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Abstract

In this paper, we address the resource allocation problem (RAP) for large scale data centers using
mathematical optimization techniques. Given a physical topology of resources in alarge data center, and an
application with certain architecture and requirements, we want to determine which resources in the
physical topology should be assigned to the application architecture such that application requirements and
bandwidth constraints in the network are satisfied, while communication delay between assigned serversis
minimized. We have decomposed this complex combinatorial optimization problem into a series of
tractable mathematical optimization models that can be easily solved using commercialy available
mathematical programming solvers. Preliminary tests of this approach demonstrated consistently that
optimal or “good” solutions for problems from small to large scales can be found in seconds, which proves
its better scalability compared to a Layered Partitioning and Pruning (LPP) algorithm in previous work. In
addition, this Mathematical Programming® approach can be extended to more general problems using the
same solvers, that is, extensions of the original problem do not require the development of new agorithms.
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1 Introduction

Internet Data Centers (IDCs) aim to provide highly available, scalable, flexible, and secure information
technology (IT) infrastructure and services to both Applications Service Providers (ASPs) --- companies
that offer individuals or businesses Internet-based access to applications and related services --- and
enterprises with internal IT requirements. The recent shakeout of high-profile ASP and IDC providers —
including several spectacular bankruptcies — has shifted the focus and business model of the surviving
companies from “growth and market share at any cost” to more conservative, old fashion objectives such as
profitability management and optimizing the effectiveness and efficiency of existing resources.

IDC providers can be classified into two categories. Some are co-location service providers that lease
secure IDC space and network connectivity to corporations or third party ASPs. Others are referred to as
Managed Service Providers (MSPs), who own the servers in the IDC and provide value-added services
including security, performance monitoring, content distribution, and capacity planning. In addition, many
IDCs are themselves ASPs who manage not only the infrastructure but also the applications. As we move
towards the world of utility computing, MSPs are of particular interest to us because they offer the potential
for further sharing the infrastructure among different customers and applications, thus increasing the
resource utilization in the data centers.

Recently, IDCs have grown significantly in both size and complexity. Some IDCs today consist of tens of
thousands of servers with high-speed network connections for both inter- and intra-lDC communications.
Managing both infrastructure and applications in such large and complex environments raises many
challenges since IDC operating costs can escalate very quickly, damaging the profitability of these
businesses. The key to effective management of these large data complexes is to continualy evaluate and

! In this paper, we use the terms mathematical programming and mathematical optimization indistinctly.



refine business models and processes, and to employ decision support and automation tools for assessing
performance and making good operational and strategic decisions.

The business model we want to address in this paper is the sharing of resources among applications in an
IDC. A key driver for this model is the need for an IDC to manage a suite of complex applications with
diverse requirements and dynamic characteristics based on service-level agreements. On one hand, some
Web applications experience highly bursty traffic whose workload intensity varies dramatically during
different time of day, or day of week. Over-provisioning, a common practice today, turns out to be a highly
inefficient way for capacity planning. If resources are allocated based on maximum usage, there will be
periods when the system activity level is extremely low and the resources are very poorly utilized. In
addition, special promotions come and go with peak demands much higher than the regular usage, which
makes over-provisioning even infeasible to implement. On the other hand, there may be fairly predictable
batch processing jobs that can utilize resources when they are not needed for other applications. Therefore,
where applicable, an application should not be bound to a particular piece or set of hardware devices, but
rather the application-resource assignment should be made dynamically by IDC management processes.
This is often referred to as “capacity on demand.”[5] This business model is desirable because it allows
IDC resources to be leveraged across many applications, with significant economies of scale. But the
downside is a significant increase in the complexity of IDC operations that requires new levels of
sophistication in both workload demand and resource capacity management.

In this paper, we address the Resource Allocation Problem (RAP) that is inherent in any IDC that shares
resources among applications. In simple terms, the RAP is:
Given a physical network topology of nodes consisting of switches and serversin an IDC,
and application requirements architecture, we need to determine which servers in the
physical topology should be assigned to the application architecture. Any such
assignments much obey two rules: (1) the application requirements and bandwidth
congtraints of the nodes in the physical topology must be satisfied, and (2) the average
communication delay between the assigned serversis minimized.

The RAP problem was originaly formulated by Zhu and Singhal, and a layered partitioning and pruning
(LPP) method was proposed to solve this problem [7]. While their method captures the essential elements
of the problem, their computational solution method is not scalable to contemporary-sized IDC
architecture. The mathematical optimization approach in this paper is based on the core ideas of the LPP
algorithm, but the procedural approach of LPP has been translated into a declarative approach, a sequence
of mathematical optimization models that can be solved efficiently by commercially available solvers such
as CPLEX? and MINOS®,

The RAP problem is present either when applications are initially deployed in an IDC, or when changesin
workload intensity require that resources be added to or removed from an application. The mathematical
programming models presented in this paper deal with the initial allocation process in particular. However,
the models are easily extensible to handle dynamic incremental resource allocations to an existing
application.

The IBM “Oceano” project also focuses on the concept of “capacity on demand” and addresses the problem
of dynamic resource alocation. [1] However, there has not been any published work on this subject using
analytical techniques. In the meantime, the TAO (Transactions, Analysis, and Optimization) project of HP
Labs is investigating the issues in integrating workload characterization and resource capacity planning
using a combination of analytical tools and an experimental test bed. The work presented in this paper is
essentially complementary to the research conducted in the TAO project. For more details about the TAO
project see Garg et al [3].

2 CPLEX isan ILOG software product for solving Linear and Mixed Integer programming problems. For
more information visit the following website, www.ilog.com.

¥ MINOS: s software developed by Professors Walter Murray and Michael Saunders from Stanford
University, and Professor Phillip Gill from UC San Diego for solving Non-linear programming problems.
For more information visit the following site, www.sbsi-sol-optimize.com.
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2 RAP Definition and an Example

For a given physical network topology of an IDC, a given application with a tiered architecture, and
resource requirements for the application, the problem is to allocate servers in the topology into the tiered
architecture such that the application resource requirements are satisfied and the average communication
delay between servers (also known as latency) is minimized.

The following example illustrates an instance of RAP.

2.1 Network Topology
An IDC network topology isillustrated in Figure 1. The topology is characterized by:

e The layout of the network topology is a hierarchical tree. The root of the tree is a mesh switch, an
abstraction of atightly connected group of switches acting as a single device.

« Below the root are two edge switches, labeled Edge 1 and Edge 2.

» Below the edge switches are four rack switches: Rack 1 through Rack 4.

* At the bottom of the tree are 12 servers, Server 1 through Server 12.

» Each server has 3 attributes: number of CPUs, CPU speed, and memory size. Server attributes are
summarized in Table 1. For example, Server 1 has 8 CPUs of 400 MHz each and 4 GB of random
access memory. (Note that other instances of RAP may require more server attributes.)

« Each server, rack switch, and edge switch has an incoming and outgoing bandwidth capacity,
measured in Gbps. These capacities are summarized in Table 2. For example, both the incoming
and outgoing bandwidth capacity of Server 1is 2.0 Gbps.

Mesh Switch

Edge Switches

Rack Switches

Servers

Ser 2 Server 5 Server 11

Figure 1. Example of network topology

Servers
1 2 3 4 5 6 7 8 9 10 11 12
CPU Speed (MHz) 400 400 400 500 500 500 400 500 500 400 400 500
Number of CPUs 8 8 8 10 10 10 8 10 10 8 8 10
RAM (GB) 40 40 40 16.0 16.0 16.0 4.0 16.0 16.0 4.0 4.0 16.0

Table 1. Example of server attributes

Edge S. Rack Switchs Servers

i1 2|11 2 3 411 2 3 4 5 6 7 8 9 10 11 12
Input (Gbps) 4.0 4.0/ 4.0 40 40 4.0/20 2.0 20 20 2.0 20 2.0 20 20 2.0 20 20
Output (Gbps) | 4.0 4.0{ 40 40 4.0 40/ 2.0 20 05 2.0 20 04 2.0 20 0.5 2.0 2.0 2.0

Table 2. Example of server and switch bandwidth



2.2 Application Architecture

The application architecture for the exampleisillustrated in Figure 2 and is characterized by:
e A threetier architecture consisting of Web, application and database servers. We have labeled

thesetiersL1, L2 and L3.

e TiersL1 and L2 require two servers each. L3 requires one server.
e The servers in each tier have minimum and maximum values for the required attributes. These
reguirements are summarized in Table 3. For example, the minimum and maximum CPU speed
for any serverintier L1 is 200MHz and 500MHz, respectively.
* Atthetop of Figure 2 are notations that indicate the maximum amount of data traffic, measured in
Gbps, going from each server in a tier to each server in a consecutive tier. In this example, the

maximum amount of traffic from each server intier L1 to each server intier L2 is 0.2Gbps.
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Figure 2. Example of tiered application architecture

CPU Speed
CPU Number
RAM

Tiers
L1 L2 L3
min max min max min max
200 500 400 600 500 INF
4 10 8 16 10 INF
4.0 12.0 4.0 16.0] 10.0 INF

Note: INF = no bound specified

Table 3. Example of application requirementson servers

Y

0.2
Gbps

Our problem is to identify which servers in the physical topology should be allocated to each tier in the
application such that latency is minimized while bandwidth constraints and Min/Max server attribute

requirements are satisfied.

3 Mathematical Formulation of RAP
The mathematical formulation is based on the following assumptions.
1. Thephysical topology isahierarchical tree.*

* We define a hierarchical tree as the tree where the set of nodes can be partitioned into levels. Level zerois
the root of the tree, level 1 isthe set of children of level 0, level 2 isthe union of the sets of children of each

nodeinlevel 1, etc.



4,

5.

The application has atiered architecture.

Servers at the same tier have the same functionality. Consequently, they have the same attribute
requirements.

The amount of traffic generated by different servers in the same tier is similar. And the amount of
traffic coming into each tier is evenly distributed among all the serversin thetier.

No traffic goes between serversin the sametier.

The reasoning behind these assumptions was described in [7]. When it is necessary to consider applications
with more general architecture or traffic characteristics, the mathematical models presented below can be
easily extended to deal with these variations.

The following notation is used to describe the mathematical formulation of RAP.

Setsand their indices
| OL: Setof tiersor layers, where |L| represents the number of tiers. [Alternative index i]

SO S: Set of servers. |S| represents the number of servers. [Alternative index j]

all A: Set of attributes for servers. |Al represents the number of attributes.

r JR: Set of rack switches. |R| represents the number of rack switches. [Alternative index g

el E : Set of edge switches. |E| represents the number of edge switches.

The network topology of the IDC can be captured using the following sets.
SR U S: Set of servers connected to rack switchr.

SE, [ S: Set of servers connected to edge switch e.

R, [J R Set of rack switches connected to edge switch e.

The attributes of serversin the physical topology are represented by the matrix V, where each element V,

represents the value of the attribute a of server s. The bandwidth capacity of servers, rack and edge
switches in the physical topology are represented by the following set of parameters:

BS . : Theincoming bandwidth of server s.

BSO, : The outgoing bandwidth of server s.

BRI, : Theincoming bandwidth of rack switchr.
BRO, : The outgoing bandwidth of rack switchr.
BEI .: Theincoming bandwidth of edge switch e.

BEQO, : The outgoing bandwidth of edge switch e.

The application architecture requirements are represented by the following parameters. The number of
servers to be allocated to tier | is defined by N, . The maximum and minimum attribute requirements are

represented by two matrices VMAX and VMIN, where each element VMAX, and VMIN,, represent the

maximum and minimum level of attribute a for any server in tier I. The matrix T is defined to characterize
the traffic pattern of the application, where the element T, represents the maximum amount of traffic

going from each server in tier | to each server in tier i. The numbers T, and T, represent the Internet
traffic coming into and going out of each server in tier 1. Using these traffic parameters, we can calculate
the total amount of incoming and outgoing traffic at each server in different tiers, denoted by Tl and TO, ,
respectively.



So far we have defined al the input parameters to RAP. We now define the decision variables. In the
optimization problem we need to decide which server in the physical topology should be assigned to which
tier. The following matrix of binary variables represents this.

[l server sassigned totier |

X = )
otherwise

S

The development of the constraints and the definition of the objective function can be found in Appendix 1.
In addition, interested readers may consult the paper by Zhu and Singhal [7].

In summary, the mathematical optimization problem for RAP is the following.

Max ; D;:Z g S;T.msxj z ng% Z S;jmsxj

lesle’ oL @
ZXBSL sOS (2

ZVMINlax|S < Ez X,SE/ ZVMAXlax,S, alA sOS (3

ZTle,SsBSOS, sds (4
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This formulation is referred to as the original mathematical optimization problem, labeled as PO. Since the
objective function is nonlinear and there are nonlinear constraints, the optimization model is a nonlinear
programming problem with binary variables, which cannot be solved efficiently by commercially available
mathematical programming solvers.

4 Mixed Integer Programming Formulation --- The First Attempt

In this section, the original formulation of RAP is revised and an equivalent Mixed Integer Programming
(MIP) formulation is developed, which can be solved directly using commercial solvers. The interested
reader may consult the book written by Wolsey [6] for a very comprehensive description of the theory and
practice behind Mixed Integer Programming models. This formulation is referred to as MIPO. The key idea
of the MIPO formulation is based on the following observation. The product of binary variables is aso
binary. Conseguently, we define a new variable for each product of binary variables in the original model
asfollows.

[0 if x,=00r x; =
TTH i % =x =1



The following constraints are imposed to ensure that the new variable behaves as the product of binary
variables. First, to guarantee that Yy, = 0 whenever x, =0or x; =0, we need
2Yg, %2V bLiOL, s jOS. (10)
Second, to ensure that Yy, =1whenever X, =1and x; =1, we need
Xs +)§j ~ Yisi <1.
We now explain why the new y variables can be non-negative continuous variables instead of binary

variables. This is crucial, because a formulation with a large number of binary variables is extremely hard
to solve due to combinatorial explosion, even for small problems. The main idea works as follows. Observe

that the variables Y, will appear in the new objective function by replacing Xs X in the objective

function of the original formulation. Due to the fact that we want to maximize the objective function, and
al the y variables have positive coefficients, at optimality the y variables will tend to hit its upper bounds.

Therefore, the constraints X 2 Yy » X; 2 Yig; Will be binding, which means at optimality the y variable
will tend to be X = X; = Yq; = 1. Consequently, the y variables do not need to be binary. Because the
number of y variables is much larger than the x variables, the combinatorial explosion is greatly reduced by
making y variables continuous. In addition, the logical constraints X + X; = Yig; < 1 that would otherwise
congtitute a fair number of equations can be removed. To further reduce the number of y variables, observe
that, X X; = X;Xs impliesyy = V¥;s. These constraints are added to the model so that the CPLEX

preprocessing engine can automatically make these substitutions, thus reducing the number of variablesin
the model without increasing the number of equations.

To reduce the number of binary variables X, in MIPO, afeasibility matrix F is defined as follows.
[ if xg =1satisfies(3), (4) and (5) of PO;
otherwise.

Is

It is used to pre-screen the servers that are infeasible. To make sure that the variable X  appears in the
MIPO formulation if and only if F¢ =1, an additional constraint x,; 0{0, F;} isimposed.

In summary, the MIPO formulation expressed in terms of binary variables x and non-negative continuous
variablesy is defined as follows.

Z DTivis vy > ZZ_SZTHYM

rDRm $Q| EIEOOIMs S,

Subject to:
=N,, 0L (&
SJstls | @
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Xs 2 Vigjs Xj 2 VYig, LIOL, s jOS (10)
xs 0{0, R}, 1OL, sOS; Mﬂzo,IJDL,ajDS

The above approach was applied to the example in Section 2, referred to as “M12”. Given that the size of
the solution space grows exponentially with the number of binary variables in MIPO, and the number of
binary variables is a function of the number of servers in the physical topology, we use the number of
servers as a measure of complexity of the problem. The “M12" problem has 12 servers. The number of
serversrequired by the application is N=(2,2,1).

The MIPO model for “M 12" has the following dimensions.

351 equations.

110 non-negative continuous variablesyy.

21 binary variables x.

The model can be solved in 0.3 seconds with GAMS (MIP0)*/CPLEX7.0.

The Layered Partitioning and Pruning (LPP) algorithm by Zhu and Singha [7] took 0.156
seconds.

The optimal objective function value found by both approachesis 3.3.

The optimal server alocation found by the MIPO approach is shown in Figure 3.

Server 7 &
i
Server 8 Server 11
i i
Server 7 Server 10
Server 9 = =
& &
Server 12 Server 11
L3 L2 L1

Figure 3. Optimal server allocation for the“M 12" problem

® GAMS is a mathematical optimization modeling language that allows coding the MIP formulation.
GAMS calls CPLEX Branch and Bound (Cut) solver to find the optimal solution. For more details about
GAM S visit the following website, www.gams.com.
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More experiments are described in Appendix 2. The results are summarized in Figure 4. Based on these
results, we conclude that the MIPO problem, when solved with standard MIP solvers, does not scale
properly. The reason is that the LP relaxation of the MIPO formulation is too large for the large scale
problems, which degrades the solution time of the Branch and Bound approach used by CPLEX. In
addition, the LP relaxation provides very poor bounds; which also deteriorates the solution time of the
Branch and Bound agorithm. Given these facts, trying to improve the performance of CPLEX by finding
the right options to run the Branch and Bound algorithm is hopeless. Finally, the LPP agorithm finds an
optimal solution faster than MIPO for small to medium sized problems. Although it has successfully solved
some large scale problems, the scalability is not always guaranteed. Therefore, we need to attack the
problem from a different angle.

Performance of Approaches

Seconds
200 -
1659
150 1 MIP
Cannot solre
1001 ELFPF
B MIPO
501
)
N.1a 0.30 1.7

D 4

M2 M30 MS00  Problems

Figure 4. Summary of experimental resultswith the MIPO formulation

5 A Suiteof Mathematical Optimization Formulations

In this section, we develop an approach that comprises a series of mathematical optimization formulations
that solves RAP heuristically and efficiently. The series of mathematical optimization models are variations
and relaxations of the original formulation PO. The approach has three steps. Each step employs a
mathematical optimization formulation that is easy to solve by commercial solvers.

1. Find a good initial approximate solution. An MIP problem is formulated that minimizes the
number of rack switches and edge switches involved. Conceptualy, this objective function is a
surrogate of the original objective function where latency is minimized. In this formulation, we do
not have visibility of the specific servers that are feasible in terms of the application requirements,
but only have visibility of the number of feasible servers at each rack. The solution generated by
this MIP formulation does not consider rack and edge switch bandwidth constraints, which is why
it isonly an approximate solution. This MIP problem can be solved using CPLEX.

2. Given the above approximate solution as an initia solution, we solve a relaxation of the original
problem by formulating a nonlinear optimization problem in terms of the number of feasible
servers at each rack switch allocated to the application. This formulation is equivalent to the
origina mathematical optimization formulation PO. However, in this case the formulation is a
relaxation because al the decision variables can be continuous variables instead of integer
variables. Since this nonlinear formulation provides only local optima instead of global ones we
need step 1. This nonlinear optimization problem can be solved using MINOS.

3. Given the local optimal solution from step 2, find a good solution to the original problem. We
formulate another MIP that essentially rounds the local optimal solution and identifies the exact
servers that satisfy the requirements of the application. CPLEX solves this MIP problem.



We start with the nonlinear optimization formulation, step 2 of our approach, since this formulation is at the
core of the solution approach. Then, we describe the MIP formulation that comprises step 3, which chooses
the specific servers. Finally, we describe the MIP formulation in step 1, which determines good initial
solutions for the nonlinear optimization problem.

5.1 QP (Step 2) --- Nonlinear Optimization and Binary Relaxation

For combinatorial optimization problems with binary variables, it is sometimes advisable, if possible, to
reformulate the problem in terms of continuous variables over an interval. This brings convexity to the
formulation and helps the continuous relaxation to be stronger, which means that the relaxation will give
tighter bounds. For this purpose, a quadratic programming approximation of the original problem is
formulated, referred to as QP. The interested reader might consult the book written by Gill, Murray, and
Wright [4] for a comprehensive description of the theory and practice of Non-linear Programming models.

A new decision variable is defined as follows.
*  XI,: Number of feasible servers connected to rack switchr that are allocated to tier |.

- xr, OO,N].

- Foragivenrackr, X, = % FiX .
=

Is =

The variable XI, appears in the QP formulation if and only if % F. =1, which means the rack switch r
Sl T

has a feasible server for tier I. To simplify the notation, we define anew set FSR, 0 SR, O S, whichis
the set of servers connected to rack switch r that are feasible for tier |. We now reformulate each constraint
in the original problem PO in terms of XTI, . The details of the formulation of the QP problem are explained
in Appendix 3. The resulting QP formulation follows.

Max ZQP = ;g[]ZT”xr”xrir + ; ;gz Z'I'“xrlrxrir (0)

2xrIr =N,, 0L @

rbR
Congtraints (2). We assume a 3-tier architecture; extensions to other number of tiers can be easily
considered. For all r R,

Xhy, + Xy + X0, <|[FSR, OFSR,, OFSR,|
X, + XI5 < |Fs:§1r U FSF§2,|
Xty + XG5 S|FSRy, O FSR,|
XM + Xlig < |FSR,, O FSR, |
0<xhy, <|FSR,| 0<xn, <|FSR,| 0< X, <|[FSR,|
gLTOI Xn, —%jZLT“xr"xrir <BRO,, rOR (6)

rtJ L LI'L

Subject to:

O RarD
T xr, — T xnXr, <BEl,, edE (9)
PRLLE D PPULERLS

xi, 20, 10L, rOR Oy Fe21
R
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Experimental results with the QP model are presented in Appendix 4. We note that the QP model is
significantly smaller than the LP relaxation of the MIPO. The QP model represents a promising approach
since it can be solved very fast and finds the optimal solution in terms of the xr variables if a good initial
solution is provided.

5.2 MIP2 (Step 3) --- Intelligent Rounding

In this section, we formulate a Mixed Integer Programming problem, MIP2, to intelligently round the local
optimal solution generated by the QP model. The MIP2 model defines the actual servers to alocate to the
application. The decision variables are the same as those in the original problem PO.

« _ [l server sassigned totier |
' %) otherwise

The first two constraints of the model are similar to those for the PO problem.

;XIS:N“ 1OL @)
;XBSL sOs (2

For each rack switch r and tier |, allocate as many servers as recommended by the local optimal solution,
Xr’, fromthe QP model.

d;xls >[xr [if xr, >0 (3)

As we have explained, constraints (3), (4) and (5) of the original problem PO are captured by the feasibility
matrix F. Accordingly, we impose another constraint X, [1{0, F.} to ensure that the variable X, appears

in the formulation if and only if Fg =1. Incoming and outgoing bandwidth capacity constraints are not

considered because these constraints are satisfied by the solution of the QP model. The MIP2 model is just
rounding the QP solution without modifying total traffic going through rack switches and edge switches.

The objective function is simply to minimize the number of servers allocated.

Min ; gxls (0)

Observe that the above objective function is a constant, Z N, , dueto constraint (1). The reason why it is
L

imposed is not that the rounding model needsit. Instead, it is because the commercial solver that we use for
mixed integer programming requires that an objective function be specified. Due to the fact that all feasible
solutions have the same objective function value, the minimization does not enforce anything, whichiis
what we want in this case. In some other cases, we might want to use the objective function to minimize the
total “cost” of allocating serversto the application.

In summary, the MIP2 formulation is as follows.
Min ; gxls 0)
;XE:N“ [OL (O
; X, <1, sOS (2
d;xls >[xr [if xr, >0 (3)

X U {0’ Fls}

Subject to
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This formulation is like a transportation model with side constraints. The CPLEX solver exploits this
structure nicely and solvesit extremely fast.

5.3 MIPO (Step 1) --- Initial Solution

As we observed from the experiments of the QP model, this model needs a good starting solution to find
the global optimal solution, or at least a good local optimum for the original problem PO. Recall that the
initial solution for the QP model does not need to be feasible. Hence, in this section, we formulate a Mixed
Integer Programming problem, MIP1, to generate a good initial solution for the QP model.

The MIP1 formulation is based on the following intuitions. First, if there is a feasible server assignment
under a single rack switch that satisfies constraints (1) to (5) of the original problem PO, then this solution
is most likely feasible for the rack and edge switches bandwidth constraints (6) to (9). Second, this feasible
server assignment is optimal for PO. This is easy to show. From appendix 1, the objective function of PO is
formulated as minimizing the weighted average of the number of hops between each pair of servers, i.e.,

Minz=2FR +4FF +6F "™,
where F R, FEand FM are the total amounts of inner traffic at all rack switches, edge switches and mesh
switch, respectively. In addition, FR+FF& + FM =Z; N, TN, , which is a constant. Let it be
UL L

denoted by C. Hence, 2=2C +2FF +4F™ . Since FE 20 and F™ 20, we have 2>2C. The

optimum is achieved if and only if FR=C and F® =FM =0, which is exactly the case when only
servers under one rack switch are chosen. Furthermore, even if more than one rack switches are needed, the

intention will be to minimize F& and FM as much as possible. Observer that F  is larger when more

rack switches are involved, and F" is larger when more edge switches are involved. Therefore, the main
idea in the MIP1 model is to try to allocate servers that are in the same rack or that are in “closer” racks,
where two racks are considered to be close if they are connected to the same edge switch.

It would be desirable for each rack switch to have an “appropriate server mix” so that an application with

“typical” server requirements can be hosted using a single rack switch or a minimum number of rack
switches. A related tactical optimization problem would be to identify such server mix for a set of
applications. On the other hand, data center operators may prefer the idea of having the same kind of
servers under each rack switch for easy maintenance.

Based on the above discussion, the objective function of the MIP1 formulation is a surrogate function of
the objective function of PO. Roughly speaking, the objective of MIP1 is to minimize the total weighted
usage of rack and edge switches. Consequently, the MIP1 problem is formulated as a “Facility Location
Optimization Problem”. We define the following “location” variables:

1 if edgeswitch eisused

For eacheE,u, = 83 otherwise
Wi
OL if rack switchr isused
For eachr OR,v, = %) othervise
wi

The weights for these location variables are chosen so that the minimization of the objective function
emulates the direction of optimality in the original problem PO. In particular, we define the weight for each

switch used to be the latency measure (number of hops) for that switch, i.e, CR, =2,and CE, = 4.

The main issue with the origina formulation PO is that we have a combinatorial optimization problem with
binary variables, quadratic constraints, and a quadratic objective function. Having removed the
nonlinearity from the objective function in MIP1 already, we would further remove the quadratic
bandwidth constraints for rack and edge switches to linearize the problem. Therefore, the MIP1 formulation
is an approximation of the original problem PO. It is not guaranteed to generate a feasible solution for PO.
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However, this is acceptable since the goa of the MIP1 model is to generate good initial solutions for the
QP model, which explicitly considers the quadratic constraints removed in the MIP1 formulation.

Asin the QP model, we assume a 3-tier architecture for the application. Extensions to other number of tiers
are easy to implement. Similar to the QP formulation, we define X, as the number of feasible servers in
rack switch r alocated to tier |. The X, appears in the formulation if and only if rack switch r has a
feasible server for tier |. The constraints of the MIP1 formulation are as follows.

Constraint 1) The total number of serversallocated to tier I is N, .
Yoq, =N, 10L @)

rbR
Constraint 2) Allocate at most one server to atier and ensure that no server allocated is double counted.

Xl +Xr|2r +Xr|3r S|F8R1r U Fs%zr U FSRsr|
Xty + X0, <|FSR, OFSR, |
Xrllr + Xrl3r S|Fs:§1r D Fs:%3r|
XI5 *+ X0y S|FSR, O FSR, |
0 Xy, <|FSR,|.  0sx, <|FSR,|.  0sxr, <|FSR,|

Congtraint 3) These are logical constraints over the binary variables U, and V, that ensure that these

variables behave as intended. If we want to allocate servers from rack switch r to tier | then rack switch r
needs to be “used”. That is,

1. v, =1if xr, >0;

2. v, =0if xr, =0.
Therefore, we define the following constraint:

Nv, 2xr,, FSR, z0 (3.1

Where the coefficient of the variableV, is an upper bound of the variable Xr, . Note that condition 1 is
satisfied by constraint (3.1), and condition 2 is satisfied by this constraint and because we are minimizing
the weighted summation of V, variables, at optimaity v, = Oif xr,, =0.

Ir 1

Now, if we want to “use” rack switch r, we need to “use” the edge switch e connected to this rack switch.
That is,

1. u,=1lifv, =1;
2. u,=0ifv, =0.
Hence, we define the following constraint:
u.2v,, elE, rdR, (3.2
This constraint ensures condition 1 is satisfied, and condition 2 is satisfied at optimality.

The objective function of the MIP1 formulation is to minimize the total cost of “using” rack and edge
switches, and is defined as follows

Min ZCEeue+ ZCRrvr 0)

riR

In summary, the formulation of the MIP1 model is
Min z CE.u, + E CRv, (0)
= e-e r

rirR
Subject to:
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;xrlerl,IDL @

r

Xrllr +Xr|2r +Xr|3r S||:S%1r U FS%Zr U FS%3r|
Xrllr + XrI2r S||:s:§1r U Fg%2r|
Xrllr + Xrl3r S||:s:§lr U Fs%3r|
XrIZr + Xrl3r S|I:S%2r [ FS:‘:Sr|
0< xhy, <|FSR,|.0< X1, <|FSR,[.0< X1, <|[FSR,|
NV, 2x,, FSR, 0 (3.1
u.2v,, elE, rdR, (3.2
u,,v, 0{03,e0E, rOR
xrs20, I,rOLxR, and ZF|521
IR

This type of “Facility Location” formulation has a structure that CPLEX can exploit very effectively and
can be solved extremely fast.

6 Experimental Resultsof the MP Approach
This section summarizes the Mathematical Programming (MP) approach we have developed to tackle the
resource alocation problem PO and shows some experimental results.

The MP approach involves three steps. Each step represents a mathematical optimization formulation that
is easy to solve using commercial solvers.

1. Generate a good initia approximate solution xrlf’ for the QP model using the MIP1 formulation,
which can be solved efficiently by CPLEX.
2. Use the approximate solution xrlf’ as an initial solution for the QP problem; use MINOS as the

solver to find aloca optimal solution of the QP problem, xr|: . We expect that this local optimal
solution would be a global optimal solution or a good local optimal solution.
3. With the local optimal solution xrl’: of the QP problem, use the MIP2 formulation to identify the

specific servers to be alocated to each tier in the application, X,*S. CPLEX solves the MIP2
problem very fast.

Both the M P approach and the LPP algorithm were applied to a set of problems of different sizesto
compare the performance. The problems were divided into two sets, one with 500 servers and the other
with 1000 servers. Within each set, a few other parameters were varied to influence the complexity of the
problem, such as the number of serversrequired in each tier of the application, the numbers of edge and
rack switches, and the amount of incoming or outgoing bandwidth at the edge and rack switches. From
each set, three problems are chosen as representatives and the results are summarized in Table 4. Due to the
fact that the two algorithms were running on different kinds of machines, the comparison of the absolute
numbers for computation time is less meaningful than the variance between different problems. The same
datais presented graphically in Figure 5. It is easy to see that the solution time of the LPP algorithm
heavily depends on the parameters of the problem, while the performance of the MP approach is much
more stable, especially within problems of the same server number. Overall the MP approach is more
robust and scalable and is able to find good solutions quickly when the problem is feasible and not too tight
in terms of the rack and edge switch bandwidth constraints. However, when the problem is tight, the MP
approach is not very reliable, since it may declare the problem infeasible while in fact there exist feasible
solutions. On the other hand, the LPP algorithm isin favor of tighter problems, because its efficiency relies
on the ability to quickly prune infeasible nodes in the search tree, which is easier when the bandwidth
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constraints are tighter. Conseguently, a hybrid MP and LPP approach is desirable, where the LPP approach

is used to determine infeasibility or identify a good feasible solution whenever the M P approach fails to
find afeasible solution. This hybrid method will be described in the next section.

LFF LFF LIF P
CP e Bestsoluhon | CFUT tirne Best salution
L1500 _1 0031 sec a4 2688 A4
LS00 2 91 .61 sec alé 3 sec 8.6
LIS00 3 44 08 zec INFE&S 31 sec INFELS
Cruaranteed Mot
Guarantesd
11000 1 0.047 zec a4 37 sec 24
L1000 2 4207 zec 353 B dsec 379
LI1000 3 14106 sec 584 10.7 sec S62

Table 4. Comparison between the L PP and M P approaches

Seconds

1600
1400 1
1200
1000 1
300
600 1
400 1
200

Performance of Approaches

14104

e e i

M= e i 5 Rl

MS500_1

f2.4 624

ola

3.0

M500_2
726 816

5 1 4458

MS500_3

87 004

M1000_1
2.4 624

a4

M1000 2
379 35.8

{Jbjective function value

M1000_3
584 56.2

Figure 5. Comparison of the LPP and M P approaches
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Another advantage of the MP approach is that it can be extended to handle more general problems that
capture the operational issues and economical factors inherent in the management of large IDCs (e.g.,
50,000 servers). These extensions do not require the invention of new algorithms. Instead, the new
problems need to be formulated in an intelligent way such that they can be efficiently solved using existing
commercia solvers.

7 A Hybrid MP and L PP approach
In this section, we describe a hybrid MP and LPP approach to tackle the RAP. Please refer to Figure 6 to
follow the flow of events of the hybrid approach.

1.

2.
3.
4,

5.

The approach requires the following inputs
a.  Resource physical topology and capacities.
b. Application architecture and resource requirements.
The “Facility Location” surrogate problem, MIP1, is solved to generate a“good” initial solution.
Given the initial solution generated by MIP1, arelaxation problem QP is solved.
The solution of the QP model can either be alocal optimum or infeasible.
a If the solution of QP is infeasible, then the LPP agorithm is used to determine if the
original problem PO isfeasible or not. If afeasible solution isfound, go to 5; otherwise,

i. if the LPP algorithm declares the original problem PO as infeasible, then solve a
feasibility model, which is a variation of the relaxation problem QP. The
purpose of this feasibility model is to identify which rack and/or edge switches
need to increase the bandwidth and the amount of this increase. We refer to this
feasibility model as the FModel. The FModel adds artificial variables to the
incoming/outgoing bandwidth constraints to the QP model and minimizes the
sum of these artificial variables. If bandwidth is increased as recommended by
the FModel, then go to 1, and resolve the revised model.

b. If the solution of QP is a local optimum, then solve the intelligent rounding problem,
MIP2. The solution of MIP2 is afeasible solution of the original problem PO.
Implement the feasible solution found.

8 FutureResearch
The following extensions to RAP and some related topics will be explored in our future research.

1.

The RAP studied in this paper employs a multi-tier architecture for applications. Although the
multi-tier configuration is fairly common in current Web applications, there are applications that
do not necessarily require a tiered structure. We are formulating a mathematical optimization
model for general distributed applications that require a set of communicating servers.

We have taken the approach of allocating resources to one application at a time, which provides a
suboptimal solution to efficiently sharing resources by multiple applications. It will be interesting
to explore the formulation of RAP when multiple applications are considered simultaneously.

It is also desirable to consider general network topologies that do not have a hierarchical tree
structure.

Capacity at IDCs can be expanded by scaling out — adding more servers of the same type, or
scaling up — upgrading current servers by installing latest software or adding hardware
components. We are working on a model that will capture the cost trade-off between scaling out
and scaling up.

We are investigating a methodology that may further substantiate the notions of “Intelligent
Provisioning” and “ Capacity on Demand” which allows to integrate demand planning — workload
management at IDCs, with capacity planning — optimal resource alocation to satisfy dynamic
application requirements. For more details see Garg et al [3].

We attempt to use mathematical programming approaches for more systematic return on
investment (ROI) and total cost of ownership (TCO) analysis for IDCs. For more details see
Crowder et a [2].
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1a. Resource Physical Topology 1b. Application Architecture
Resource Capacities Resource Requirements

2. Solve MIP1
Facility Location Problem

!

Initia
Solution

3. Solve QP
Relaxation of PO

v

4, |s QP solution
Feasible?

4a. Solve using
LPP algorithm

YES
Is LPP solution
Feasible?
NO
YES
\ 4
4b. Solve MIP2 4a.i. Solve FModel
Intelligent Rounding Feasibility Model
Recommendations for
Resource Capacity Change
\ 4 \ 4
5. Implement

Feasible Solution

Figure 6. Flow Diagram of the hybrid MP & L PP approach
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Appendix 1 Mathematical Formulation of PO
This appendix contains details of the development of the constraints and the objective function of PO.

The following constraints are posed on the decision variables.
+  Thetotal number of serversallocated to tier | is N, :

lesle’ 1oL @

« Each server in the physical topology can only be assigned no more than once to a particular tier:

ZXBSL sOS (2
[N

*  Theattribute values for each server assigned satisfy the minimum and maximum requirements:

ZVMINlax,S < EZ X @as < ZVMAXlax,S, adA sOS (3)
[N W L

Note that the summation ; X, iseither O or 1, because of constraint (2) and the terms in the summation

are binary variables. Therefore, constraint (3) takes the following forms for any feasible solution:
VMIN,, £V, <VMAX, or 0<0<0.

la = Yla —

*  The outgoing and incoming bandwidth constraints for all the links that connect the servers to the rack
switches are:

ZTle,SsBSOS, sOdS (4)
UL

ZTIl)(|.S <BS,, sOS (5
UL
Since the summation ; X, ise€ither O or 1, then constraint (4) takes the following values for any feasible

solution: TO, < BSO, or 0< 0. The same argument can be given for constraint (5). Therefore constraints

(4) and (5) force the traffic at the server assigned to a tier to satisfy the server outgoing or incoming
bandwidth requirement for that tier.

e The outgoing and incoming bandwidth constraints for all the links that connect the rack switches to the
edge switches are;

Z >TOxs— gz > TixsX; <BRO,, rOR (6)
Te'm iR TT R
S 3T- 3 >3 ST SBRL, rOR (1)
5 T os‘R

[s'R iR

Consider constraint (6). For each tier | and rack switch r, defineXr, = ;,)qs as the number of servers
S

under rack switch r alocated to tier |. Then, the outgoing traffic at rack switch r is the total amount of
outgoing traffic generated by all the connected servers under this switch, Z ZTOI Xs » reduced by the
MER
amount of inner traffic’® at this switch, > g Z > TiXsX;j - At the same time, the outgoing traffic at
IRITMsR

rack switch r should be less than the rack switch’'s outgoing bandwidth. The same reasoning can be given
for constraint (7).

® Inner traffic at a particular switch is defined as the sum of traffic between any pair of servers connected by
this same switch.
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*  Theoutgoing and incoming bandwidth constraints for all the links that connect the edge switches to the
mesh switches are:

5 310X~ 3 55 YTixx <BEO, eUE (@
flusAngin gt

Me =, s &,
Z DThxe= > gz > Tixex; <BEl,, elE (9)
s =&, 00 O Os 5,
Consider constraint (8). For each tier | and edge switch e, define Xg, = ;X,S as the number of servers
Sl e

under edge switch e allocated to tier |. Then, the outgoing traffic at edge switch e is the total amount of
outgoing traffic generated by all the connected servers under this switch, Z ZTO| X » reduced by
RSN

amount of inner traffic at this switch, Z ; ZT“ XsX; - At the same time, the outgoing traffic at
00 Os =,

edge switch e should be less than the edge switch’s outgoing bandwidth. The same reasoning can be given
for congtraint (9).

The objective of the optimization problem is to minimize the communication delay between servers for
each set of application requirements. Consider the number of hops’ needed for two servers to communicate.

Consider the case when the physical topology is a hierarchical tree. Define F R asthetotal traffic between
all the server pairsthat communicate only through arack switch. That is, F R isthe sum of the inner traffic

for each rack switchr, é %}% ;X'ST“)QJ- . Therefore,
JUSR s
FFR= ;D;,DZ Z S;rxls-ﬂi)ﬁj :

Define NHR as the number of hops needed for two servers under the same rack switch to communicate.
Note that NHR=2.

Define F £ asthetota traffic between all the server pairs that have to communicate through an edge
switch. That is, F % isthe sum of the inner traffic for each edge switch e, ; %% Z XsTii %
j e S e

reduced by the traffic that only goes through arack switch, F R Consequently,

Define NHE as the number of hops needed for each data packet between two servers to go through an edge
switch. Observe that NHE=4.

Define F™ asthetotal traffic between all the server pairs that have to communicate through a mesh
switch. That is, F isthetotal traffic between all the server pairs, Zg N, T,; N, , reduced by the sum of
UL L

theinner traffic at all the edge switches. Consequently,

AP LLLEDIDPIPLLE

Define NHM as the number of hops needed for each data packet between two servers to go through a mesh
switch. Note that NHM=6.

" The number of hopsis defined as the number of arcs in the path of minimal length that connects two
serversin the graph that represents the physical topology.
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We now have defined all the terms that determine the objective function. Therefore, if we want to minimize
the communication delay between servers for each set of application regquirements, the objective function of
the optimization model is to minimize the average number of hops for each server pair weighted by the
corresponding amount of traffic between these two servers. That is,
Min NHR* FR + NHE* F& + NHM * FM
Substituting and canceling terms, we have
oL T (ORI RO T s EIEDLIMs S,

The first term is a constant, so it can be ignored from the optimization model. Therefore, instead of

minimize Z , we can maximize z, where

RSP SIR LD SRISIL

Appendix 2 Experimental Results of the MIPO M odel
In this Appendix, we present the experimental results of using the MIPO formulation.

First a problem called “M30” with 30 servers was tested. The global parameters for this problem are:
e Fiveattributes per server
e Six edge switches
e Two rack switches
e Threetiers
e The server requirements by the application are N = (4,5,3).
e The MIPO formulation has the following dimensions:
0 1682 equations
0 526 non-negative continuous variablesy
0 50 binary variables x
e Themodel can be solved in 8.7 seconds with GAM S (MIP0) /CPLEX7.0
e The LPP agorithm developed by Zhu and Singhal takes 1.7 seconds.
e The optimal solution value found by both approachesis 17.2.

Then a problem called “M500” with 500 servers was tested. The global parameters for this problem are:
«  Fiveattributes per server
« Fiveedge switches
e Number of rack switchesis 25
e Threetiers
e The server requirements by the application are N = (6, 8, 5).

The LPP algorithm can solve this problem optimally in 169.9 sec. The optimal objective function found is
62.4. The serversin the solution are all in rack switch r18. The serversin

o Tierlare(s341,s342, ..., s346)

o Tier2are(s347, ...,s354)

o Tier 3are(s355, ... ,s359)

The MIPQ problem has about 810 binary variables x and about 57,800 continuous variablesy.
The Linear Programming Relaxation (O < X< 1) has the following properties:

e 179,000 equations

e 58,610 variables

« 560,000 non-zero coefficients

e Thisrelaxation solves using GAMS/CPLEX6.0 Primal Simplex in about 17 min 35 sec.

e Thisrelaxation solves using GAMS/CPLEX6.0 Dual Simplex in about 5 min 18 sec.

e Thisrelaxation istoo big, and solves too slowly.
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*  Theoptimal objective function value of the relaxation is 264.

*  TheLPrelaxation gives poor bounds (264/62.4 = 4.23). It seems the y variables |ose their meaning
as aproduct of 2 binary variables, when x is no longer binary but continuousin the interval [0,1].

e The MIPO problem itself cannot be solved by GAMS/CPLEX6.0 after running for almost a week.

Appendix 3 Mathematical Formulation of QP
This appendix provides the details of the development of the QP model.

+  Consider constraint (1) from PO, which says the total number of servers allocated to tier | is N, . Since

SZSFlles = ;&;, FisXs :szrn , we have

zxrIr =N,, 10OL (@
rbR
e Consider constraint (2) from PO, which ensures that each server in the physical topology can be
assigned no more than once to a particular tier. For this constraint we need to be more careful. For
example, consider the feasibility matrix for the example “M12”.
Rack rl r2 r3 r4

Server sl 2 3 A s5 6 s7 B 9 s10 sl1 s12
1 1 0 0 0 01 0 O 1 1 o0 tell
F= 11 1 1 1 0 1 1 O 1 1 1 tiel2
0O 001 11 01 1 0 0 1 ctierl3

Consider the following constraints to guarantee that at most one server is allocated to atier. For each rack
switch r the summation of the number of the feasible servers allocated to each tier should be less than the
total number of servers feasible for al three tiersin thisrack. Therefore,

XrIlr + XrIZr + Xrl3r S|I:S%1r [ FS:‘:Zr [ FS%3r|'

We also impose a constraint on the number of servers allocated to each tier, that is, 0< Xr, < |FSR,|.
The above constraints are not sufficient to avoid double counting. Consider rack switch r3, and the solution
XMy, 3 =1, X, =2, and X5, = 0. This solution satisfies the constraints

Xy ¥+ Xlpg + Xligg S|{57} U{s7,s8 D{58’59}| =3
0< xn,, <fs7}|=1
0< Xr,, 5 <[(S7,8| =2

0< Xf5 <[[s8,s% =2

However, this solution is double counting server s7. If we now impose a constraint to ensure that we do not
allocate more servers than the total number of feasible serversat tier I1 and tier 12, i.e,,

Xigrg + X5 S |{S7} D{S7’38}| =2,
then the proposed solution is no longer feasible. Consequently, to avoid double counting we need to have a
congtraint of feasible servers at a rack switch for each possible tier combination, which means we need

2" — 1 constraints each representing a tier combination. Since a 3-tiered architecture is the most common,
we define constraints (2) assuming a 3-tier architecture. Therefore, for each rack switchr,

Xhy, + Xy + X0, <|[FSR, OFSR,, OFSR,|
Xl + XI5 < |Fs:§1r U FSF§2,|
X, + XI5, S|Fs:§1r U Fs%sr|
XM + Xlig < |FSR,, O FSR, |
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OS Xrllr S||:s:§1r|
0= Xi, <|FSRy|

OS Xrl3r < |FS%3r|
e Constraints (3), (4) and (5) from PO are omitted because they are implicitly considered in the
generation of the variables XTI, .

e The outgoing and incoming bandwidth constraints for all the links that connect the rack switches to the
edge switches are represented by constraints (6) and (7) from PO. Consider the first term of constraint

(6),
2. 2, TO% 72,10 2 P2 2 T

Now consider the second term of constraint (6),

J%r g[]% S;r-rli)ﬁs)ﬁj :m,.ZIDT“ SZ{ F|E)qu;|:ij X; = |,| xr, T xr,

Constraints (7) can be treated in a similar manner. Therefore we have constraints (6) and (7) defined in
terms of Xr,, asfollows.

TO xr, — T, xr,. xr,, <BRO,, rOR (6)
% I NMr %ZI Ir NMir

T xr, — Txr, xr, <BRI,, rOR (7)
% 1 Nr [;D/zl_l Ir Mir r

e The outgoing and incoming bandwidth constraints for al the links that connect the edge switches to the
mesh switches are represented by constraints (8) and (9) from PO. Consider the first term of constraint

(8),
; Z TO X, DZTO ;e ;FlsxIS = ZQTO | XT,,

Now consider the second term of constraint (8),

z [;/z 2 TIiXIs ij lel I:ISXIS z 2 Flj ij — z leixrlrxriq

IE (MM s F, mmRessR, 0 0qR, 1OLr 0T R,
Constraints (9) can be treated in asmllar fashion. Con%quently, we have constraints (8) and (9) defined in
terms of Xr,, asfollows.

Z TOI XN, = R(gZT“xrlsxr,q <BEO,, eJE (8)
Eq R;rD

Z&gTI (X1, = Re[gZ'I'“xrlsxrlq <BEl,, edE (9)
G Rirl

+  Similarly, the objective function reformulated in terms of Xr,, follows:

Max ZQP = Zg ZTnXﬂrXV + z z ZZZT“Xr'er (0)

fORD T T OeEqIRE R T

Appendix 4 Experimental Results of the QP model
In this appendix we present the experimental results for the QP model.

For the problem “M12";
e Theinitial solution for the QP model isxr0 = 0.
e The server requirements by the application are N=(2,2,1).
e 32equations
e 1lvariables
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91 Non-zero coefficients
50 Non-linear coefficients
The QP model local optimal solution is

o ZQP =33.
0 Xhyy =2, XM =1 Xp, =1 X5, =1,
0 Solutiontimeis0.2 sec.

In this case, the QP model using GAMSMINOSS.5 found the global optimal solution in terms of
variables xr, using xrO = 0 asan initial solution.

For the problem “M30":

Theinitial solution for the QP model isxr0=0.

The server requirements by the application are N=(4, 5, 3).
43 equations

15 variables

127 non-zero coefficients

68 non-linear coefficients

The QP model local optimal solutionis

o ZQP" =15.5, NOT aglobal optimal since the value of the optimal solution is 17.2.
0 Xfyy =3, Xy, =1 XMp =3, Xl55 =2, Xli55 = 3.
0 Solutiontimeis0.2 sec.

In this case, the QP model using GAMS/MINOS5.5 found a local optimal solution using xrO = 0
asinitial solution.

Another initial solution was tested®, where xr is equal to its upper bound, that is X, = |(| , q)| .

0 The QP mode local optimal valueis ZQP™ =17.1, and takes 0.2 sec to find it.
We observed that the QP model is very sensitive to the initial solution provided.

For the problem “M500”, which cannot be solved using the MIPO formulation.

Theinitial solution for the QP model is xr0=0.
The server requirements by the application are N= (6,8,5).
149 equations
45 variables
397 non-zero coefficients
202 non-linear coefficients
Observe that instantiation of the QP model for this problem is significantly smaller than the LP
relaxation of the MIPO formulation.
The QP model local optimal valueis
o ZQP" =50.4,locally infeasible!!!
0 Solutiontimeis2.6 sec.
Another initial solution was tested, where xr is equal to its upper bound, that is X, =|FSR, |.

o The QP mode local optimal value is ZQP" =30.3. The optimal value found by the

LPP algorithm is 62.4.
0 Solutiontimeis 2.6 sec.

If instead, X,,5 = N, , the solution found by the LPP agorithm, was used as an initial solution for
the QP model, then

0 TheQP model local optimal valueis ZQP™ = 62.4.

0 Solution time 2.6 sec.

8 Note that the initial solution for the QP model does not need to be feasible.
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