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In the past few years we have witnessed the migration of cheap 
imaging devices into portable and mobile computing appliances 
such as PDAs and mobile phones. As these devices become ever 
more powerful in terms of processor speed and memory, new 
exciting applications and uses are being developed. A particularly 
useful one is the casual capture of text images for faxing, note 
taking, OCR, etcetera. This paper describes the image processing 
pipeline used to enhance images of text captured by a hand-held 
low-resolution camera, and a fast text extraction method. The main 
advantages of the approach are its inherent lightweight structure, 
speed and relative robustness under poor lighting and focus 
conditions. The computational efficiency (and a careful 
implementation) of the approach has allowed its deployment in an 
interactive-time text capture and foreign-text translation demo on a 
PDA with a VGA camera attachment. 
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1. Introduction 
 
In the past few years cheap imaging devices are making their way into portable and mobile 
computing appliances such PDAs and mobile phones, which are in turn becoming more and 
more powerful in terms of processor speed and memory.  Amongst the many exciting new uses 
that these devices stimulate are interesting applications that live in the intersection between 
imaging and mobile computing [2][3][7].  One of those is the casual capture of text images for, 
e.g.,  faxing, note taking,  OCR, etcetera. 
 
We have developed a working concept demo of a PDA with a VGA camera attachment that is 
able capture a text image, process it, detect and locate text, OCR manually selected text lines, 
and translate the text into another language, all running on a Jornada 568 PDA in just a few 
seconds1.   
 
There were several challenges  that needed to be addressed.   First,  embedded or PDA cameras 
are typically low-resolution (e.g. 640x480) and will continue to be so due to cost pressure.   
Second, we are in situations where the lighting conditions are poor and can vary wildly across 
the visual field and soft shadows are also very common (see Figure 5).  Hence, we need to make 
sure that this uneven illumination is dealt with in order to produce a binary text image that is free 
from large thresholding artifacts and yet is not affected by local edge interaction between 
adjacent text characters. Third, although  mobile computing architectures are becoming ever 
more powerful, there are still  limitations that seriously affect performance, such as a small 
working RAM, no mass storage, no floating-point coprocessor and limited caching. 
 
A good trade-off  between speed an accuracy is therefore necessary for these sort of applications. 
For instance, in a recent conference paper  [3] discussing techniques for a text capture and 
translation application, most of the image processing was actually done on a powerful server 
wirelessly connected to the device, because their text processing and extraction method alone 
took several tens of seconds on a 133 MHz  PDA. 
 
This paper describes the image processing pipeline used to process,  enhance and binarize  raw 
text images captured by a hand-held camera and an extremely fast text extraction method. The 
pipeline as described here has been implemented on an actual PDA with camera attachment  and 
has an inherent lightweight structure and relative robustness to poor lighting and focus 
conditions. However, the deployment of this method is not limited only to PDAs. 
 

                                                
1 Most of which taken by the optical character recognition. 
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The approach is overviewed in Figure 1. Starting from a raw sensor image, we use a  new hi-pass 
color demosaicing  method to reconstruct  color planes from raw sensor pixels. Next, we  
perform simple restoration (to attenuate the degradation due to sub-sampling) by upscaling using 
a fast implementation of bicubic interpolation, producing an image twice the original resolution. 
To the upscaled image we apply an unsharp mask filter that  enhances the high-frequency edges 
of the text characters. Next we apply a non-linear retinex-based filter that removes low spatial 
frequency lighting variations in the image and  returns an enhanced image with uniform 
background, to which thresholding is applied to finally produce a binary text image. Finally we 
use a variation of [7] for compensating for skew are for locating text in the image2.  
 
The rest of the paper is structured as follows.  Section  2 describes the demosaicing method,  
Section 3  image upscaling and sharpening, with an eye on some important efficiency issues, 
Section 4 describes the fast text finding method and finally Section 5  provides some examples 
and discusses the benefits and limitations of the approach presented. 
 

2. HiPass Color Demosaicing 
 
Color cameras in mobile devices typically use a single VGA resolution CCD array employing 
three or more color filters with each pixel capturing a single color. The most popular 
arrangement is the Bayer array which has alternating rows of Green-Red and Blue-Green filtered 
pixels. Hence 50% of the pixels are green, approximating luminance, and 25% each are red and 
blue reflecting the lower spatial sensitivity to chrominance of the human visual system. 

                                                
2 Note that the OCR method used will be not be discussed in this paper. In our prototype running on a PDA we have 
ported an existing OCR package developed at  Hewlett-Packard Laboratories.   

Upscaling Unsharp masking

Retinex-based
correction Thresholding Text Finding

Hi-Pass
Demosaicing

OCR

Raw input

Text Locations

ASCII Text

 
Figure 1.  Overview of the text  image processing pipeline presented in this paper. 
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Full color plane reconstruction, or demosaicing, requires the interpolation of each color plane 
(see [1] for a review of interpolation schemes). In order to maintain full text resolution we have 
developed the HiPass demosaicing method [8] outlined in Figure 2. The method attempts to 
decompose the mosaic into a high frequency monochrome and low frequency RGB data.  These 
can then be combined to approximate the true full color image. While some chrominance edges 
are attenuated the method provides full resolution monochrome text and avoids most color 
aliasing artifacts for photographic images. 
 
For each red, green or blue pixel in the raw mosaic (shown expanded into red, green and blue 
color planes in Figure 2), the corresponding pixel in the HiPass mosaic is constructed by 
subtracting from it a corresponding low pass red green or blue pixel constructed from the 
appropriate color plane of the mosaic. This is then corrected to remove zippering artifacts using a 
variant of the standard gradient-based interpolation schemes outlined in [1]. Each pixel of the 
HiPass mosaic that is derived from a red or blue pixel is corrected using a 1D quadratic 
interpolation using the row of 5 neighboring pixels in the vertical or horizontal direction 
depending which has the lower intensity gradient. The interpolation is of the form C0 = (2I0  - I-2 
- I2  + 4I-1 + 4I1)/8, where I and C are the intensities of the HiPass mosaic and its corrected 
version, respectively. The corrected HiPass mosaic is then added to each of the low pass color 
images to generate the fully reconstructed image.  
 
Improved computational effectiveness is achieved by low pass filtering using block averaging 
over a 7x7 image neighbourhood. By maintaining a row wide table of intermediate sums this can 
be achieved using 2 adds, 2 subtracts, a multiply and a shift per pixel independent of the block 
averaging parameter. 

 
Figure 2.  HiPass color demosaicing method. 
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3. Text image upscaling and sharpening  
 
Although the input gray level image could be left at native resolution, experiments and theory 
show that with a  heavily under-sampled image  interpolation  kernels such as bicubic 
interpolation act as true restoration processes [9].   To this end we upscale the image by a factor 
of two using an efficient separable bicubic convolution which requires very few add-multiply 
operations per pixel.   
 
We use the Keys’ interpolating function [4] which approximates the sinc function with piecewise 
third order polynomials: 
 










≤
<≤−+−

<≤++−+

=
x2                                               0

         21         ,485

10        ,1)3()2(

)(
23

23

xaxaxaxa

xxaxa

xua

 

 
The value of a changes the shape of the kernel and there has been much literature as to how this 
affects the output. In our implementation we left it as a parameter but  1−=a  has given the best 
results in our opinion.   
The kernel is separable, that is it can be applied first along the rows to produce an intermediate 
upscaled image and then along the columns of the intermediate image.   
 
Given that we are upscaling by a factor of two we can easily pre-compute a discrete 14x   
convolution vector au  to be used for each pass.  The kernel is different  according to whether we 
are interpolating a pixel in an even or odd (output) position and is given by: 
 

( ) ( ) ( ) ( )[ ]5.15.05.05.1 aaaa
even
a uuuu −−=u  

( ) ( ) ( ) ( )[ ]75.175.025.025.1 aaaa
odd
a uuuu −−=u  

 
After upscaling, we use the well-known unsharp mask filter to boost the image high-frequencies 
and thereby produce a crispier text image. Unsharp masking works by subtracting from the input 
image a smoothed version of it, and adding the result weighted by a factor k back to the  input. In 
our implementation, extreme care has been taken in optimizing both memory usage and 
performance. In particular,  we create the smoothed image from the input via a very efficient 
block averaging (see end of Section 2).  The block width Ws is configurable but good results for 
the VGA (640x480) images used were obtained with  Ws=5.  Let us now call by ),( jiI upscaled  a pixel 
of the input  image and by ),()( lkI sW

smoothed  a pixel of the block-smoothed image. The formulation of 
the unsharp mask filter we used is modified from the standard one  and substitutes  k with 
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where k’  is a constant factor that controls the added amount of the sharpness and usually ranges 
between  0.2  and 0.7. In our implementation we have used a fixed 5.0=′k .    

 

4. Retinex-based intensity correction and thresholding  
 
In order to compensate for illumination variation an safely binarize the image we use a method 
based on the retinex theory [5], a widely studied technique for color and illumination constancy.  
 
The retinex approach is based on a simple model of image formation, ),(),(),( yxLyxRyxI ⋅= , 
where ),( yxI  is the measured image intensity, ),( yxR  is the surface reflectivity and ),( yxL  is the 
illuminant.  There are several techniques aimed at using this model in order to recover the 
reflectivity of the surface ),( yxR . The most common ones use the assumption that (the basically 
unknown) ),( yxL  can be approximated by the low-frequency component of the measured image 
[6].  We have followed this approach but we tailored it to a situation where the desired surface 
reflectivity is binary-valued. The process is illustrated in Figure 3.  First we block-smooth the 
input image with a large kernel (A). Next we compute the ratio between the input image and the 
smoothed image (B); this amounts to solving for ),( yxR  in ),(),(),( yxLyxRyxI ⋅= .  The ratio is 
scaled to an 8-bit range to give the illumination corrected image (C). Finally, a threshold is 
applied to transform thi image into binary (D).  
From Figure 3  it is easy to see that since we expect black-on-white text, the ratio should be at 
most 1 at  uniform background pixels and it is relatively small with text characters.  
Let us now describe the actual formulation of the filter and its implementation. Let us call by 

),( jiI unsharp  a pixel of the image as output by the unsharp process of Section 3, and by ),()( lkI hW
smoothed  a 

pixel of the block-smoothed image. Differently from the smoothed image used for the unsharp 
masking of Section 3, here the smoothed image should represent the illumination component of 
the image and as a consequence the smoothing kernel must be rather large; in our 
implementation we used 31=sW   for  640x480 input images. We used block smoothing again for 
efficiency reasons, and necessarily so with such a large kernel.   We  then have: 
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where ),( jiI retinex  is the illumination corrected image shown in Figure 3-C. The results of this 
illumination correction stage can be also appreciated in the change between Figure 5-C and 
Figure 5-D.  
 
The final stage in order to produce a binary output image is thresholding. Given the even 
background  of the retinexI  thus obtained,  this image is amenable to global thresholding.   A single 
threshold τ  = 200 yielded satisfactory results in a wide range of cases. However the thresholding 
stage could benefit from a slightly more sophisticated approach that would analyze the histogram 
of retinexI  more locally. For instance, experiments that we carried out with dual-peak thresholding 
applied to retinexI have  shown thinner and more accurate binary characters. 
 
Finally, note that other formulations of the retinex principle can be seen in the literature.  A 
particularly common one is that of using as retinex output the difference of logarithms of the 
original and smoothed image, which in our case would be 

( ) ( )),(log),(log),( )(' jiIjiIjiI hW
smoothedunsharpretinex −= .  This formulation is obviously equivalent to the one 

employing ratio if we threshold '
retinexI  with  ( )ττ log' = . 

 

5. Text finding and localization 
 
As part of the text processing pipeline we have also designed and implemented a lightweight text 
finding algorithm based on a cut-down version of [7]  that analyses a binary image and outputs 
regions where there is likely to be some text, which can be either presented to the user for 
selection or automatically used for OCR. It is outside of the scope of this paper to describe this 
text finding algorithm in detail and we shall only briefly overview it and focus on the relevant 
modifications. 
 

 
Figure 3. Illustration of the steps involved in the retinex-based filtering to perform illumination correction and 
finally thresholding.  
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 The algorithm starts from the binary image produced by the stage described in Section 4 and 
assumes that the text lines are within a 20o range from the horizontal (no assumptions of this 
kind were made in [7]).  A fast connected component method labels isolated binary blobs. Blobs 
that are too large or too small are removed from further consideration. Then the blobs are sorted 
according to their abscissas to speed up the search. At this stage we start the text-line grouping 
using loose perceptual similarity, continuation and proximity  criteria as detailed in [7]. 
However, differently from [7]  we do not build a probabilistic network of blob associations but 
using the assumption that the lines must be more or less horizontal we perform direct search and 
growing of groups as we go along. Starting from the first  (leftmost, since we sorted them by 
abscissas)  usable blob, we search for the closest blob to its right and carry on from it until the 
blobs becomes either too dissimilar in size, are too separated or deviate from the illusory line that 
the group is forming,  all in the same spirit of [7] albeit with a slightly different implementation 
of the perceptual criteria. We carry on the search for other blobs until all the blobs have been 
explored and all linear groups are formed. A further higher level pass makes sure that groups are 
not duplicated and also merges collinear broken groups. 
 
The method is able to group text lines under a considerable amount of rotation, although the 
performance starts degrading after about 20o  skew; the reason for this is mainly due to the way 
the closest blob is found, that is not by searching for the closest blob contour points as in [7] but 
by the vastly faster use of  the blobs’ rectangular bounding boxes (see the blob bounding boxes 
in Figure 4-left). 
Once the groups are formed, we determine the bounding boxes for each group. In Figure 4-left 
we show the process in the case of skewed text, where a parallelogram is found with vertical 
lateral sides and with upper and lower sides parallel to the best-fit line to the group and distant 
enough from it to contain all the connected components’ bounding boxes.   If any of the boxes 
are needed for OCR or display, the best-fit line to the connected components or the bounding 
box itself can be used to de-skew the  text portion. Both methods might not always be reliable for 
short text portion, as shown by the lower bounding box  in Figure 4-right. 

     
Figure 4.  Determination of the bounding box for skewed text (left) and the occasional problems with determining 
the skew angle merely from the bounding parallelogram (right). 
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6. Results and Discussion 
 
In this section we present and discuss a series of  results of the stages presented in the previous 
sections.   
 
Figure 5-left  shows the results of the three main stages of Section 2, 3 and 4, that is demosaicing 
(A),  upscaling (B), unsharp masking (C) and retinex-based enhancement (D) along with the 
thresholded output in (E).  In Figure 5-right and there are shown four examples where the input 
images and resulting binary images are shown side by side. It can be noticed that although the 
method performs well  with text of ordinary size it may  mistake  parts of oversized fonts as 
background and cannot deal (as is) with reversed text, although improvement in this respect are 
possible.   However, the stages up to binarization proposed here perform satisfactorily in most 
common situations and cope well with dramatic lighting conditions and shadows. But the 
primary advantages of the approach are that it is extremely lightweight and memory lean  and 
thus suitable for interactive time processing on low-power architectures. As an example, the 
whole pipeline runs in a fraction of a second on a current HP  Jornada 568 PDA and uses little 
over one megabyte of working memory. 

 

  

  

 
 

 

  
Figure 5.  Left: Blowup of image portions showing all the stages that take the raw input image to the binary output. 
A: Demosaicked  image; B: Upscaled image; C: After unsharp mask; D:  After retinex-based filter (before 
thresholding); E: Thresholded binary output.  Right: Three full examples showing the input images and the binary 
result from Section 4. 
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Figure 6 shows some results of the text finding stage of  Section 5 applied to the some of the 
binary images of Figure 5.   
The results are generally satisfactory in a wide range of cases but some limitations of the method 
are worth noting. First above all, the method cannot cope with large amount of rotation. It might 
deal with some perspective skew but it can break likewise (but see methods addressing this 
problem, such as [2][7]). The method is inherently scale independent (see the “Multipix” image 
in Figure 6-top-right ), but it is strongly based on blob similarity and might not group lines with 
widely different font sizes. Moreover, being based on the organization of text and not on local 
properties, it cannot  group isolated characters, as they are un-organized.  Finally,  due to that 
same reason and the fact that we use pre-segmented blobs without intensity information, the 
method might group blobs that verify organization criteria such as proximity and similarity even 
if they are not even remotely text-like. In the future we should investigate the abundant literature 
for a computationally efficient method to detect non-text situations (e.g. using global statistical 
methods) or assign a probability of being text to each blob in order to avoid grouping so blindly.  
Having said this, the method has served us well due to its extremely good time-performance 
trade-off and negligible memory use. It runs in just a few hundreds milliseconds on our prototype 
running on a current HP Jornada 568 PDA.  
 

    

             
 

             
 

Figure 6.   Four examples of text finding using the algorithm described. Note the heavily skewed lower-left  example.            
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