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 The effort to make efficient Retinex engines motivated the research 

reported in this paper. In most Retinex-type algorithms the computational 
engine is some (possibly non- linear) variant of a large support low-pass 
filter. The presented work relies on the fact that recursive (2D IIR) 
filtering is an efficient method to implement such large support linear 
space invariant filters. We propose a generalization of recursive filters to 
non- liner operators, and their use in the Retinex core. 

In particular, we pay attention to two kinds of non-linearities, which are 
important in the context of Retinex type algorithms. First, the output 
should be an upper or lower envelope of the original image, and 
secondly, the operator should be robust in the sense that it does not use 
information from across an edge in the image. In an effort to reach stable 
algorithm parameters, namely parameters that would perform reasonably 
well for all images, we developed scale invariant operators, in which the 
nature of the obtained envelope is invariant to the size of the input image. 

Operators presented in this paper provide Retinex enhancement that is 
comparable to the best alternatives, and can be computed in about half 
the time. 
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1. Introduction 
 
Retinex is a theory modeling visual perception [19,20,21,22,23]. Retinex type algorithms 
are used for dynamic range compression, colored illumination correction, or general 
image enhancement [1,7,9,11,12,13,15,16,17,18,21,22,23,27,28,30,31,32]. Retinex 
theory is based on the physical imaging model: The perceived scene image, S, is a 
multiplication between the illumination, L, shed on visible surfaces and their respective 
reflectance1, R. 
 
 LRS ⋅= . (1) 
 
The underlining assumption behind Retinex-like algorithms is that the illumination is an 
artifact. Therefore it is estimated and either removed completely: RLSS == /ˆ

1 , or 

partially: )(/ˆ
2 LfSS = , where )(Lf  is some function of the illumination [17,27,30]. 

Consequently, the estimation of L from S is the main algorithmic and computational issue 
for Retinex type algorithms.  
 
Unfortunately, it is impossible (mathematically ill-defined) to estimate L from S, unless 
something else is known about either L or R. Indeed, most illumination estimation 
algorithms share the basic Retinex assumption that edges in the scene are edges in the 
reflectance, whereas illumination changes slowly. Thus, in most Retinex type algorithms, 
the estimated L is a smooth version of the input S. Consequently, in most 
implementations one can identify some kind of strong smoothing filter in the algorithm. 
Further characterization of the desired illumination estimate, L, however, leads to the 
following additional requirements: 

1. The envelope requirement: [12,13,17,23,27] In a scene with no directly visible light 
sources, the reflectance is smaller than one, or in other words, surfaces cannot reflect 
more light than what is shed on them. Thus, the illumination L is a smooth local 
envelope rather than a local average, i.e.,   SL >   everywhere. 

2. The robustness requirement: [7,9,18,31] L is piecewise smooth rather than smooth. 
This corrects the classical Retinex paradigm, and stems from a more accurate 
description of real world scenes. Typical scenes with illumination discontinuities are 
backlit or flash scenes, scenes with shadows, and mixed indoor-outdoor scenes. The 
piecewise smooth illumination model is also good for scenes with visible light 
sources and specularities. As elsewhere, ‘robustness’ implies that local average is not 
affected by outliers (in our case pixels across an edge). Thus, the estimated 
illumination is discontinuous in locations where the input image S has strong 
discontinuities. In those locations, the discontinuities in L are preferably similar to 
those in S. 

 
 
 
 
                                                           

1    The reflectance is a function of the surfaces’ albedo, orientation with respect to the light source, and the observer, and more. 
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Let us focus now on the implementation. The computational bottleneck in Retinex 
algorithms is usually the smoothing filter, which is required to have a large support 
kernel2. The problem of designing an efficient smoothing filter is especially difficult 
when non-linear variants such as the envelope and robustness are required. 
 
In order to devise a fast method, let us start by considering alternative implementations 
for convolution, and compare them in terms of computational complexity. Let us assume 
that the image and the kernel have square supports of size NxN and KxK respectively 
(with KN ≥ ).  
 
 
 
 
 
 
 
 
 
 

Table 1 – Complexity of Different methods for computing a linear convolution 
 
• Space domain refers to direct convolution. 
• Frequency domain refers to 2D FFT.  
• Kernel decompositions is based on dyadic filters [4].  
• Pyramidal methods are based on the Laplacian pyramid [5], and are linear in the input 

complexity. Nevertheless, for practical purposes we have to consider their constant, 
which is relatively high since they require fixed support convolutions in each pyramid 
layer. 

• Recursive filters are 2D extensions of signal-processing’s IIR filters [24], and were 
introduced to image-processing by Deriche [6].  

 
For many of the above methods, one can find a robust/envelope version, i.e., a similar 
algorithm that returns an envelope rather than a linear averaging, or one that produces 
piece-wise smooth results. For example, of spatial envelopes can be obtained through 
classical mathematical morphology [26], and spatial robust filters are described in [29], 
and analyzed in [2,10]. Frequency domain, being the eigenspace of linear methods, is not 
easily amenable to the non-linear robust or envelope versions. Nevertheless, the slope 
transform [8] is the morphologic equivalent to the Fourier transform. As for Efficient 
Kernel Decompositions, J. McCann decomposed an envelope filter for his Retinex 
algorithm [13,23], where the result of each convolution is clipped to be above the input 
image, and R. Sobol added robustness by making each dyadic average a function of the 
two pixel values [27]. Pyramidal envelopes were suggested in [17], where the envelope 
was enforced at each level, and robustness was incorporated in [18], where robust metrics 
replaced the mean square measure in the energy functional.  
                                                           
2  For image quality the support of the LP kernel has to be larger than the largest expected object, and thus, in the order of the size of 

the input image. 

Method Complexity 
Space domain  ( )22O KN ⋅  
Frequency domain  ( ))log(O 2 NN ⋅  
Kernel decomposition ( ))log(O 2 KN ⋅  
Pyramidal methods ( )2O N  
Recursive filters ( )2O N  
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In this paper, we introduce a robust envelope algorithm based on Recursive Filtering. The 
algorithm is developed in the context of a Retinex type algorithm. We also elaborate on 
ways to determine stable filter parameters, and show that by making the filter scale 
invariant3 it can be stabilized. We conclude this paper by suggesting a scheme for a scale-
independent version of robust recursive envelope filters. 
 
In Section 2 we review Recursive Filtering, and in Section 3 we generalize it to be a 
robust envelope filter. In Section 4, we make the filter stable by making it scale 
independent. In Section 5, we present Retinex results using the proposed algorithm, and 
compare it to alternatives. Section 6 is a Summary. 
 
 
2. Recursive Filters  
 
This section reviews recursive filters, however before we go on to describe them let us 
adopt a standard notation S and L for their respective input and the output. We chose it 
for compatibility with the Retinex notation in (1). 
 
Recursive filters were introduced to image processing by Deriche [6]. They are 2D 
extensions of signal processing IIR filters. Let us consider a causal 1D direct convolution 
 

 �
−

=
− ⋅=
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nnii KSL  (2) 

 
When N is large, the computational complexity of the direct convolution might be 
prohibitive. On the other hand, the general formulation of the causal 1D IIR filter is 
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and it is easy to see that the simplest recursive filter 
 
 iii SLL ⋅−+⋅= − )1(1 αα  (4) 
 
is equivalent to  
 

 �
∞

=
− ⋅=

0n
nnii KSL ,       with     n

nK αα ⋅−= )1(  (5) 

 
where Kn is the an exponential kernel having an infinite support. Notice however, that the 
effective support is in the order of 1/α. Unlike the direct formulation, in the IIR 
formulation it is possible to change the size of the effective support of the filter with no 
                                                           
3 A filter is scale invariant when its output for a scaled input is a scaled version of the original output (or at least very nearly so). 
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additional computations. One can also design IIR filters with a profile other than 
exponential [24]. 
 
When non-causal filters are required (as is the situation in images), we can implement 

nK n
n ∀⋅

+
−= ,

1
1 α

α
α

, as a sum of two recursive filters: a causal and an anti-causal filter. 

Define 
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and then 
 

 ( )−+ +
+

= iii LLL
α1

1
 (7) 

 
 
In image processing one usually requires 2D separable filters, i.e., filters for which 

)()(),( jKiKjiK yx ⋅= . In this case, implementation is separable, namely, one first filters 

each row using xK , and then each column of the output using yK . 
 
 
 
3. From Recursive Linear Filtering to Robust 2D Envelopes 
 
In this section, we derive a scheme for a robust 2D envelope version of recursive 
filtering. We derive it gradually: In Subsection 3.1 we develop a 1D recursive envelope 
filter, then in Subsection 3.2 we make it robust, and finally in Subsection 3.3 we revisit 
the generalization to 2D in the robust envelope context. 
 
3.1 Envelope Filters 
 
The first step to do is to force the envelope condition iSL ii ∀≥ , . This can be done 
directly on the recursive formulation (6) resulting in 
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We see that now by construction iiii SLSL ≥≥ −+ , , and thus from (7) also, ii SL ≥ .  
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Figure 1a presents a signal S in Blue, and its causal envelope +

iL  in Red. Figure 1b 
presents S and L, which portrays some undesirable characteristics around locations where 
the envelope limitation is being enforced. At those locations, the output L is almost 
identical to S, and consequently the reflectance R (1) will be saturated. 
 
The solution that we propose to this problem is to change the non-causality paradigm. 
Instead of two parallel causal and anti-causal filters, use a cascade of the same filters, 
namely: 
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 (9) 

 
Figure 2 presents a signal S in Blue, and the cascaded causality envelope L of (9) in 
Black, which is much more like an envelope. Figure 2 also presents two other envelopes 
created with different α  parameters, lower α  values correspond to ‘more elastic’ (and 
thus lower) envelopes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A 1D signal in Blue, and its causal envelope in (a), and the average (7) of its 
causal and anti-causal envelopes in (b). 

a b

Figure 2: A 1D signal in Blue and three consecutive envelopes in Red and Black, the latter 
corresponding to the same α value as the envelopes in Figure 1. 
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It has to be noted that the proposed envelope, L, has some disadvantages: 
 

1. It is not symmetric, and flipping the input signal will not result in a flipped 
envelope. This asymmetry is depicted in Figure 3, where the Red envelope of the 
Blue signal does not match the Black flipped envelope of the flipped input signal.  

2. There is a derivative discontinuity artifact in the valleys of the envelope. It is 
more visible in the more elastic envelopes (lower α s). This artifact is less 
noticeable in images. This is especially true in parameter ranges used for the 
Retinex application. 

3. Although parallel causality L obtained by substituting (8) into (7) is not what one 
can expect from an envelope, it seems very close to what we will try to achieve in 
the next subsection, i.e. robust envelopes. You may note the way L ‘drops’ at 
locations where S has sharp discontinuities, and how it ‘floats’ over small 
discontinuities in S. This ‘short cut robustness’ was nevertheless found to be less 
desirable relative to the alternative of the robust L as will be detailed in the 
following subsection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Robust Envelopes  
 
The next step is to make the envelopes robust, namely, in locations where the input has 
sharp discontinuities, the envelope should have similar discontinuities, and in locations 
where the input has small discontinuities or is altogether smooth, the envelope should 
remain smooth and follow the envelope at the rate prescribed by α . 
 
Reformulating the above in terms of recursive filters parameterized by α , we have that 
the envelope should have a constant α  everywhere except on sharp discontinuities, 
where α  should be smaller. Thus, α  should be a function of the local input gradient. 
When the gradient is low the new gradient-dependent parameter, ( )S∇α , should 
approximately obtain the original value α0, and when the gradient has large negative 

Figure 3: Asymmetry of the consecutive envelope, a 1D signal in Blue, its envelope in Red, 
and the flipped envelope of its flipped version in Black. 
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value, ( )S∇α  should be smaller. Note that when the gradient has large positive values we 
do not want ( )S∇α  to be small. In this case, discontinuities will occur due to the 
envelope requirement, otherwise, when the envelope is higher than the input, a smaller α  
value will bring the enveloped down, creating a discontinuity that is inverted relative to 
the input (and thus undesirable)4. 
 
Making algorithms robust by turning constant parameters to be a function of the input has 
been implemented elsewhere [2,9,30], and most notably [3]. Figure 4 illustrates a Huber 
type of robust profile. 
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The robust version of (7) is thus 
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Figure 5 presents +

iL  of (11). It is the robust version of Figure 1a. The dotted vertical 
lines indicate local minima of the input gradient below the threshold –1/T (10). Note that 
in regions where the threshold was not crossed, output is very similar to that of Figure 1a, 
elsewhere, the difference depends on the gradient. 
 
 
                                                           

4   A related issue is exemplified by an input region of low values surrounded on both sides by high values such that on one side the 
change is sharp, and on the other side it is smooth. The envelope cannot both maintain the sharp discontinuity and be smooth 
over the mild transition. To solve this, we let smoothness take precedence over robustness. The precedence issue will become 
even more delicate in the 2D case, see Subsection 3.3. 

-1/T 

α0 

Figure 4: A Huber influence function for α. 
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3.3 Extension to 2D 
 
The last stage in generalizing recursive filters to robust envelopes is to revisit the 
generalization of linear recursive filters to 2D. Figures 6b and 6c are respectively the 
non-robust and robust envelopes (separable application of (9) and (11)) of the input 
image in Figure 6a. The envelope required by the Retinex algorithm is such that major 
structures such as the shadow and highlights are preserved in the envelope and can thus 
be corrected for, but details are removed. Making the envelope ‘posterized’ leaves the 
depth and details in the reflectance image. In that respect, the robust envelope is much 
better than the non-robust one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Robust causal envelope 

Figure 6: Input image in (a) with non-robust and robust envelopes in (b) and (c) respectively. 

a b c
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However, when one takes a closer look at the images, an inherent problem of the 
generalization to 2D becomes apparent. Figures 7a, and 7b are a zoom in on the lower 
column shadow of the images in Figures 6a and 6c respectively. The required loss of 
detail of the envelope is accompanies by artifacts in the Y direction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One explanation for the artifacts is that the 1D filter in the Y direction is applied along 
each of the image columns, and is independent of the information in nearby columns. The 
non-robust envelope is not affected by this problem since the X direction filter produces 
smooth outputs, which means that nearby columns of its output are similar. Combining 
this with the fact that similar inputs to the Y filter result in similar outputs, amounts to a 
smooth 2D output. Neither of the above ‘regularizing’ features is true for the robust case. 
 
One can further analyze the difference between the robust and the non-robust envelope 
cases, by considering the recursive filter in terms of information flow. In each of the 
recursive passes (we have a forward pass and a backward pass in each dimension) 
information flows with the recursion along a row or column. Thus in a 1D filter every 
pixel gets information from pixels preceding it (during the forward pass) and from pixels 
following it (during a backwards pass). In a 2D filter, the information flows along rows 
and then along columns. Since the column filter operates on the result of the row filter, 
every pixel ‘has access’ to information from all the other pixels in the image. Note 
however, that the information from one pixel to the other flows in a single predetermined 
path – first along the row of the source, and then along the column of the destination 
pixel.  
 

Figure 7: Zoom in on the input image in (a) and the robust envelopes in (b). 

a b
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In the robust case, information does not flow freely. It is rather blocked at locations 
where the gradient of the input is below a threshold. In the 1D case, this is not a problem 
because that is what robustness is all about – we do not want to consider information 
from across an edge. Nevertheless, in the 2D case two pixels might be in the same 
segment (i.e. not across an edge from each other), even though the row + column path 
connecting them might cross edges. Thus any flow block on the single path, connecting 
two pixels could prevent them from considering each other, where in fact they should, as 
long as there is even a single unblocked path connecting them.  
 
In Subsection 3.1, we determined that 1D Robust Envelopes should be implemented as 
cascaded recursive filters rather than in parallel. This opens the way to dimension 
interleaving described in block diagram in Figure 8. Interleaving is the simplest way to 
increase information flow between pixels.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the sequel, we use a compass notation referring to different causal/non-causal and Y/X 
directions. For example, the first line in Figure 8 would be referred to as an E,W,S,N 
flow, whereas the second line would be called an E,S,W,N flow. 
 
While not necessarily a good quantitative model, information flow diagrams presented in 
Figure 9 are a good way to illustrate the problem and evaluate alternatives. In each of the 
eight flow diagrams in Figure 9, the Red zone represents information and the bold lines 
represent information flow barriers. Letting the information flow in a direction sequence 
detailed on the left of each row of diagrams results in the information being barred from a 
zone represented by the shaded zone. Each of the four diagrams on the first row in Figure 
9 is thus the result of an E,W,S,N flow sequence, whereas each of the diagrams on the 
second line is the result of an E,S,W,N flow sequence. 
 
Though somewhat simplistic, the information flow barriers illustrated in Figure 9 are 
common in natural images. It is evident that while helpful, using the interleaved sequence 
(E,S,W,N) as opposed to the original sequence (E,W,S,N) is not a full solution to the 
problem. Alternatives exist; however, they come with a computational cost. One such 
alternative involves repetition: e.g., ‘E,S,W,N,E’, ‘E,S,W,N, E,S’, etc. 

Y Filter X Filter 

Causal X 
(E) 

Anti-causal X 
(W) 

Causal Y 
(S) 

Anti-causal Y 
(N) 

Causal X 
(E) 

Anti-causal X 
(W) 

Causal Y 
(S) 

Anti-causal Y 
(N) 

Figure 8:Dimention interleaving. 
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Another alternative is to turn the passes into “intrinsic” 2D passes, i.e., instead of getting 
information from a single pixel, each pixel gets information from two pixels, one in each 
dimension. Let us consider, as an example, one such 2D pass, which we denote by SE, in 
accordance with the compass notation: 
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Four such passes can be cascaded to create a sequence, such as ‘SE,SW,NW,NE’. The 
resulting 2D schemes are in the spirit of classical sequential processing schemes, 
proposed in [25] for various computer vision algorithms. 
 
Figure 10 illustrates the information flow of some alternatives in a more complex barrier 
system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Information flow illustration for simple dimension interleaving. 

E,W,S,N 

E,S,W,N 

Figure 10: Information flow illustration for combinations of interleaving, repetition, 
and 2D schemes. 

E,S,W,N,E,S,W,N 

SE,SW,NW,NE 

SE,NW,SW,NE,SW 
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Information flow artifacts should be evaluated both in terms of quality and computational 
complexity. For example, the 8 1D passes described in the first row of Figure 10 are more 
complex than the 4 non interleaved 2D passes in the second row of the same figure. 
Furthermore, according to the barrier model of Figure 10 they will usually result in more 
artifacts. We conclude that in general 2D schemes perform better than 1D schemes on the 
trade-off between quality and complexity.  
 
Artifacts such as in Figures 9 and 10 are indeed visible in images with corresponding 
edge structures. However, since information barriers are not absolute, artifacts in 
complex schemes are usually fuzzy. In the rest of the paper, we use the 5 interleaved 2D 
pass scheme described in the third row of Figure 10.  
 
 
 
4. Scale Invariance and Parameter Tuning 
 
This section deals with the following problem: Given two images of different sizes, one 
being a decimated version of the other, how can one make sure that the envelope of the 
former is approximately equal to the decimation of the envelope of the latter?  
 
Scale invariance is important because of two reasons: First, the Retinex paradigm [19] is 
scale invariant, and relates only to the composition of colors in the visible field of view 
and not to their scale. More importantly however, we were motivated by the need to find 
stable parameters for the algorithm. By stable parameters, we mean a set of parameters, 
which will perform reasonably well for all natural images. While examining images at 
different scales, we found that it is typically possible to find a good set of parameters for 
small images. However, tuning the parameters becomes harder as images grow larger, 
and is practically impossible above a certain scale. On the other hand, in the scale 
invariant version of the algorithm (presented below), parameters are stable, and the 
algorithm performs equally well at all scales. 
 
The proposed recursive operators are scale dependent by virtue of three components 
relating to the scale of the image (or more accurately the size of its pixels): 

• The parameter α  determines the size of the LPF in pixels. 
• The recursion is defined on pixels. 
• The gradient S∇  is defined on pixels. 

 
In subsection 4.1, we redefine the robust exponent ( )S∇α  in order to make the algorithm 
scale independent. The new definition results with the desired scale independent robust 
envelopes, with the exception of sporadic artifacts due to rare configurations of high-
scale details in the input image. Subsection 4.2 proposes a pre-process that eliminates 
those artifacts. 
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4.1 Redefining the Robust Exponent 
 
The robust exponent, ( )S∇α , is a function of the local gradient of the image, such as the 
function defined in (10) and depicted in Figure 4. In this subsection, we modify it to be 
scale independent. The following subsections address each of the three scale dependent 
components detailed above, and modifies the robust exponent function in order to 
eliminate it. 
 
 
4.1.1 Removing Parameter Dimensionality 
 
Let us first consider the parameter α0, of ( )S∇α  in (10), which was set to correspond to a 
prescribed effective kernel support of the original recursive linear filter (4). Let us 
therefore see what it takes to make α0 scale invariant in the linear case. In order for a 
kernel to be scale invariant it has to change its size with the input image. Therefore the 
value Kj of the kernel at the jth location will be a function of the size, N, of the image. For 
the kernel to be scale invariant, the coordinate j is scale by N. In other words, we define a 
new kernel Kj/N, which is equal to the original Kj for some desired image size N0. Since 

the kernels are Laplacian ||
0
j

j CK α⋅=  we have that ||
0

||

0/ )(
0

j
N

N
jN

NNj NCCK αα ⋅=⋅=
⋅

, 
with 
 

 NN N0
00 )( αα =  (13) 

 
where N0 is some reference image size (in our case N0=256). 
 
 
4.1.2 Removing Recursion Dimensionality  
 
Assuming a 2:1 decimation rate, an edge with a two-pixel interface transition in the high-
resolution image has a single-pixel interface transition in the low-resolution image. In the 
low-resolution, the filtering recursion crosses the same edge in a single step rather than in 
two consecutive ones, and nevertheless the total effect has to be the same. If ( )S∇α  were 
a constant, as in the linear case, then the above would be true by virtue of the previous 
subsection. The robustness of the filter, caused by the variation in ( )S∇α , requires 
however further considerations in order to gain scale invariance at those regions where 

( )S∇α  is not constant. In this subsection, we consider the ‘robust’ part of ( )S∇α . In (10) 
we chose the Huber profile from several alternatives in [3]. None of which is however 
scale invariant.  
 
Consider a hypothetical edge stretched over three pixels in the high resolution image, 
inducing gradients 1

1 gxi =∇ and 2
1

1 gxi =∇ + . The same edge stretches over two pixels in 

the low-resolution image, inducing a gradient 0
2

2/ gxi =∇ .  
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We naturally have  
 
 210 ggg +=  (14) 
 
Assuming in addition that all edges have passed the threshold (i.e. Tgg −<21 , ), scale 
invariance requires 
 
 )()()( 210 ggg ααα ⋅=  (15) 
 
From (14) and (15) we have that the robust exponent function should itself have an 
exponential profile 
 
 geKg ⋅⋅= βα )(  (16) 
 
and, since α(0)=α0, then K=α0 . The remaining parameter β, parameterizes the desired 
degree of robustness, starting from non-robust, with β=0 , and up.  
 
 
4.1.3 Removing Gradient Dimensionality 
 
We now reach the stage where we have to select the threshold T. We will use a rule of 
thumb determining that edges with total variation of less than 10 gray levels (in the 
standard gray scale [0,255]) are detail edges, and regions surrounded by edges with 
larger total variation represent illumination or object edges.  
 
What makes the above statement scale independent is the use of the term total variation 
instead of gradient. Consider the example illustrated in Figure 11, where a cross section 
of an edge is plotted in Figure 11a at four scales (the X axis is in the coarse scale units). 
Figure 11b illustrates the gradient functions of the four cross sections. Where for each 
scale the solid straight line is the corresponding X axis, and the dotted line is a T=-5 
threshold. At larger scales, the edge stretches over a larger number of pixels, and 
consequently the gradient at each location is smaller. Ultimately, edges due to fine details 
or noise become dominant in the gradient function, whereas the gradient at the real edge 
is doomed to drop below any threshold. The total variation of the edge (the difference 
between its left and right sides in Figure 11a) is however, constant throughout the scale 
space, and thus scale independent. 
 
The above proposition to determine the relevance of an edge to robustness according to 
its total variation rather than local gradient is conditioned on our ability to tell an edge 
from other structures (e.g. light gradations as those across columns in Figure 6a). 
Fortunately, we found empirically that for the Retinex application, using a threshold on 
the gradient of natural images performed consistently well at small scales (approximately 
256x256 pixels).  
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We conclude that the span of 2 pixels in scale N0=256 is a good basis for a practical 
definition of total variation in our application.  
 
Note however that one cannot simply replace the gradient with a gradient at scale N0 if 
one wants to preserve the edge details of the original image scale N>N0. The base scale 
N0 should rather be used only in the threshold. Thus, we define two different gradients, 
the standard pixel based gradient S∇ , and the scaled gradient SN∇ . 
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Considering also (13) and (16), the scale independent robust exponent is 
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4.2 Pre-Filter 
 
It should be noted that, although all the components of the robust exponent in (19) have 
been modified with scale independence in mind, it is not strictly scale independent due to 
small-scale details. Namely, scale independence has been mainly achieved by adopting a 
base scale (N0=256). To make the algorithm strictly scale independent all the details 
above the base scale will have to be ignored. However, we do not want to ignore all of 

Figure 11: Gray values (a) and gradients (b) of an edge in various scales. 
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them because it will ruin image quality. Let us therefore analyze the cases where the 
proposed method fails and eliminate only those small-scale details necessary to eliminate 
the scale artifacts. 
 
Figure 12 depicts a typical failure of the scale independent recursion. A segment of an 
image appears on the left and the proposed scale-invariant output in the middle. The 
output of the first 2D pass (12), shown to the right, practically points at the local origin of 
the artifacts.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analyzing the origins of the artifacts, we isolated two problematic high-scale 
configurations, the roots of which can be traced to our definition (17) of the scaled 
gradient SN∇ . The bright-dot configuration in Figure 13a1 is a bright spot whose gray-
difference from the background should have defined it as an edge but is, nevertheless, not 
recognized as such since it is missed altogether by SN∇ . The Blue arrow points at the 
pixel (just right off the dot) where the scaled gradient fails to detect the gradient (there is 
a symmetric location just in front of the dot). The Cyan dots mark the locations ∆- and ∆+ 
from (17) according to which 0=∇ SN . Consequently, the bright dot’s brightness 
information flows freely to fill the dark segment as in Figure 13a2. The dark-canyon 
configuration in Figure 13b1 is essentially the dual of the bright-dot configuration.  
 
We propose to solve both problems using the dual morphological grayscale filters 
opening and closing [26]. Considering the image as a surface, the ‘close’ filter literally 
closes all the holes and scratches into which a structuring element cannot penetrate, 
whereas ‘open’ is the dual operation. Thus, using a KxK flat structuring element, where 
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Figure 12: A typical artifact of the scale invariant algorithm: (a) Input, (b) output, 
(c) output of first 2D pass. 
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 ‘open’ eliminates bright-dot configurations, whereas close eliminates and dark-canyons. 
It should be noted that there are fast algorithms for both grayscale filters [14]. 
 
Notice however that, if we replace the input image by a filtered version, we get an 
envelope of the filtered version, which is not necessarily an envelope of the input. Thus, 
we need to augment the algorithm by a maximum operation between the output and the 
input – ensuring the envelope condition.  
 
We conclude that, if the input image is first filtered by the appropriate open and close 
filters, we can safely apply the proposed envelope filters. Figure 14 depicts the scale 
independent robust envelope obtained by the proposed algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Scale independent robust envelope of Figure 12a. Small-scale artifacts removed. 

Figure 13: Bright-dot (a), and Dark-Canyon (b), configurations (1), and artifacts (2). 
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5. Results 
 
In this section, we present and analyze the results of the proposed algorithm. Its details 
and parameters as well as those of the corresponding Retinex correction are as follows: 
Retinex -Pre: S = max{R,G,B} 
Prefilter: Morphological Opening followed by morphological Closing. 
Recursive Filter: NW, SE, SW, NE, NW. 
 α0: 0.945 
 N0: 200 
 β: 0.15 
 T: 7 
PostFilter: Maximum 
Retinex-Post: {R,G,B}   �   255 {R,G,B} / L(1-1/γ)             (see [17] for details) 
 γ: 2  
 
Figure 15 presents an input image in (a), its gamma correction in (b), the robust envelope 
obtained by the proposed algorithm in (c), and the resulting Retinex correction in (d).  
The gamma correction of (b) was tuned to result in the same general brightness of (d). As 
the reader can see, the details in the Retinex output are significantly more contrasted. 
 
In our terminology, the benefits of the Retinex algorithm are expressed in the envelope’s 
ability to be both flat where contrast has to be maintained, and to follow the input’s 
edges, where the contrast can be traded-off for reduction in the overall dynamic range. 
This image is especially difficult in that aspect, due to the fractal interface between the 
shaded foreground and the illuminated background.  
 
Next, we compare the proposed recursive envelope filters to an alternative method that 
yields similar robust envelopes. The pyramidal robust envelope described in [Rx] is a 
pyramidal solution to a variational formulation of the robust envelope extraction problem. 
Similar to the proposed recursive filters, it has linear complexity (see Table 1 in the 
Introduction), however, due to the iterative nature of differential equation solved in each 
of the pyramidal layers, the constant is relatively large. For images of 1M pixels, the 
execution time for the proposed algorithm is about half that of the pyramidal method. It 
has to be noted that about half of this time is spent on the morphological pre-process. 
 
Figure 16 shows the envelopes and the corresponding Retinex enhancements for the 
proposed algorithm and the pyramidal Retinex, side by side. It is evident that, in both 
methods, envelopes are, as required, smooth and robust. Nevertheless, a few differences 
should be noted. 
 
 
 
 
 
 



 

20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 

c d 

Figure 15: An input image (a), its gamma correction (b), the robust envelope 
obtained by the proposed algorithm (c), and the resulting Retinex 
correction (d). 
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c 
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a b 

Figure 16: Pyramidal envelope (a) and corresponding Retinex correction (c). 
The proposed envelope (b) and corresponding Retinex correction (d). 
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Let us first characterize the scale invariance of the two algorithms:  
 
The pyramidal Retinex is scale invariant in the global sense. Namely, the nature of the 
envelope image does not depend on the size of the input image. However, it is not locally 
scale invariant, meaning that features of different size in the image are treated differently, 
and specifically, the smaller a feature is, the more it is treated as detail rather than as a 
feature. The image in Figure16 is a good example where the illumination for each of the 
column shadows is corrected differently according to its width.  
 
The proposed recursive filter is locally scale invariant up to a certain ‘threshold scale’. 
The threshold scale is dependent on the size of the image, thus maintaining the global 
scale invariance of the algorithm. Whereas in scales which are clearly above the threshold 
this seems as an advantage, in features whose scales are around the threshold scale this 
might introduce some artifacts, e.g., in the sporadic details visible on the highlighted 
floor in Figure 16b. 
 
In addition, an ‘information-flow’ type artifact (see Section 3.3) is marginally visible in 
the main shadow of Figure 16b5. Furthermore, artifacts due to the gray threshold, T, are 
visible on the profile of the highlighted columns, where the intensity profile has a 
gradually increasing slope, which is bound to break the threshold at some point or the 
other. Note that since it is a zero sum game, the more we see depth in the envelope the 
less it is evident in the enhanced image. Thus, the highlighted columns, which broke 
threshold T, have a reduced 3D sense compared to the pyramidal enhancement, whereas 
the other columns have a better 3D sense due to their flatter envelope. 
 
 
6. Summary  
 
In this paper, we have generalized recursive (2D-IIR) filters to non-liner operators. 
Particularly, we addressed two non-linearities: Envelope operators, and robust operators. 
Their combination was used in the context of Retinex type image enhancement. We have 
further modified the robust envelope operators to be scale independent, making sure that 
the output of scaled inputs will be correspondingly scaled versions of each other. We 
have argued, and shown, that scale invariant operators have a more stable set of 
parameters, namely for a fixed set of parameters, the operators perform reasonably on a 
wide variety of natural images. Naturally, superior performance will usually be obtained 
when parameters are tuned for a particular image. 
 
The comparison of the proposed envelope extraction algorithm to alternatives places it at 
comparable quality, and improved efficiency.  
 
 
 
 
                                                           
5 Not visible in the printed version 
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