

The Client Utility as a Peer-to-Peer System

Alan H. Karp, Vana Kalogeraki
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-78
April 2nd , 2002*

E-mail: alan_karp@hp.com, vana@hpl.hp.com

Client Utility,
peer-to-peer,
discovery,
trust, naming

The Client Utility system developed at HP Labs in the mid 1990s
was designed to address the problems inherent in distributed
computing. This paper shows that the architecture we developed
solves some of the problems faced by designers of Peer-to-Peer
systems, particularly those of discovery, trust, and naming. We
show how elements of the Client Utility architecture can be used to
address the problems found in some existing Peer-to-Peer systems.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

1

The Client Utility as a Peer-to-Peer System

 Alan H. Karp, Vana Kalogeraki
Hewlett-Packard Labs
Palo Alto, California

alan_karp@hp.com, vana@hpl.hp.com

Abstract. The Client Utility system developed at HP Labs in the mid 1990s was designed to

address the problems inherent in distributed computing. This paper shows that the architecture

we developed solves some of the problems faced by designers of Peer-to-Peer systems,

particularly those of discovery, trust, and naming. We show how elements of the Client Utility

architecture can be used to address the problems found in some existing Peer-to-Peer systems.

1 Introduction

The goal of the Client Utility (CU) [1] project at HP Labs was to find a way to hide the
complexity of the Internet from developers of application and users of those
applications. With the increasing importance of peer-to-peer (P2P) environments [27],
it has become clear that many of the issues addressed by CU are critical to the success
of peer-to-peer (P2P) systems, such as Napster [12], Gnutella [14], Morpheus [13], and
Freenet[15].

The most immediate problem a P2P system needs to deal with is finding out what is
available or finding a specific item, be it a resource, such as a file, disk or machine, or
a service of some sort, such as a backup service. A less obvious, but no less important
problem, is that of trust. To what machines should you connect, and what should you
allow each one to do? A third problem that is only now being recognized is that of
naming things in a P2P system.

Section 2 contains a brief overview of the CU architecture, and Section 3 shows how
the CU architecture addresses some of the problems common to P2P systems. Specific
examples of how the approaches developed for CU can be used to address problems in
P2P systems are presented in Section 4.

2 Client Utility Architecture

Although the Client Utility project started in the beginning of 1996 with its own set of
goals, we ended up with an architecture that addresses the key issues we see in today’s
P2P environments. This section contains a brief overview of the architecture; more
detail is available elsewhere [1, 2, 3, 4].

2

We started the Client Utility project by asking ourselves what assumptions we should
make and settled on the following five.

1. Large scale. We designed for 1,000,000 machines. An environment this large
means that there can be no centralized point of control and that it is impossible
to maintain consistency. You must assume that any piece of data you get is
out of date. If that isn’t acceptable, it’s up to you to synchronize.

2. Dynamic. No environment that large can be static. Machines will fail;
machines will join the system. Resources, both hard, such as machines, and
soft, such as files, will vanish to be replaced by new ones.

3. Heterogeneous. There is no practical way to impose a single machine
architecture on the world. Not only must the system be designed to deal with
different hardware and operating systems, it must accommodate devices of
widely different capabilities, everything from servers to cell phones.

4. Hostile. Some people will want to wreak havoc, even if there is no gain,
financial or otherwise. Given the nature of the system, the security system
must be scalable. In particular, it must be able to deal with an environment
consisting of an extremely large number of potential users of any resource.

5. Distributed control. The environment must be able to accommodate different
ways of managing systems and expressing policies. No single standard can
meet all needs nor can it be flexible enough to match the rate of change such a
system will have.

It should come as no surprise that this list is identical to one we’d make today for P2P
systems. To see how CU addresses each of these assumptions and how those solutions
apply to P2P systems, we need to examine briefly the CU architecture.

Single Machine View

Core MonitorMonitor

NamingNamingPermissionPermission

RouterRouter

Client Resource
Handler

Repository

Name Space Name Space

Event Distributor

Host OS

Figure 1. Message flow within a logical machine.

3

A CU system is a federation of logical machines. Each logical machine consists of an
active component called the core and a passive component called the repository.
Several logical machines can share one piece of hardware, each can have a dedicated
machine, or a single logical machine can use several physical machines. How ever it is
configured, programs will run the same way.

Figure 1 shows the key components of a logical machine. Entities that interact with the
core are called clients. The basic unit of control is a resource. If a client wishes to
make a resource or service available, it registers it with the core, which assigns the
resource a repository handle. The corresponding repository entry designates the client
acting as handler for the resource.

A mailbox metaphor is used for resource access. Each request consists of an envelope
containing information used by the core and a payload containing the application
related data. The message forwarded to the resource handler by the core has an
envelope generated by the core and the original payload, unmodified and unexamined.
This partitioning of the message means that the application API does not need
modification.

The core maintains in its address space a name space on behalf of each client. This
name space contains mappings between strings, representing the client’s names for
resources, and repository handles. Name spaces are populated in one of three ways.
Some names are present when the client process first connects to the core. These
names are typically bound to system resources and allow the client to bootstrap its way
into the system. A second way to get a name binding is to have one sent from another
client. Clients can also get name bindings by finding resources as described below.

Figure 2. Connecting two logical machines.

4

The client message names the resource of interest. The core looks up this name in the
client’s name space to find the associated repository handle. The corresponding
repository entry is used for permission checking and to identify the client acting as the
handler for a resource. The core bundles up the original payload with a new envelope
and deposits the message in the handler’s inbox. Any reply is sent the same way, by
naming a resource associated with the target of the message.

When a client wants to obtain access to a resource on another logical machine, it sends
a request to its machine’s connection manager. This client of the core is responsible
for enforcing any policies between machines. If the connection is approved, the
connection manager contacts its counterpart on the other machine, and each spawns a
client to act as a proxy for the other, as shown in Figure 2. These proxies use
information provided by their respective connection managers to authenticate each
other and exchange encryption keys. Each then exports metadata of the resources it
will make available to the other machine. These exported resources get registered in
the repository of the importing logical machine.

When a client accesses a remote resource, the core does exactly what it does for a local
resource. The only difference is that the handler is a proxy that forwards the request to
its counterpart on the machine that exported the resource metadata. That proxy repeats
the request exactly as issued. The request passes through the proxy’s core to the
resource handler. The message flow is shown in Figure 3.

Note that neither the client, nor the handler, nor either core does anything different than
it does for a local request. Only the proxies are aware that there is another machine
involved. Note, too that the machine on the right of the figure may not be the resource
handler, only an intermediary. Or, the machine on the left may be forwarding a request
that originated elsewhere. No special code is needed to do this kind of forwarding. It
is a natural consequence of the basic architecture.

Figure 3. Message flow when accessing a remote resource.

5

Figure 4 shows that the pattern of connections among CU logical machines looks very
much like that found in P2P systems. Clients of a core request connections to other
cores. Some of these cores act as gateways into other groups of cores. Server
machines can act as intermediaries for resources from many machines. These gateway
machines can also limit what connections are allowed and enforce the access control
policies.

3 Issues and solutions

Designers of P2P systems need to deal with a number of issues. In this section, we’ll
examine questions of discovery, trust, and naming, and show how the CU architecture
addresses them.

3.1 Discovery

The most obvious problem P2P systems have is finding the resource, a process we call
discovery. The lesson learned most notably from Napster [12] is that we can’t use the
name of the thing to find it, even for something as simple as an immutable file. The
problem is much more serious for general resources and services. The simplest
approach used for services is to search for the interface of the service as done in the
CORBA naming service [6] and Jini [7]. However, it is hard to see how to use this
approach to find a particular instance of the many resources provided by a single
service, such as a particular file in a specific file system, or to select one instance from
many providers of a particular service. Another approach is to provide a common
ontology to describe and discover resources as done, for example, by VerticalNet [5].
The problem is that this ontology is a standard that requires agreement to incorporate
improvements and new features, but the P2P world changes too fast to wait for such
agreement to be reached.

CU adopted the concept of definable ontologies to set the context for searches. It
represents an ontology by a vocabulary consisting of attribute-value pairs. Each
attribute has a number of properties, including value type, multiplicity, and a rule

core core
client

client

client client

core core

core
client

client

client client

client

Service

LDAP

A

A

A

Group A
Group B

B
B

core core
client

client

client client

core core

core
client

client

client client

client

Service

LDAP

A

A

A

Group A
Group B

B
B

Figure 4. Scaling up the number of logical machines.

6

defining what constitutes a match. Look-ups are performed by submitting a constraint
expression of attributes from one or more vocabularies.

Vocabularies in CU are first class objects that can be described in other vocabularies.
So, if you want to find a pair of shoes, you would look up shopping vocabularies in the
base vocabulary defined to bootstrap the process, shoe vocabularies in the shopping
vocabularies that you find, and so on. Any of the searches can return a list containing
more vocabularies and other resources that match the description. So, if you’ve done a
lookup in a men’s shoe vocabulary, you may have found listings for wingtips and a
vocabulary for tennis shoes. Since anyone can create a new vocabulary, someone who
wanted to advertise special tennis shoes for playing on clay courts could advertise that
vocabulary in the tennis shoe vocabulary; no global coordination is needed. RDF [8]
can be used to provide a similar level of flexibility, but it lacks CU’s definable
matching rules.

The basic lookup mechanism starts with a search of the local repository. Part of the
metadata stored when the resource is registered with the core is a description in one or
more vocabularies. The core provides an engine for matching constraint expressions
with these descriptions. If a match is found, a name binding is placed in the client’s
name space.

If a match is not found, the client can arrange for the search to be extended to the
machines its core is connected to, much the way Gnutella [14] propagates searches.
However, CU recognizes that one machine can only ask another to do something, not
force it to. Hence, the CU extended look-up request does not specify a horizon; that’s
up to the machine receiving the request. Such an approach can lead to flooding the
network, so requests carry a 64-bit random number as an identifying tag and an aging
tag that can be used as a hint to influence a client’s decision to forward the request
further. This tag is only a hint, though. No matter how many hops a request has gone,
a small device, such as a cell phone, may decide to forward the request if the next hop
is known to be a large server. However, by taking into consideration the resources
accessed by clients on different machines and exploiting their trust relationships, we
can manipulate the logical connections between the machines to guarantee that peers
with high degree of resource sharing are connected closely and therefore reduce the
number of messages broadcast in the network [26]. If the resource is found, it is
exported to the client’s machine, and a name mapping to it is placed in the client’s
name space.

There are times when extended look-up requests aren’t sufficient. For example, the
client might be part of a limited community, none of the members of which has the
requested resource. The extended look-up can also be inefficient, requiring too many
hops and putting too much of a burden on the network and other machines. In such
situations, the client can contact one of a few, well-known advertising services, very
much like the Napster [12] model. E-speak provided one [3], but clients could use
others, such as UDDI [17] or even Yahoo! [18]. Each box labeled LDAP in Figure 4
represents such an advertising service. The main difference between an extended look-

7

up and using the advertising service is that the former is on-line, i.e., the machine
owning the resource must be connected to the client by some path, but the latter is off-
line. If the item is found in the advertising service, the client is told what machine to
connect to.

3.2 Trust

A second issue that has not been given sufficient attention in the past but that is
becoming more apparent of late is that of trust. Members of a P2P system connect
their machines to each other and agree to provide certain services to peers. Each direct
connection conveys a measure of trust. If this trust is misplaced, bad things happen.
Note that mechanisms based on encryption, such as SSL, only prevent snooping or
tampering with messages. They don’t prevent one peer from attacking another over a
legitimate connection.

The CU architecture was designed based on an understanding of this kind of trust.
Connections are initiated and/or accepted by a connection manager, a trusted process
running on each machine. The connection manager is able to associate a set of
permissions with any other machine based on policies specified by the owner of the
connection manager’s machine. Ultimately, such policies must be set by a human, but
automated tools can reduce the administrative burden. In particular, an unknown
machine will only be granted a small set of privileges. CU controls these privileges so
that even a rogue process, perhaps started by a virus, cannot grant excessive privileges
to an attacker.

In CU, all communication with the outside world is done through a proxy running on
the local machine. This policy recognizes that you trust software you install on your
own machine, the proxy, more than software on machines out of your control. That
doesn’t mean you trust this software completely. Every CU client has a name space
that limits what resources it can access and a set of permissions that limit what actions
it can take on the resources it names.

The proxy serves a number of purposes. Since it is a client of the core, it has a name
space. No matter what the remote user attempts to do, the proxy can only access those
resources that appear in its name space and can perform only those actions allowed by
its permissions. This sandboxing provides a level of control on active services similar
to that provided by web servers for files. The proxy also protects against some denial
of service attacks. For example, an attack that causes the proxy to crash or hang has the
desirable effect of cutting off the attacker.

The transparent brokering of the CU architecture also addresses a number of trust
issues. Say that Alice exports some resources to Bob, and Bob exports some of them
to Carol. As far as Carol is concerned, Bob is providing the resource; as far as Alice is
concerned, Bob is using the resource. Each connection represents a trust relation.
Alice and Bob share one; Bob and Carol share another. There is no such relationship
between Alice and Carol. Should Carol contact Alice directly and ask for the same

8

resource, Alice is likely to refuse. Of course, Bob could choose to introduce Carol to
Alice so they can establish their own trust relation. The advantage of the introduction
process is that Bob can tell Alice exactly which of Alice’s services Bob is willing to
forward to Carol. That information gives Alice an idea of what level of trust she
should put in Carol.

3.3 Naming

Another problem, one that P2P systems share with all distributed systems, is that of
naming [22,28]. Most distributed systems rely on a global name space, the most
familiar of which is based on URLs. However, there are problems. One component of
a URL is the location of a machine, either an IP address or a domain name. The
widespread use of dynamically assigned IP addresses makes their use problematic.
Domain names are better, but the presence of Network Address Translation (NAT)
firewalls introduces private name spaces. Hence, it is difficult to avoid name collisions
and to share names across firewalls. Changing ISPs is also a problem, since a
machine’s domain name must be changed. Since a global name points to a specific
machine, using high availability solutions based on redundancy is hard.

CU names are purely local to each process. A translation table is maintained between
each pair of entities, client-core, core-client, proxy-proxy. When a handler needs to
change the name of a resource, perhaps because it was moved to a new disk, it need
only inform the core, not every potential user of the resource. While this approach
sounds strange, it is a system we use every day. We don’t commonly use globally
unique names for people and things; we use relative names. For example, instead of
specifying the VIN for a vehicle, we refer to Alice’s husband’s car. Should Alice’s
husband trade in his Honda for a BMW, he may tell Alice to refer to it as his Beemer.
Everyone else can still refer to Alice’s husband’s car. Alice can even change husbands
without invalidating uses of the name.

This form of naming reflects the trust relations embodied in the connections between
machines. Each hop on the path between requester and handler implies that an
agreement has been reached on the meaning of the name shared by the two parties.
Thus, when the handler gets a request, it knows that a “path of trust” exists; it’s
embodied in the name system. That assurance doesn’t exist in naming systems that
allow names to be communicated out of band, such as those using URLs. Those
systems require an additional level of authentication before access can be granted.
Path dependent names also have the advantage that the permissions are attached to the
request through the names as they pass through the system. Other naming systems
require a separate mechanism for access control.

Another advantage of CU’s naming system has to do with the dynamic nature of large
systems. There may be times when the named resource is not available, either because
it has been moved, removed, or is temporarily unreachable. If the name of the object
specified by the application includes location information, as it does with URLs, the
resulting exception must be handled at the application level. The level of indirection

9

provided by CU allows the name to be remapped to an alternate provider of the same
or an equivalent resource. In particular, a client’s name may be bound to a list of
repository handles and a lookup request. Doing so allows the core to deal with
unreachable resources without involving the application.

The CU approach to naming has some limitations, of course. First of all, these names
have no meaning outside of the CU system. You can’t tell a friend the name of a
resource over the telephone since the name has meaning only within your name space.
Instead, you send a message to your friend containing the name mapping. Another
problem is knowing if two names obtained from different sources refer to the same
object, a problem that exists today for URLs. Most of the time it doesn’t matter, say
for immutable files, but when it does, CU defines a protocol that lets you find out.
Clients are also free to include a large, random number in the metadata stored in the
repository, allowing a high degree of certainty to the identification of any resource.
Finally, there is the problem of knowing if this resource is the same one you used last
time. Again, it rarely matters, but when it does, the authentication information used to
establish a trust relation provides sufficient information.

4 Related Work

A great deal of work has been done in P2P systems. In this section, we’ll discuss
problems identified in a few of them, and show how solutions developed for CU
address them.

4.1 JXTA

The JXTA project from Sun [19,20] is a “general-purpose” network programming and
computing infrastructure that supports a wide range of distributed computing
applications and runs on any device with a digital heartbeat. The JXTA architecture
provides core functionality in multiple layers, including basic mechanisms and
concepts (such as protocols for peer discovery, monitoring and group membership),
higher-level services that expand these capabilities (e.g., authentication, discovery and
management) and a wide range of applications (such as instant messaging and chat
capabilities). There are many similarities in the goals of JXTA and Client Utility
including interoperability, platform independence, discovery and security. However,
JXTA focuses more on the peer groups, while in the Client Utility system the basic unit
of control is the resource.

JXTA uses user-generated identifiers (UUIDs) to refer to entities and resources, such
as a peer or a service. An entity has a unique UUID within the group in which it is
created. This poses the important problem that the resource identities are based on
human-generated names and therefore, there is no way to predict the name of a
particular service. In the Client Utility, resource identities are based on attributes rather
than names, which makes it suitable for searching for more general resources and
services. Also, JXTA realizes the need for security and uses the resource UUIDs for
implementing access control mechanisms. However, there is no guarantee that a

10

particular UUID won’t be reused, which means that a privilege granted on the old
resource may be exercised on the new one.

Client Utility, on the other hand, uses split capabilities [21], and therefore the users do
not need a separate capability for each of the services or resources they invoke.
Overall, the Client Utility system has developed more sophisticated and extensible
mechanisms for resource identity, description and discovery based on attributes,
resource access based on capabilities, and inter-machine interactions based on the use
of proxies.

4.2 Oceanstore

The OceanStore system (from the University of California, Berkeley) [22] is a utility
infrastructure designed to provide secure, highly available access to persistent objects
in a large-scale environment. It has many attractive features including persistence
storage, fault tolerance, distributed search and routing and conflict resolution. Its main
design goals are: (1) to be constructed from an untrusted infrastructure and (2) to
support nomadic data. There are a number of similarities in the goals of Client Utility
and OceanStore - persistent storage, distribution, resource management, and secure
access to resources. However, OceanStore is geared towards file sharing applications,
such as groupware and repositories for scientific data. The Client Utility is not
restricted to file sharing applications, but also includes legacy applications, enterprise
applications, and Internet web services.

Each object in OceanStore is named by a globally unique identifier (GUID). An object
GUID is the secure hash of the owner’s private key and some human-readable name.
The search messages are labeled with a destination GUID and routed directly to the
closest node that matches the search predicate and has the desired GUID. One problem
with this strategy is that objects live longer than private keys, which are often
configured to expire after a year. When a private key must be changed, the names of
all objects must either be changed, in which case outstanding references become
invalid, or the names lose the authentication provided by using the private key in the
first place.

CU on the other hand, provides a flexible and extensible naming scheme; each resource
is named in the context of the local name spac,e and uses vocabularies consisting of
attribute-value pairs to match the attributes of the corresponding resources. The
advantage is that the client does not need to know the exact name when searching for a
resource and that not all the clients have to be informed when the name (such as the
local path) of the resource changes. The OceanStore system supports primitive types
of access control, the reader restriction and the writer restriction. Reads are restricted at
clients via key distribution, while writes are restricted at servers using access control
lists. The split capabilities used in Client Utility are more flexible and make some
attacks more difficult.

11

Ideas from the Client Utility system (such as authentication of both users and
machines, privacy and access control) could be used in a system that is fundamentally
untrusted. For example, CU employs a trust model with different levels of trust to grant
privileges to other machines. This is superior to systems such as OceanStore that use
only cryptographic techniques to protect the data.

4.3 Farsite

The Farsite project at Microsoft research [23] is a serverless, distributed file system
that exploits the underutilized storage and communication resources distributed among
the networked desktop computers in a large organization. Its distinguishing
characteristic is that it can be deployed on an existing desktop infrastructure and does
not assume careful administration or mutual trust among the client machines. Its goals
are to provide high availability and reliability for file storage, security and resistance to
Byzantine threats and automatic configuration and re-configuration mechanisms to
respond to component failures and usage variations.

The Client Utility architecture uses a resource abstraction to encapsulate any
functionality or service ranging from a file to a complex combination of services.
Farsite, on the other hand, is restricted only to file systems. Each file in Farsite is
encrypted (using cryptographic file hash), replicated and stored on multiple machines.
The system provides security and availability by distributing multiple encrypted
replicas of each file among the client machines. In terms of security, Farsite uses a
directory host, which is a group of machines that interact using a Byzantine fault-
tolerant protocol. This preserves the integrity of the group as long as fewer than one
third of the machines misbehave in a malicious or arbitrary manner. The Client Utility
started with the assumption of a malicious environment and implemented a
sophisticated capability-based protection scheme. Farsite provides a good solution for
the environment of a large company or university, but could take advantage of the CU
mechanisms for creating, discovering and managing services across multiple
organizations in a large-scale distributed system.

4.4 Collaborative P2P Platforms

Collaborative P2P platforms such as Groove 24] and Magi (Endeavors) [25] are
increasingly becoming popular as they create secure shared spaces and interactive tools
for real-time and asynchronous collaboration among multiple users. They use
distributed state-management mechanisms that allow multiple users to share and
concurrently operate application programs, while each member of the space maintains
its own view. All transactions between the members of a shared space are encrypted
through the use of public and private key infrastructures.

The Client Utility system, although it was not designed as a collaborative
infrastructure, it is fully decentralized and has very attractive features (such as

12

personalizable name-spaces, scalable lookup and brokering services, access control
mechanisms) that make it ideal for building large-scale P2P collaborative spaces. On
the other hand, both Groove and Magi use a hybrid centralized-decentralized approach
(centralized management for discovering the peers, securing access of resources and
automatically updating the data, while the data is obtained directly from the peers).
These are best optimized for small-group interactions.

5 Summary

Although the development of the Client Utility architecture was independent of the
development of today’s familiar peer-to-peer systems, CU addresses many of the
problems those systems face. Some of the ideas introduced by the Client Utility have
found their way into the world of Web services. These include messages consisting of
envelopes and opaque payloads (SOAP [16]), mediation of requests (Biztalk [16],
J2EE[16]), and extensible vocabulary structures (RDF [16]). In the peer-to-peer space,
JXTA [19] has adopted many of the concepts introduced by the Client Utility. Other
parts of the architecture, such as its naming system, await adoption.

The CU design, being centered on a resource abstraction, makes it an attractive
platform for developing web services. In fact, its embodiment as the e-speak product
[4] provided exactly such a platform. However, the basic design goals of CU are closer
to those of P2P systems. Hence, as P2P developers adopt and adapt the ongoing work
in web services, they may find components of the Client Utility to be useful.

5.1.1 Acknowledgements

Many thanks to Dejan Milojicic for suggesting numerous improvements to the
presentation.

References

1. Alan H. Karp, Rajiv Gupta, Guillermo Rozas, Arindam Banerji, “The Client
Utility Architecture: The Precursor to E-speak”, HP Labs Technical Report, HPL-
2001-136, (2001) available at http://www.hpl.hp.com/techreports/2001/HPL-2001-
136.html

2. “E-speak Architectural Specification: Beta 2.2”,
http://www.e-speak.net/library/pdfs/E-speakArch.pdf (1999)

3. http://www.e-speak.net/library/pdfs/a.0/Architecture.pdf (2001)
4. Alan H. Karp, “E-speak E-xplained”, HP Lab Technical Report, HPL-2000-101,

http://www.hpl.hp.com/techreports/2000/HPL-2000-101.html (2000)
5. VerticalNet, http://www.verticalnet.com/
6. Object Management Group, “The Common Object Request Broker Architecture”,

formal/99-10-07, Version 2.3.1, October 1999.
7. Jini Network Technology, http://www.sun.com/jini
8. Resource Description Framework (RDF), http://www.w3.org/RDF
9. Simple Object Access Protocol (SOAP), http://www.w3.org/TR/SOAP

http://www.hpl.hp.com/techreports/2001/HPL-2001-136.html
http://www.hpl.hp.com/techreports/2001/HPL-2001-136.html
http://www.e-speak.net/library/pdfs/E-speakArch.pdf
http://www.e-speak.net/library/pdfs/a.0/Architecture.pdf
http://www.hpl.hp.com/techreports/2000/HPL-2000-101.html
http://www.verticalnet.com/
http://www.sun.com/jini
http://www.w3.org/RDF
http://www.w3.org/TR/SOAP

13

10. Biztalk, http://www.biztalk.org
11. J2EE, http://java.sun.com/j2ee
12. http://www.Napster.com
13. Morpheus 2001, The Morpheus home page, http://www.musiccity.com
14. Gnutella 2001, The Gnutella home page, http://Gnutella.wego.com
15. Freenet 2001, The Freenet home page, http://freenet.sourceforge.net
16. http://www.e-speak.net/community/esv-about.html
17. UDDI, http://uddi.org
18. Yahoo, http://yahoo.com
19. JXTA 2001, The JXTA home page, http://www.JXTA.org
20. Steve Waterhouse, David M. Doolin, Gene Kan and Yaroslav Faybishenko,

“Distributed Search in P2P Networks”, IEEE Internet Computing 6(1):68-72,
January-February.

21. A. H. Karp, R. Gupta, G. Rozas, and A. Banerji, HP Labs Tech Report, HPL-
2001-164, June (2001), http://www.hpl.hp.com/techreports/2001/HPL-2001-
164.html

22. John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, R. Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,
Chris Wells, and Ben Zhao “OceanStore: An Architecture for Global-Scale
Persistent Storage”, Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and Operating Systems,
Cambridge, MA (November 2000).

23. John R. Douceur and Roger P. Wattenhofer, “Optimizing File Availability in a
Secure Serverless Distributed File System”, Proceedings of the 20th IEEE
Symposium on Reliable Distributed Systems, New Orleans, LA (October 2001),
pp. 4-13.

24. Groove Networks, 2000, The Groove home page, http://www.groove.net
25. Endeavors Technology 2001, The Endeavors home page,

http://www.endeavors.com
26. Murali K. Ramanathan, Vana Kalogeraki and Jim Pruyne, “Finding Good Peers in

Peer-to-Peer Networks”, International Parallel and Distributed Computing
Symposium, Fort Lauderdale, Florida (April 2002)

27. Dejan Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins and Zhichen Xu “Peer-to-Peer Computing, HP Labs
Technical Report, HPL-2002-57 available at
http://www.hpl.hp.com/techreports/2002

28. Karl Aberer, Magdalena Punceva, Manfred Hauswirth and Roman Schmidt,
“Improving Data Access in P2P Systems”, IEEE Internet Computing 6(1):58-67,
January-February.

http://www.biztalk.org/
http://java.sun.com/j2ee
http://www.napster.com/
http://www.musiccity.com/
http://gnutella.wego.com/
http://freenet.sourceforge.net/
http://www.e-speak.net/community/esv-about.html
http://uddi.org/
http://yahoo.com/
http://www.jxta.org/
http://www.hpl.hp.com/techreports/2001/HPL-2001-164.html
http://www.hpl.hp.com/techreports/2001/HPL-2001-164.html
http://www.groove.net/
http://www.endeavors.com/
http://www.hpl.hp.com/techreports/2002

	Introduction
	Client Utility Architecture
	Issues and solutions
	Discovery
	Trust
	Naming

	Related Work
	JXTA
	Oceanstore
	Farsite
	Collaborative P2P Platforms

	Summary
	
	Acknowledgements

	References

