A

inwvent

Utility-Directed Allocation

Terence Kelly

Internet Systems and Storage L aboratory
HP Laboratories Palo Alto
HPL-2003-115

June 9", 2003+

E-mail: tpkelly@eecs.umich.edu

resource This paper considers the problem of alocating discrete resources according to
alocation utility functions reported by potential recipients and relates this abstract problem
combinatorial to resource allocation in a Utility Data Center (UDC). A simple integer program

. formulation, which generalizes well-known knapsack problems, permits a
auctions, remarkable breadth of expression while retaining clarity and analytic tractability.
knapsack In the UDC context, this formulation allows us to incorporate factors such as
problems, utility resource scarcity, user demand, and operating costs in a unified framework. It is
maximization, equally applicable to long- and short-term allocation. If applied to short-term
Utility dynamic re-allocation it allows SLA violation penalties to be enforced or relaxed,
thereby permitting principled preemption of resources. Retrospective analysis of
E)ataCC):enter past allocator inputs can guide economically-optimal capacity expansion.
ub

The proposed problem formulation is suitable both for UDCs that operate
exclusively within an enterprise and for those that sdl access to computational
resources to external customers. The latter case involves multiple divergent
interests contending for scarce resources, and this paper surveys the economic
issues that arise in such situations and relevant literature, e.g., on nechanism
design and auction theory.

This paper describes the expressive power of the proposed problem formulation,
considers the computational requirements of solution methods, outlines
connections with economics literature, and compares the proposed formulation
with other UDC allocation schemes. It also presents preliminary computational
results showing that a commercial integer-program solver can quickly find near-
optimal solutions to random problem instances of reasonable size.

* Internal Accession Date Only Approved for External Publication
To be published in the First Workshop on Algorithms and Architectures for Self-Managing Systems, 11 June 2003,
San Diego, California

a8 Copyright Hewlett-Packard Company 2003

Utility-Directed Allocation

Terence Kelly
Hewlett-Packard Laboratories
Palo Alto, California 94304 USA

tpkelly@eecs.umich.edu

ABSTRACT

This paper considers the problem of allocating discrete resources
according to utility functions reported by potential recipients and
relates this abstract problem to resource allocation in a Utility Data
Center (UDC). A simple integer program formulation, which gen-

eralizes well-known knapsack problems, permits a remarkable breadth

of expression while retaining clarity and analytic tractability. In the
UDC context, this formulation allows us to incorporate factors such
as resource scarcity, user demand, and operating costs in a unified
framework. It is equally applicable to long- and short-term alloca-
tion. If applied to short-term dynamic re-allocation it allows SLA
violation penalties to be enforced or relaxed, thereby permitting
principled preemption of resources. Retrospective analysis of past
allocator inputs can guide economically-optimal capacity expan-
sion.

The proposed problem formulation is suitable both for UDCs
that operate exclusively within an enterprise and for those that sell
access to computational resources to external customers. The lat-
ter case involves multiple divergent interests contending for scarce
resources, and this paper surveys the economic issues that arise in
such situations and relevant literature, e.g., on mechanism design
and auction theory.

This paper describes the expressive power of the proposed prob-
lem formulation, considers the computational requirements of so-
lution methods, outlines connections with economics literature, and

compares the proposed formulation with other UDC allocation schemes.

It also presents preliminary computational results showing that a
commercial integer-program solver can quickly find near-optimal
solutions to random problem instances of reasonable size.

1. INTRODUCTION

This paper argues that resource allocation in a Utility Data Cen-
ter (UDC) should be guided by user-defined utility (in the sense of
value, usefulness, benefit, etc.). To illustrate how utility may be ex-
plicitly incorporated in a principled allocation scheme, it proposes
that UDC resource allocation be formulated as an integer program
that generalizes well-known knapsack problems. The objective
function is the aggregate utility generated by tasks that consume

First Workshop on Algorithms and Architectures for Self-Managing Sys-
tems, 11 June 2003, San Diego, California, USA.

http://tesla. hpl.hp.conl sel f-mnage03/

$ld: ra.tex,v 1.24 2003/05/24 04:42:19 kterence Exp $

resources, which in turn depends on the quantities of resources con-
sumed by each task. The proposed problem formulation represents
a good tradeoff between structure and flexibility, and its input for-
mat permits a range of expression well suited to UDC allocation.
Provided that acceptably good solutions to practical instances of
this problem can be computed quickly, it may be appropriate for
real-world UDCs. However the primary goal of this paper is to pro-
voke discussion of utility-directed resource allocation rather than to
advance a specific practical scheme. The remainder of this section
defines the scope of this paper and places it in the context of current
UDC research at HP Labs and elsewhere.

A UDC may offer its users low-level resources (e.g., CPUs, disks,
network bandwidth) or high-level application performance guaran-
tees (e.g., transaction throughput and latency targets), sometimes
called “capacity” [10]. It is reasonable to suppose that many users
would prefer the latter, but it is not clear to what extent we can auto-
mate the management functions required to deliver high-level per-
formance guarantees to complex modern applications. This paper
considers the problem of allocating resources (more specifically,
the problem of computing upper bounds on the quantities of re-
sources that tasks are allowed to consume, analogous to hard limits
set by setrlimit() in Unix systems).

Mapping computational tasks onto UDC resources may be re-
garded as a two-stage process: first determine the maximal resource
consumption levels permitted to each task, then assign specific re-
source instances to tasks. This paper is concerned exclusively with
the first stage, which we shall call “allocation”; math-programming
approaches to UDC resource assignment are under development at
HPL [21,22].

The “Resource Access Management” (RAM) approach to UDC
admission control proposed by Rolia et al. [20] addresses prob-
lems similar to those considered in this paper. RAM allocates re-
sources according to probabilistic descriptions of future resource
requirements and attempts to ensure high utilization by exploiting
statistical multiplexing. The present proposal, by contrast, bases
decisions on the reported utility of allocations, and as explained
in Section 3.2, attempts to ensure high-value utilization via utility-
driven dynamic reallocation. RAM offers applications a straight-
forward way to express demand uncertainty but not utility, and the
scheme outlined in this paper offers a way to express utility but not
uncertainty. In many real-world allocation problems the latter per-
spective seems more natural. People acquire automobiles, for in-
stance, in order to meet expected future transportation needs. The
user, however, is responsible for mapping expected demand onto
available vehicle models and for determining the utility of said re-
sources. In the dealer’s showroom, allocation decisions hinge not
on expressions of expected transportation demand but rather on ex-
pressions of utility: willingness to pay for various cars.

Shared “computing utilities” were proposed over 30 years ago [6,

7], as were market-like allocation mechanisms for such facilities [25].

Section 4 discusses economic issues that inevitably arise when con-
flicting interests contend for scarce resources, e.g., when a UDC
serves external customers. However our primary focus shall be
utility-driven allocation rather than economics; the former is equally
relevant to an outsourcing UDC and an intra-enterprise UDC serv-
ing a single interest, whereas economics applies only to situations
involving multiple divergent interests.

2. PROBLEM FORMULATION

This section formalizes the problem of allocating multiple dis-
crete resources across tasks so as to maximize aggregate utility. We
focus exclusively on an abstract problem and postpone discussion
of the specific requirements of UDC resource allocation mecha-
nisms to Section 3. We shall consider two equivalent formulations.
The first involves integer decision variables and is simpler, but its
relation to well-known combinatorial optimization problems is less
obvious. The second formulation involves binary decision vari-
ables, clearly includes well-known problems as special cases, ad-
mits more natural expressions of utility functions for problems of
practical interest, and is better suited to off-the-shelf optimization
software.

2.1 Formulation|: Integer Decision Variables

We begin with R resource types and T tasks. At most N; indivisi-
ble units of resource type r are available, r = 1,...,R. Our decision
variables are R-vectors t = (qi,---,0re) that describe the alloca-
tion of resources across T tasks: gyt units of resource r are allocated
totaskt,t=1,...,T. Function ut(0t) defines the utility that results
from allocating resource bundle @; to task t. The problem of maxi-
mizing aggregate utility is therefore

3 Ue(h) (1)
Z;I—:j_QrtSNr r=1,...,R)

maximize
subject to

We need not assume that all utility functions u; are defined over
all possible resource bundles g, nor do we impose restrictions on
the form of utility functions (e.g., convexity). It is reasonable to
suppose that UDC resources are “goods” rather than “bads,” i.e.,
that the utility of a resource bundle is not less than that of a subset
of the same bundle. However this property, called “free disposal”
in the terminology of economics, is not required.

2.2 Formulation|l: Binary Decision Variables

The formulation of Section 2.1 is not ideal. The problem at hand
intuitively seems related to classic packing problems, but Equa-
tions 1 and 2 bear little direct resemblance to traditional formaliza-
tions of these problems. Furthermore in problems of practical in-
terest, utility might be defined for only a small number of resource
bundles, and this is not explicit in the formulation of Section 2.1.
This section presents an alternative formulation that defines utility
over a limited number of resource bundles, that is directly accept-
able to commercial integer programming solvers such as CPLEX,
and that clearly includes several well-known packing problems as
special cases. Section 3 considers the applicability of this formula-
tion to the requirements of UDC resource allocation.

We now assume that each task’s utility is defined only for a given
list of resource bundles. We may allocate at most one bundle to a
task, and bundles other than those explicitly listed may not be al-
located. Let B; denote the number of acceptable bundles for task
t, and let gt (b) = (qat(b), - ..,qre(b)) and ut(b) respectively denote
resource bundles and their associated utility, b =1,...,B;. Binary

decision variable x,r = 1 if task t receives the bth resource bun-
dle on its list, zero otherwise. Formally, our “multi-dimensional
multiple-choice knapsack problem” (MDMCK) is

i1 T o Xotte(b) @®)
Shig X <1 t=1,....T (4
St Zﬁllxbtqrt(b) <Nt r=1,...,R (5

This problem reduces to classic knapsack problems and their gener-
alizations [9,13,15] if restricted appropriately (assigning a resource
bundle to a task corresponds to placing an item in a container; re-
source types correspond to the container’s capacity dimensions):

maximize

subject to

e MDMCK reduces to the 0-1 knapsack problem when R =1
and B; = 1 for all tasks t.
e |t reduces to the integer knapsack problem when

e R=1,

e the B; are unbounded for all t, and

e git(b) =bx g1 (1) and u(b) = b x ut(1) for all t and
b.

o If we require only that R = 1, it reduces to the multiple-
choice knapsack problem [17,24].

e Finally, if we require only that By = 1 for all t it reduces to
the multi-dimensional knapsack problem [4, 5].

Extensive literature exists on these special cases but | have found
none on MDMCK itself, and two researchers familiar with knap-
sack problems are unaware of any [3,19]. None of the problems
mentioned above should be confused with the multiple knapsack
problem, which this paper does not consider.

2.3 Computational Complexity

Strictly speaking, the classic 0-1 and integer knapsack problems
are NP-hard [9, 15]. However if the magnitude of the number
describing knapsack capacity is bounded (e.g., if we require that
quantities of resources be representable as 32-bit integers), the prob-
lem may be solved in “pseudo-polynomial” time via dynamic pro-
gramming. In other words, classic knapsack problems are an ex-
ception to the generalization that “NP-hard” implies “computation-
ally infeasible.” Papadimitriou & Steiglitz clarify this somewhat
confusing issue [15]. Martello & Toth describe dynamic program-
ming algorithms for classic knapsack problems [13], and Sedgewick
provides remarkably concise knapsack solver in C [23].

The multiple-choice knapsack problem admits pseudo-polynomial
algorithms [18]. In the judgment of two authorities, if dimen-
sionality is fixed rather than an aspect of problem size, then the
multi-dimensional problem also admits pseudo-polynomial solu-
tion [3,19], although the literature appears to be silent on this issue.
Pisinger believes that MDMCK can be solved in pseudo-polynomial
time [19]. However the conjectured run time is proportional to
I'IleNr, which may be infeasible for problems of practical interest.
Indeed this bound may compare unfavorably to simple enumeration
over the I'Ithl(Bt + 1) ways of choosing at most one resource bun-
dle for each task. Until we know more about practical problem
instances, we can have no basis for preferring one approach over
another.

If exact pseudo-polynomial algorithms are not available for MDMCK
or if their computational requirements are prohibitive in practice,
we may resort to well-known integer programming methods im-
plemented in commercial solvers such as CPLEX. These quickly
compute a sub-optimal solution and an upper bound on its dis-
tance from optimal, and then improve the solution and/or tighten
the bound as they continue. In preliminary experiments on an HP

= 1
£

=

S ors

o

X

g 05

£

= 025

S

§ 0 1 1 1 1]

01 015 02 025 03 035
distance to optimal (%)

Figure 1. CDF of relative distance to optimum.

9000/785 computer, CPLEX 7.5 was allowed 30 seconds on each of
100 randomly-generated MDMCK instances of moderate size (R=5
resource types, Ny = 10 units of each resource r, T = 200 tasks,
Bt = 20 resource bundles for each task t). The distribution of so-
lution quality across these hundred trials is shown in Figure 1. In
all cases CPLEX found a solution within roughly one third of one
percent of optimal; the median solution quality is within 0.22% of
optimal.

These experiments should be taken with a grain of salt for sev-
eral reasons. It is not clear that the random instances used resemble
those that would occur in the wild if any practical problem were for-
mulated as MDMCK. It is furthermore possible that the randomly-
generated instances were extraordinarily easy; flawed benchmarks
have been used inadvertently in related research [1]. However the
best available evidence suggests that good solutions to instances of
moderate size entail modest computational cost.

If exact pseudo-polynomial algorithms and generic integer pro-
gram solvers prove unsatisfactory, further possibilities exist: Per-
haps efficient special-purpose approximation algorithms can be de-
veloped. These might exploit special structure in problems of prac-
tical interest, e.g., free disposal.

In summary,

e Good news: Generalized knapsack problems like MDMCK
are well understood.

Bad news: Knapsack problems are NP-hard.

Good news: Some admit pseudo-polynomial algorithms.
Bad news: The polynomials are scary.

Good news: CPLEX can approximately solve random in-
stances quickly.

e Bad news: We don’t know what real instances look like.

3. UDC RESOURCE ALLOCATION

This section considers the suitability of the MDMCK problem for-
mulation to resource allocation in a Utility Data Center. We first
consider the requirements of a UDC allocation scheme and then
ask whether MmDMcK fulfills them.

3.1 Requirements

UDC resource allocation mechanisms must address the follow-
ing issues:

1. Scarcity: Computational resources are available in limited
quantities.

2. Heterogeneous preferences: The value that different stake-
holders derive from identical resource allocations may differ.

3. Complementarities: The benefit obtained from a quantity of
one resource may depend on the quantity of another resource
received (analogy: left shoes and right shoes).

4. Optimality: Resources should be allocated so as to optimize
a measure of overall system performance, e.g., stakeholder
satisfaction, resource utilization, monetary profit, or some
combination of these or other factors.

5. SLAs: UDC users may require contractually guaranteed re-
source allocations, and contracts may stipulate penalties if
guarantees are not met.

6. Multiple time scales: SLAs that require human decision-
making might persist for weeks or months, but efficiency
might require that computational resources be dynamically
re-allocated on much shorter time scales.

7. Demand uncertainty: Unexpected resource demands may arise,
and these may be correlated across tasks positively (e.g., all
news sites were hit hard on 9/11) or negatively (e.g., the
“slashdot effect” can strike only a few sites at a time).

8. Demand variability: Even when resource demands are de-
terministic they may fluctuate, e.g., on daily, weekly, or sea-
sonal cycles.

9. Operating costs: Some resources incur costs when allocated
vs. idle, e.g., CPUs require power and cooling.

10. Capacity planning: Resource allocator inputs should inform
long-term capacity expansion decisions.

11. Orthogonality: The semantics of an allocator’s inputs should
be defined independently of the algorithm.

12. Elegance: All other things being equal, we prefer that al-
location mechanisms and their inputs be clear, simple, and
general.

A UDC may serve a single organization or multiple external cus-
tomers, and from an economic standpoint the distinction is crucial.
Special requirements arise when multiple conflicting interests con-
tend for scarce resources, and we postpone discussion of these is-
sues to Section 4.

3.2 Range of Expression

This section argues that the MDMcK problem formulation of Sec-
tion 2.2 satisfies the requirements enumerated in Section 3.1 and is
well suited to UDC resource allocation.

Several requirements are trivially addressed by a utility maxi-
mization framework, e.g., resource scarcity and heterogeneous pref-
erences. By allowing task utility to be defined over bundles of re-
sources we permit arbitrary complementarities to be expressed.

Global optimality follows from an MDMcCK solution under well-
defined conditions: The overall objective function describing so-
lution quality as a function of the allocation must be defined as a
simple sum over all tasks of a common-scale utility metric. Further-
more the utility that accrues to a task must depend only on the re-
sources allocated to it and not on the disposition of other resources.
In other words, the MDMcCK formulation ensures global optimal-
ity only if there are no “cross-cutting” utility interactions across
tasks. If our notion of global solution quality includes a measure
of “fairness,” for instance, an MDMCK solution may not be glob-
ally optimal. A more general mathematical-programming formula-
tion could easily support completely arbitrary objective functions.
Such generality would, however, preclude connections with well-
understood problems and the possibility of pseudo-polynomial al-
gorithms. At present we can only speculate about the utility func-
tions that real-world stakeholders might associate with tasks; due
to space limitations refrain from such speculation here.

The proposed formulation may be used to compute long-term
allocations expressed as SLAs with resource guarantees and vio-

25 -

10 -

utility ($)

implicit
5t °

0 1 1 1 1 J
0 5 10 15 20 25

units allocated

utility ($)
o

-20 + . used in alocation
o SLA pendty O

'

w

o
T

1 1 1 J

0 5 10 15 20 25
units allocated

Figure 2: Utility functionsfor long- and short-term allocation
(top and bottom, respectively).

lation penalties, and it may also be used for short-term dynamic
reallocations that seamlessly account for SLA provisions. Figure 2
illustrates utility functions corresponding to these cases. The func-
tion at the top simply expresses the utility that results when vari-
ous quantities of a resource are allocated to a task in a long-term
SLA extending for, e.g., weeks or months. Allocating no resources
implicitly yields zero utility because tasks have no initial resource
endowment.

Tasks with predictable time-varying resource demands must be
able to secure long-term guarantees of adequate resources without
reserving for their peak needs. The MDMcCK framework can address
this requirement: For the purposes of long-term allocation we sim-
ply divide time into intervals of appropriate duration and define a
different “virtual resource type” for each actual resource type in
each interval. A resource dimension need not be, e.g., “number of
CPUs,” but might instead be “number of CPUs between 10am and
11am next Thursday.” A resource bundle may therefore specify
an arbitrarily-detailed schedule of future resource demands. (Of
course this approach greatly increases the dimensionality of the
problem, thereby increasing the computational burden of finding
solutions.)

After long-term allocations have been made, resources may be
re-allocated on shorter time scales, e.g., hours, in response to tasks’
changing needs. Tasks express willingness to temporarily release
resources or eagerness to acquire additional resources through mod-
ified utility functions as illustrated on the bottom in Figure 2. We
simply require that if a task has been given a resource bundle in a
long-term allocation, its utility function for the purposes of short-
term allocation must be defined as zero for that bundle; in other
words, no change in allocation implies no change in utility. In the
example on the bottom in Figure 2, the task has obtained a guar-

antee of seven units, so its utility function must cross zero at that
point. Tasks indicate willingness to release resources by reporting
negative utility for bundles smaller than those they hold; SLA vio-
lation penalties provide natural lower bounds on reported utility. If
penalties are set to —oo tasks reserve the ability to forbid preemp-
tion entirely. Aside from these restrictions the utility functions used
in short- and long-term allocations may differ arbitrarily. In sum-
mary, short-term allocation permits resources guaranteed through
long-term SLAs to be re-allocated/preempted in a principled way
as demand changes.

Demand uncertainty is not expressed via probability distribu-
tions in the proposed framework. Instead, the utility functions used
for long-term allocations describe expected utility as determined by
stakeholders. If the demand forecasts embodied in utility functions
used for long-term allocations prove to be inaccurate, tasks may
re-define their utility functions for the purposes of short-term allo-
cation and thereby acquire or release resources as needed. Instead
of seeking high utilization, e.g., through statistical multiplexing,
we seek high value utilization via utility-directed dynamic reallo-
cation. It remains an open question whether UDC users want their
applications to acquire and release resources by reporting utility
functions to the UDC. However the popularity of outsourcing and
of server “capacity on demand” solutions from IBM and HP sug-
gests that this is precisely the mode of expression that users want:
When resource needs increase, expand the resource pool by spend-
ing money; when demand spikes pass, save money by releasing
resources [2,11].

It is easy to accommodate operating costs associated with non-
idle resources, e.g., the cost of electricity and cooling for active
hosts that might instead be powered off. We simply define for each
resource type a “dummy” task whose utility function specifies the
savings of leaving various quantities of the resource unallocated.
If the UDC sells resources to external users, this “idle task” may
define the UDC owner’s reserve prices for resources, i.e., the lowest
prices the seller will accept.

The utility functions that determine day-to-day allocation of an
existing fixed-size resource pool may also guide capacity planning:
Utility functions submitted to the allocator in the past may be used
to compute the aggregate utility of optimal allocations assuming a
resource pool of any size. We may thereby compute the marginal
value of additional units of each resource and the absolute value of
larger resource pools. For a UDC operating within an enterprise, it
is possible to compute profit-maximizing capacity adjustments: If
utility is expressed in the most natural units (dollars), the monetary
value of capacity expansion may be compared against its monetary
cost.

Finally, the semantics of utility functions are straightforward and
independent of utility-maximization algorithms. Users need not
understand dynamic programming or branch-and-bound algorithms
in order to define or understand utility functions. Note that some
resource-allocation schemes in computing systems lack this impor-
tant property. For instance, it is difficult to attach meaning to Unix
CPU scheduling priorities independent of their use in the schedul-
ing algorithm, which may partly explain why this control knob is
used neither widely nor well.

The question of how utility functions should be defined is be-
yond the scope of this paper, and is not the proper concern of allo-
cation mechanism designers. Consider an analogy familiar to most
programmers: gsort(), a general-purpose sorting routine in the
standard C library, requires a user-supplied comparison function
that implicitly defines the correct final order of the input items to
be sorted. The routine’s designers may state properties required
of comparison functions (e.g., transitivity) but can offer no general

guidance on how to define these functions. A user who cannot de-
fine a comparison function for her sorting problem cannot solve it,
with or without the help of a library routine, nor can she distinguish
correct output from incorrect. A user who can define such a func-
tion is spared the chore of implementing low-level sorting logic
and can devote her full attention to the application-level problem at
hand. The mbDmcK formulation encourages a similarly clean sepa-
ration of responsibilities between allocation mechanism designers
and users.

4. ECONOMIC ISSUES

To an economist, an agent is a self-interested decisionmaker whose

preferences are not known to other agents. Economic theory is pri-
marily concerned with situations involving multiple agents; single-
agent situations are the domain of utility theory and decision theory.
Therefore economic theory will not inform our thinking about re-
source allocation in a UDC whose users share common goals—a
reasonable normative assumption for firms and other hierarchical
organizations. However economics has much to say about alloca-
tion in a UDC that serves multiple external customers.

Many allocation situations, including ours, have the following
form: 1) agents submit to an allocator information that influences
its decisions; 2) the allocator distributes goods among agents based
on this information; 3) agents derive utility from the goods they re-
ceive. We assume that agent utility is “quasi-linear in a numeraire
good,” i.e., is measured in dollars and is thus transferable across
agents. This section surveys relevant economic results on alloca-
tion problems and what can and cannot be achieved through allo-
cation mechanisms.

To an economist, desirable properties of an allocation mecha-
nism include

o Efficiency (EFF): The final allocation maximizes total utility.

o Individual Rationality (IR): No agent is worse off as a result
of participating in the allocation process; also known as the
“voluntary participation” property.

e Budget Balance (BB): Goods neither enter nor leave the sys-
tem; in particular subsidies are not required.

e Incentive Compatibility (IC): Agents have no incentive to
strategically mis-report information to the allocator, e.g., to
lie about their willingness to pay for resources. Also known
as the “strategy-proof” property.

In bilateral trade involving utility-maximizing buyers and sellers,
it can be shown that no allocation mechanism can simultaneously
achieve EFF, IR, and BB; see Parkes et al. for a good review of this
and related impossibility results [16]. For our purposes, this means
that naive deployment of an Mmbpmck allocator in a UDC whose
owner and customers seek to maximize different utility functions
ensures that one or more of the following will occur: 1) aggregate
utility will not be maximized (e.g., because agents will lie about
their utility functions); 2) at least one party will be worse off as
a result of the allocator’s decisions; or 3) an outside entity must
drain resources from the system or inject resources into it. Parkes
et al. take IR and BB as hard constraints and maximize reported
utility in a framework that lacks IC, and defend this design decision
eloquently and at length [16].

If resources are allocated without regard for the seller’s welfare
and the seller sets no minimum price, i.e., if only buyer utility
is considered, then it is possible to obtain EFF, IR, BB, and also
IC, through a Generalized Vickrey Auction (GVA) [26]. These
assumptions might be appropriate to a UDC jointly owned by its
users. Furthermore, to apply the GVA to the MDMCK problem

would require that a solver be run once for each agent, increasing
an already formidable computational burden.

Incentive compatibility is desirable not only because “honesty is
good” but because it is easy: the agent decision problem becomes
trivial if straightforward reporting is a dominant strategy. Auction
theorists would say that “bid shading” (strategic misreporting) is to
be expected whenever an allocation mechanism lacks the incentive
compatibility property. It may arise in any context where the infor-
mation that agents report influences the allocator’s decisions, re-
gardless of whether this information superficially resembles “bids”
or whether the allocation mechanism resembles an “auction.”

For instance, if resource allocations are guided by probabilistic
demand forecasts supplied by users [20], it is reasonable to sup-
pose that forecasts will sometimes be mis-reported. If there is a
low probability that an application will require many resources for
an extremely important purpose, for example, the an application
owner may submit a demand forecast that reports a high probabil-
ity of high resource demand. Probabilistic demand forecasts permit
stakeholders to express the probability of various resource demand
levels but not the utility of resources, so the latter information will
sometimes be folded into the former. The net effect is that the al-
location mechanism does not always operate upon straightforward
predictions of future resource demand.

In contrast to the strong negative result on EFF/IR/BB in bilat-
eral trade noted above, economics provides a useful and powerful
positive result concerning incentive compatibility. The Revelation
Principle of mechanism design states that any outcome achievable
via any allocation mechanism can be achieved by a mechanism for
which truthful reporting is a dominant strategy for agents [14]. This
allows us to restrict attention to mechanisms in which straightfor-
ward bidding is a dominant strategy, e.g., GVAs, without loss of
generality.

Much of the resource-allocation literature in economics and other
fields sidesteps computational and analytic difficulties through re-
strictive assumptions. For example, complementarities cannot exist
in the problem most similar to MDMcCK in Ibaraki & Katoh’s survey
of resource allocation [12]. Wurman et al. require that bids be divis-
ible and that demand be nonincreasing in per-unit price in order to
obtain a polynomial-time clearing algorithm [26, 28]. Combinato-
rial auctions permit complementarities to be expressed by allowing
bids containing bundles of goods, and are an area of active research
in economics. See de Vries et al. [8] for a recent survey of the liter-
ature on combinatorial auctions and Andersson et al. [1] for integer
programming approaches to clearing in such auctions.

Wellman et al. have noted connections between certain resource
allocation problems and knapsack problems [27], and de Vries &
\Vohra relate clearing algorithms in combinatorial auctions to set
packing [8]. The possibility of pseudo-polynomial algorithms for
winner determination does not appear to figure prominently in the
literature on combinatorial auctions.

5. SUMMARY & FUTURE WORK

We have seen that a simple and elegant integer-programming for-
mulation of UDC resource allocation permits a remarkable breadth
of expression, allowing us to incorporate into a unified framework
such diverse considerations as heterogeneous preferences, resource
complementarities, demand fluctuations, operating costs, and ca-
pacity planning. If an MDMcK formulation seems appropriate for
UDC resource allocation, further research might take several direc-
tions:

e Market research: Do UDC owners and users prefer this frame-
work?

e Workload characterization: What do real MDMCK problem
instances look like?

e Operations Research / Computer Science: What are suitable
algorithms for solving practical instances? Do they perform
well enough to be used in practice?

e Economics: What properties can be achieved in computa-
tionally feasible allocation mechanisms?

6. ACKNOWLEDGMENTS

Fereydoon Safai and Julie Ward provided access to a CPLEX
license and computer for the experiments of Section 2.3. Cipri-
ano Santos and Ram Swaminathan provided references to the liter-
ature on knapsack problems. Kemal Guler, Kay-Yut Chen, Michael
Wellman, Jeff MacKie-Mason, Fredrik Ygge, and Bill Walsh helped
to apply economic concepts and results to the problem of this pa-
per. | thank Xiaoyun Zhu and Jerry Rolia for several interesting
discussions and for explaining their RAM framework for resource
allocation. Marsha Duro, Sharad Singhal, and Moises Goldszmidt
offered valuable feedback on early presentations of this work.

7. REFERENCES

[1] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge.
Integer programming for combinatorial auction winner
determination. In Proceedings of the Fourth International
Conference on MultiAgent Systems (ICMAS-2000), July
2000. http://www.computer.org/proceedings/
icmas/0625/06250039abs . htm.

[2] Jeffrey Burt. HP offers metering for high-end servers. eWeek,
March 2003. http://www.eweek.com/article2/
0,3959, 924545, 00.asp.

[3] Chandra Chekuri. Personal communication, February 2003.

[4] Chandra Chekuri and Sanjeev Khanna. On
multi-dimensional packing problems. SIAM Journal on
Computing. Forthcoming. Earlier version is [5].

[5] Chandra Chekuri and Sanjeev Khanna. On
multi-dimensional packing problems. In Proceedings of the
Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), January 1999. http://cm.
bell-labs.com/cm/cs/who/chekuri/pub.html.

[6] F.J. Corbat6, J.H. Saltzer, and C.T. Clingen. MULTICS—the
first seven years. In Proceedings of AFIPS Spring Joint
Computer Conference, volume 40, pages 571-583, 1972.

[7] F.J. Corbatd and V.A. Vyssotsky. Introduction and overview
of the MULTICS system. In Proceedings of AFIPS Fall Joint
Computer Conference, volume 27, pages 185-196, 1965.

[8] Sven de Vries and Rakesh V. Vohra. Combinatorial auctions:
A survey. INFORMS Journal on Computing, 15, 2003. To
appear; a version is available on the first author’s Web site.

[9] Michael R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, 1979. ISBN 0-7167-1045-5.

[10] Moises Goldszmidt, Derek Palma, and Bikash Sabata. On the
quantification of e-business capacity. In Proceedings of
E-Commerce, October 2001. Neither Google nor CiteSeer
lead to a world-readable URL but PDF is available through
the ACM Digital Library.

[11] Larry Greenemeier. Utility computing meets real life.
Information Week, April 2003.
http://www. informationweek.com/story/
showArticle._jhtml?articlelD=880035%7.

[12] Toshihide Ibaraki and Naoki Katoh. Resource Allocation
Problems: Algorithmic Approaches. MIT Press, 1988.
ISBN 0-262-09027-9 See problem MDR on page 206.

[13] Silvano Martello and Paolo Toth. Knapsack Problems:
Algorithms and Computer Implementations. John Wiley &
Sons Ltd., 1990. ISBN 0-471-92420-2.

[14] Andreu Mas-Colell, Michael D. Whinston, and Jerry R.
Green. Microeconomic Theory. Oxford University Press,
1995. ISBN 0-19-507340-1.

[15] Christos H. Papadimitriou and Kenneth Steiglitz.
Combinatorial Optimization: Algorithms and Complexity.
Dover, second edition, 1998. ISBN 0-486-40258-4.

[16] David C. Parkes, Jayant Kalagnanam, and Mara Eso.
Achieving budget-balance with Vickrey-based payment
schemes in combinatorial exchanges. Technical Report
RC 22218, IBM Research, March 2002. Variants, some dated
October 2001, exist on the Web. http://www.eecs.
harvard.edu/~parkes/pubs/combexch.pdf.

[17] David Pisinger. A minimal algorithm for the multiple-choice
knapsack problem. European Journal of Operations
Research, 83:394-410, 1995.

[18] David Pisinger. An exact algorithm for large multiple
knapsack problems. European Journal of Operational
Research, 114:528-541, 1999.

[19] David Pisinger. Personal communication, February 2003.

[20] Jerry Rolia, Xiaoyun Zhu, and Martin Arlitt. Resource access
management for a resource utility for commercial
applications. In Proceedings of 8th IFIP/IEEE International
Symposium on Integrated Network Management (IM), March
2003.

[21] Cipriano Santos and Xiaoyun Zhu. Testing scalability of the
mathematical programming approach for resource allocation
in a computing utility. Technical Report HPL-2003-1, HP
Labs, January 2003. http://webnt_hpl._hp.com/
quartermaster/documents/HPL-2003-1_pdf.

[22] Cipriano Santos, Xiaoyun Zhu, and Harlan Crowder. A
mathematical optimization approach for resource allocation
in large scale data centers. Technical Report HPL-2002-64,
HP Labs, March 2002. Internal use only.

[23] Robert Sedgewick. Algorithms in C. Addison-Wesley, 1998.
See page 215 of the 8th printing (August 2001) for a
remarkably clear and compact integer knapsack solver in C.

[24] A. Sinha and A.A. Zoltners. The multiple-choice knapsack
problem. Operations Research, 27:503-515, 1979.

[25] I. E. Sutherland. A futures market in computer time.
Communications of the ACM, 11(6):449-451, June 1968.

[26] Bill Walsh. Personal communication, February 2003.

[27] Michael P. Wellman, William E. Walsh, Peter R. Wurman,
and Jeffrey K. MacKie-Mason. Auction protocols for
decentralized scheduling. Games and Economic Behavior,
35:271-303, 2001. http://ai.eecs.umich.edu/
people/wel Iman/pubs/gebOlwwwmm_html.

[28] Peter R. Wurman, William E. Walsh, and Michael P.
Wellman. Flexible double auctions for electronic commerce:
Theory and implementation. Decision Support Systems,
24:17-27, 1998.

