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The core to many 3-D related applications is establishing reliable dense 
correspondences among the multiple cameras used in a given imaging 
system. This paper proposes a structured light scanning technique for 
directly solving the difficult multiframe correspondence problem across 
any number of cameras without any searching or calibration. The 
technique consists of temporally encoding positional information of 
projector space and capturing the projected result with one or more fixed 
cameras. In contrast to traditional image-based approaches, the proposed 
technique does not rely on consistent textures across frames. Furthermore, 
it automatically determines visibility across all cameras in the system and 
scales linearly in computation with the number of cameras.  
 
The proposed technique forms the core of a complete framework to 
synthesize new views of a given 3-D scene at interactive rates. An 
efficient interpolation method using barycentric coordinates renders new 
views at interactive rates from the computed correspondences. The light 
projector is shown to serve as an additional viewpoint for interpolation, 
thereby expanding the range of synthesizable views. The paper also 
creates an intuitive user interface for specifying the desired virtual view in 
the absence of any 3-D geometry . Experimental results using real-world 
data demonstrate the effectiveness of the proposed framework for creating 
interactive 3-D media. 
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1. Introduction 
 
Interactive 3-D media is becoming increasingly important as a means of communication and 
visualization.  Photorealistic content like “rotatable” objects and panoramic images 
transmitted over the Internet provide the end user with limited interaction and give a sense 
of the 3-D nature of the modeled object or scene.  Such content helps markets like e-
commerce and commercial real estate by making the product of interest appear more 
realistic and tangible to the customer. 
 
To develop an effective framework for interactive 3-D media, a number of issues need to be 
addressed: 

• How to create realistic looking and parallax-corrected virtual views? 
• How to quickly and robustly capture a 3-D scene to automatically produce 

interactive media? 
• How to render these views at interactive rates? 
• How to represent an intuitive interface for the user to specify views? 

A traditional approach is to estimate 3-D models and then reproject the results to create 
new views [Faugeras, 1994].  This approach is often computational and slow, sometimes 
requiring considerable human intervention to achieve reasonable results.   Moreover, 
accurate 3-D measurement may not be necessary since the end goal is ultimately an image. 
 
More recently, image-based rendering (IBR) techniques have focused on using images 
directly for synthesizing new views. Chen and Williams [1993] and Seitz and Dyer [1996] 
interpolate two basis images to synthesize new views.  Hansard and Buxton [2000] estimate 
a parametric function used to interpolate two views.  Laveau and Faugeras [1994] exploit 
constraints of weakly calibrated image pairs.  Avidan and Shashua [1998] use trifocal 
tensors for view synthesis.  Pollard et al. [1998] match edges in three views and then 
interpolate.  These IBR techniques perform well at the first issue of synthesizing good-
looking views.  However, they assume dense correspondences have already been 
established, and in some case, use complex rendering to synthesize new views offline.  
 
In contrast, this paper addresses the problem of reliably computing dense correspondences 
for a static 3-D scene across any number of images in an efficient manner and without 
requiring calibration.  Instead of using image information alone, an active structured light 
scanning technique is proposed to solve the difficult multiframe correspondence problem.  
To simplify computation, correspondences are first established with respect to the light 
projector’s coordinate system, herein referred to as projector space, consisting of a 
rectangular grid with wxh connected rectangular regions.  The resulting correspondences 
may be used to create interactive 3-D media, either directly for view synthesis or with 
calibration information for recovering 3-D shape. 
 
 
2. Related Work 
 



 

The proposed algorithm solves the difficult multiframe correspondence problem using 
structured light scanning.  The following subsections discusses related work in both of these 
fields. 
 
2.1. Multiframe Correspondence Estimation 
 
Solving the correspondence problem is a classic problem in computer vision and image 
processing literature.  It is central to many 3-D related applications including stereopsis, 3-D 
shape recovery, camera calibration, motion estimation, view synthesis, and others.  Simply 
stated, the problem is to find the mapping relating points in one coordinate system to those 
in a second (or more) coordinate system. 
 
The traditional method for solving the correspondence problem is to use image information 
directly.  The correspondence mapping is determined for every pixel by examining its 
neighborhood and exploiting color consistency.  One optimizes some objective function (e.g. 
maximize correlation or minimize some error metric) for a given point in one image to find its 
corresponding match in all the other images [Faugeras, 1994].  Typical approaches include 
matching algorithms, stereo algorithms, and optic flow [Chang, 1999]. 
 
This passive approach works well for scenes that are distinctly textured and have consistent 
textures across all the images.  The approach has difficulty when the scene is more uniform 
in color or when the illumination varies across the images.  Typically, the approach 
produces only a sparse set of correspondences reliably.  Furthermore, matching algorithms 
are often geared for establishing correspondences only two frames at a time.  Thus, solving 
the multiframe correspondence problem for K cameras requires ½K(K-1) dual-frame 
matches. 
 
2.2. Structured Light Scanning 
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Figure 1. Structured light scanning intersects a given 3-D ray with 
its corresponding projected light plane to estimate shape. 



 

Structured light scanning algorithms traditionally use a calibrated camera-projector pair to 
recover 3-D shape information [Batlle et al., 1998].  A single active column in projector 
space results in a plane of light.  The active plane of light is projected onto the scene of 
interest and the resulting contour is imaged by the camera.  Then, for any image pixel p on 
the contour, 3-D point P=(X,Y,Z)’ is found by intersecting the 3-D ray passing through p and 
the 3-D plane equation; an example is shown in Figure 1. 
 
Instead of specifying each plane individually, one can specify the planes in parallel using a 
set of temporally encoded patterns [Posdamer and Altschuler, 1982].  One can form light 
patterns simply by considering the bitplanes of the binary representation of the column 
indices.  An eight-column example is shown in Figure 2.  Each column consists of a three-
bit binary representation.  Three light patterns are formed by taking each bitplane 
horizontally.  
 
The spatially varying light patterns form a temporal encoding of the columns in projector 
space.  Every light pattern, consisting of binary vertical stripes of varying widths, is projected 
in succession.  The camera decodes the projected patterns and builds up the appropriate 
bit sequence at every pixel location.  Hence, given a pixel location in the camera, one can 
instantly determine the corresponding column in projector space, and then calculate the 
corresponding 3-D point.  Note one achieves greater 3-D accuracy by considering the 
transitions between adjacent columns. 
 
The above approach works well for arbitrary static scenes with a calibrated setup.  There 
have been many approaches to further improve on the design of the projected light patterns 
and reduce the total number used [Batlle et al., 1998].  Le Moigne and Waxman [1988] 
project an uncoded grid pattern with landmark dots, an approach that requires a labeling 
process and a particular camera configuration. Boyer and Kak [1987] use a single color 
pattern to handle only neutrally colored scenes.  Other approaches like [Hall-Holt and 
Rusinkiewicz, 2001; Devernay et al, 2002] use sophisticated binary patterns and matching 
algorithms to capture dynamic but not very textured scenes. 
 

 
3. Proposed Solution: LUMA 
 
Instead of requiring camera-projector calibration, this section proposes using structured light 
scanning for recovering the correspondence mapping between a camera and the projector 
directly. Unlike typical structured light scanning approaches, the so-called LUMA technology 
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Figure 2. An eight-column example illustrating the formation of 

light patterns to encode each column’s position. 



 

encodes not only the w columns of projector space, but also the h rows, thereby providing a 
unique temporal code for the wxh connected rectangular regions in projector space.  It 
accomplishes this task by using a set of horizontally striped and vertically striped binary light 
patterns, both of varying widths.  Without loss of generality, it is assumed that w=h, thus 
only 2*log2(w) total light patterns are needed.  Figure 3 shows an example of using LUMA to 
encode location (2,1) in a 4x4 projector space. 
 
There are a couple of observations to make about these coded light patterns.  First, the 
patterns encode only the mapping to a particular projector space rectangle and not to 
specific points within the rectangle.  Consider a 4x4 projector space as shown in Figure 4.  
After decoding, the set of image points A’ is assigned to rectangle A in projector space, 
however the exact point-to-point mapping remains unclear.  Instead of mapping interior 
points, one can exploit the connectedness of the projector space rectangles and map the 
corner points that border any four neighboring projector space rectangles.  For example, the 
corner point p that borders A,B,C,D corresponds to the image point that borders A’,B’,C’,D’, 
or in other words, the so-called imaged corner point p’.  Imaged corner points may be found 
more easily and accurately than matches to points within any projector space rectangle. 
 
In addition, the coded light patterns exhibit a natural hierarchical spatial resolution ordering, 
which dictates the size of the projector space rectangles.  The patterns are ordered from 
coarse to fine, and each associated pair of vertical-horizontal patterns at the same scale 
subdivides the projector space by two in both directions.  Figure 5 shows an example of six 
patterns that encode an 8x8 projector space. Using the coarsest two patterns alone results 
in only a 2x2 projector space.  Adding the next pair of patterns increases the projector 
space to be 4x4, with every rectangle’s area reduced by a fourth, and likewise for the third 
pair of patterns. 

Figure 3. With LUMA, one simply decodes the captured light patterns to 
identify corresponding points in projector space. 
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With these observations in mind, recovery of the correspondence mapping is 
straightforward with LUMA.  The projector displays the coded patterns in sequence onto the 
scene of interest.  For each light pattern, the camera captures the projected pattern and 
then decodes the symbol at every pixel location.  After all the patterns have been projected, 
the pixel locations in the camera consist of a decoded bit sequence that specifies a 
particular rectangle in projector space. 
 
In contrast to previous work [Chang, 2002], LUMA proceeds to use the corners of 
connected projector space rectangles to unambiguously and more accurately establish the 
correspondence mapping.  Since it may be difficult to locate every corner’s match at the 
projector space resolution, LUMA finds each corner’s match at the coarsest possible 
resolution and interpolates to finer resolutions where necessary.  In Figure 6, it is easier to 
find the four imaged corners (A’,B’,D’,E’ is one such corner) at resolution level l than at level 
l+1.  Other corner points at level l+1 are found directly or interpolated from these four 
imaged corners.  In the end, subpixel estimates of the imaged corners at the finest projector 
space resolution are established.  The mapping can be similarly established for any number 
of cameras in the system.  Thus, LUMA obtains an accurate correspondence mapping from 
every camera to projector space, resulting in the implicit correspondence mapping among 
any pair of cameras. 
 
The LUMA technology has a number of benefits.  It provides an automatic method for 
estimating dense correspondences between any camera and projector space.  Unlike 
image-based approaches, LUMA does not rely on distinct and consistent textures, nor does 
it produce spurious results for uniformly colored objects. Because of the problem 
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Figure 4.  The connectedness of projector space rectangles 
may be used to pinpoint correspondences of corner points. 
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with additional finer resolution light patterns. 



 

formulation, LUMA supports any number of cameras, efficiently solves the difficult 
multiframe correspondence problem for a static 3-D scene, determines visibility and 
occlusions across all cameras, and scales linearly with the number of cameras.  LUMA uses 
the same cameras to capture color and shape.  Because it does not require calibration, 
there are no restrictions on the physical locations of the camera(s) and the projector.  
Moreover, there are no restrictions on the type of 3-D scenes it can handle since it uses 
robust binary patterns.  The following section describes the technology in greater detail. 
 
 
4. LUMA System Details 
 
The LUMA system consists of several steps that are detailed in this section.  The following 
notation will be used in the remainder of the paper.  Suppose there are K+1 coordinate 
systems (CS) in the system, where the projector space is defined as the 0th coordinate 
system and the K cameras are indexed 1 through K.  Let lowercase boldface quantities 
such as p represent a 2-D point (pu,pv) in local coordinates.  Let capital boldface quantities 
such as P represent a 3-D vector (px,py,pz) in the global coordinates.  Suppose there are a 
total of N light patterns to be displayed in sequence, indexed 0 through N-1.  Then, define 
image function Ik(p;n)=C as the three-dimensional color vector C of CS k at point p 
corresponding to light pattern n.  Note that I0(·;n) represents the actual light pattern n 
defined in projector space.  Denote Vk(p) to be the indicator function at point p in camera k.  
A point p in camera k is defined to be valid if and only if Vk(p)=1. Denote Sk(p;n) to be the 
unknown bit sequence function corresponding to pattern n at point p in camera k.  Note that 
the decoded bit sequence is given by the set of bits {Sk(p;0), Sk(p;1),…, Sk(p;N-1)}.  Define 
the mapping function Mij(p)=q for point p defined in CS i as the corresponding point q 
defined in CS j.  Note that these mappings are bi-directional, i.e. if Mij(p)=q, then Mji(q)=p.  
Also, if points in two CS’s map to the same point in a third CS (i.e. Mik(p)=Mjk(r)=q), then 
Mij(p)=Mkj(Mik(p))=r.     
 
The multiframe correspondence problem is then equivalent to the following: project a series 
of light patterns I0(·;n) and use the captured images Ik(·;n) to compute the bit sequence 
functions Sk(p;n) and determine the mappings Mij(p) for all valid points p and any pair of 

Figure 6. Analyzing corners at one resolution level helps to locate corners at a finer level. 
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cameras i and j.  The mappings may be determined for each camera independently with 
respect to projector space since from above 

Mij(p)=M0j(Mi0(p)) 
This observation is the key to the efficiency of LUMA.  The algorithm to solve the multiframe 
correspondence problem is as follows. 
 

1. Capture the color information of the 3-D scene from all cameras in ambient lighting.  
These images serve as the color texture maps in the final representation. 

2. Project and capture reference patterns.  An ambient-only (“all black”) pattern and a full-
illumination (“all white”) pattern correspond to the first two patterns projected I0(·;0) and 
I0(·;1), respectively.  The captured patterns Ik(p;0) and Ik(p;1) provide the approximate 
mean color vector for the “black” (0) and “white” (1) symbols respectively at image pixel 
p in camera k.  Because of illumination variations and different reflectance properties 
across the object, the mean color vectors may vary across image pixels in every 
camera.  Note that Ik(·;0) can also serve as the color information in step 1 for camera k 
as long as there is sufficient ambient light in the scene. 

3. Create the series of light patterns to be projected.  This series includes the log2(w) 
spatially varying vertically striped patterns to encode the columns of the projector 
space and the log2(h) spatially varying horizontally striped patterns to encode the rows 
of the projector space. The number of patterns N is then log2(w)+log2(h)+2, including 
the two reference patterns.  These patterns correspond to I0(·;m), where m varies from 
2 to N-1 as the pattern width decreases for each vertical and horizontal pattern pair.  
The patterns are Gray coded to reduce spatial frequency [Sato and Inokuchi, 1985]. 

4. Determine validity maps for every camera.  For every pixel p in camera k, Vk(p)=1 if 
|Ik(p;0)-Ik(p;1)|>T and 0 otherwise, where T is some preset global threshold.  The 
invalid pixels correspond to points that lie outside the projected space or that do not 
offer enough discrimination between the “black” and “white” symbols (e.g. regions of 
black in the scene absorb the light).  

5. In succession, project each coded light pattern onto the 3-D scene and capture the 
result from all cameras.  In other words, project I0(·;m) and capture Ik(·;m) for camera k, 
where m varies from 2 to N-1. It is important to ensure that there is proper 
synchronization between the projector and the cameras.  Figure 7 shows captured 
images I1(·;14) and I1(·;15) for the “Cap” image pair described in Section 8. 

6. For every light pattern, decode the symbol at each valid pixel in every image.  Let 
Sk(p;m) be the decoded bit taking on value 0 or 1.  Then, 

Sk(p;m) = arg min (|Ik(p;m)- Ik(p; Sk(p;m))|) 
for all valid points p in camera k, where m=2,…,N-1.  Every valid pixel is assigned the 
symbol (0 or 1) corresponding to the smallest absolute difference between the 
perceived color from the captured light pattern and each of the symbol mean colors.  

7. Perform coarse-to-fine analysis to extract and interpolate imaged corner points at 
finest resolution of projector space.  Define Bk(q) to be the binary map for camera k 
corresponding to location q in projector space at the finest resolution, initially all set to 



 

zero.  A projector space location q is said to be marked if and only if Bk(q)=1.  For a 
given resolution level l, one follows these substeps for every camera k: 
a. Convert bit sequences of each image point to the corresponding projector space 

rectangle at the current resolution level.  For all valid points p, the corresponding 
column c in the 2l+1x2l+1 projector space is simply the concatenation of the decoded 
bits Sk(p;2*s+2), and the corresponding row r is the concatenation of the remaining 
bits Sk(p;2*s+3), for s=0,1,…,l. Hence, Mk0(p)=(c,r). 

b. Locate imaged corner points corresponding to unmarked corner points in projector 
space.  Suppose valid point p in camera k maps to unmarked point q in projector 
space.  Then, p is an imaged corner candidate if there are image points within a 
5x5 neighborhood that map to at least three of q’s neighbors in projector space.  
The motivation is to use the projector space connectivity to overcome possible 
decoding errors due to specularities and aliasing.  Imaged corners are found by 
spatially clustering imaged corner candidates together and computing their subpixel 
averages.  Set Bk(q)=1 for all corner points q at the current resolution level.  

c. Interpolate remaining unmarked corners in projector space at the current resolution 
level.  The matches to unmarked corners are bilinearly interpolated from matches 
to the corners' marked nearest neighbors, assuming there are a sufficient number 
of such neighbors. 

d. Increment l and repeat steps a-c for all resolution levels l<log2(w).  The result is a 
dense mapping M0k(·) of corner points in projector space to their corresponding 
matches in camera k. 

8. Validate rectangles in projector space.  For every point (c,r) in projector space, the 
rectangle with vertices {(c,r),(c+1,r),(c+1,r+1),(c,r+1)} is valid if and only if all of its 
vertices are marked and they correspond to valid points in camera k. 

9. Warp texture map from every camera to projector space.  For every valid rectangle in 
projector space, bilinear interpolation of the points in camera k corresponding to the 
rectangle vertices is used to fill in the appropriate color information.  This warping 

Figure 7. Captured light patterns m=14 and m=15 from camera 1 for the “Cap” image pair.



 

automatically results in a parallax-corrected view of the scene from the projector’s 
viewpoint. 

 
In the end, one obtains the correspondence mapping Mk0(·) between any camera k and the 
projector space, and these mapping may be combined as described above to give the 
correspondence mapping Mij(p)=M0j(Mi0(p)) between any pair of cameras i and j for all valid 
points p. 
 
The approach automatically computes correspondence, occlusions, and visibility among all 
cameras without additional computation.  Figure 8 depicts a three-camera 2-D example with 
scene points A and B.  Decoding each camera in succession, one finds various points in 
each image and their corresponding match in projector space (points a1, a2, and a3 all map 
to the first location in projector space, whereas b1 and b3 map to the second location).   No 
points in camera 2 are found to decode to the second location since B is occluded from 
view.  One can easily build up an array in projector space that keeps track of the original 
image points and traverse this array to determine correspondences. The first location in 
projector space contains image points a1, a2, and a3, suggesting that (a) all three cameras 
can see this particular point A, and (b) the three image points all correspond to one another.  
The second location in the projector space contains image points b1 and b3 implying that 
(a) cameras 1 and 3 can view this point B, (b) B must be occluded in camera 2, and (c) only 
b1 and b3 correspond. 
 
It is worth noting that the above algorithm may be extended to handle multi-colored 
patterns.  Instead of using binary black-white patterns, one could just as easily employ 
multiple color bases (e.g. white, red, green, blue), thereby reducing the overall number of 
patterns needed.  In preliminary tests, it has been found that black and white patterns 
appear to be more robust for a wider range of 3-D objects and scenes. 
 
 

Figure 8. A 2-D example of LUMA’s feature to automatically determine correspondence 
and visibility across multiple cameras. 
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5. Experimental Results 
 
LUMA can directly contribute to many applications that require one or more cameras.  It is 
used to compute dense multiframe correspondences for various real-world scenes and to 
create compelling 3-D media.  In addition to simplifying the capture process, LUMA 
significantly reduces computation by defining the correspondence mappings with respect to 
the common projector space.  The following sections demonstrate the applicability and 
flexibility of LUMA to a number of applications including interactive view synthesis, camera 
calibration, and 3-D shape recovery. 
 
In all cases, the imaging system consists of a single 1.1 GHz Pentium III notebook 
computer, a number of Point Grey Research’s Dragonfly cameras (640x480, 30 fps) all 
connected to a single Firewire/IEEE-1394 bus, and one DLP light projector displaying at 
XGA (1024x768) resolution; an example of the LUMA system is shown in Figure 9.  The 
computer serves to control the cameras and the projector.  The computer runs custom 
capture and visualization software written in Microsoft MFC Visual C++ and OpenGL.  The 
following results use only two or three cameras, but LUMA easily supports any number of 
cameras limited only by the bus throughput.  The cameras capture both color and 
correspondence information simultaneously in ambient light.   
 
In the present implementation, the scene is assumed to be stationary and only a single 3-D 
mesh of the scene is captured.  Only 22 light patterns (including the two reference patterns) 
are needed to encode the 1024x1024 projector space.  Because of projector-camera 
latency, the complete system is currently limited to about 5 fps to ensure proper 
synchronization.  The capturing process thus takes less than five seconds, and the analysis 
process described in Section 4 requires less than a minute. 
 
 
6. Application: Interactive View Synthesis 
 

Figure 9. The experimental LUMA system uses a projector and one or more cameras. 



 

The multiframe correspondence mapping obtained by LUMA may be directly used as a form 
of interactive 3-D media.  Using the images captured at every camera and the associated 
correspondence mapping, one can easily perform view interpolation between any pair of 
images to synthesize viewpoints that were not originally captured.  It gives the user limited 
interaction and manipulation of a 3-D scene without having to perform any calibration. 
 
An intermediate view between two anchor images is constructed by examining projector 
space for points corresponding to the anchor images and then computing the weighted 
average of the pixel information (both location and color).  A parameter specifies the relative 
distance away from the anchor views.  It should be clear that this interpolation provides a 
smooth transition between the anchor images in a manner similar to image morphing.  The 
key difference is that parallax effects are properly handled through the use of the 
correspondence mapping.  In this formulation, only scene points that are visible in the 
anchor images (i.e. scene points that lie in the intersection of the cameras’ visibility spaces) 
may be properly interpolated. 
 
One can proceed to render virtual views of the captured scene given a set of images and 
corresponding dense correspondences. Instead of merely performing view interpolation to 
recover intermediate views, the given LUMA data may also be used for extrapolating views 
outside the set of basis images.  Moreover, the views should be generated at interactive 
rates to provide a responsive system for the user.  The section details the proposed solution 
to this so-called interactive view synthesis problem, and, without loss of generality, it 
considers only three images for simplicity. 
 
Given the triplet corresponding to the same scene point visible in all three images, one 
needs a way to predict the coordinates of the scene point in a virtual view.  A natural choice 
is to extend conventional linear interpolation to three images.  To this end, barycentric 
coordinates are used to weight the triplet to come up with the new location, where the 
weights sum to one and can be negative.  The same weights are then used on all such 
triplets to form a consistent virtual view.1  
 
This representation leads to a natural interface for specifying new views, especially 
important in the absence of any 3-D geometry.  As shown in Figure 10, the so-called 
interface triangle gives an abstract 2-D representation of the arrangement of the cameras.  
The user controls a point with respect to the interface triangle defined in the plane.  The 
barycentric coordinates of the point are then used to weight all triplets to synthesize the 
appropriate image.  The steps of the complete algorithm are as follows: 
 
1. Construct interface triangle ∆xyz:  Let x=(0,0). Define y-x to be the median of 

correspondence differences between cameras 2 and 1, and likewise, z-y for cameras 3 
and 2. 

2. Define user-specified point w=(s,t) with respect to ∆xyz.   

                                                 
1 The virtual view corresponds to a physically valid in-between view with parallel affine cameras [Seitz and 

Dyer, 1996], or nearly so, with small rotation [Pollard et al., 1998].  



 

3. Determine barycentric coordinates (α,β,γ) corresponding respectively to the weights for 
vertices x, y, z:  
a. Compute signed areas of subtriangles formed by vertices and w, i.e. SA(x,y,w), 

SA(y,z,w), SA(z,x,w), where for vertices x=(sx,tx), y=(sy,ty), z=(sz,tz), 
SA(x,y,z)= ½((ty-tx)sz+(sx-sy)tz+(sytx-sxty)) 

Note that it is positive if the vertices are oriented clockwise and negative otherwise. 
b. Calculate (possibly negative) weights α, β, γ based on relative subtriangle areas, such 

that 
α = SA(y,z,w) / SA(x,y,z) 
β = SA(z,x,w) / SA(x,y,z) 

γ = SA(x,y,w) / SA(x,y,z) = 1 – α - β 
4. For every triplet (a,b,c) of corresponding image coordinates, use a weighted combination 

to compute the new position p=(u,v) relative to ∆abc, i.e. 
u = α ua + β ub + γ uc 
v = α va + β vb + γ vc 

Note that the new color vector is similarly interpolated. 
 
The algorithm automatically performs three-image view interpolation for interior points of the 
interface triangle, reduces to pairwise view interpolation along the perimeter, and, in fact, 
executes view extrapolation for exterior points, all without any calibration. 
 
The algorithm runs in real-time after quantizing α and β such that only integer and bitwise 
operations are used in the interpolation equation.  In particular, the parameter space is 
discretized to reduce the number of allowable views.  Each real parameter interval [0,1] is 
remapped to the integral interval [0,N], where N=2n is a power of two.  Let a=(int)(α N) and 
b=(int)(β N) be the new integral view parameters.  Then, the generic interpolation 
expression quantities pa, pb, pc may be reduced as follows: 

Figure 10. Point w and interface polygon xyz specify the new coordinates p 
of a scene point associated with the triplet (a,b,c). 
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p = α p1 + β p2 + γ p3 = p3 + α (p1-p3) + β (p2-p3) 
= (N p3 + α N (p1-p3) + β N (p2-p3)) / N 
≈ ((p3 «N) + a (p1-p3) + b (p2-p3)) » n 

where ‘«’ and ‘»’ refer to the C/C++ operators for bit shifting left and right, respectively.  
Thus, floating point multiplication is reduced to fast bit-shifting, and all computations are 
performed in integer math.  The computed quantities are obviously approximations to the 
actual values due to round-off errors. 
 
To handle occlusions without knowing depth, one can analyze correspondence vectors or 
use McMillan’s rendering algorithm to ensure the correct order of points [McMillan, 1995].  
Alternatively, one can calibrate from correspondences to estimate depth information and 
then use z-buffering. 
 
The proposed solution to interactive view synthesis is more flexible and less complex than 
traditional image interpolation approaches.  It works well for interpolating and even 
extrapolating views with three images, and it can support more than three images by 
arranging the layout of images into connected triangles.  In contrast to [Hansard and 
Buxton, 2000], it is a parameterized view synthesis technique that offers a second degree of 
freedom in selecting the virtual view. 
 
There are additional benefits when used in conjunction with LUMA for obtaining 
correspondences.  By construction, all correspondence information is defined with respect 
to projector space.  This fact allows LUMA to quickly identify the scene points visible by all 
cameras, leading to much faster rendering.  Furthermore, the projector itself may be viewed 
as a virtual camera by warping image information back to projector space and synthesizing 
the projector’s viewpoint.   This new image serves as an additional basis image for view 
synthesis, thereby creating a way to interpolate views from even a single camera. 
 
Using real-world sequences, one can use LUMA to create some compelling synthesized 
views.  A custom interactive viewer renders the appropriate view in real-time based on the 
user’s input, thereby simulating manipulation of the captured object.  The first example in 
Figure 11 uses three cameras to capture a human subject in the “Face” triplet.  These three 
images serve as the basis images to produce the synthesized views shown in Figure 12.  In 
this example as well as the subsequent ones, the dark regions that appear correspond to 
portions of the dropcloth behind and possibly supporting the captured object; note that 
LUMA properly determines the correspondences for these points as well.  The interface 
triangle, located in the lower right corner of each image, shows the user’s viewpoint as a 
dark circle and its relative distance to each camera or vertex.  The upper left image is a view 
interpolation between the left and right cameras alone.  The upper right image shows the 
result of interpolating using all three cameras.  The bottom two images are extrapolated 
views that go beyond the interface triangle.  The subject’s face and shirt are captured well 
and appear to move naturally.  The neck does not appear in the results since it is occluded 
in the top camera.  Because of the wide separation among cameras, the resulting views are 
quite dramatic especially when seen live. 
 



 

The system also works well for scenes consisting of multiple objects.  Figure 13 shows a 
three-camera example consisting of a bowling pin, banana, and globe in the “Mixed” triplet.  
Again, using the three original views as basis images, the interactive viewer generates the 
synthesized views found in Figure 14.  The correspondences are obtained automatically 
and without any explicit segmentation.  The resulting views are reasonable and the objects 
appear to move in a consistent manner.  The small gaps in the globe arise because of 
sampling issues and may be filled in by using more cameras or better arranged ones. 
 
The real power of the proposed framework can be demonstrated in the last example.  
Figure 15 shows a Buddah mask captured by only two cameras in the “Buddah” image pair.  
The pair are used to form the projector’s synthesized viewpoint with scaled dimensions 
shown as the lower image of the image triplet.  Figure 16 shows typical synthesized views.  
With the original two images, one can perform only view interpolation like the upper left 
image.  However, using the projector’s viewpoint as a third basis image, one can create a 
broader set of views with more motion parallax as seen in the other three synthesized 
views. 
 

Figure 11. The “Face” image triplet. 



 

It should be clear from this last example that LUMA can be used to generate even 
stereoscopic image pairs from a single camera.  One simply needs to place the projector in 
the appropriate location next to the camera to simulate a binocular set up.  LUMA proceeds 
to solve the dense correspondence mapping between the camera frame and the projector 
space.  The correspondence mapping is then used to synthesize the image from the 
projector’s viewpoint.  Thus, the image captured by the camera and the synthetic projector’s 
viewpoint together form a stereo pair.  To achieve a lower cost solution, a modified 
patterned flash could be used instead of the projector to encode the positional information 
of the projector’s space. 
 
 
7. Application: Camera Calibration 

 
The LUMA technology can also be used as a front end for active camera calibration.  It is 
particularly useful for systems consisting of more than one camera.  Instead of using a 
patterned calibration target and various image processing techniques to establish feature 
correspondences across all the images, one can apply LUMA to automatically solve for 

Figure 12. View synthesis results with the “Face” image triplet. 



 

correspondences among all cameras.  A featureless rigid planar surface (e.g. projection 
screen, whiteboard, box) serves as an adequate target.  Because LUMA automatically 
determines occlusions and visibility across all the images, only the points that are visible in 
all images are used for calibration.  The number of such points is considerably larger than 
that obtained with passive techniques.  Arbitrary world coordinates are assigned to each 
position in projector space, and the information is fed into standard nonlinear optimization 
techniques to generate the calibration parameters [Tsai, 1987; Zhang, 2000].  It is worth 
noting that the light source is assumed to have negligible projection distortions (e.g. 
nonlinear lens or illumination distortion); one should account for these parameters for a 
complete calibration process. 
 
8. Application: 3-D Shape Recovery 
 
With a calibrated set up2, one can easily convert the correspondence mapping obtained by 
LUMA into 3-D information.  If the projector’s location is known, 3-D shape can be computed 
                                                 
2 Active calibration from Section 7 is used to obtain dense correspondences for a featureless planar target, and 
these correspondences are fed into Zhang’s calibration algorithm [2000]. 

Figure 13. The “Mixed” image triplet. 



 

using the ray-plane intersection technique described in Section 2.2.  However, using LUMA 
with multiple cameras, the projector’s location does not ever have to be known, and the 
projector can in fact be arbitrarily placed.  One can instead use least squares triangulation 
to compute the local 3-D coordinates for a particular scene point given at least two 
corresponding image points referring to the scene point, The result is a cloud of 3-D points 
that can be defined with respect to projector space coordinates or one of the cameras’ 
coordinate systems. 
 
Because of the regular rectangular structure of either coordinate system, one can form a    
3-D mesh through these points and tessellate neighboring points together.  A triangle patch 
may be formed by examining neighboring points in the rectangular grid, where each vertex 
of the patch consists of the 3-D coordinates and color information.  Note that some patches 
are not added to the model, including those whose vertices correspond to points not visible 
in all the cameras and whose vertices transcend depth boundaries.  In the end, one obtains 
a coherent 3-D mesh (possibly piecewise) model of the scene corresponding to points 
common to all cameras. 
 

Figure 14. View synthesis results with the “Mixed” image triplet. 



 

The LUMA system has been used to capture the 3-D shape of various real-world objects.  
The first example is the “Cap” image pair shown in Figure 17.  The set of coded light 
patterns are projected onto a baseball cap, and two cameras independently decode the 
patterns to obtain the dense mapping with respect to projector space.  As described in the 
previous section, this mapping may be used directly for view synthesis to allow the user to 
seemingly manipulate the cap to a limited extent.  With calibration parameters, however, 
one can obtain a true 3-D model for the cap and freely view the object at an arbitrary angle 
as shown in Figure 18.  Notice that the resulting model is smooth and captures the shape 
quite nicely.  The jaggedness along the edge of the model corresponds to points not visible 
in both cameras. 
 
A second example comes from the “Mixed” image pair shown in Figure 13, where only the 
bottom two frames are considered as basis images.  Figure 19 demonstrates that without 
any segmentation LUMA can also recover 3-D shape for scenes featuring multiple objects 
quite well.  The small gap in the globe occurs because of the reflection of the ambient light 
source in the right image. 
 

Figure 15. The “Buddah” image pair and the estimated projector’s viewpoint. 



 

Another example is a human face captured with two cameras.  As shown in Figure 20, the 
so-called “Face2” image pair consists of a human subject.  Figure 21 presents the 
recovered 3-D model with and without the texture map.  Note that the human facial 
structure, including the subject’s nose and Adam’s apple, has been automatically computed, 
and even ripples in the clothing have been recovered. 
 
In the final example, a ceramic pink pig is captured by three cameras.  As shown in Figure 
22, the cameras are organized in triangular formation.  LUMA can easily handle the 
additional cameras since the algorithm computes the correspondence mapping between a 
given camera and projector space independently of any other camera.  The resulting 3-D 
model with and without texture map can be found in Figure 23.  The quality of the 
reconstructed surface, including the pig’s ear and hindquarters, is quite good.  It is worth 
noting that uniformly colored objects like this pig tend to cause image-based approaches to 
fail because of the lack of distinct texture.  Note too that LUMA is able to recover the subtle 
shape contours of the dropcloth covering the support structure of the pig. 
 

Figure 16. View synthesis results with the “Buddah” image pair. 



 

Figure 18.  Reconstructed textured and untextured 3-D model for “Cap”. 

Figure 17.  The “Cap” image pair.  

Figure 19.  Reconstructed textured and untextured 3-D model for “Mixed”.



 

Figure 20.  The “Face2” image pair. 

Figure 21. Reconstructed textured and untextured 3-D model for 
“Face2”. 



 

 
 

Figure 22.  The “Pig” image triplet. 

Figure 23.  Reconstructed textured and untextured 3-D model for “Pig”.



 

9. Conclusions and Future Work 
 

This paper has focused on solving the traditionally difficult problem of establishing dense 
correspondence across multiple images.  The proposed solution uses an efficient and 
robust structured light scanning algorithm that replaces computational multiframe 
optimization by simple decoding.  The resulting dense correspondence mappings can be 
directly used as a form of 3-D media with limited interaction (i.e. for interactive view 
synthesis) or, with calibration information, can compute 3-D models.  The approach scales 
well with the number of cameras in the system.  It also offers a good tradeoff between much 
slower image-based techniques and much more expensive laser scanning solutions for 3-D 
shape recovery.  Experimental results with real-world data suggest the system to be 
effective for fast creation of visually interactive 3-D media.  As a side benefit, the projector 
can also serve as an additional virtual camera, thus widening the range of synthesizable 
views. 

 
There are many future directions to pursue.  Two primary issues include improving accuracy 
and speed.  Shape accuracy can be improved with multiple acquisitions and higher 
resolution cameras.  Different setups, including larger number of cameras, may simplify 
scanning of arbitrary 3-D scenes, and lead to complete shape and lighting recovery.  Speed 
can be improved by reducing camera-projector latency and redesigning the coded patterns.  
These improvements may result in real-time capture of dynamic 3-D scenes.  As 
demonstrated, LUMA is a flexible and powerful technique for a variety of 3-D applications 
and it may help with many others involving multiple cameras. 
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