

A light-weight text image processing method for
handheld embedded cameras

Maurizio Pilu, Stephen Pollard
Hardcopy Technlogy Laboratory
HP Laboratories Bristol
HPL-2002-82
April 12th , 2002*

E-mail: maurizio_pilu@hp.com,, stephen_pollard@hp.com

document
imaging,
image
processing,
PDAs,
cameras

In the past few years we have witnessed the migration of cheap
imaging devices into portable and mobile computing appliances
such as PDAs and mobile phones. As these devices become ever
more powerful in terms of processor speed and memory, new
exciting applications and uses are being developed. A particularly
useful one is the casual capture of text images for faxing, note
taking, OCR, etcetera. This paper describes the image processing
pipeline used to enhance images of text captured by a hand-held
low-resolution camera, and a fast text extraction method. The main
advantages of the approach are its inherent lightweight structure,
speed and relative robustness under poor lighting and focus
conditions. The computational efficiency (and a careful
implementation) of the approach has allowed its deployment in an
interactive-time text capture and foreign-text translation demo on a
PDA with a VGA camera attachment.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

 2

1. Introduction

In the past few years cheap imaging devices are making their way into portable and mobile
computing appliances such PDAs and mobile phones, which are in turn becoming more and
more powerful in terms of processor speed and memory. Amongst the many exciting new uses
that these devices stimulate are interesting applications that live in the intersection between
imaging and mobile computing [2][3][7]. One of those is the casual capture of text images for,
e.g., faxing, note taking, OCR, etcetera.

We have developed a working concept demo of a PDA with a VGA camera attachment that is
able capture a text image, process it, detect and locate text, OCR manually selected text lines,
and translate the text into another language, all running on a Jornada 568 PDA in just a few
seconds1.

There were several challenges that needed to be addressed. First, embedded or PDA cameras
are typically low-resolution (e.g. 640x480) and will continue to be so due to cost pressure.
Second, we are in situations where the lighting conditions are poor and can vary wildly across
the visual field and soft shadows are also very common (see Figure 5). Hence, we need to make
sure that this uneven illumination is dealt with in order to produce a binary text image that is free
from large thresholding artifacts and yet is not affected by local edge interaction between
adjacent text characters. Third, although mobile computing architectures are becoming ever
more powerful, there are still limitations that seriously affect performance, such as a small
working RAM, no mass storage, no floating-point coprocessor and limited caching.

A good trade-off between speed an accuracy is therefore necessary for these sort of applications.
For instance, in a recent conference paper [3] discussing techniques for a text capture and
translation application, most of the image processing was actually done on a powerful server
wirelessly connected to the device, because their text processing and extraction method alone
took several tens of seconds on a 133 MHz PDA.

This paper describes the image processing pipeline used to process, enhance and binarize raw
text images captured by a hand-held camera and an extremely fast text extraction method. The
pipeline as described here has been implemented on an actual PDA with camera attachment and
has an inherent lightweight structure and relative robustness to poor lighting and focus
conditions. However, the deployment of this method is not limited only to PDAs.

1 Most of which taken by the optical character recognition.

 3

The approach is overviewed in Figure 1. Starting from a raw sensor image, we use a new hi-pass
color demosaicing method to reconstruct color planes from raw sensor pixels. Next, we
perform simple restoration (to attenuate the degradation due to sub-sampling) by upscaling using
a fast implementation of bicubic interpolation, producing an image twice the original resolution.
To the upscaled image we apply an unsharp mask filter that enhances the high-frequency edges
of the text characters. Next we apply a non-linear retinex-based filter that removes low spatial
frequency lighting variations in the image and returns an enhanced image with uniform
background, to which thresholding is applied to finally produce a binary text image. Finally we
use a variation of [7] for compensating for skew are for locating text in the image2.

The rest of the paper is structured as follows. Section 2 describes the demosaicing method,
Section 3 image upscaling and sharpening, with an eye on some important efficiency issues,
Section 4 describes the fast text finding method and finally Section 5 provides some examples
and discusses the benefits and limitations of the approach presented.

2. HiPass Color Demosaicing

Color cameras in mobile devices typically use a single VGA resolution CCD array employing
three or more color filters with each pixel capturing a single color. The most popular
arrangement is the Bayer array which has alternating rows of Green-Red and Blue-Green filtered
pixels. Hence 50% of the pixels are green, approximating luminance, and 25% each are red and
blue reflecting the lower spatial sensitivity to chrominance of the human visual system.

2 Note that the OCR method used will be not be discussed in this paper. In our prototype running on a PDA we have
ported an existing OCR package developed at Hewlett-Packard Laboratories.

Upscaling Unsharp masking

Retinex-based
correction Thresholding Text Finding

Hi-Pass
Demosaicing

OCR

Raw input

Text Locations

ASCII Text

Figure 1. Overview of the text image processing pipeline presented in this paper.

 4

Full color plane reconstruction, or demosaicing, requires the interpolation of each color plane
(see [1] for a review of interpolation schemes). In order to maintain full text resolution we have
developed the HiPass demosaicing method [8] outlined in Figure 2. The method attempts to
decompose the mosaic into a high frequency monochrome and low frequency RGB data. These
can then be combined to approximate the true full color image. While some chrominance edges
are attenuated the method provides full resolution monochrome text and avoids most color
aliasing artifacts for photographic images.

For each red, green or blue pixel in the raw mosaic (shown expanded into red, green and blue
color planes in Figure 2), the corresponding pixel in the HiPass mosaic is constructed by
subtracting from it a corresponding low pass red green or blue pixel constructed from the
appropriate color plane of the mosaic. This is then corrected to remove zippering artifacts using a
variant of the standard gradient-based interpolation schemes outlined in [1]. Each pixel of the
HiPass mosaic that is derived from a red or blue pixel is corrected using a 1D quadratic
interpolation using the row of 5 neighboring pixels in the vertical or horizontal direction
depending which has the lower intensity gradient. The interpolation is of the form C0 = (2I0 - I-2
- I2 + 4I-1 + 4I1)/8, where I and C are the intensities of the HiPass mosaic and its corrected
version, respectively. The corrected HiPass mosaic is then added to each of the low pass color
images to generate the fully reconstructed image.

Improved computational effectiveness is achieved by low pass filtering using block averaging
over a 7x7 image neighbourhood. By maintaining a row wide table of intermediate sums this can
be achieved using 2 adds, 2 subtracts, a multiply and a shift per pixel independent of the block
averaging parameter.

Figure 2. HiPass color demosaicing method.

 5

3. Text image upscaling and sharpening

Although the input gray level image could be left at native resolution, experiments and theory
show that with a heavily under-sampled image interpolation kernels such as bicubic
interpolation act as true restoration processes [9]. To this end we upscale the image by a factor
of two using an efficient separable bicubic convolution which requires very few add-multiply
operations per pixel.

We use the Keys’ interpolating function [4] which approximates the sinc function with piecewise
third order polynomials:

≤
<≤−+−

<≤++−+

=
x2 0

 21 ,485

10 ,1)3()2(

)(
23

23

xaxaxaxa

xxaxa

xua

The value of a changes the shape of the kernel and there has been much literature as to how this
affects the output. In our implementation we left it as a parameter but 1−=a has given the best
results in our opinion.
The kernel is separable, that is it can be applied first along the rows to produce an intermediate
upscaled image and then along the columns of the intermediate image.

Given that we are upscaling by a factor of two we can easily pre-compute a discrete 14x
convolution vector au to be used for each pass. The kernel is different according to whether we
are interpolating a pixel in an even or odd (output) position and is given by:

() () () ()[]5.15.05.05.1 aaaa
even
a uuuu −−=u

() () () ()[]75.175.025.025.1 aaaa
odd
a uuuu −−=u

After upscaling, we use the well-known unsharp mask filter to boost the image high-frequencies
and thereby produce a crispier text image. Unsharp masking works by subtracting from the input
image a smoothed version of it, and adding the result weighted by a factor k back to the input. In
our implementation, extreme care has been taken in optimizing both memory usage and
performance. In particular, we create the smoothed image from the input via a very efficient
block averaging (see end of Section 2). The block width Ws is configurable but good results for
the VGA (640x480) images used were obtained with Ws=5. Let us now call by),(jiI upscaled a pixel
of the input image and by),()(lkI sW

smoothed a pixel of the block-smoothed image. The formulation of
the unsharp mask filter we used is modified from the standard one and substitutes k with

k
k

k
+

=′
1

, which reduces the unsharp mask equation to:

()
k

jiIkjiI
jiI

sW
smoothedupscaled

unsharp ′−

′+
=

1
,),(

),(
)(

 6

where k’ is a constant factor that controls the added amount of the sharpness and usually ranges
between 0.2 and 0.7. In our implementation we have used a fixed 5.0=′k .

4. Retinex-based intensity correction and thresholding

In order to compensate for illumination variation an safely binarize the image we use a method
based on the retinex theory [5], a widely studied technique for color and illumination constancy.

The retinex approach is based on a simple model of image formation,),(),(),(yxLyxRyxI ⋅= ,
where),(yxI is the measured image intensity,),(yxR is the surface reflectivity and),(yxL is the
illuminant. There are several techniques aimed at using this model in order to recover the
reflectivity of the surface),(yxR . The most common ones use the assumption that (the basically
unknown)),(yxL can be approximated by the low-frequency component of the measured image
[6]. We have followed this approach but we tailored it to a situation where the desired surface
reflectivity is binary-valued. The process is illustrated in Figure 3. First we block-smooth the
input image with a large kernel (A). Next we compute the ratio between the input image and the
smoothed image (B); this amounts to solving for),(yxR in),(),(),(yxLyxRyxI ⋅= . The ratio is
scaled to an 8-bit range to give the illumination corrected image (C). Finally, a threshold is
applied to transform thi image into binary (D).
From Figure 3 it is easy to see that since we expect black-on-white text, the ratio should be at
most 1 at uniform background pixels and it is relatively small with text characters.
Let us now describe the actual formulation of the filter and its implementation. Let us call by

),(jiI unsharp a pixel of the image as output by the unsharp process of Section 3, and by),()(lkI hW
smoothed a

pixel of the block-smoothed image. Differently from the smoothed image used for the unsharp
masking of Section 3, here the smoothed image should represent the illumination component of
the image and as a consequence the smoothing kernel must be rather large; in our
implementation we used 31=sW for 640x480 input images. We used block smoothing again for
efficiency reasons, and necessarily so with such a large kernel. We then have:

),(

),(
255),(

)(jiI

jiI
jiI

hW
smoothed

unsharp

retinex ⋅=

 7

where),(jiI retinex is the illumination corrected image shown in Figure 3-C. The results of this
illumination correction stage can be also appreciated in the change between Figure 5-C and
Figure 5-D.

The final stage in order to produce a binary output image is thresholding. Given the even
background of the retinexI thus obtained, this image is amenable to global thresholding. A single
threshold τ = 200 yielded satisfactory results in a wide range of cases. However the thresholding
stage could benefit from a slightly more sophisticated approach that would analyze the histogram
of retinexI more locally. For instance, experiments that we carried out with dual-peak thresholding
applied to retinexI have shown thinner and more accurate binary characters.

Finally, note that other formulations of the retinex principle can be seen in the literature. A
particularly common one is that of using as retinex output the difference of logarithms of the
original and smoothed image, which in our case would be

() ()),(log),(log),()(' jiIjiIjiI hW
smoothedunsharpretinex −= . This formulation is obviously equivalent to the one

employing ratio if we threshold '
retinexI with ()ττ log' = .

5. Text finding and localization

As part of the text processing pipeline we have also designed and implemented a lightweight text
finding algorithm based on a cut-down version of [7] that analyses a binary image and outputs
regions where there is likely to be some text, which can be either presented to the user for
selection or automatically used for OCR. It is outside of the scope of this paper to describe this
text finding algorithm in detail and we shall only briefly overview it and focus on the relevant
modifications.

Figure 3. Illustration of the steps involved in the retinex-based filtering to perform illumination correction and
finally thresholding.

 8

 The algorithm starts from the binary image produced by the stage described in Section 4 and
assumes that the text lines are within a 20o range from the horizontal (no assumptions of this
kind were made in [7]). A fast connected component method labels isolated binary blobs. Blobs
that are too large or too small are removed from further consideration. Then the blobs are sorted
according to their abscissas to speed up the search. At this stage we start the text-line grouping
using loose perceptual similarity, continuation and proximity criteria as detailed in [7].
However, differently from [7] we do not build a probabilistic network of blob associations but
using the assumption that the lines must be more or less horizontal we perform direct search and
growing of groups as we go along. Starting from the first (leftmost, since we sorted them by
abscissas) usable blob, we search for the closest blob to its right and carry on from it until the
blobs becomes either too dissimilar in size, are too separated or deviate from the illusory line that
the group is forming, all in the same spirit of [7] albeit with a slightly different implementation
of the perceptual criteria. We carry on the search for other blobs until all the blobs have been
explored and all linear groups are formed. A further higher level pass makes sure that groups are
not duplicated and also merges collinear broken groups.

The method is able to group text lines under a considerable amount of rotation, although the
performance starts degrading after about 20o skew; the reason for this is mainly due to the way
the closest blob is found, that is not by searching for the closest blob contour points as in [7] but
by the vastly faster use of the blobs’ rectangular bounding boxes (see the blob bounding boxes
in Figure 4-left).
Once the groups are formed, we determine the bounding boxes for each group. In Figure 4-left
we show the process in the case of skewed text, where a parallelogram is found with vertical
lateral sides and with upper and lower sides parallel to the best-fit line to the group and distant
enough from it to contain all the connected components’ bounding boxes. If any of the boxes
are needed for OCR or display, the best-fit line to the connected components or the bounding
box itself can be used to de-skew the text portion. Both methods might not always be reliable for
short text portion, as shown by the lower bounding box in Figure 4-right.

Figure 4. Determination of the bounding box for skewed text (left) and the occasional problems with determining
the skew angle merely from the bounding parallelogram (right).

 9

6. Results and Discussion

In this section we present and discuss a series of results of the stages presented in the previous
sections.

Figure 5-left shows the results of the three main stages of Section 2, 3 and 4, that is demosaicing
(A), upscaling (B), unsharp masking (C) and retinex-based enhancement (D) along with the
thresholded output in (E). In Figure 5-right and there are shown four examples where the input
images and resulting binary images are shown side by side. It can be noticed that although the
method performs well with text of ordinary size it may mistake parts of oversized fonts as
background and cannot deal (as is) with reversed text, although improvement in this respect are
possible. However, the stages up to binarization proposed here perform satisfactorily in most
common situations and cope well with dramatic lighting conditions and shadows. But the
primary advantages of the approach are that it is extremely lightweight and memory lean and
thus suitable for interactive time processing on low-power architectures. As an example, the
whole pipeline runs in a fraction of a second on a current HP Jornada 568 PDA and uses little
over one megabyte of working memory.

Figure 5. Left: Blowup of image portions showing all the stages that take the raw input image to the binary output.
A: Demosaicked image; B: Upscaled image; C: After unsharp mask; D: After retinex-based filter (before
thresholding); E: Thresholded binary output. Right: Three full examples showing the input images and the binary
result from Section 4.

 10

Figure 6 shows some results of the text finding stage of Section 5 applied to the some of the
binary images of Figure 5.
The results are generally satisfactory in a wide range of cases but some limitations of the method
are worth noting. First above all, the method cannot cope with large amount of rotation. It might
deal with some perspective skew but it can break likewise (but see methods addressing this
problem, such as [2][7]). The method is inherently scale independent (see the “Multipix” image
in Figure 6-top-right), but it is strongly based on blob similarity and might not group lines with
widely different font sizes. Moreover, being based on the organization of text and not on local
properties, it cannot group isolated characters, as they are un-organized. Finally, due to that
same reason and the fact that we use pre-segmented blobs without intensity information, the
method might group blobs that verify organization criteria such as proximity and similarity even
if they are not even remotely text-like. In the future we should investigate the abundant literature
for a computationally efficient method to detect non-text situations (e.g. using global statistical
methods) or assign a probability of being text to each blob in order to avoid grouping so blindly.
Having said this, the method has served us well due to its extremely good time-performance
trade-off and negligible memory use. It runs in just a few hundreds milliseconds on our prototype
running on a current HP Jornada 568 PDA.

Figure 6. Four examples of text finding using the algorithm described. Note the heavily skewed lower-left example.

 11

References

[1] Adams, J. E., “Design of practical color filter array interpolation algorithms for digital

cameras”, Proc. SPIE, Real Time Imaging II, Vol. 3028, 1997.
[2] P. Clark and M. Mirmehdi. “Estimating the orientation and recovery of text planes in a

single image”, In Proceedings of the 12th British Machine Vision Conference, pp. 421-
430. BMVA Press, September 2001.

[3] Haritaoglu, I., “Scene Text Extraction and Translation for Handheld Devices”, IEEE
Computer Vision and Pattern Recognition Conference, Kauai, HI, December 2001.

[4] Keys, R., "Cubic convolution interpolation for digital image processing”, IEEE Trans.
Acoust. Speech Signal Process., Vol. ASSP-29, pp. 1153-1160, December 1981.

[5] Land, E. L., "The Retinex Theory of Color Vision," Scientific American, Vol. 237, No.
6, pp. 108-128, December 1977.

[6] Land, E. L. , “An alternative technique for the computation of the designator in the
retinex theory of computer vision”, Proc. Nat. Acad. Sci., Vol. 83, pp. 3078-3080, 1986.

[7] Pilu, M., “Extraction of illusory linear clues in perspectively skewed documents”, IEEE
Computer Vision and Pattern Recognition Conference, Kauai, HI, December 2001.

[8] Pollard, S. B., “Image Mosaic Data Reconstruction”, U.S. Patent Application
09/906,786, 2001.

[9] Wolberg, G., Digital Image Warping, IEEE Computer Society Press, Los Alamitos, CA,
1990.

