

I-Cluster: Intense computing with untapped resources

Bruno Richard, Philippe Augerat1
HP Laboratories Grenoble
HPL-2002-81
April 4th , 2002*

E-mail: bruno_richard@hp.com, philippe.augerat@imag.fr

cluster,
scientific
computing,
peer-to-peer,
supercomputing

I-Cluster is a research initiative from HP Labs Grenoble in
partnership with INRIA (ID-IMAG Laboratory). It provides a
distributed Peer-to-Peer framework of tools that transparently take
advantage of unused network resources and federate them to
crystallize into specific virtual functions. These functions are
compute- intensive services, which are statically decomposed to fit
the I-Cluster framework, then dynamically recomposed upon users
needs. Typical I-Cluster functions are supercomputing, content
rendering, content distribution. The I-Cluster experimentation
platform, based on 225 typical desktop machines has been
benchmarked as the 385th most powerful supercomputer in the
world using Linpack, making it the first cluster based on
mainstream technologies to enter the TOP500 in May 2001.

This paper introduces the I-Cluster initiative and its overall
architecture, and describes the prospects addressed by the research
team. These include scaling conventional clustering tools to large
number of machines, solving Peer-to-Peer computing security
issues using OS sandboxing, self-organization and resilience to
unanticipated disconnections of a large and heterogeneous
community of computers, and automatic resource collection.

* Internal Accession Date Only Approved for External Publication
1 INPG, ID Laboratory, Grenoble, France
Copyright National Technological University Press. To be published in and presented at the 4th International
 Conference on Massively Parallel Computing Systems, 10-12 April 2002, Ischia, Italy

I-Cluster: Intense computing with untapped resources

Bruno Richard
hp Laboratories Grenoble
bruno_richard@hp.com

Philippe Augerat
ID Laboratory

philippe.augerat@imag.fr

Abstract

I-Cluster is a research initiative from HP Labs Grenoble
in partnership with INRIA (ID-IMAG Laboratory). It pro-
vides a distributed Peer-to-Peer framework of tools that
transparently take advantage of unused network re-
sources and federate them to crystallize into specific vir-
tual functions. These functions are compute-inten sive
services, which are statically decomposed to fit the I-
Cluster framework, then dynamically recomposed upon
users needs. Typical I-Cluster functions are supercomput-
ing, content rendering, content distribution. The I-Cluster
experimentation platform, based on 225 typical desktop
machines has been benchmarked as the 385th most pow-
erful supercomputer in the world using Linpack, making
it the first cluster based on mainstream technologies to
enter the TOP500 in May 2001.
This paper introduces the I-Cluster initiative and its
overall architecture, and describes the prospects ad-
dressed by the research team. These include scaling con-
ventional clustering tools to large number of machines,
solving Peer-to-Peer computing security issues using OS
sandboxing, self-organization and resilience to unantici-
pated disconnections of a large and heterogeneous com-
munity of computers, and automatic resource collection.

1. Problem statement
A lot of computer resources are available on enterprise

networks nowadays, often used as commodity tools for
user productivity. As nearly each worker has his own
individual computer, there are lots of machines connected
on the network. Users typically spend just few hours a
day using their machines, so there are idle periods where
the resources such as processing power, memory, and
connectivity remain unused. The I-Cluster research pro-
ject aims at building a framework that gathers such idle
resources from an intranet and federates them into a sys-
tem able to perform compute-intensive tasks.

Typical I-Cluster functions are supercomputing, con-
tent rendering, content distribution. Additional require-
ments for the I-Cluster project are that the framework
smoothly adapts to the existing infrastructure; it transpar-
ently takes advantage of each existing machine of the
network without requiring user actions or system
changes ; it adapts to machine and network heterogeneity
and tries to make an efficient overall use of the commu-

nity resources available at execution time; it is self-
organized hence does not require administrator interven-
tion; it has some resilience to environment changes such
as unexpected connections and disconnections; and it
leverages standard cluster applications (such as PovRay
or Linpack) without code modifications required.

2. Earlier work

Distributed computing can be defined as “a computer
system in which several interconnected computers share
the computing tasks assigned to the system” [1]. Such
systems include computing clusters, Grids and global
computing systems gathe ring computing resources from
individual PCs on the network. Several distributed com-
puting frameworks already exist that fit in this picture.

Cluster computing is a type of infrastructure that has
been popularized by NASA's project Beowulf [2]. The
main goal of the project was to build a scientific comput-
ing system based on COTS (Components off the shelf)
i.e., based on standard PCs interconnected by Ethernet.
This project has had an instant success, and paved the
way to lots of other academic or commercial efforts.
However, a Beowulf system remains centralized and
managed, which makes it fall apart from the I-Cluster
requirements.

Mosix [3] is a project that started decades ago in the
Hebrew University of Jerusalem. It builds a computing
farm based on machines of the network, and then offers
some load balancing using migration of tasks between
computing nodes . Mosix is taking advantage of the Unix
operating system and adds some kernel-level components
that closely work with the system, particularly by han-
dling the OS objects such as open files or sockets. Mosix
can be used on a network so that the computing resources
are globally shared, so it fits well our needs on this side.
Moreover, the system is able to dynamically adapt to dy-
namic changes in the availability and load of resources.
On the other hand, Gillen et al. [4] have shown that the
proportion of user systems based on a Microsoft Win-
dows operating system is between 91 and 96% of the
number of installed computers. As Mosix is limited to the
Unix environment, its acceptance by common users is
therefore low. So it is important for I-Cluster to be able to
use resources from idle Windows machines without limit-
ing to Unix systems support. For the same reason, sys-
tems such as AMOEBA [5] or Glunix [6] do not fit the I-
Cluster vision.

The Berkeley NOW project is building system support
for using a network of workstations (NOW) to act as a
distributed supercomputer on a building-wide scale. This
vision, introduced by Anderson et al. [7], has been im-
plemented by several NOW systems. This family of sys-
tems offers a single system image to a collection of indi-
vidual computers from a network. The interconnection
between the workstations is a high bandwidth communi-
cation link, and each of the individual computers is a
powerful machine. As NOW systems are based on COTS
(commercial off-the-shelf) components produced in large
volumes, they offer an excellent price/performance ratio.
However, I-Cluster needs to adapt to already available
resources and network, so we cannot assume high per-
formance from the computers nor from the interconnec-
tion links. For this reason, NOW is not a good candidate
for I-Cluster's infrastructure.

The NetSolve project [8] aims at harnessing disparate
computational resources and aggregate their power into a
scientific computing machine. A NetSolve server is re-
sponsible for dialog with NetSolve agents installed on
each participating computer from the network. User can
submit jobs to the server, which will be distributed to
available computers according to their capabilities and
load. Although the system is able to adapt to job require-
ments, it is not possible to aggregate the power of sepa-
rate machines for a single job (although an actual cluster
of machines may be declared as a single NetSolve com-
puting resource). As I-Cluster required being able to ag-
gregate separate computers and use them to compute fine-
grained supercomputing applications we did not base our
research on it.

Condor [9] is a system that fits well the I-Cluster re-
quirements. Condor is a HTC (High Throughput Comput-
ing) environment that is able to distribute computations
on idle remote workstations, making an efficient use of
the available network resources. Condor uses a publishing
system where each participating computer will expose its
computing capabilities and available resources to the
server. When a user starts a job, Condor will transparently
find the Computer that most tightly fits the job, allocate it
to the job and delegate the execution. However, Condor is
oriented towards environments where Co mputers are
powerful machines, and allocates jobs onto discrete ma-
chines. It cannot aggregate resources from several distinct
computers and use them as a single resource for perform-
ing a computation, except for the e mbarrassingly parallel
class of applications, and for instance for the master-slave
class. One of the goals of I-Cluster is to be able to per-
form scientific i.e., fine-grained, jobs, which requires
being able to aggregate resources from several computers,
and make an overall use of them so that the network la-
tencies and load are minimal between aggregated ma-
chines. This is a limitation of Condor regarding its use for
I-Cluster. Another limitation is that Condor runs applica-

tions in the user environment i.e., typically windows, al-
though traditional computing applications are natively
developed for Unix systems. Hence applications have to
be ported to Windows to execute in such cases.

Global Computing, also called Metacomputing or
Desktop Computing , brings processing scalability to the
picture through the aggregation of resources of large
number of individual Internet PCs. The typical use of
Distributed Computing requires applications which are
run in a proprietary way by a central controller. Such ap-
plications are usually targeting massive multi-parameters
systems, with long running jobs (months or years) using
peer-to-peer foundations. One of the first widely visible
Distributed Computing events occurred in 1994, where
Atkins, Graff, Lenstra and Leyland [10], with the help of
about 1600 Internet computers owned by 600 partic i-
pants , broke the RSA challenge between August 1993 and
April 2nd 1994 using a Global Computing approach. This
made people realize how much power can be available
from idle Internet PCs . SETI@home [11] is a scientific
research project aiming at building a huge virtual com-
puter based on the aggregation of power offered from
internet-connected computer during their idle periods.
The project has been widely accepted and rose a huge raw
processing power (several dozens of Tflop/s) from more
than 3 million internet-connected computers. Although
collection of network resources and aggregation of them
to solve a global problem is a goal that SETI@home
shares with I-Cluster, we did not want to limit I-Cluster to
a given limited set of jobs, and wanted to keep it possible
for users to write their own specific jobs and execute
them on an I-Cluster platform. The architecture of
SETI@home involves execution of jobs in a master-slave
mode, hence requires a very specific adaptation of the
problem to the platform. In particular, inter-nodes com-
munication is not possible on SETI@home, as all the
communication goes to or from the central server. Other
systems such as Avaki, Entropia, Parabon, United De-
vices, or distributed.net are other examples of successful
Global Computing systems. Ho wever, as scientific com-
puting requires inter-node communication, Global Com-
puting is not a good candidate for I-Cluster.

Grid computing is another concept that has been first
explored in the 1995 I-WAY experiment [12], in which
high-speed networks were used to connect high-end re-
sources at 17 sites across North America. Out of this ac-
tivity grew a number of Grid research projects th at devel-
oped the core technologies for “production” Grids in
various communities and scientific disciplines. The ef-
forts on Grid technology are now concentrated around the
Globus project [13]. A Computing Grid can be seen and
used as a single, transparent Computer. The user logs in,
starts jobs, moves files and receives results in a standard
way. However, Grid computing requires heavy coordina-
tion and federation of resource providers and consumers.

Self-organization and self-sustaining required by the I-
Cluster system hence make Grid or Globus systems too
heavy.

3. Approach
The approach we developed for I-Cluster was to build

our own system, based on an architecture derived from
our knowledge of existing systems.

The basic idea behind I-Cluster is that it dynamically
keeps track of available network resources, and is able to
aggregate some of them into a virtual cluster when a
computing service is invoked, in a way that the allocated
virtual cluster nicely matches the resource set required by
the service for its execution. It then proceeds into instan-
tiation of the service onto the allocated computers. For
instance, I-Cluster will transparently keep track of one
thousand machines connected to a network, their individ-
ual capabilities, availability and connectivity. Then upon
request I-Cluster can use this information and find a set of
8 machines with given individual capabilities and given
interconnection requirements, which allows for fine-
grained services to be executed.

I-Cluster cloud
The heart of the system is the I-Cluster cloud , which is

a Peer-to-Peer community of devices with the capability
to communicate and share information in a transparent
way. The cloud adapts to changing conditions such as
network partitions, disconnections, or relocations of mo-
bile devices onto the network. The cloud is able to inte-
grate new devices added to it, forget old/unused devices,
and dynamically keep a model of the network intercon-
nection between devices, as well as a directory of avail-
able machines and their resources. The cloud is based on
decentralized algorithms, where eac h device from the
cloud has its own view of the cloud; no device has com-
plete information about the system state; and devices
make decisions based only on local information, so that
the failure of one machine does not impact the algorithms
and the community is resilient. Horizontal scalability i.e.,
adaptability of the I-Cluster cloud to a large number of
devices (we target 10,000 devices clouds), requires that
the algorithms order remains logarithmic or linear at
worst. Also the algorithms must adapt to the capabilities
of each device; a PDA with limited CPU, RAM, storage,
connectivity which is a member of an I-Cluster cloud will
take less responsibility in the community and conse-
quently will route less messages.

The I-Cluster cloud is built on a pure Peer-to-Peer
class of algorithms i.e., without requiring any centralized
server. The information is held at the community level, in
a collaborative way. It uses gossiping mechanisms is to
keep information available about the cloud devices and
network, and expose this information when a user re-
quests a computing service in order to take advantage of
available resource for the actual processing. The cloud is

able to hold a dynamic directory of available resources,
considering the resource cards made available by each
device member of the cloud. The resource discovery is
done locally by each device participating in the commu-
nity, which will expose information such as number of
CPUs, speed, RAM size , and storage capacity.

However, as each device of a cloud has its own view
of the cloud, it has only partial information about the
cloud resources. The cloud also holds information about
the status of each member device, which indicates
whether the device is connected to the cloud, whether it is
performing a job or if it is available. This information will
be necessary upon job submission for allocation of re-
sources necessary to a given job. The cloud also stores the
network topology that interconnects its devices.

The gossiping algorithms used in the I-Cluster cloud

are enhanced derivatives of Mosix's adaptive resource
sharing algorithms described by Barak and La'adan [14].
Here is a basic description of our algorithm: Each device
operates on its own, and keeps a local database containing
a limited list of peers within the cloud. Each device is
identified by its network address or name. This list is dy-
namic i.e., it is possible that it is extended to include new
devices joining the community. The database also con-
tains the resource card available for each of the known
peers. With each object is attached a time stamp 1 of its
last modification date. Each individual device of the
cloud, at regular times (typically 5 seconds), will connect
to a random peer and they will exchange their database
contents. If a fresher copy of a database item exists in the
other device's database, the local item is updated with the
newer information. After the exchange, each device may
choose to drop some of the exchanged items so that its
database size remains small (typically from 200 items on
a PDA to 1000 items on a powerful machine). The
dropped items will be the least relevant ones i.e., the ones
which have the smallest chance to get useful for an I-
Cluster computing service execution. Typically items
corresponding to lower performance computers will be
dropped, as well as the ones corresponding to computers
which are not in the network neighborhood (expressed in
number of hops).

The Mosix team has shown [14] that the time for me an
information is of order log2(N) i.e., when a fresh informa-
tion is published to a device database, there is a 50%
probability that the information will be replicated on an-
other device's database after log2(N) steps. For exa mple,
in a 1024 nodes cloud, if a machine becomes available,
50% of the other machines of the cloud will get the in-

1 Note that distributed and synchronized time stamps may
be used for the sake of consistency of the time reference
between the cloud devices. A well -known example of
such distributed time stamps is the Lamport clock .

formation after only log2(1024)=10 steps of the algo-
rithm, hence after 50 seconds in our case. Of course this
applies well in Mosix's case, where the considered ma-
chines are stable computing servers and where each ma-
chine has a complete knowledge about the participants
list. In our case disconnections of machines make the
convergence slower. Moreover, we had to enhance the
algorithm so that it adapts to the capacity of each device.
In Mosix's case, each server holds information about all
other servers, which is inapplicable in our case, as this
would generate huge memory requirements on each de-
vice of the cloud, and very large messages would have to
be exchanged between devices, hence generating impor-
tant network traffic.

Match finding
Once each device is able to get its own view of the

cloud, it then knows a list of available machines of the
network that it can use for submitting jobs. The user se-
lects the computing service to invoke, and sets some addi-
tional information such as the entry parameters for the
job, data file locations and the location where the output
data should be exported (NFS, FTP, X display). This in-
formation is handled to a component called the match
finder , which will be responsible for finding a virtual
cluster which has the best capabilities for execution of the
job. The I-Cluster Framework uses the available network
resources and topology very tightly. This make s it possi-
ble for a given Service to require a set of resources with
critical network requirements. It is then possible to exe-
cute a very finely grained job –supercomputing- on the
allocated resources.

Each I-Cluster computing service is associated to a de-
scription of how the service can be composed (instanti-
ated) onto a cluster. The service composition takes into
account the complexity of the computational job, ex-
pressed in computational power required by the job,
number of machines, type and speed of processor re-
quired, minimal memory size, bandwidth and latency per
node, as well as the required interconnect capacity be-
tween allocated nodes expressed in terms of network to-
pology, maximum network latency between nodes and
network bisection bandwidth.

The match finder will check the local database for a set
of computers that match the service requirements, and
attempt to allocate them to the job. This is done using a 2-
phase commit algorithm, which first attempts the alloca-
tion of each required computer, and commits each of
them if all the computers are available for the computa-
tion. This very simplistic allocation scheme may be very
inefficient for a common cluster configuration, but in our
case we assume that lots of idle machines will be avail-
able at the time of service invocation, hence the chances
that two different attempts occur at the same time on a
single machine are low. I-Cluster shares the same alloca-
tion paradigm than MPI: The machines allocated to a

given service are fully allocated for the duration of the
service, and the number of machines cannot change dur-
ing the execution.

Once the allocation of the virtual cluster is done by the
match finder, we need to replicate the input data on each
of the machines. Replication can be done using tools [15]
that have been built by the ID-IMAG team in order to
efficiently distribute files to a number of machines in a
scalable way. As our testbed is 225 machines large, raw
file copies would quickly overload the network. Once the
data is replicated on the machines, the system proceeds
into starting the execution of the job on the given ma-
chines.

Execution sandbox
I-Cluster aims at using existing enterprise PCs and

combine them into virtual functions and services. This
means that "I-Cluster devices " are basically non-
dedicated network machines on which we need to add
specific software that enable them as being part of I-
Cluster’s cloud. Today’s machines are usually running
Microsoft Windows as their basic operating system. We
developed the components necessary for each machine to
be able to switch to an I-Cluster mode and come back
from this mode to the standard user mode.

The sandbox model allows the description of a code
execution model as well as a set of rules used to develop
code that will execute in the sandbox. A sandbox can be
used to execute untrusted code on a machine, while hav-
ing access to a set of system functionality such as net-
work connectivity, while protecting the executing ma-
chine as well as the data attached to it from any security
attack that could occur from malicious or deficient code
loaded by the sandbox. Hawblitzel et al [16] proposed a
classification of protection mechanisms in several classes.
The first class of protection is the hardware virtual me m-
ory, which allows code execution isolation based on
hardware support. The second class defines capacity sys-
tems, used in micro-kernel Operating systems such as
Amoeba [17] or Chorus [18], and based on an ins trumen-
tation of source code which builds the traces necessary
for building the capacity lists, which will be checked at
run-time. The Java Runtime Environment [19] be longs to
this category, as well as Internet C++ [20], a POSIX-
compliant runtime execution mode. The last class of pro-
tection mechanisms is Software-based Fault Isolation
(SFI), such as the one used by the VMWare system [21].
The I-Cluster sandbox belongs to this class, and makes a
temporal sharing of the PC resources. At a given time, a
computer will be either fully dedicated to its user, and
running as a standard Windows machine; or the computer
may switch to I-Cluster mode, where the resources are
fully dedicated to I-Cluster.

The I-Cluster mode of a PC can basically be seen as a
specific partition where a specific Linux distribution is
taking place. This partition is created in a user-transparent

way upon installation of I-Cluster on a machine. As we
required adapting to real world conditions, we had to de-
vise a way to operate and install this mode so that it does
not impact the user. We developed a set of tools that cre-
ate an unfragmented 512-MB file in the user's file system,
then copy the image of the I-Cluster partition into the file.
This way, we get a cluster partition included in the user's
partition. Our tools are based on Extensible Firmware
Interface [22] extensions available on recent PCs to hide
the I-Cluster partition; more precisely, we extended the
GUID Partition Tables (GPT) defined for IA64 architec-
tures hard disk partition, and added some support for it in
the Linux kernel used within our cluster mode. We devel-
oped tools to automatically control the boot sequence of
the PC, selecting whether the PC should be started in user
mode or in cluster mode upon each start. We coupled
some tools to Windows 2000/XP's hibernation mode,
screen saver and to remote wake up PC capability defined
by the OnNow consortium [23]. We can then easily use
launch windows i.e., lengthy periods of inactivity such as
off-work periods of computer users, nights, holidays and
week-ends. In such periods our tools will automatically
switch the PC from user to cluster mode, where the re-
sources will eventually get used. Then the PC will auto-
matically switch back to user mode some time before the
expected return time of the user. This way, the user never
notices transitions of his PC to cluster mode. However, in
case the user comes back unexpectedly, at night for in-
stance, I-Cluster can abort any ongoing computation and
restore the PC to user mode in less than 2 minutes (restor-
ing from Windows hibernation).

The main advantage of our execution sandbox is that
each system fully switches to the cluster mode when allo-
cated. This means that all the PC resources are dedicated
to the computation. There is no need to have part of the
memory and other system resources used for handling the
Windows Operating System in the background, as our
sandbox includes a fully operational Linux Operating
System.

4. Results

The system described here is still under ongoing re-
search. Most of the components are not functional yet,
and several months of work will be necessary until a sta-
ble version of the whole framework is available. We plan
to have a working demonstration of the I-Cluster cloud
deployed on a large set of machines by the end of 2003.

However, we have already installed an I-Cluster ex-
perimentation platform, based on 225 HP e-PC based on a
733 MHz Pentium III architecture, with 256 MB of RAM
and 15 GB of hard disk. They are interconnected by
Ethernet 100 using switches (see Figure 1). This platform
models a typical small company's network with main-
stream computers that you could expect finding on any-
one's desk. The goal was to experiment whether getting

some good performance with scientific applications
would be possible with I-Cluster running over infrastru c-
tures available in medium or large companies, or on a
University campus.

Using our experimentation platform, we have been
able to reach 81.6 Gflop/s using Linpack. We reached the
385th place on May 2001's TOP500 [24], showing that
world -class supercomputing is possible only using main-
stream computers and interconnection. We also showed
in [25] that, under certain circumstances, the system is
scalable in performance i.e., its performance increases
linearly with the number of machines used in the comp u-
tation.

Figure 1: I-Cluster experimentation platform topology

5. Next steps

I-Cluster is a research program, whose vision is to
build a full framework of tools that makes exploitation of
untapped network resources possible in the scope of sci-
entific/cluster computing. Large areas of research are still
under work, and the project components described in
paragraph 3 are not yet available and still require few
months of development.

Here are some areas that we will investigate in a short
term:

Simulation, validation and proof of our algorithms will
be an interesting area of research. The currently available
tools such as Network Simulator 2 (NS2) barely support
emu lation of large communities and are typically limited
to few hundred nodes simulations. As we need to evaluate
to convergence of algorithms, we will need to investigate
how we can scale current tools. This should help us assess
the convergence of the I-Cluster cloud, measure the qual-
ity of our algorithms and search the parameters that pro-
vide the best results.

We will begin a research effort about job resilience in
I-Cluster: Although the community and the cloud are re-
silient, once a job is started we cannot prevent a fault on
one of the allocated machines to stop the whole job. We

will be looking at ways to enhance this resilience using
either checkpointing and restart mechanisms or using
redundancy of execution nodes.

Security will probably be a future area of research. We
currently have a very secure sandbox for execution of
cluster jobs, but we need to work on extended analysis of
I-Cluster users security, including distributed authentica-
tion and accounting.

Also lots of other research areas will be investigated in
the longer term, depending on the project needs and op-
portunities.

6. Conclusion
We introduced the I-Cluster research project from HP

Labs Grenoble in partnership with INRIA (ID-IMAG
Laboratory), which aims at building a framework of tools
for performing scientific and cluster computation using
untapped resources from a network. I-Cluster introduces
lots of new concepts, particularly concerning how it han-
dles the transition from federated computing model to
community computing model . Based on a Peer-to-Peer
heart, I-Cluster will massively scale and gracefully adapt
to real world conditions. It allocates a virtual clu ster
amongst machines on a network, based on the computing
service requirements in terms of number of nodes, proc-
essing power, interconnection topology. It uses an execu-
tion sandbox that makes a temporal sharing of each com-
puter between a user mode and a cluster mode, in which
the resources are made available to the community for
performing common cluster computations.

The description of our experimentation platform
helped understanding how reaching a TOP500 level of
performance is possible using only mainstream resources,
such as the ones commonly available from an enterprise
network or from a university campus.

7. References
[1] Institute of Electrical and Electronics Engineers. "IEEE
Standard Computer Dictionary", A Compilation of IEEE Stan-
dard Computer Glossaries. New York, NY: 1990.

[2] Becker D.J., Sterling T., Savarese D., Dorband J.E.,
Ranawak U.A., Packer C.V., "Beowulf: A Parallel Workstation
for Scientific Computation", Proceedings of the International
Conference on Parallel Processing, 1995.

[3] Barak A., Wheeler R., "MOSIX: An Integrated Multiproces-
sor UNIX", Proceedings of Winter 89 USENIX Conference,
pp.101-112, San Diego, CA., 1989

[4] Gillen A., Kusnetzky D., Sayama A., Dayal H., Hingley M.,
"Windows Operating Environment Forecast and Analysis", IDC
publisher, document 24827, 2001.

[5] A. S. Tanenbaum, M. F. Kaashoek, R. van Renesse, H. Bal,
"The Amoeba Distributed Operating System - A Status Report",
Computer communications, Vol. 14 , pp. 324-335, Jul 1991.

[6] Remzi H. Arpaci, Andrea Dusseau, Amin M. Vahdat, Lok T.
Liu, Thomas E. Anderson, David A. Patterson, "The Interaction
of Parallel and Sequential Workloads on a Network of Worksta-
tions'', UC Berkeley Technical Report CS-94-838, November,
Also Submitted to Sigmetrics '95, 1994.

[7] T. E. Anderson et. al., "A case for NOW (Networks of
Workstations)", IEEE Micro, Feb 1995.

[8] Casanova H., Dongarra J.J., "NetSolve: A network server for
solving computational science problems", Tech. Report CS-95-
313, University of Tennessee, 1995.

[9] Litzkow M.J., Livny M., Mutka M.W., "Condor - A hunter
of idle workstations", Proceedings of the 8th International Con-
ference on Distributed Computer Systems, 1988.

[10] D. Atkins, M. Graff, A. K. Lenstra and P. C. Leyland.,
"The Magic Words are Squeamish Ossifrage ", Advances in
Cryptology - ASIACRYPT '94, J. Pieprzyk and R. Safavi-Naini,
eds., Lecture Notes in Computer Science 917, (1995), 263-277.

[11] Anderson D., et al., "SETI@home: The Search for Extrater-
restrial Intelligence", Technical report, Space Sciences Labora-
tory, University of California at Berkeley.
http://setiathome.ssl.berkeley.edu/, 1999

[12] I. Foster, C Kesselman, "The Grid: Blueprint for a New
Computing Infrastructure". Morgan Kaufman Publishers, Inc.
San Francisco, California, 1999.

[13] Foster I., Kesselman C., "Globus: A Metacomputing Infra-
structure Toolkit", Proceedings of the Workshop on Environ-
ments and Tools for Parallel Scientific Computing, SIAM,
Lyon, France, 1996

[14] A. Barak and O. La'adan, "The MOSIX Multicomputer
Operating System for High Performance Cluster Computing",
Journal of Future Generation Computer Systems, 13(4--5):361--
372, March 1998. 3.4.1 138

[15] Martin C., Richard O.,"Parallel launcher for clusters of
PCs", Proceedings of Parco 2001.

[16] Hawblitzel C., Von Eicken T., "A case for language-based
protection", Tech. Rep. 98-1670, Department of Computer Sci-
ence, Cornell University, 1998.

[17] Tannenbaum A.S., Van Renesse R., Van Staveren H.,
Sharp G.J., Mullender S.J., Jansen J., Van Rossum G., "Experi-
ences with the Amoeba distributed operating system", CACM,
33(12):46--63, 1990.

[18] Abrossimov V., Rozier M., Gien M., "Virtual Memory
Management in Chorus", Proceedings of Progress in Distributed
Operating Systems and Distributed Systems management, 1989.

[19] Arnold K., Gosling J., Holmes D., "The Java™ Program-
ming Language", The Java™ Series, Addison Wesley, 1994.

[20] Abis M., Dayley B., "An Open Alternative to Java and C-
Sharp", http://ivm.sourceforge.net/, 2000.

[21] VMware, Inc. "Virtual Platform"
http://www.vmware.com/products/virtualplatform.html, 2000.

[22] Intel et al., "Extensible Firmware Interface", Version 1.02,
http://developer.intel.com/technology/efi/, 2001.

[23] Microsoft Corporation, "OnNow: the evolution of the PC
platform", http://www.microsoft.com/hwdev/onnow.htm, 1997.

[24] Meuer H.W., Strohmaier E., Dongarra J.J., Simon H.D.,
"TOP500 Supercomputer Sites", Proceedings of the 16th Inter-
national Supercomputer Conference, June 2001.

[25] Richard B., Augerat P., Maillard N., Derr S., Martin S.,
Robert C, "I-Cluster: Reaching TOP500 performance using
mainstream hardware", HP Labs technical report HPL-2001-
206, http://www.hpl.hp.com/techreports/2001/HPL-2001-
206.html, 2001.

