map to single
recipients and those that map to mailing lists that may be ex-
panded downstream. Expanding mailing lists would make the
throttle better, but would add significant extra complexity.

If the delay queue length is larger than the stop threshold
for any particular user, the server refuses any new mails from
that user (the authentication fails). In addition the delay queue
processing is suspended for that user. To contact them, the
throttle server sends an email to an address configured when
the user registers with the server, the message containing de-
tails of the mails waiting in the mail queue. To delete or send
these messages the user can either send an especially crafted
email to the server, or can visit a web interface (screen-shot
in Figure 11). The web interface can be used for other admin-
istration tasks, e.g. changing passwords, user details, etc..

The implementation is currently being beta tested in a
small scale trial, and was used to test the performance of the
throttling algorithm with real viruses, as described in the fol-
lowing section.

2} Thiottle SMTP Server - Micrasolt Internel Explorer provided by Hewlett Packard 0j %

fle Edt Yew Fgvaies Jods Heb a
R R AT Ll L L e e e 5|
| Axress [@] hitp /locahost 80301est/ProcessD elayllueus =] P6e
| Lirks [@hp Employee Potal @) RoomBooker @) BICAS External @] Test shavepaint @ JBicas inlermal &) Goagle n
Gogle-[7] @nseachwe @ DiNow | Pt @10 - B - S

UNITED KINGDOM |

» contact hp search: |
@ hp labs site © all of by UNITED KINGDOM
printable version
K] Throttle SMTP Server
invens matwdl logged in
» Throttle SMTP =1
Server
& Send To: malluser1@hp com,
© Delete Cc
» View delay queue Subject test
» Enable user Date: 4 Jun 2003 10:57.03 GMT
» Update user details
& Send To: mailuser2@hp.com,
€ Delete Cc
Subject test
Date: 4 Jun 2003 10:57.03 GMT
Submit | Reset
wwivary staternant using this site means you accept its feedback to webmaster
Rebacy Satement terms T
2] [B¥ Localinbanst

Figure 11: Screen-shot of the user interface for the virus throttle.
The interface allows the user to see the contents of their delay queue,
and specify which mails will be deleted and which sent immediately.

6 Tests on real viruses

In order to test the efficacy of the throttle on real viruses, the
isolated testbed shown in Figure 12 was constructed. It con-
sists of four Linux machines. The first (host . vi rus. net)
runs VMware (VMware, 2003) with a vulnerable Windows
2000 image. The outgoing mail server on the Windows 2000
machine is set to be the throttle box (snt p. vi rus. net),
and the address book and inbox were populated with email
addresses. The throttle server is configured to pass all mail on
to another SMTP server (bl ackhol e. vi rus. net) that
simply saves mail to disk. To deal with the fact that some
viruses find the mail server by prepending “smtp” to email
domains found on the infected machine, a DNS server was
set up on the last machine to provide the vi r us. net do-
main.

The test consisted of launching the virus on the Windows
machine and detecting how quickly the throttle could stop
the virus, as well as how many emails were forwarded. None
of the viruses tested used SMTP AUTH, so the throttle was
altered to use the IP address of the sending machine as the
origin of the mail.

Table 1 shows the results for two real viruses Yaha.E
(Sophos, 2003c) that sends mail to addresses found in the
address book, and Lovgate.A (Sophos, 2003b) that uses the
inbox. Also included are results from a test virus (a program
that sends emails to different addresses at a pre-determined
rate). The parameters of the throttle were maxSlack 1, maxM-
Slack 15, working set size 4 and the stop limit was 20.

[|

Win2k Throttle EmailRelay DNS

Virtual SMTP

Machine Server
Linux Linux Linux Linux
host.virus.net smtp.virus.net blackhole.virus.net dns.virus.net

Figure 12: Figure showing the testbed for virus tests. This con-
sists of four Linux machines, one running a machine vulnera-
ble to viruses (host . vi rus. net), the throttle server (snt p.
Vi rus. net), another email relay that captures any forwarded mail
from the throttle (bl ackhol e. vi rus. net), and a DNS server
(dns. vi rus. net).

Table 1: Stopping times for real viruses. The table gives the number
of passed mails and the stopping time for two real viruses and a
test virus. The results are the averages of 3 runs of each real virus,
and a single run of the test virus. The throttle stops viruses very
quickly, and even stops quite slow spreading viruses fairly quickly
(20 minutes for one spreading at 2 emails per minute).

Virus Approx Number Stopping time

rate/min passed (min:sec)
Lovgate.A 109 ~3 0:12
Yaha.E 455 ~0 0:03
Test 60 ~2 0:24
Test 10 ~6 2:33
Test 5 ~ 6 5:01
Test 2 ~21 20:04

The table shows that the throttle is very effective at stop-
ping real viruses, stopping them in under 15 seconds, with
few emails forwarded. Yaha.E sends no messages because it
appears to need the user to send a message to “start” it. That
first message uses up any “slack”, so that all the messages
from the virus go straight onto the delay queue. This quickly
reaches the threshold and the virus is stopped.

The table also shows that even if the virus attempts to
spread slowly (e.g. 2 emails/minute) the throttle will even-
tually stop it, and still fairly quickly. The delay queue mech-
anism effectively integrates the difference between the virus
spreading rate and the allowed rate, so that any virus with
a spreading rate that is slightly above the allowed rate will
eventually be stopped.

7 Server Performance

An SMTP server implementing a virus throttle has to perform
more work than an ordinary SMTP server: it needs to read
and update state for each user, as well as store emails in the
delay queue.

Reading and writing state occurs for each processed mail
and required interactions with the user database. While no

150

i

o

=]
T
I

Delay queue length
v
o
T
L

150

Delay queue length

) I I I I
0 5 10 15 20

Time in hours

Figure 13: Cumulative delay queue lengths for a throttle server with
500 users. The plots give two examples of typical activity. The delay
queue does not grow large, in spite of the large numbers of users.

firm performance figures are currently available, during the
virus experiments described in the previous section were be-
ing run, the server did not appear to be overloaded handling
450 mails per second?.

SMTP servers often store mails while waiting to deliver
them, but it is important that the extra storage required for
the delay queue does not cause problems. To test this, the
effects of a large number of users using the throttle server was
simulated by taking the data originally collected, dividing the
time history into 24 hour chunks, and choosing 500 days at
random across the users. The throttle was then simulated for
these 500 “users” in parallel, so approximating normal usage
of a mail server.

Figure 13 shows two typical examples of the length of the
delay queue across a 24 hour period. As one might expect the
length of the queue varies with the time of day but seldom
grows large, because few of the emails are delayed.

This result suggests that the extra loading of an email
server implementing a throttle is likely to be minimal.

8 Conclusions

This paper has presented an approach to limiting the damage
caused by email worms and viruses. The technique targets
the fundamental behaviour of a virus, to propagate by sending
messages to many different addresses. The paper has shown
that normal email traffic does not have this property, and that
a throttle or rate-limiter can be designed that both lets through
normal traffic without much delay, and slows and stops viral
propagation. A working implementation has been described
and tested against real email viruses. The implementation has
proved effective at preventing further spread, stopping real

SRun on a 1.7GHz Pentium 111, Redhat Linux 7.3, with the throttle server
and MySQL database (MySQL, 2003)

viruses in well under a minute. The paper has also presented
evidence that the throttle is likely to scale to handling a large
number of users.

A further benefit of the approach is that it would be effec-
tive at limiting spam. If an ISP ran the throttle, spammers
would not be able to send mail at high rates.

The technique is an altruistic one—the machine still be-
comes infected, just does not spread the infection further. A
consequence of this is that it needs to be widely deployed in
order to have a large effect. There are two immediate effects
even with partial deployment: the traffic created by a spread-
ing virus is greatly reduced, so those servers that implement
the throttle will not be affected by overloading during an at-
tack; and if the virus is only slowed slightly, it will improve
the effectiveness of the overall response (throttling plus signa-
ture based methods) significantly (Williamson and Léveillé,
2003).

Were throttling to be widely deployed, it would change
how viruses were written: they would not be able to cause
damage by spreading quickly. This is good because slow
spreading viruses are easier to combat with slow responses
such as signature based scanning. A consequence of this may
be that payloads become more malicious, in which case the
techniques of behaviour blocking (Messmer, 2002; Schmid
et al., 2002) would be good mechanisms to prevent damage
on the host machine.

The general approach taken here can be thought of in two
ways. Firstly it concentrates on limiting the damage that a
machine can cause to others, rather than limiting the dam-
age that can be done to it (also suggested by Bruschi and
Rosti (2000)). Secondly its effect is to mitigate the effects
of the problem quickly and automatically, so buying time for
a slower response (Williamson, 2003). There are many prob-
lems in security and more broadly in IT where problems oc-
cur at machine speeds and do large amounts of damage before
a (slower) human response can be mounted. Throttling and
other technologies (e.g. Somayaji and Forrest (2000)) that
attempt to limit that damage and hold off the attack until a
human can respond should increase the resilience of our com-
puting systems to attacks, misconfigurations and other prob-
lems.

Acknowledgements

This work would not have been possible without the support
of my colleagues at HP Labs, Jonathan Griffin, Andy Norman
and Jamie Twycross.

References

Bruschi, D. and Rosti, E. (2000). Disarming offense to facilitate defense. In
Proceedings of the New Security Paradigms Workshop, Cork, Ireland.

CERT (2001). CERT Advisory CA-2001-26 Nimda Worm. Available at
http://ww. cert.org/advi sories/CA-2001- 26. htm .

CERT (2002). CERT Advisory CA-2000-04 Love Letter Worm. Available
athttp://ww. cert.org/advisories/CA-2000- 04. htmi .

Cleaver, J. (2003). Jackpot mailswerver. ht t p: / / j ackpot . uk. net /.
JAMES (2003). Java mail server. ht t p: / / j ames. apache. or g.

McAfee (2003). VirusScan Home Edition 7.0.
http://ww. ntaf ee. coml myapps/ vs7/ def aul t. asp.

Messmer, E. (2002). Behavior blocking repels new viruses. Network World
Fusion News. Available from ht t p:
/1 waw. nwf usi on. coml news/ 2002/ 0128anti virus. htni .

Microsoft (2003). Microsoft exchange server.
http://ww. m crosoft. com exchange/ def aul t. asp.

Myers, J. (1999). SMTP service extension for authentication.
http://ww. ietf.org/rfc/rfc2554.txt.

MySQL (2003). htt p: / / www. mysql . cont .

Okena (2002). Stormwatch. htt p: / / www. okena. coni ar eas/
product s/ product s_st ormwat ch. htm .

Postel, J. B. (1982). Simple mail transfer protocol.
http://ww.ietf.org/rfc/rfc0821.txt.

Schmid, M., Hill, F., and Ghosh, A. K. (2002). Protecting data from
malicious software. In Proceedings of ACSAC Conference, pages
199-208, Las Vegas, Nevada.

Shipp, A. (2002). Desktop AV and Internet level anti-virus - a comparison.
Information Security Bulletin, pages 33-38.

Somayaji, A. and Forrest, S. (2000). Automated response using system-call
delays. In Proceedings of the 9th USENIX Security Symposium, pages
185-197, Denver, CO.

Sophos (2003a). W32/Klez-E. ht t p: / / ww. sophos. conl
vi rusi nf o/ anal yses/ w32kl eze. htm .

Sophos (2003b). W32/Lovegate-A. ht t p: / / ww. sophos. com
vi rusi nf o/ anal yses/ w32l ovgat ea. ht nl .

Sophos (2003c). W32/Yaha-E. ht t p: / / www. sophos. com
vi rusi nf o/ anal yses/ w32yahae. htm .

Symantec (2003). Symantec corporation.
http://ww. symant ec. com .

Teergrube (2003). Teergrubing fag. htt p: / / ww. i ks- j ena. de/
m tarb/ | utz/usenet/teergrube.en. htnm.

Tyler, J. R. and Tang, J. C. (2003). When can | expect an email response: A
study of rhythms in email usage. In Proceedings of the European
Conference on Computer-Supported Cooperative Work, Helsinki,
Finland.

VMware (2003). VMware Workstation. ht t p: / / www. vwar e. coni .

Williamson, M. M. (2002). Throttling viruses: Restricting propagation to
defeat malicious mobile code. In Proceedings of ACSAC Security
Conference, pages 61-68, Las Vegas, Nevada. Available from
http://ww. hpl . hp. conltechreports/ 2002/

HPL- 2002- 172. htni .

Williamson, M. M. (2003). Resilient infrastructure for network security.
Complexity. Under review. Available from ht t p: / / www. hpl . hp.
com t echreports/ 2002/ HPL- 2002- 273. ht .

Williamson, M. M. and Léveillé, J. (2003). An epidemiological model of
virus spread and cleanup. In Proceeding Virus Bulletin Conference,
Toronto, Canada. Available from ht t p: / / www. hpl . hp. com
techreports/ 2003/ HPL- 2003- 39. ht nl .

