

Web Components: services that wear state on their sleeve

Steve Battle
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-68
April 5th , 2002*

web-service,
e-service,
business
process,
document
state,
component

In this paper we describe a modular approach to building web
services that supports collaborative, cross-enterprise modes of
working. The web component model emphasises the separation of
state and behaviour. Our functional components are web services,
while state is reified as web resources. Where components are
composed, they need not communicate directly with each other, but
via shared state. The approach is motivated by a scenario drawn
from the world of e-print.

* Internal Accession Date Only Approved for External Publication
OMG Web-services workshop, 2002
 Copyright Hewlett-Packard Company 2002

 2002 Hewlett Packard 1

Web Components: services that wear state on their sleeve
Steve Battle, March 1, 2002

Hewlett Packard Laboratories

Abstract
In this paper we describe a modular approach to building web services that
supports collaborative, cross-enterprise modes of working. The web component
model emphasises the separation of state and behaviour. Our functional
components are web services, while state is reified as web resources. Where
components are composed, they need not communicate directly with each other,
but via shared state. The approach is motivated by a scenario drawn from the
world of e-print.

web components
Web-services turn distributed computing on its head. Where traditional distributed
systems may be characterized as closed, web services are open. A fundamental
premise of web-services is that they may be used in ways unforeseen by their
designers.

The current generation of web based services are page centric, in that the service
provider offers only an HTMLi user-interface to their service. This has become a
hindrance to integration and automation because clients lack a conceptual model
of what the service does. The service centric view of the web starts from a different
place, by describing the functionality that is on offer. We interact with web
services by exchanging XMLii documents that convey business information;
enquiries, orders, quotes, etc. XML has the advantage of being a non-proprietary
and open format. By nature, XML is extensible, meaning that developers are
empowered to build their own customised XML documents to serve their immediate
business needs, rather than relying on a few powerful vendors.

Web-services emphasize the separation of concerns between form and function.
Once a service is deployed, we can still bolt on the familiar web based user
interface. Indeed it now becomes possible to think about supporting a host of
interfaces, making the service accessible from a wide range of emerging
information appliances. The interface can change without changing the underlying
service. The last phase of the web saw a sharp distinction between the “dot.coms”
and traditional industries. The future may see a greater blending of “clicks and
mortar” businesses able to integrate a diverse range of customer on-ramps, “call,

i Hyper-Text Markup Language
ii eXtensible Markup Language

 2002 Hewlett Packard 2

click, or come-in”1, letting the customer decide whatever mode is best for them.
The physical storefront is as valid an interface to the web-service as the browser or
phone call.

However, web-services are not just customer facing. Behind the storefront, web-
services will allow businesses to collaborate on joint activities that cross enterprise
boundaries, with each participant focusing on their core values2. Collaborative
activities are often task-led, involving knowledge-rich human interaction and
sustained business relationships. They may be less centralized and prescriptive, but
more ad-hoc and adaptive. Unlike traditional hierarchical organizations where
strict top-down lines of control are maintained, collaborative networks are more
opportunistic and responsive to change. Indeed, change is seen as part of the
process3.

Web services are often described as a component model for the web. Component-
oriented programming is about assembling systems from prefabricated parts,
designed to be modular and re-usable, using common communication protocols,
are user configurable, and easily composable. In this paper we explore a
component-oriented approach that does not encapsulate state and behaviour
within a single entity like object-oriented systems, but deliberately keeps them
apart. In this service-oriented world, behaviour is provided by services (our
functional components), while state is objectified as a document. Looked at
another way, the function of the component model is to add behaviour to
documents. Our approach is similar to that of the Process Wall4, which
demonstrates the advantages of the state-server approach in heterogeneous
computing environments. Just as XML is the foundation of document exchange, a
defining feature of web-services, so XML is the basis of document state5. A web-
service description typically ends with a definition of the service interface using
languages such as WSDLi,6. The document state model seeks interoperability not
only at the level of input/output behaviour but of the business model these services
operate upon. With today’s n-tier architectures the storage tier remains within the
sphere of control of a single enterprise, hidden behind the application server. Our
approach inverts this picture, moving shared data out onto the web. These
independent web-resources may represent client data owned and managed by the
client, or may be collaborative data managed by a third-party.

As industry commentators have noted7, the challenge of ‘enterprise information
integration’ is now becoming more important than the ‘enterprise application
integration’ solutions offered by current web-service solutions. The promise of web-
services lies in creating a flexible infrastructure that merges the information models

i Web-Service Description Language

 2002 Hewlett Packard 3

of enterprises collaborating over the web, using this to drive flexible, decentralized
business processes.

eBusiness process
We explore the document state approach using a scenario drawn from the world
of e-print; the business of delivering high quality print to the marketplace via the
web. Print cannot be treated as a commodity that can be easily bought and sold
over the web; it is fundamentally about the interaction between the client and the
printer. The byword is complexity, as customers tend to outsource their most
difficult jobs. Even then, print is more than just delivering a file to a printer. The
print process is highly collaborative, involving the customer and print provider with
print management companies, agencies, and print brokers. Customers will
typically work with a small number of service providers who may be tightly
integrated into their workflows.

Our first step is to capture the intended business process. A business process is a
market-centred description of an organization’s activities, designed to fulfil a
business contract or deliver value to the customer8. In other words, it defines what
a process achieves, rather than how to do it. We are not concerned here with
exactly how these use-cases are realized. An important principle of service-
oriented design is that we hide as much as possible about the implementation and
technologies behind the service. The choice of programming language, platform,
operating system, workflow engine, or back-end database is simply not an issue
for the user of the service. Our main concern here is with the question of “What
information can I share with my partners?”

The Unified Modelling Language9 (UML) is a visual modelling notation that can be
used throughout the project development lifecycle. It is a set of notations that can
be employed at different stages of development, from requirements capture and
analysis, through implementation to deployment. In the most part, practitioners of
UML recommend a use-case driven approach to project development. Use-cases
are essentially a way of capturing the high-level activities the proposed system
should support. Use-cases provide the starting point for a modular representation
of business process by laying out a coherent set of activities and their associated
actors.

Use-cases are compatible with our service-oriented view. They define an external
view of the system. We need only be concerned with what services are available
and how they are used. Both use-cases and services are described in terms of the
value they generate for both the customer and the service provider; value flows
both ways. Figure 1 includes a number of use-cases drawn from the print scenario.
While a single ‘print’ use-case can be seen as a high-level use-case from the point

 2002 Hewlett Packard 4

of the client, it would fail to describe the value of the service to all of the
participants involved, and who contribute to different phases of the business
process. Instead, we take a first-level cut at the business use-cases10. Descriptions
of each use-case are provided below.

job
preparation

job
specification

broking

production
& delivery

client
subscriber *

printer

job tracking

Figure 1: e-print use-cases

The use-case diagram introduces a number of actors that represent various roles
within a use-case collaboration. The communication lines between actors and use-
cases tell us who is involved in a particular activity. The fact that subscribers are
printers is indicated by the generalisation relationship between them. An actor
may be realized by many participants; there may be many subscribed printers (as
indicated by the asterisk) who may be the preferred suppliers of the client. A single
participant may realize multiple actors. For example, at the end of the broking
stage, the client will assign the job to one of the subscribed printers.

1. job preparation
The artwork is prepared and a new job is created, including a manifest of
artwork resources. The client is able to view and manage the artwork,
which may be archived for future re-prints or for re-purposing.

2. job tracking
The client is able to track the progress of the job throughout the print
process.

3. job specification
Based on an analysis of the job, its main features are captured in a job-
specification that includes the nature and size of the job. Additional

 2002 Hewlett Packard 5

information may be supplied, including any special finishing required, and
the timescales on which it is to be delivered. The analysis may include pre-
flight testing designed to detect common printing errors before the job
proceeds further.

4. broking
A request for quotes (RFQ) is published and subscribed printers with
matching offers are notified. Price estimates are calculated by the printer on
the basis of the information within the RFQ, considering the cost of the
materials required, and how the schedules fit in with their own work-load.
The printer may be working in an existing relationship with the client that
may influence the price.

5. production & delivery
After selecting a printer, production is carried out by the printer according
to the job specification. The job is then shipped according to instructions; it
may be shipped back to the client, or it may require a direct mail-out.

There is an implied ordering over the use-cases described, with each one
establishing the conditions for those that follow it. For example, a job quote can
only be issued when that job has been properly specified and a request for quotes
has been issued. UML lets us capture the pre- and post-conditions from which these
dependencies can be inferred. It is this network of dependencies that defines the
business process.

job

preparation

job
specification

broking
production
& delivery

job tracking

Figure 2: network of precedence relationships

Figure 2 attempts to capture this network of causal relationships. The provenance
of the precedes relationship stems from the Open Modelling Language, OML,
developed by the OPEN (Object-oriented Process, Environment and Notation11)
consortium, and already has some proponents in the UML camp12. Using this
additional notation we can now represent the causal precedence relationships that
were implicit in our original use-case diagram. These provide an explicit indication

 2002 Hewlett Packard 6

of the ordering over use-cases without going into details of specific pre/post-
conditions. Precedence relationships do not denote the flow of control as such, but
the flow of information. Information flows being far more suited to collaborative
working than traditional methods of command and control.

We understand these use cases as operating upon a set of objects that represent
shared state, as shown in Figure 3. They are represented as web-based documents
or document fragments; document state. Many of these objects are aggregated to
form composite objects such as the job. These objects (their schema) form the
vocabulary in which we express the pre- and post-conditions for each use-case.

job
tracking

broking

job
specification

production
& delivery

job
preparation job

job spec. manifest RFQ

quote* art*

delivery
details

selling
offer *

Figure 3: shared state

The intended meaning of these shared objects is as follows.

• job: A composite object combining content with negotiation and
performance data.

• manifest: The set of resources that comprise the content of the job.
• art: reference to a specific item of artwork that forms part of the job.
• job spec: a detailed job specification suitable for guiding production.
• RFQ: Request For Quotes. A buying offer summarising the job

specification. Also used here to collate returned quotes.
• quote: A quote is created by a subscribed printer in response to an RFQ

detailing the price and timescale on which they can perform the job.
• delivery details: Shipping information. This may be the address of the

client, or a mailing list.
• selling offer: created by a subscribed printer, identifying the service

location, service type and capabilities.

 2002 Hewlett Packard 7

Job preparation
containers
The first point of contact with the client is the creation of a shared document
representing the job. The user’s experience of this may be through a traditional
web-interface that allows them to upload their artwork. The way we activate
documents is to place them inside a container. A container is a web-service, able
to converse with clients through document exchange, supporting basic message
handling functions. We add the new job by sending it to the container in a
message that defines the initial state of the job.

job

preparation job

manifest

art*

Figure 4: job preparation

The job, as illustrated in Figure 4, defines the job manifest, including links to the
relevant artwork. The state of the job is represented as an XML document fragment.
We think of the container as the root node of a single large document containing
many business objects including the job. The container reacts to messages that
define new objects by adding them to its children; the new job becomes part of
the container. So that we can refer back to the job, a unique identifieri is added.
The complete state of the container, including the new job, can be serialized to
XML. An XML fragment illustrating the flavour of this containment is shown below.

<container>
<job id=“myjob”>

<manifest>
<art>mydoc.ps</art>
<art>myimg.jpg</art>

</manifest>
</job>

</container>

i Following usual XML identifier conventions, this name is a unique to the container; we don’t need to
know exactly where it is and it may even be moved within the containing document.

 2002 Hewlett Packard 8

Job tracking
messages, components and actions
The second requirement is the ability to be able to view the job for tracking
purposes. We wish to be able to request a simple snapshot of the current state.
The component model is message based, and a snapshot is obtained by sending a
request and waiting for the response. The creation of the job required a message
to be sent to the outer container, but in this case we need to directly address the
part of the document that we wish to view. A container exposes its parts as web-
services. The job was named as we saw in the previous section, but this means
that it has a distinct identity as a web accessible resource. We also want it to be
able to perform some action on demand. While containers support a few primitive
operations that provide basic access to the state, more complex actions are
carried out by components associated with the part. For any given request of a
part, its behaviour is delegated to the appropriate component. We send the
request directly to the job, not to the component that actually does the work. The
approach is document-centric, decoupling the client from the functional
component.

Assume we can use a track message to request a copy of the job. The role of a
container as message handler is simply to direct incoming messages to the
appropriate functional components. The action accompanying the message is
performed by a component associated with the receiving part and message type,
as determined by their main element names (‘job’ and ‘track’). The general
behaviour of message-handlers is as follows. They are initiated by external input;
the receipt of a message. As far as the container is concerned actions are atomic,
with a response being generated on completion. The actual work is performed by
components, web-services designed to work with document-state. The component is
selected according to the message type and the type of part to which it is
addressed.

From Figure 2 we can see that job tracking can begin at any time following job
preparation. This means that we should be able to perform job tracking
concurrently with other activities. In relation to the container, actions carried out by
components are performed atomically; changes made by the component are not
visible to others until it has completed. The view it has of the state represents a
consistent snapshot of that state at the time it was invoked. The component enjoys
the fiction that it is running alone, in isolation from other processes. Finally, we’d
like some guarantee that when the process is complete, its results are available in
as durable and persistent a fashion as can reasonably be achieved. The reader
will recognise these as the ACID properties of transactions.

 2002 Hewlett Packard 9

<track/>

<job id=“myjob”>
<manifest>
<art>mydoc.ps</art>
<art>myimg.jpeg</art>

</manifest>
</job>

1

2

job
tracking

job

manifest

art*

container

Figure 5: job tracking

In Figure 5, the track message is addressed to the job (1), which invokes a job
tracking component to perform the required action. The response (2) is the
serialized state of the job (not including the surrounding container).

The job tracking component realizes a simple function of the current state. In
response to other messages we may wish to insert information into the state (just
like the constructor of the previous section). Yet another kind of request is one that
polls the state for outgoing messages, allowing clients to pull messages from a
part.

Job specification
dynamic type
Although job preparation doesn’t communicate directly with other components,
through shared state it has established the right conditions for follow-up actions
such as job specification. Unlike job preparation and tracking, job specification is
not triggered by input messages, but by changes to the state (the appearance of a
job). A pre-condition of job specification is simply the existence of a new job
within the container. If the pre-conditions are met then a job specification
component is located that will run pre-flight tests on the supplied artwork. If the job
checks out then it appends a detailed job specification suitable for production. This
specification will include additional information about the finishing options and
timescale required by the client. These changes may be summarised as post-
conditions of this action. In practice, we need provide only sufficient detail for
automated tools to discover the linkage between this activity and the next.

 2002 Hewlett Packard 10

job
specification

job
specified

job spec. manifest

art*

Figure 6: job specification

The association of documents with behaviour is not new13. Compound documents
aggregate content from different applications, in effect composing content from
different sources. In the web component model, different parts of a document are
associated with different component services. The concept of document state
provides us with a powerful model for XML processing. Every action must end with
the serialization of all relevant state back to the container. If we ignore the very
real side-effects of actions, we can look on them as functions over documents.
From an information perspective we can focus purely on the effects of these actions
on the document state.

Strongly typed programming languages don’t like you messing with the types of
objects once they’ve been created; it gives the compiler a hard time. Web
components are more forgiving. The type of a part is given by its element name,
so the type of <job> is ‘job’. To signify the change to a fully specified job, Figure
6 changes this to <job_specified>, effectively changing the type. The impact
of this is significant, as the part will now only use behaviour associated with
‘job_specified’, not ‘job’. For one thing this provides a way to stop the job
specification operation being re-triggered all over again, as it no longer applies to
parts of this type. Dynamic types allow us to partition the number of operations we
need to consider at any one time.

Dynamic types can be put to good effect to classify the different states that a part
may pass through during its lifetime. We can describe the job lifecycle with the
finite-state diagram of Figure 7. The state diagram abstracts away the fine details
of any particular state, ignoring the details of the documents that each of these
states represent. A more realistic analysis of print jobs would consider additional
states such as error conditions or re-prints, and we would derive a more complex
non-linear structure.

 job job
specified

job
brokered

job
finished

Figure 7: part lifecycle

 2002 Hewlett Packard 11

Broking
activities and access control
Broking is not simply the invocation of a remote computational procedure. Even by
itself, broking represents a rich collaborative activity. All parties who are involved
in this activity are privy to the transactional context, so besides the broking
component this includes the client and subscribed printers. Unlike simple actions,
state is shared between these parties, though still not with anyone outside this
context.

A print broker takes the job spec and turns it into a standard format suitable for
inviting quotes. The Request For Quotes (RFQ) is a buying offer, designed to be
compatible with selling offers put up by subscribed printers. Where the match
between the RFQ (buying offer) and selling offer looks promising, the broker will
notify the subscriber who may then (after some time) submit a quote. Printers
submit quotes simply by sending the appropriate messages to add them to the
RFQ, which is used to collate the responses. When the bidding period has ended
the client will select one of the quotes, assigning the job to one of the printers. The
RFQ may indicate how long the bidding period will last. Figure 8 shows the state
of the job at the end of this process. Information that is irrelevant to the broking
process is greyed out.

broking

job
brokered

job
spec.

manifest RFQ

quote* art*

selling
offer

Figure 8: broking

Earlier, we discussed the transactional properties of actions with respect to
document state. In that case the component only needed to obtain a lock on a part
and its (strictly aggregated) sub-parts. In this case, the selling offer is not part of the
job, as can be seen in Figure 8. It may be in the same container as the job, in
different containers, or may simply be a document on the web. In the latter case,
such documents are assumed to be constant, and components are unable to
modify them. The other cases are more interesting; the state of the job together
with the candidate selling offers represents a business transaction.

 2002 Hewlett Packard 12

Business transactions are unlike database or distributed object transactions. A
traditional database transaction is a logical unit of work that applies to a set of
tightly coupled entities in a persistent store. Distributed object transactions extend
this idea, permitting the objects to be physically distributed. They also provide
support for transactional processes as long as they support the full complement of
ACID properties. However, distributed transactions usually take place within a
common environment, giving the transaction controller full control over the objects
that fall within the transaction context. Furthermore, both traditional and distributed
transaction models assume ownership of the data; an assumption that breaks with
cross-enterprise business processes. Business transactions must work with loosely
coupled objects (both logically and physically) and should not assume ownership
of resources, nor control over the environment14.

Use-cases involving multiple actors (see broking in Figure 1) have much in common
with communication-based process modelling developed by Winograd and
Flores15. Rather than modelling work done, they focus on modelling the interactions
and commitments between participants. The Winograd/Flores conversation for
action model is also customer centric in that it focuses on customer value and
satisfaction. Communication-based processes range from loose ad-hoc
collaborations to well-defined interactions such as the broking process. They define
the notion of the workflow loop that represents a conversation between the
customer (the client) and a performer (the printer). The workflow loop is taken to be
the elementary building block for business processes. A collaboration may have
internal state, but this would be lost if it were to be prematurely cut off. Only at the
end of this process when an agreement is reached, do we need to commit this to
the container.

Access control is a necessity. Just because the job is a web-based entity does not
mean that everyone has equal rights to view or change it. The broking process
would be unfair if bidders were able to see quotes already submitted by their
competitors. Rights associated with the actor (role-based access) allow printers
(subscribers) to read the RFQ and read/write their own quotes, but nobody else’s.
Actors are instantiated dynamically as part of the ongoing process. Subscribers
are given the right to access the RFQ via the broker, acting with the authority of
the client. Only these subscribed printers have the right to submit a quote.

Production & delivery
long-running transactions and concurrency control
Print is very much a “clicks and mortar” business where information services are
blended with physical production and transport. Transactions that involve real
people doing real work, such as production & delivery, tend to be much longer
lived. For this activity to be successful it must have some guarantees about the

 2002 Hewlett Packard 13

stability of the information it depends upon, as highlighted in Figure 9; this
information must be locked down. However, these long-running transactions carry
a number of implications. Failure of the transaction becomes more likely with
extended duration. Offers may be regarded as provisional, and any participant
may back out of the transaction at any point. One way to ameliorate this problem
is to relax the notion of transaction atomicity, an approach taken by the Oasis
Business Transaction Protocol16 (BTP). We may allow multiple successful outcomes,
by which a transaction may succeed even if some (non-critical) operation fails. If
failure is inevitable, and we have to undo the effects of a long-running transaction,
compensating mechanisms17 may be used to cancel changes already made, where
strict roll-back is impossible.

production
& delivery

job
produced

job spec. manifest RFQ

quote* art*

delivery
details

Figure 9: production & delivery

Aside from the problems of coping with the failure of long-running transactions, we
must provide flexible concurrency control mechanisms that support concurrent
access. While the broking activity allows shared access to participants within the
same transactional context, we may also wish to make changes visible to external
parties. For example, we may wish to expose some of the stages within the
production process to job tracking. Many locking schemes distinguish between
types of lock, such as reads and writes. Concurrent reads may coincide, whereas
mixed reads and writes may leave the object in a confused state. These kinds of
mechanisms allow the client to perform a dirty read of the job state even while the
production & delivery operation is still active. However, even writes will mix.
Predicate/ transform locking18 was designed as a concurrency control mechanism
for so-called long-running units of work. It introduces the idea of using a predicate
as a condition for entering the commit phase. This permits concurrent writes to the
same object, as long as their conditions are met. Working with the pre- and post-
conditions of an activity, and ensuring they are compatible, buys us quite fine
control over concurrent access.

Summary
We have proposed a web component model that emphasises the separation of
state from behaviour. The novelty of this approach arises out of moving this
architecture out onto the web, so that both state and behaviour become separately

 2002 Hewlett Packard 14

addressable web resources. The advantages of such an approach are apparent in
web based collaborations where we can decouple service components from each
other, relying instead on shared state.

1 David Bovet, Joseph Martha, Value Nets: breaking the supply chain to unlock hidden profits, Wiley,
2000.
2 William M.Adams et al, Collaborative Commerce: The agile virtual Enterprise Model,
http://www.agileweb.com/pdf/ch12.pdf
3 Stan Davis, Christopher Meyer, BLUR: the speed of change in the connected economy, Capstone, 1998.
4 D. Heimbigner, The Process Wall: A Process State Server Approach to Process Programming,
http://www.cs.colorado.edu/serl/process/Wall.html
5 Rohit Khare, Adam Rifkin, Capturing the State of Distributed Systems with XML,
http://www.cs.caltech.edu/~adam/papers/xml/xml-for-archiving.html
6 Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001,
http://www.w3.org/TR/wsdl
7 Frank Gilbane, fourth forum XML, Paris 2001
8 D. Georgakopoulos, M. Hornick, An Overview of Workflow Management: From Process Modelling to
Workflow Automation Infrastructure.
9 Rational, UML resource center, http://www.rational.com/uml
10 Ivar Jacobsen, The object advantage: business process re-engineering with object technology, Addison
Wesley.
11 OPEN: Object-oriented Process, Environment and Notation, http://www.open.org.au
12 Doug Rosenberg, Kendall Scott, Use Case Driven Object Modelling with UML, Addison Wesley, 1999.
13 http://www.cs.berkeley.edu/~wilensky/CS294/lectures/OpenDoc.pdf
14 Jim Webber, Mark Little, Savas Parastatidis, (www.arjuna.com) “Making web services work”,
Application Development Advisor, Nov/Dec 2001, vol.5, no.9,
http://www.appdevadvisor.co.uk/Downloads/ADA5.9pdfs/LettersfromFront5.9.pdf
15 T. Winograd, R. Flores, Understanding Computers and Cognition, Addison-Wesley, 1987.
16 http://www.oasis-open.org/committees/business-transactions
17 XLANG: Web Services for Business Process Design,
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
18 B.Bennet et al, A distributed object framework to offer transactional support for long-running business
processes, 2000, http://www.research.ibm.com/AEM/lruow.html

	Web Components: services that wear state on their sleeve
	Abstract
	web components
	eBusiness process
	Job preparation�containers
	Job tracking�messages, components and actions
	Job specification�dynamic type
	Broking�activities and access control
	Production & delivery�long-running transactions and concurrency control
	Summary

