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Abstract.  The Client Utility system developed at HP Labs in the mid 1990s was designed to 

address the problems inherent in distributed computing. This paper shows that the architecture 

we developed solves some of the problems faced by designers of Peer-to-Peer systems, 

particularly those of discovery, trust, and naming.  We show how elements of the Client Utility 

architecture can be used to address the problems found in some existing Peer-to-Peer systems. 

 

1 Introduction 

The goal of the Client Utility (CU) [1] project at HP Labs was to find a way to hide the 
complexity of the Internet from developers of application and users of those 
applications. With the increasing importance of peer-to-peer (P2P) environments [27], 
it has become clear that many of the issues addressed by CU are critical to the success 
of peer-to-peer (P2P) systems, such as Napster [12], Gnutella [14], Morpheus [13], and 
Freenet[15].  

The most immediate problem a P2P system needs to deal with is finding out what is 
available or finding a specific item, be it a resource, such as a file, disk or machine, or 
a service of some sort, such as a backup service.  A less obvious, but no less important 
problem, is that of trust.  To what machines should you connect, and what should you 
allow each one to do?  A third problem that is only now being recognized is that of 
naming things in a P2P system. 

Section 2 contains a brief overview of the CU architecture, and Section 3 shows how 
the CU architecture addresses some of the problems common to P2P systems.  Specific 
examples of how the approaches developed for CU can be used to address problems in 
P2P systems are presented in Section 4. 

2 Client Utility Architecture 

Although the Client Utility project started in the beginning of 1996 with its own set of 
goals, we ended up with an architecture that addresses the key issues we see in today’s 
P2P environments.  This section contains a brief overview of the architecture; more 
detail is available elsewhere [1, 2, 3, 4]. 



2 

We started the Client Utility project by asking ourselves what assumptions we should 
make and settled on the following five. 

1. Large scale.  We designed for 1,000,000 machines. An environment this large 
means that there can be no centralized point of control and that it is impossible 
to maintain consistency.  You must assume that any piece of data you get is 
out of date.  If that isn’t acceptable, it’s up to you to synchronize. 

2. Dynamic.  No environment that large can be static.  Machines will fail; 
machines will join the system.  Resources, both hard, such as machines, and 
soft, such as files, will vanish to be replaced by new ones. 

3. Heterogeneous.  There is no practical way to impose a single machine 
architecture on the world.  Not only must the system be designed to deal with 
different hardware and operating systems, it must accommodate devices of 
widely different capabilities, everything from servers to cell phones. 

4. Hostile.  Some people will want to wreak havoc, even if there is no gain, 
financial or otherwise.  Given the nature of the system, the security system 
must be scalable.  In particular, it must be able to deal with an environment 
consisting of an extremely large number of potential users of any resource. 

5. Distributed control. The environment must be able to accommodate different 
ways of managing systems and expressing policies.  No single standard can 
meet all needs nor can it be flexible enough to match the rate of change such a 
system will have. 

It should come as no surprise that this list is identical to one we’d make today for P2P 
systems.  To see how CU addresses each of these assumptions and how those solutions 
apply to P2P systems, we need to examine briefly the CU architecture. 

Single Machine View

Core MonitorMonitor

NamingNamingPermissionPermission

RouterRouter

Client Resource 
Handler
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Name Space Name Space

Event Distributor

Host OS

Figure 1. Message flow within a logical machine. 
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A CU system is a federation of logical machines.  Each logical machine consists of an 
active component called the core and a passive component called the repository.  
Several logical machines can share one piece of hardware, each can have a dedicated 
machine, or a single logical machine can use several physical machines.  How ever it is 
configured, programs will run the same way. 

Figure 1 shows the key components of a logical machine.  Entities that interact with the 
core are called clients.  The basic unit of control is a resource.  If a client wishes to 
make a resource or service available, it registers it with the core, which assigns the 
resource a repository handle.  The corresponding repository entry designates the client 
acting as handler for the resource.   

A mailbox metaphor is used for resource access.  Each request consists of an envelope 
containing information used by the core and a payload containing the application 
related data.  The message forwarded to the resource handler by the core has an 
envelope generated by the core and the original payload, unmodified and unexamined.  
This partitioning of the message means that the application API does not need 
modification. 

The core maintains in its address space a name space on behalf of each client.  This 
name space contains mappings between strings, representing the client’s names for 
resources, and repository handles.  Name spaces are populated in one of three ways.  
Some names are present when the client process first connects to the core.  These 
names are typically bound to system resources and allow the client to bootstrap its way 
into the system.  A second way to get a name binding is to have one sent from another 
client.  Clients can also get name bindings by finding resources as described below. 

Figure 2. Connecting two logical machines. 
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The client message names the resource of interest.  The core looks up this name in the 
client’s name space to find the associated repository handle.  The corresponding 
repository entry is used for permission checking and to identify the client acting as the 
handler for a resource.  The core bundles up the original payload with a new envelope 
and deposits the message in the handler’s inbox.  Any reply is sent the same way, by 
naming a resource associated with the target of the message. 

When a client wants to obtain access to a resource on another logical machine, it sends 
a request to its machine’s connection manager.  This client of the core is responsible 
for enforcing any policies between machines.  If the connection is approved, the 
connection manager contacts its counterpart on the other machine, and each spawns a 
client to act as a proxy for the other, as shown in Figure 2.  These proxies use 
information provided by their respective connection managers to authenticate each 
other and exchange encryption keys.  Each then exports metadata of the resources it 
will make available to the other machine.  These exported resources get registered in 
the repository of the importing logical machine.   

When a client accesses a remote resource, the core does exactly what it does for a local 
resource.  The only difference is that the handler is a proxy that forwards the request to 
its counterpart on the machine that exported the resource metadata.  That proxy repeats 
the request exactly as issued.  The request passes through the proxy’s core to the 
resource handler.  The message flow is shown in Figure 3. 

Note that neither the client, nor the handler, nor either core does anything different than 
it does for a local request.  Only the proxies are aware that there is another machine 
involved.  Note, too that the machine on the right of the figure may not be the resource 
handler, only an intermediary.  Or, the machine on the left may be forwarding a request 
that originated elsewhere.  No special code is needed to do this kind of forwarding.  It 
is a natural consequence of the basic architecture. 

Figure 3. Message flow when accessing a remote resource. 
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Figure 4 shows that the pattern of connections among CU logical machines looks very 
much like that found in P2P systems.  Clients of a core request connections to other 
cores.  Some of these cores act as gateways into other groups of cores.  Server 
machines can act as intermediaries for resources from many machines.  These gateway 
machines can also limit what connections are allowed and enforce the access control 
policies. 

3 Issues and solutions 

Designers of P2P systems need to deal with a number of issues. In this section, we’ll 
examine questions of discovery, trust, and naming, and show how the CU architecture 
addresses them. 

3.1 Discovery 

The most obvious problem P2P systems have is finding the resource, a process we call 
discovery.  The lesson learned most notably from Napster [12] is that we can’t use the 
name of the thing to find it, even for something as simple as an immutable file.  The 
problem is much more serious for general resources and services.  The simplest 
approach used for services is to search for the interface of the service as done in the 
CORBA naming service [6] and Jini [7].  However, it is hard to see how to use this 
approach to find a particular instance of the many resources provided by a single 
service, such as a particular file in a specific file system, or to select one instance from 
many providers of a particular service.  Another approach is to provide a common 
ontology to describe and discover resources as done, for example, by VerticalNet [5].  
The problem is that this ontology is a standard that requires agreement to incorporate 
improvements and new features, but the P2P world changes too fast to wait for such 
agreement to be reached. 

CU adopted the concept of definable ontologies to set the context for searches.  It 
represents an ontology by a vocabulary consisting of attribute-value pairs.  Each 
attribute has a number of properties, including value type, multiplicity, and a rule 
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Figure 4. Scaling up the number of logical machines. 



6 

defining what constitutes a match.  Look-ups are performed by submitting a constraint 
expression of attributes from one or more vocabularies. 

Vocabularies in CU are first class objects that can be described in other vocabularies.  
So, if you want to find a pair of shoes, you would look up shopping vocabularies in the 
base vocabulary defined to bootstrap the process, shoe vocabularies in the shopping 
vocabularies that you find, and so on.  Any of the searches can return a list containing 
more vocabularies and other resources that match the description.  So, if you’ve done a 
lookup in a men’s shoe vocabulary, you may have found listings for wingtips and a 
vocabulary for tennis shoes.  Since anyone can create a new vocabulary, someone who 
wanted to advertise special tennis shoes for playing on clay courts could advertise that 
vocabulary in the tennis shoe vocabulary; no global coordination is needed.  RDF [8] 
can be used to provide a similar level of flexibility, but it lacks CU’s definable 
matching rules. 

The basic lookup mechanism starts with a search of the local repository.  Part of the 
metadata stored when the resource is registered with the core is a description in one or 
more vocabularies.  The core provides an engine for matching constraint expressions 
with these descriptions.  If a match is found, a name binding is placed in the client’s 
name space.   

If a match is not found, the client can arrange for the search to be extended to the 
machines its core is connected to, much the way Gnutella [14] propagates searches.   
However, CU recognizes that one machine can only ask another to do something, not 
force it to.  Hence, the CU extended look-up request does not specify a horizon; that’s 
up to the machine receiving the request. Such an approach can lead to flooding the 
network, so requests carry a 64-bit random number as an identifying tag and an aging 
tag that can be used as a hint to influence a client’s decision to forward the request 
further.  This tag is only a hint, though. No matter how many hops a request has gone, 
a small device, such as a cell phone, may decide to forward the request if the next hop 
is known to be a large server. However, by taking into consideration the resources 
accessed by clients on different machines and exploiting their trust relationships, we 
can manipulate the logical connections between the machines to guarantee that peers 
with high degree of resource sharing are connected closely and therefore reduce the 
number of messages broadcast in the network [26]. If the resource is found, it is 
exported to the client’s machine, and a name mapping to it is placed in the client’s 
name space. 

There are times when extended look-up requests aren’t sufficient.  For example, the 
client might be part of a limited community, none of the members of which has the 
requested resource.  The extended look-up can also be inefficient, requiring too many 
hops and putting too much of a burden on the network and other machines.  In such 
situations, the client can contact one of a few, well-known advertising services, very 
much like the Napster [12] model.  E-speak provided one [3], but clients could use 
others, such as UDDI [17] or even Yahoo! [18].  Each box labeled LDAP in Figure 4 
represents such an advertising service.  The main difference between an extended look-
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up and using the advertising service is that the former is on-line, i.e., the machine 
owning the resource must be connected to the client by some path, but the latter is off-
line.  If the item is found in the advertising service, the client is told what machine to 
connect to. 

3.2 Trust 

A second issue that has not been given sufficient attention in the past but that is 
becoming more apparent of late is that of trust.  Members of a P2P system connect 
their machines to each other and agree to provide certain services to peers.  Each direct 
connection conveys a measure of trust.  If this trust is misplaced, bad things happen.  
Note that mechanisms based on encryption, such as SSL, only prevent snooping or 
tampering with messages.  They don’t prevent one peer from attacking another over a 
legitimate connection. 

The CU architecture was designed based on an understanding of this kind of trust.  
Connections are initiated and/or accepted by a connection manager, a trusted process 
running on each machine. The connection manager is able to associate a set of 
permissions with any other machine based on policies specified by the owner of the 
connection manager’s machine.  Ultimately, such policies must be set by a human, but 
automated tools can reduce the administrative burden.  In particular, an unknown 
machine will only be granted a small set of privileges.  CU controls these privileges so 
that even a rogue process, perhaps started by a virus, cannot grant excessive privileges 
to an attacker. 

In CU, all communication with the outside world is done through a proxy running on 
the local machine.  This policy recognizes that you trust software you install on your 
own machine, the proxy, more than software on machines out of your control.  That 
doesn’t mean you trust this software completely.  Every CU client has a name space 
that limits what resources it can access and a set of permissions that limit what actions 
it can take on the resources it names. 

The proxy serves a number of purposes.  Since it is a client of the core, it has a name 
space.  No matter what the remote user attempts to do, the proxy can only access those 
resources that appear in its name space and can perform only those actions allowed by 
its permissions.  This sandboxing provides a level of control on active services similar 
to that provided by web servers for files.  The proxy also protects against some denial 
of service attacks. For example, an attack that causes the proxy to crash or hang has the 
desirable effect of cutting off the attacker. 

The transparent brokering of the CU architecture also addresses a number of trust 
issues.  Say that Alice exports some resources to Bob, and Bob exports some of them 
to Carol.  As far as Carol is concerned, Bob is providing the resource; as far as Alice is 
concerned, Bob is using the resource.  Each connection represents a trust relation.  
Alice and Bob share one; Bob and Carol share another.  There is no such relationship 
between Alice and Carol.  Should Carol contact Alice directly and ask for the same 
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resource, Alice is likely to refuse.  Of course, Bob could choose to introduce Carol to 
Alice so they can establish their own trust relation.  The advantage of the introduction 
process is that Bob can tell Alice exactly which of Alice’s services Bob is willing to 
forward to Carol.  That information gives Alice an idea of what level of trust she 
should put in Carol. 

3.3 Naming 

Another problem, one that P2P systems share with all distributed systems, is that of 
naming [22,28].  Most distributed systems rely on a global name space, the most 
familiar of which is based on URLs.  However, there are problems.  One component of 
a URL is the location of a machine, either an IP address or a domain name.  The 
widespread use of dynamically assigned IP addresses makes their use problematic.  
Domain names are better, but the presence of Network Address Translation (NAT) 
firewalls introduces private name spaces. Hence, it is difficult to avoid name collisions 
and to share names across firewalls.  Changing ISPs is also a problem, since a 
machine’s domain name must be changed.  Since a global name points to a specific 
machine, using high availability solutions based on redundancy is hard. 

CU names are purely local to each process.  A translation table is maintained between 
each pair of entities, client-core, core-client, proxy-proxy.  When a handler needs to 
change the name of a resource, perhaps because it was moved to a new disk, it need 
only inform the core, not every potential user of the resource.  While this approach 
sounds strange, it is a system we use every day.  We don’t commonly use globally 
unique names for people and things; we use relative names.  For example, instead of 
specifying the VIN for a vehicle, we refer to Alice’s husband’s car.  Should Alice’s 
husband trade in his Honda for a BMW, he may tell Alice to refer to it as his Beemer.   
Everyone else can still refer to Alice’s husband’s car.  Alice can even change husbands 
without invalidating uses of the name. 

This form of naming reflects the trust relations embodied in the connections between 
machines.  Each hop on the path between requester and handler implies that an 
agreement has been reached on the meaning of the name shared by the two parties.  
Thus, when the handler gets a request, it knows that a “path of trust” exists; it’s 
embodied in the name system.  That assurance doesn’t exist in naming systems that 
allow names to be communicated out of band, such as those using URLs.  Those 
systems require an additional level of authentication before access can be granted.  
Path dependent names also have the advantage that the permissions are attached to the 
request through the names as they pass through the system.  Other naming systems 
require a separate mechanism for access control. 

Another advantage of CU’s naming system has to do with the dynamic nature of large 
systems.  There may be times when the named resource is not available, either because 
it has been moved, removed, or is temporarily unreachable.  If the name of the object 
specified by the application includes location information, as it does with URLs, the 
resulting exception must be handled at the application level.  The level of indirection 
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provided by CU allows the name to be remapped to an alternate provider of the same 
or an equivalent resource.  In particular, a client’s name may be bound to a list of 
repository handles and a lookup request.  Doing so allows the core to deal with 
unreachable resources without involving the application. 

The CU approach to naming has some limitations, of course.  First of all, these names 
have no meaning outside of the CU system.  You can’t tell a friend the name of a 
resource over the telephone since the name has meaning only within your name space.  
Instead, you send a message to your friend containing the name mapping.  Another 
problem is knowing if two names obtained from different sources refer to the same 
object, a problem that exists today for URLs.  Most of the time it doesn’t matter, say 
for immutable files, but when it does, CU defines a protocol that lets you find out.  
Clients are also free to include a large, random number in the metadata stored in the 
repository, allowing a high degree of certainty to the identification of any resource.  
Finally, there is the problem of knowing if this resource is the same one you used last 
time.  Again, it rarely matters, but when it does, the authentication information used to 
establish a trust relation provides sufficient information. 

4 Related Work 
 
A great deal of work has been done in P2P systems.  In this section, we’ll discuss 
problems identified in a few of them, and show how solutions developed for CU 
address them. 

4.1 JXTA 

The JXTA project from Sun [19,20] is a “general-purpose” network programming and 
computing infrastructure that supports a wide range of distributed computing 
applications and runs on any device with a digital heartbeat. The JXTA architecture 
provides core functionality in multiple layers, including basic mechanisms and 
concepts (such as protocols for peer discovery, monitoring and group membership), 
higher-level services that expand these capabilities (e.g., authentication, discovery and 
management) and a wide range of applications (such as instant messaging and chat 
capabilities). There are many similarities in the goals of JXTA and Client Utility 
including interoperability, platform independence, discovery and security. However, 
JXTA focuses more on the peer groups, while in the Client Utility system the basic unit 
of control is the resource. 

JXTA uses user-generated identifiers (UUIDs) to refer to entities and resources, such 
as a peer or a service. An entity has a unique UUID within the group in which it is 
created. This poses the important problem that the resource identities are based on 
human-generated names and therefore, there is no way to predict the name of a 
particular service. In the Client Utility, resource identities are based on attributes rather 
than names, which makes it suitable for searching for more general resources and 
services. Also, JXTA realizes the need for security and uses the resource UUIDs for 
implementing access control mechanisms. However, there is no guarantee that a 
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particular UUID won’t be reused, which means that a privilege granted on the old 
resource may be exercised on the new one.   

Client Utility, on the other hand, uses split capabilities [21], and therefore the users do 
not need a separate capability for each of the services or resources they invoke. 
Overall, the Client Utility system has developed more sophisticated and extensible 
mechanisms for resource identity, description and discovery based on attributes, 
resource access based on capabilities, and inter-machine interactions based on the use 
of proxies. 

4.2 Oceanstore 

The OceanStore system (from the University of California, Berkeley) [22] is a utility 
infrastructure designed to provide secure, highly available access to persistent objects 
in a large-scale environment. It has many attractive features including persistence 
storage, fault tolerance, distributed search and routing and conflict resolution. Its main 
design goals are: (1) to be constructed from an untrusted infrastructure and (2) to 
support nomadic data. There are a number of similarities in the goals of Client Utility 
and OceanStore - persistent storage, distribution, resource management, and secure 
access to resources. However, OceanStore is geared towards file sharing applications, 
such as groupware and repositories for scientific data. The Client Utility is not 
restricted to file sharing applications, but also includes legacy applications, enterprise 
applications, and Internet web services. 

Each object in OceanStore is named by a globally unique identifier (GUID). An object 
GUID is the secure hash of the owner’s private key and some human-readable name. 
The search messages are labeled with a destination GUID and routed directly to the 
closest node that matches the search predicate and has the desired GUID.  One problem 
with this strategy is that objects live longer than private keys, which are often 
configured to expire after a year.  When a private key must be changed, the names of 
all objects must either be changed, in which case outstanding references become 
invalid, or the names lose the authentication provided by using the private key in the 
first place. 

CU on the other hand, provides a flexible and extensible naming scheme; each resource 
is named in the context of the local name spac,e and uses vocabularies consisting of 
attribute-value pairs to match the attributes of the corresponding resources. The 
advantage is that the client does not need to know the exact name when searching for a 
resource and that not all the clients have to be informed when the name (such as the 
local path) of the resource changes.  The OceanStore system supports primitive types 
of access control, the reader restriction and the writer restriction. Reads are restricted at 
clients via key distribution, while writes are restricted at servers using access control 
lists. The split capabilities used in Client Utility are more flexible and make some 
attacks more difficult. 
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Ideas from the Client Utility system (such as authentication of both users and 
machines, privacy and access control) could be used in a system that is fundamentally 
untrusted. For example, CU employs a trust model with different levels of trust to grant 
privileges to other machines. This is superior to systems such as OceanStore that use 
only cryptographic techniques to protect the data. 

 

4.3 Farsite 

The Farsite project at Microsoft research [23] is a serverless, distributed file system 
that exploits the underutilized storage and communication resources distributed among 
the networked desktop computers in a large organization. Its distinguishing 
characteristic is that it can be deployed on an existing desktop infrastructure and does 
not assume careful administration or mutual trust among the client machines. Its goals 
are to provide high availability and reliability for file storage, security and resistance to 
Byzantine threats and automatic configuration and re-configuration mechanisms to 
respond to component failures and usage variations. 

The Client Utility architecture uses a resource abstraction to encapsulate any 
functionality or service ranging from a file to a complex combination of services. 
Farsite, on the other hand, is restricted only to file systems. Each file in Farsite is 
encrypted (using cryptographic file hash), replicated and stored on multiple machines. 
The system provides security and availability by distributing multiple encrypted 
replicas of each file among the client machines. In terms of security, Farsite uses a 
directory host, which is a group of machines that interact using a Byzantine fault- 
tolerant protocol. This preserves the integrity of the group as long as fewer than one 
third of the machines misbehave in a malicious or arbitrary manner. The Client Utility 
started with the assumption of a malicious environment and implemented a 
sophisticated capability-based protection scheme. Farsite provides a good solution for 
the environment of a large company or university, but could take advantage of the CU 
mechanisms for creating, discovering and managing services across multiple 
organizations in a large-scale distributed system. 

4.4 Collaborative P2P Platforms 

Collaborative P2P platforms such as Groove 24] and Magi (Endeavors) [25] are 
increasingly becoming popular as they create secure shared spaces and interactive tools 
for real-time and asynchronous collaboration among multiple users. They use 
distributed state-management mechanisms that allow multiple users to share and 
concurrently operate application programs, while each member of the space maintains 
its own view. All transactions between the members of a shared space are encrypted 
through the use of public and private key infrastructures. 

The Client Utility system, although it was not designed as a collaborative 
infrastructure, it is fully decentralized and has very attractive features (such as 
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personalizable name-spaces, scalable lookup and brokering services, access control 
mechanisms) that make it ideal for building large-scale P2P collaborative spaces. On 
the other hand, both Groove and Magi use a hybrid centralized-decentralized approach 
(centralized management for discovering the peers, securing access of resources and 
automatically updating the data, while the data is obtained directly from the peers). 
These are best optimized for small-group interactions. 

5 Summary 

Although the development of the Client Utility architecture was independent of the 
development of today’s familiar peer-to-peer systems, CU addresses many of the 
problems those systems face.  Some of the ideas introduced by the Client Utility have 
found their way into the world of Web services.  These include messages consisting of 
envelopes and opaque payloads (SOAP [16]), mediation of requests (Biztalk [16], 
J2EE[16]), and extensible vocabulary structures (RDF [16]).  In the peer-to-peer space, 
JXTA [19] has adopted many of the concepts introduced by the Client Utility.  Other 
parts of the architecture, such as its naming system, await adoption.  

The CU design, being centered on a resource abstraction, makes it an attractive 
platform for developing web services.  In fact, its embodiment as the e-speak product 
[4] provided exactly such a platform.  However, the basic design goals of CU are closer 
to those of P2P systems.  Hence, as P2P developers adopt and adapt the ongoing work 
in web services, they may find components of the Client Utility to be useful. 
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