

Peer-to-Peer Computing

Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose,
Kiran Nagaraja1, Jim Pruyne, Bruno Richard,
Sami Rollins 2 , Zhichen Xu
HP Laboratories Palo Alto
HPL-2002-57 (R.1)
July 3rd , 2003*

E-mail: [dejan, vana, lukose, pruyne, zhichen] @ exch.hpl.hp.com, bruno_richard @ hp.com,
knagaraj @ cs.rutgers.edu, srollins @ cs.ucsb.edu

peer-to-peer,
decentralization,
self-
organization,
anonymity, cost
of ownership

The term “peer-to-peer” (P2P) refers to a class of systems and
applications that employ distributed resources to perform a function
in a decentralized manner. With the pervasive deployment of
computers, P2P is increasingly receiving attention in research,
product development, and investment circles. Some of the benefits
of a P2P approach include: improving scalability by avoiding
dependency on centralized points; eliminating the need for costly
infrastructure by enabling direct communication among clients; and
enabling resource aggregation.

This survey reviews the field of P2P systems and applications by
summarizing the key concepts and giving an overview of the most
important systems. Design and implementation issues of P2P
systems are analyzed in general, and then revisited for eight case
studies. This survey will help people in the research community and
industry understand the potential benefits of P2P. For people
unfamiliar with the field it provides a general overview, as well as
detailed case studies. Comparison of P2P solutions with alternative
architectures is intended for users, developers, and system
administrators (IT).

* Internal Accession Date Only Approved for External Publication?
1 Rutgers University, NJ, 08901
2 University of California at Santa Barbara, CA, 93106?
 Copyright Hewlett-Packard Company 2002

July 10, 2002 1:01 pm

1 INTRODUCTION

Peer-to-Peer (P2P) computing is a very controversial
topic. Many experts believe that there is not much new
in P2P. There is a lot of confusion: what really consti-
tutes P2P? For example, is distributed computing really
P2P or not? We believe that P2P does warrant a thor-
ough analysis. The goals of the paper are threefold: 1)
to understand what P2P is and it is not, as well as what
is new, 2) to offer a thorough analysis of and examples
of P2P computing, and 3) to analyze the potential of
P2P computing.

The term “peer-to-peer” refers to a class of systems and
applications that employ distributed resources to per-
form a function in a decentralized manner. The resourc-
es encompass computing power, data (storage and
content), network bandwidth, and presence (comput-
ers, human, and other resources). The critical function
can be distributed computing, data/content sharing,
communication and collaboration, or platform services.
Decentralization may apply to algorithms, data, and

meta-data, or to all of them. This does not preclude re-
taining centralization in some parts of the systems and
applications. Typical P2P systems reside on the edge of
the Internet or in ad-hoc networks. P2P enables:

• valuable externalities, by aggregating resources
through low-cost interoperability, the whole is made
greater than the sum of its parts

• lower cost of ownership and cost sharing, by using
existing infrastructure and by eliminating or distribut-
ing the maintenance costs

• anonymity/privacy, by incorporating these require-
ments in the design and algorithms of P2P systems and
applications, and by allowing peers a greater degree of
autonomous control over their data and resources

However, P2P also raises some security concerns for us-
ers and accountability concerns for IT. In general it is still
a technology in development where it is hard to distin-
guish useful from hype and new from old. In the rest of
the paper we evaluate these observations in general as
well as for specific P2P systems and applications.

DEJAN S. MILOJICIC1, VANA KALOGERAKI1, RAJAN LUKOSE1, KIRAN NAGARAJA2,
JIM PRUYNE1, BRUNO RICHARD1, SAMI ROLLINS3, and ZHICHEN XU1

[dejan, vana, lukose, pruyne, zhichen]@exch.hpl.hp.com, bruno_richard@hp.com,
knagaraj@cs.rutgers.edu, srollins@cs.ucsb.edu

Peer-to-Peer Computing

1HP Labs, 2Rutgers University, 3University of California at Santa Barbara

Abstract
The term “peer-to-peer” (P2P) refers to a class of systems and applications that employ distributed resources to
perform a function in a decentralized manner. With the pervasive deployment of computers, P2P is increasingly
receiving attention in research, product development, and investment circles. Some of the benefits of a P2P ap-
proach include: improving scalability by avoiding dependency on centralized points; eliminating the need for
costly infrastructure by enabling direct communication among clients; and enabling resource aggregation.

This survey reviews the field of P2P systems and applications by summarizing the key concepts and giving an
overview of the most important systems. Design and implementation issues of P2P systems are analyzed in gen-
eral, and then revisited for eight case studies. This survey will help people in the research community and industry
understand the potential benefits of P2P. For people unfamiliar with the field it provides a general overview, as
well as detailed case studies. Comparison of P2P solutions with alternative architectures is intended for users, de-
velopers, and system administrators (IT).

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems - network oper-
ating systems; D.1.3 [Programming Techniques]: Concurrent Programming - distributed programming; D.4.7 [Operating
Systems]: Organization and Design - distributed systems; E.1 [Data]: Data Structures - distributed data structures; F.1.2
[Theory of Computation]: Modes of Computation - parallelism and concurrency; H.3.4 [Information Systems]: Systems
and Software - Distributed systems.

General Terms: design, experimentation

Additional Key Words and Phrases: peer-to-peer, decentralization, self-organization, anonymity, cost of ownership.

2

P2P gained visibility with Napster’s support for music
sharing on the Web [Napster 2001] and its lawsuit with
the music companies. However, it is increasingly becom-
ing an important technique in various areas, such as dis-
tributed and collaborative computing both on the Web
and in ad-hoc networks. P2P has received the attention of
both industry and academia. Some big industrial efforts

include the P2P Working Group, led by many industrial
partners such as Intel, HP, Sony, and a number of startup
companies; and JXTA, an open-source effort led by Sun.
There are already a number of books published [Oram
2000, Barkai 2001, Miller 2001, Moore and Hebeler
2001, Fattah and Fattah 2002], and a number of theses
and projects in progress at universities, such as Chord
[Stoica et al 2001], OceanStore [Kubiatowicz et al.
2000], PAST [Druschel and Rowstron 2001], CAN [Rat-
nasamy 2001], and FreeNet [Clark 1999].

Here are several of the definitions of P2P that are being
used by the P2P community. The Intel P2P working
group defines P2P as “the sharing of computer resources
and services by direct exchange between systems”
[p2pwg 2001]. David Anderson calls SETI@home and
similar P2P projects that do not involve communication
as “inverted client-server”, emphasizing that the comput-
ers at the edge provide power and those in the middle of
the network are there only to coordinate them [Anderson
2002]. Alex Weytsel of Aberdeen defines P2P as “the
use of devices on the internet periphery in a non-client
capacity” [Veytsel 2001]. Clay Shirky of O’Reilly and
Associate uses the following definition: “P2P is a class
of applications that takes advantage of resources – stor-
age, cycles, content, human presence – available at the
edges of the Internet. Because accessing these decentral-
ized resources means operating in an environment of un-
stable connectivity and unpredictable IP addresses, P2P
nodes must operate outside the DNS system and have
significant or total autonomy from central servers”
[Shirky 2001]. Finally, Kindberg defines P2P systems as
those with independent lifetimes [Kindberg 2002].

In our view, P2P is about sharing: giving to and obtain-
ing from a peer community. A peer gives some resources
and obtains other resources in return. In the case of Nap-
ster, it was about offering music to the rest of the com-
munity and getting other music in return. It could be
donating resources for a good cause, such as searching
for extraterrestrial life or combating cancer, where the
benefit is obtaining the satisfaction of helping others.
P2P is also a way of implementing systems based on the
notion of increasing the decentralization of systems, ap-
plications, or simply algorithms. It is based on the prin-
ciples that the world will be connected and widely
distributed and that it will not be possible or desirable to
leverage everything off of centralized, administratively
managed infrastructures. P2P is a way to leverage vast
amounts of computing power, storage, and connectivity
from personal computers distributed around the world.

Assuming that “peer” is defined as “like each other,” a
P2P system then is one in which autonomous peers de-
pend on other autonomous peers. Peers are autonomous

1. INTRODUCTION
Paper Organization and Intended Audience

2. OVERVIEW
2.1. Goals
2.2. Terminology
2.3. P2P Taxonomies

3. COMPONENTS AND ALGORITHMS
3.1. Infrastructure Components
3.2. Algorithms

4. CHARACTERISTICS
4.1. Decentralization
4.2. Scalability
4.3. Anonymity
4.4. Self-Organization
4.5. Cost of Ownership
4.6. Ad-Hoc Connectivity
4.7. Performance
4.8. Security
4.9. Transparency and Usability
4.10.Fault Resilience
4.11.Interoperability
4.12.Summary

5. CATEGORIES OF P2P SYSTEMS
5.1. Historical
5.2. Distributed Computing
5.3. File Sharing
5.4. Collaboration
5.5. Platforms

6. CASE STUDIES
6.1. Avaki
6.2. SETI@home
6.3. Groove
6.4. Magi
6.5. FreeNet
6.6. Gnutella
6.7. JXTA
6.8. .NET My Services
6.9. Summary

7. LESSONS LEARNED
7.1. Strengths and Weaknesses
7.2. Non-Technical Challenges
7.3. Implications for Users, Developers, and IT

8. SUMMARY AND FUTURE WORK
8.1. Final Thoughts on What P2P Is
8.2. Why We Think P2P is Important
8.3. P2P in the Future
8.4. Summary

ACKNOWLEDGMENTS
REFERENCES
APPENDIX A P2P VS. ALTERNATIVES

3

when they are not wholly controlled by each other or by
the same authority, e.g., the same user. Peers depend on
each other for getting information, computing resources,
forwarding requests, etc. which are essential for the func-
tioning of the system as a whole and for the benefit of all
peers. As a result of the autonomy of peers, they cannot
necessarily trust each other and rely completely on the
behavior of other peers, so issues of scale and redundan-
cy become much more important than in traditional cen-
tralized or distributed systems.

Conceptually, P2P computing is an alternative to the
centralized and client-server models of computing,
where there is typically a single or small cluster of serv-
ers and many clients (see Figure 1). In its purest form, the
P2P model has no concept of server; rather all partici-
pants are peers. This concept is not necessarily new.
Many earlier distributed systems followed a similar
model, such as UUCP [Nowitz 1978] and switched net-
works [Tanenbaum 1981]. The term P2P is also not new.
In one of its simplest forms, it refers to the communica-
tion among the peers. For example, in telephony users
talk to each other directly once the connection is estab-
lished, in a computer networks the computers communi-
cate P2P, and in games, such as Doom, players also
interact directly. However, a comparison between client-
server and P2P computing is significantly more complex
and intertwined along many dimensions. Figure 2 is an
attempt to compare some aspects of these two models.

The P2P model is quite broad and it could be evaluated
from different perspectives. Figure 3 categorizes the
scope of P2P development and deployment. In terms of
development, platforms provide an infrastructure to sup-
port P2P applications. Additionally, developers are be-
ginning to explore the benefit of implementing various
horizontal technologies such as distributed computing,
collaborative, and content sharing software using the
P2P model rather than more traditional models such as
client-server. Applications such as file sharing and mes-
saging software are being deployed in a number of dif-
ferent vertical markets. Section 2.3 provides a more
thorough evaluation of P2P markets and Section 5 de-
scribes the horizontal technologies in more detail.

The following three lists, which are summarized in
Table 1, are an attempt to define the nature of P2P, what
is and is not new in P2P.

P2P is concerned with:

• The historical evolution of computing in general and
the Internet in particular; computing at the edge of the
Internet. (e.g., SETI@home and other distributed com-
puting systems)

Figure 1: Simplified, High-Level View of Peer-to-Peer ver-
sus Centralized (Client-Server) Approach.

peers clients

server

Figure 2: Peer-to-Peer versus Client-Server. There is no
clear border between a client-server and a P2P model. Both
models can be built on a spectrum of levels of characteristics
(e.g., manageability, configurability), functionality (e.g., look-
up versus discovery), organizations (e.g., hierarchy versus
mesh), components (e.g., DNS), and protocols (e.g., IP), etc.
Furthermore, one model can be built on top of the other or
parts of the components can be realized in one or the other
model. Finally, both models can execute on different types of
platforms (Internet, intranet, etc.) and both can serve as an un-
derlying base for traditional and new applications. Therefore,
it should not be a surprise that there is so much confusion about
what P2P is and what it is not. It is extremely intertwined with
existing technologies [Morgan 2002].

client-server peer-to-peer

distributed systems

managed..................................self-organized
configured...ad-hoc

lookup..discover
hierarchy...mesh
static...mobile

IP-centric..also non-IP
DNS-based...............................custom naming

clusters
WANs grids

ad-hoc NW

eServices
eBusiness

Web apps

RPC..async

CORBA

RMI
Gnutel

la
Napste

r

Internet intranet

distr. apps

.NET
JX

TA

server dependencies...........................independent lifetime

Groove

SETI@
home

MagiAva
ki

Figure 3: P2P Solutions. P2P can be classified into interoper-
able P2P platforms, applications of the P2P technology, and
vertical P2P applications.

infrastructure of many systems, such as

distributed collaboration and content sharing

financial biotech.... entertainment

messaging

rich media
sharing

online
storage

file
sharing

platforms

horizontal
technologies

example

applications

markets/ enterprise

computing communication

example

process
mgmt

gamessimulation
market

calculation
demogr.
analysis

etc. etc. etc.

genome

protein
folding

etc.

sequence

white
boards

instant
industries

communic.

JXTA, .NET Services, Groove, Magi, Avaki, etc.

4

• Sociological aspects of sharing of content (e.g., Nap-
ster and other file/content sharing systems)

• Technological improvements to networks and commu-
nication advances (e.g., wireless networks, handheld
devices enabling better collaboration and communica-
tion)

• Software architectures (e.g., JXTA or .NET)

• Deployed algorithms (e.g., Gnutella, FreeNet).

New aspects of P2P include:

• Technology requirements
- scale of deployed computers
- ad-hoc connectivity
- security (e.g., crossing a firewall)

• Architectural requirements
- availability of computers
- scalability of future systems (world-wide and embed-

ded)
- privacy and anonymity (beyond the Web)

• Economy requirements
- cost of ownership
- pervasive use (home versus business – expectations

about quality and guarantees versus best effort)

Aspects of P2P that are not new include:

• Concept and applications (e.g., telephony, networks,
servers)

• Decentralization for scalability and availability (e.g.,
distributed systems in general, replication)

• Distributed state management (e.g., load information
management in load balancing systems)

• Disconnected operations in general (e.g., work in mo-
bile computing systems)

• Distributed scheduling algorithms (e.g., on clusters
and grids)

• Scalability (WWW and Web services in particular)

• Ad-hoc networks

• eBusiness

• Algorithms (many P2P and distributed algorithms al-
ready exist)

Paper Organization and Intended Audience

The paper is organized as follows. Section 2 provides
background on P2P. Section 3 presents P2P components
and algorithms. Section 4 describes characteristics of
P2P solutions. Section 5 classifies P2P systems into five
categories and describes a few representatives for each
category. In Section 6, we present more detailed case
studies. Section 7 presents lessons learned from analyz-
ing the P2P area. Finally, in Section 8, we summarize the
paper and describe opportunities for future research.

This paper is intended for people new to the field of P2P
as well as for experts. It is intended for users, developers,
and IT personnel. This first section provided a brief over-
view of the field. Readers interested in learning about the
field in general should read Sections 2 through 5. Experts
can benefit from the detailed case studies in Section 6.
Perspectives of users, developers, and IT personnel are
addressed in Section 7.3. We assume that the readers
have a general knowledge of computing systems.

2 OVERVIEW

P2P is frequently confused with other terms, such as tra-
ditional distributed computing [Coulouris et al. 2001],
grid computing [Foster and Kesselman 1999], and ad-
hoc networking [Perkins 2001]. To better define P2P,
this section introduces P2P goals, terminology, and tax-
onomies.

2.1 Goals

As with any computing system, the goal of P2P systems
is to support applications that satisfy the needs of users.

Perspective

Comparison

What is New What is
Not New

Well-Known
Examples Enabler Enabling Alternatives

Paper
Roadmap

Historical/Evolutionary
(Computing)

computing on the edge
of the Internet

sc
al

ab
ili

ty
,a

va
ila

bi
lit

y,
se

cu
ri

ty
,c

on
ne

ct
iv

ity

distributed
scheduling

co
nc

ep
t,

ap
pl

ic
at

io
ns

,d
is

tr
ib

ut
io

n

SETI@home
ubiquitous comput-
ing/communication

use vast available computer
power at home and office

classic network
clusters, Grids

Sections
5.2, 6.1, 6.2

Cultural/Sociological
(Content sharing/Services)

direct sharing (privacy,
anonymity)

decentralization Napster
broad Internet
connectivity

user-to-user exchange,
minimal broker engagement

client-server, B2B
Web Services

Sections
5.3, 6.5, 6.6

Communication/
Collaboration

apps & systems for
ad-hoc & disconnected

ad-hoc NW, discon-
nected operation

AOL Chat, Groove
parasitic NW

new NWs: wireless,
broadband

improved communication
and collaboration

Lotus Notes,
NetMeeting

Sections
5.4, 6.3, 6.4

Architectural cost of ownership
P2P concept and

applications
JXTA, .NET

increased component
decentralization

larger scale,
better accessibility

CORBA, RMI,
other middleware

Sections
5.5, 6.7, 6.8

Algorithms/
Programming Model

particular
algorithms

distributed state
algor. in general

Gnutella decentralized state
improved scalability, avail-

ability, and anonymity
client-server Section 5.3

Table 1. Various P2P Perspectives Illustrating What is and What is Not New in P2P.

5

Selecting a P2P approach is often driven by one or more
of the following goals.

• Cost sharing/reduction. Centralized systems that
serve many clients typically bear the majority of the
cost of the system. When that main cost becomes too
large, a P2P architecture can help spread the cost over
all the peers. For example, in the file-sharing space, the
Napster system enabled the cost sharing of file storage,
and was able to maintain the index required for shar-
ing. Much of the cost sharing is realized by the utiliza-
tion and aggregation of otherwise unused resources
(e.g. SETI@home), which results both in net marginal
cost reductions and a lower cost for the most costly
system component. Because peers tend to be autono-
mous, it is important for costs to be shared reasonably
equitably.

• Resource aggregation (improved performance)
and interoperability. A decentralized approach lends
itself naturally to aggregation of resources. Each node
in the P2P system brings with it certain resources such
as compute power or storage space. Applications that
benefit from huge amounts of these resources, such as
compute-intensive simulations or distributed file sys-
tems, naturally lean toward a P2P structure to aggre-
gate these resources to solve the larger problem.
Distributed computing systems, such as SETI@Home,
distributed.net, and Endeavours are obvious examples
of this approach. By aggregating compute resources at
thousands of nodes, they are able to perform computa-
tionally intensive functions. File sharing systems, such
as Napster, Gnutella, and so forth, also aggregate re-
sources. In these cases, it is both disk space to store the
community’s collection of data and bandwidth to
move the data that is aggregated. Interoperability is
also an important requirement for the aggregation of
diverse resources.

• Improved scalability/reliability. With the lack of
strong central authority for autonomous peers, improv-
ing system scalability and reliability is an important
goal. As a result, algorithmic innovation in the area of
resource discovery and search has been a clear area of
research, resulting in new algorithms for existing sys-
tems, and the development of new P2P platforms (such
as CAN [Ratnasamy 2001], Chord [Stoica et al. 2001],
and PAST [Rowstron and Druschel 2001]). These de-
velopments will be discussed in more detail in Section
3. Scalability and reliability are defined in traditional
distributed system terms, such as the bandwidth usage
— how many systems can be reached from one node,
how many systems can be supported, how many users
can be supported, and how much storage can be used.
Reliability is related to systems and network failure,
disconnection, availability of resources, etc.

• Increased autonomy. In many cases, users of a dis-
tributed system are unwilling to rely on any centralized
service provider. Instead, they prefer that all data and
work on their behalf be performed locally. P2P sys-
tems support this level of autonomy simply because
they require that the local node do work on behalf of
its user. The principle example of this is the various
file sharing systems such as Napster, Gnutella, and
FreeNet. In each case, users are able to get files that
would not be available at any central server because of
licensing restrictions. However, individuals autono-
mously running their own servers have been able to
share the files because they are more difficult to find
than a server operator would be.

• Anonymity/privacy. Related to autonomy is the no-
tion of anonymity and privacy. A user may not want
anyone or any service provider to know about his or
her involvement in the system. With a central server, it
is difficult to ensure anonymity because the server will
typically be able to identify the client, at least by Inter-
net address. By employing a P2P structure in which ac-
tivities are performed locally, users can avoid having
to provide any information about themselves to any-
one else. FreeNet is a prime example of how anonym-
ity can be built into a P2P application. It uses a
forwarding scheme for messages to ensure that the
original requestor of a service cannot be tracked. It in-
creases anonymity by using probabilistic algorithms
so that origins cannot be easily tracked by analyzing
network traffic.

• Dynamism. P2P systems assume that the computing
environment is highly dynamic. That is, resources,
such as compute nodes, will be entering and leaving
the system continuously. When an application is in-
tended to support a highly dynamic environment, the
P2P approach is a natural fit. In communication appli-
cations, such as Instant Messaging, so-called “buddy
lists” are used to inform users when persons with
whom they wish to communicate become available.
Without this support, users would be required to “poll”
for chat partners by sending periodic messages to
them. Likewise, distributed computing applications
such as distributed.net and SETI@home must adapt to
changing participants. They therefore must re-issue
computation jobs to other participants to ensure that
work is not lost if earlier participants drop out of the
network while they were performing a computation
step.

• Enabling ad-hoc communication and collabora-
tion. Related to dynamism is the notion of supporting
ad-hoc environments. By ad hoc, we mean environ-
ments where members come and go based perhaps on
their current physical location or their current inter-

6

ests. Again, P2P fits these applications because it nat-
urally takes into account changes in the group of
participants. P2P systems typically do not rely on es-
tablished infrastructure — they build their own, e.g.,
logical overlay in CAN and PAST.

2.2 Terminology

The following terminology is used in the taxonomies in
Section 2.3 and in the comparisons between P2P and its
alternatives in Section 7.1.

• Centralized systems represent single-unit solutions, in-
cluding single- and multi-processor machines, as well
as high-end machines, such as supercomputers and
mainframes.

• Distributed systems are those in which components lo-
cated at networked computers communicate and coor-
dinate their actions only by passing messages
[Couloris, et al. 2001].

• Client is informally defined as an entity (node, pro-
gram, module, etc.) that initiates requests but is not
able to serve requests. If the client also serves the re-
quest, then it plays the role of a server.

• Server is informally defined as an entity that serves re-
quests from other entities, but does not initiate re-
quests. If the server does initiate requests, then it plays
the role of a client. Typically, there are one or a few
servers versus many clients.

• Client-Server model represents the execution of enti-
ties with the roles of clients and servers. Any entity in
a system can play both roles but for a different pur-
pose, i.e. server and client functionality residing on
separate nodes. Similarly an entity can be a server for
one kind of request and client for others.

• Peer is informally defined as an entity with capabili-
ties similar to other entities in the system.

• P2P model enables peers to share their resources (in-
formation, processing, presence, etc.) with at most a
limited interaction with a centralized server. The peers
may have to handle a limited connectivity (wireless,
unreliable modem links, etc.), support possibly inde-
pendent naming, and be able to share the role of the
server [Oram 2000]. It is equivalent to having all enti-
ties being client and servers for the same purpose.

Other terms frequently associated with P2P include:

• Distributed computing, which is defined as “a comput-
er system in which several interconnected computers
share the computing tasks assigned to the system”
[IEEE 1990]. Such systems include computing clus-
ters, Grids (see below), and global computing systems
gathering computing resources from individual PCs
over the Internet.

• Grid computing, which is defined as “coordinated re-
source sharing and problem solving in large, multi-in-
stitutional virtual organization.” [Foster and
Kesselman 1999]. More specifically, a Grid is an infra-
structure for globally sharing compute-intensive re-
sources such as supercomputers or computational
clusters.

• Ad-hoc communication, which is defined as a system
that enables communication to take place without any
preexisting infrastructure in place, except for the com-
municating computers. These computers form an ad-
hoc network. This network and associated computers
take care of communication, naming, and security.
P2P systems can be used on top of an ad-hoc commu-
nication infrastructure.

There are many examples of distributed systems, at var-
ious scales, such as the Internet, wide-area networks, in-
tranets, local-area networks, etc. Distributed system
components can be organized in a P2P model or in a cli-
ent-server model. (We believe that other models, such as
three-tier and publish-subscribe, can be mapped onto cli-
ent-server). Typical client examples include Web brows-
ers (e.g., Netscape Communicator or Internet Explorer),
file system clients, DNS clients, CORBA clients, etc.
Server examples include name servers (DNS [Albitz and
Liu 1995, Mockapetris 1989], LDAP [Howes and Smith
2001], etc.), distributed file servers (NFS [Sandberg et al.
1985], AFS [Howard et al. 1988], CORBA Object Re-
quest Brokers [OMG 1996], HTTP Server, authentica-
tion server, etc. Client-server model examples include
CORBA, RMI [Wollrath et al 1996], and other middle-
ware [Bernstein 1996; Britton 2000]). Peer examples in-
clude computers in a network that serve a similar role.
There are numerous examples of the P2P model through-
out the paper.

2.3 P2P Taxonomies

A taxonomy of computer systems from the P2P perspec-
tive is presented in Figure 4. All computer systems can
be classified into centralized and distributed. Distributed
systems can be further classified into the client-server

Distributed Systems

Peer-to-PeerClient-Server

HybridPureHierarchicalFlat

Figure 4: A Taxonomy of Computer Systems Architectures.

Centralized Systems
(mainframes, SMPs, workstations)

Computer Systems

7

model and the P2P model. The client-server model can
be flat where all clients only communicate with a single
server (possibly replicated for improved reliability), or it
can be hierarchical for improved scalability. In a hierar-
chal model, the servers of one level are acting as clients
to higher level servers. Examples of a flat client-server
model include traditional middleware solutions, such as
object request brokers and distributed objects. Examples
of a hierarchical client-server model include DNS server
and mounted file systems.

The P2P model can either be pure or it can be hybrid. In
a pure model, there does not exist a centralized server.
Examples of a pure P2P model include Gnutella and
Freenet. In a hybrid model, a server is approached first to
obtain meta-information, such as the identity of the peer
on which some information is stored, or to verify security
credentials (see Figure 5a). From then on, the P2P com-
munication is performed (see Figure 5b). Examples of a
hybrid model include Napster, Groove, Aimster, Magi,
Softwax, and iMesh. There are also intermediate solu-
tions with SuperPeers, such as KaZaa. SuperPeers con-
tain some of the information that others may not have
[KaZaa 2001]. Other peers typically lookup information
at SuperPeers if they cannot find it otherwise.

Figure 6 presents a coarse taxonomy of P2P systems. We
classify P2P systems into distributed computing (e.g.,
SETI@home, Avaki, Entropia), file sharing (e.g., Nap-
ster, Gnutella, Freenet, Publius, Free Haven), collabora-
tion (e.g., Magi, Groove, Jabber), and platforms (e.g.,
JXTA and .NET My Services). In this paper, under the
term platform we assume an infrastructure that enables
other applications and/or other systems to run in a P2P

fashion. It is important to point out that many of the sys-
tems described in this paper are to various degrees plat-
forms in their own right. For example, we could have
also classified Groove and Magi as platforms. Section 6
contains a description of eight case studies of P2P sys-
tems according to the taxonomy presented in Figure 6.

In Figure 7, we present a classification of various P2P
systems according to the taxonomy presented in
Figure 6. This figure demonstrates that certain P2P sys-
tems emphasize different aspects along the taxonomy di-
mensions (computing, storage, communication),
whereas the platforms support all of these dimensions.
Some of the systems belong to multiple categories. For
example, Groove and Magi can also be considered plat-
forms and the also support file sharing.

Application Taxonomy. Three main classes of P2P ap-
plications have emerged: parallelizable, content and file
management, and collaborative (see Figure 8).

• Parallel computing. Parallelizable P2P applications
split a large compute-intensive task into smaller sub-
pieces that can execute in parallel over a number of in-
dependent peer nodes. Most often, the same task is
performed on each peer using different sets of param-
eters. Examples of implementations include searching
for extraterrestrial life [Anderson et al., 2002], code
breaking, portfolio pricing, risk hedge calculation,

Figure 5: Hybrid Peer-to-Peer Model. (1) Initial communica-
tion with a server, e.g., to obtain the location/identity of a peer,
followed by (2) direct communication with a peer.

peers

server

peers

server

(1) (2)

(a) (b)

P2P Systems

Figure 6: A Taxonomy of P2P System Categories (see also
Section 5).

distributed
computing

file
sharing

collaboration platforms

Figure 7: A Classification of P2P Systems Based on the Tax-
onomy in Figure 6. Systems in bold-italic are case studies de-
scribed in detail in Section 6.

distributed
computing

file
sharing

collaboration

platforms

SETI@home, United Devices
Entropia, DataSynapse

Avaki

.NET

JXTA

Jabber
AIMster

Magi
Groove

Gnutella, Freenet
Mojo Nation,

Napster
Free Haven, Publius

Pointera

OnSystems

Centerspan
Cybiko

Porivo Technologies

Globus

communication and

P2P applications

collaborativeparallelizable

instant games

content and file

exchange systems messaging
sharedfiltering,

mining
content filecompute- compo-

Figure 8: A Taxonomy of P2P Applications.

intensive appsnentized

management

8

market and credit evaluation, and demographic analy-
sis. Section 5.2 presents systems supporting this class
of application. Componentized applications, such as
Workflow, JavaBeans, or Web Services in general,
have not been widely recognized as P2P. However, we
envision applications that can be built out of finer-
grain components that execute over many nodes in
parallel. In contrast to compute-intensive applications
that run the same task on many peers, componentized
applications run different components on each peer.

• Content and file management. Content and file man-
agement P2P applications focus on storing informa-
tion on and retrieving information from various peers
in the network. Applications, such as Napster [2001]
and Gnutella [2001] allow peers to search for and
download files, primarily music files, that other peers
have made available. For the most part, current imple-
mentations have not focused much on providing reli-
ability and rely on the user to make intelligent choices
about the location from which to fetch files and to retry
when downloads fail. They focus on using otherwise
unused storage space as a server for users. These appli-
cations must ensure reliability by using more tradition-
al database techniques such as replication. A number
of research projects have explored the foundations of
P2P file systems [Ratnasamy et al 2001, Bolosky et al
2000, Kubiatowicz et al 2000, Rowstron and Druschel
2001, Gribble et al 2001, Stoica et al 2001]. Finally,
filtering and mining applications such as OpenCOLA
[2001] and JXTA Search [Waterhouse et al. 2002] are
beginning to emerge. Instead of focusing on sharing
information, these applications focus on collaborative
filtering techniques that build searchable indices over
a peer network. A technology such as JXTA Search
can be used in conjunction with an application like
Gnutella to allow more up-to-date searches over a
large, distributed body of information.

• Collaborative. Collaborative P2P applications allow
users to collaborate in real time, without relying on a
central server to collect and relay information. Email
and news are classic examples. Instant messaging,
such as Yahoo!, AIM, and Jabber, have become popu-
lar among a wide variety of users [Strom 2001].
Shared applications that allow people (e.g., business
colleagues) to interact while viewing and editing the
same information simultaneously, yet possibly thou-
sands of miles apart, are also emerging. Examples in-
clude Buzzpad [www.buzzpad.com] and distributed
PowerPoint [Rice and Mahon 2000]. Games are anoth-
er example of a collaborative P2P application. P2P
games are hosted on all peer computers and updates
are distributed to all peers without requiring a central

server. Example games include NetZ by Quazal, Scour
Exchange by CenterSpan, Descent, and Cybiko.

P2P Target Environments. The target environments for
P2P consist of the Internet, intranets, and ad-hoc net-
works. P2P systems connected to Internet support con-
nections in the spectrum from dialup lines to broadband
(DSL). The underlying architecture can rely on personal
home computers, corporate desktops, or personal mobile
computers (laptops and handhelds).

The most frequent environment is personal home com-
puters connected to the Internet. The early P2P systems
in this environment were primarily used for content shar-
ing. Examples include Napster, Gnutella, and Aimster.
Distributed computing in a P2P fashion also started on
desktop computers on the Internet such as SETI@home,
but it also gained acceptance in Intranets, such as in
DataSynapse [Intel 2001, DataSynapse 2001].

Ad-hoc networks of handhelds are only recently becom-
ing available (e.g., Endeavors Technologies Magi) dedi-
cated for collaborative computing, but similar platforms
are expected to follow with a wider deployment of hand-
held computers and wireless networks.

Future environments may include variations of existing
deployment scenarios, such as using corporate desktops
for content sharing, e.g., for distributed Internet data cen-
ters, or handheld computers for resource aggregation
(content sharing or distributed computing). Furthermore,
Internet2 (http://www.internet2.edu/) may offer more
enabling support for P2P systems and applications.

P2P Markets. There are three main markets for P2P:
consumer, enterprise, and public. The consumer space
encompasses the use of P2P for personal use, such as mu-
sic and content sharing, instant messaging, email, and
games. Application examples include music sharing and
communication. Examples of companies in this space in-
clude Napster and Gnutella. Enterprise space P2P appli-
cations include biotech, financial, traditional IT
solutions, and B2B. Example companies include Data
Synapse, Information Architects, and WorldStreet. Fi-
nally, the public class of applications includes the fol-
lowing types of applications: information sharing, digital

P2P markets

publicconsumer

content

enterprise

biotech financial B2Bcontent commu- entertain

Figure 9: A Taxonomy of P2P Markets. There are also other
markets that can map to some of the presented ones, such as
military, education, scientific, etc.

delivery
digital

right mgmtexchange nication ment
gove-
rnment

9

rights management, and entertainment. Centerspan,
AIM, and Scour deliver music and video on broadband
using P2P technology. Various government agencies can
be classified into public sector market, Groove has been
delivering solutions to this market.

According to Phillips, markets can be classified based on
user activities into those performed @work, @play, and
@rest [Nethisinghe 200]. We extended this perspective
to map user activities to markets: consumer, enterprise,
and public (see Table 2). The insight is that P2P perme-
ates a number of user activities and markets.

3 COMPONENTS AND ALGORITHMS

This section introduces components of P2P systems and
algorithms used in P2P.

3.1 Infrastructure Components

Figure 10 illustrates an abstract P2P architecture. In this
section, we discuss the functions of each component and
look at some of the tradeoffs involved in making compo-
nent implementation decisions.

Communication. The P2P model covers a wide spec-
trum of communication paradigms. At one end of the

spectrum are desktop machines mostly connected via
stable, high-speed links over the Internet [Saroiu et al.
2002]. At the other end of the spectrum, are small wire-
less devices such as PDAs or even sensor-based devices
that are connected in an ad-hoc manner via a wireless
medium. The fundamental challenge of communication
in a P2P community is overcoming the problems associ-
ated with the dynamic nature of peers. Either intentional-
ly (e.g., because a user turns off her computer) or
unintentionally (e.g., due to a, possibly dial-up, network
link failing) peer groups frequently change. Maintaining
application-level connectivity in such an environment is
one of the biggest challenges facing P2P developers.

Group Management. Peer group management includes
discovery of other peers in the community and location
and routing between those peers. Discovery of peers can
be highly centralized such as in Napster [2001], highly
distributed such as in Gnutella [2001], or somewhere in
between. Existing Gnutella clients rely on central host
caches to a large extent. A number of factors influence
the design of discovery algorithms. For example, mobile,
wireless devices can discover other peers based upon
their range of communication [Roman et al. 2001]. Pro-
tocols built for desktop machines often use other ap-
proaches such as centralized directories.

Location and routing algorithms generally try to opti-
mize the path of a message traveling from one peer to an-
other. While deployed systems such as Napster and
Gnutella try to optimize factors such as underlying net-
work latency, the research in this space takes a more sys-
tematic approach as discussed in Section 3.2.

Robustness. There are three main components that are
essential to maintaining robust P2P systems: security, re-
source aggregation, and reliability. Security is one of the
biggest challenges for P2P infrastructures. A benefit of
P2P is that it allows nodes to function as both a client and
a server. However, transforming a standard client device
into a server poses risks to the system. Only trusted or au-
thenticated sources should have access to information
and services provided by a given node. For a more de-
tailed discussion of P2P security concerns see Section
4.8.

The P2P model provides the basis for interacting peers to
aggregate resources available on their systems. Classify-
ing the architecture of a P2P resource aggregation com-
ponent is difficult because there are a wide variety of
resources that may be aggregated across peers. On the
one hand, resources include files or other content resid-
ing on a computer. A wide variety of file sharing systems
have addressed the problem of aggregating this type of
resource. On the other hand, resources can be defined in

type of
activity

scope

consumer enterprise public

@work collaboration,
communication

distributed computing,
storage, communica-

tion, collaboration

communication,
digital rights mgmt

@play games HR-sponsored events
digital media

digital experience

@rest music sharing content consumption instant messaging

Table 2. P2P Markets versus P2P Applications.

Figure 10: An Informal P2P System Architecture. The order
of components does not strictly follow layering.

tools

resource
aggregation

scheduling

discovery

reliability

meta-data messaging management

communication

servicesapplications

locating and
routing

security

Communication

Group Management

Robustness

Class-specific

Application-specific
Layer

Layer

Layer

Layer

Layer

10

terms of the resources available on a given peer device
such as CPU processing power, bandwidth, energy, and
disk space.

Reliability in P2P systems is a hard problem. The inher-
ently distributed nature of peer networks makes it diffi-
cult to guarantee reliable behavior. The most common
solution to reliability across P2P systems is to take ad-
vantage of redundancy. For example, in case of compute-
intensive applications upon a detection of a failure the
task can be restarted on other available machines. Alter-
natively, the same task can be initially assigned to multi-
ple peers. In file sharing applications, data can be
replicated across many peers. Finally, in messaging ap-
plications, lost messages can be resent or can be sent
along multiple paths simultaneously.

Class-Specific. While the components discussed so far
are applicable to any P2P architecture, application-spe-
cific components abstract functionality from each class
of P2P application. Scheduling applies to parallelizable
or compute-intensive applications. Compute-intensive
tasks are broken into pieces that must be scheduled
across the peer community. Metadata describes the con-
tent stored across nodes of the peer community and may
be consulted to determine the location of desired infor-
mation. Metadata applies to content and file management
applications. Messaging applies to collaborative applica-
tions. Messages sent between peers enable communica-
tion. Management supports managing the underlying
P2P infrastructure.

Application-Specific. Tools, applications, and services
implement application-specific functionality, which cor-
respond to certain P2P applications running on top of the
underlying P2P infrastructure. It corresponds to specific
cases of distributed scheduling (e.g.scientific, financial,
biotechnology, etc.), content and file sharing (e.g., music
MP3 file exchange), or specific applications running on
top of collaborative and communication systems, such as
calendaring, notes, messaging, and chatting.

3.2 Algorithms

This section overviews three common P2P algorithms
and then compares their implementations in a few P2P
systems.

Centralized directory model. This model was made
popular by Napster. The peers of the community connect
to a central directory where they publish information
about the content they offer for sharing (see Figure 11).
Upon request from a peer, the central index will match
the request with the best peer in its directory that matches
the request. The best peer could be the one that is cheap-

est, fastest, or the most available, depending on the user
needs. Then a file exchange will occur directly between
the two peers. This model requires some managed infra-
structure (the directory server), which hosts information
about all participants in the community. This can cause
the model to show some scalability limits, because it re-
quires bigger servers when the number of requests in-
crease, and larger storage when the number of users
increase. However, Napster’s experience showed that –
except for legal issues – the model was very strong and
efficient.

Flooded requests model. The flooding model is differ-
ent from the central index one. This is a pure P2P model
in which no advertisement of shared resources occurs.
Instead, each request from a peer is flooded (broadcast)
to directly connected peers, which themselves flood their
peers etc., until the request is answered or a maximum
number of flooding steps (typically 5 to 9) occur (see
Figure 12). This model is typically used by Gnutella and
requires a lot of network bandwidth. As a result, the scal-
ability properties of the model are often confused with its
reachability properties. If the goal is to reach all the peers
in the network, then this model does not prove to be very
scalable, but it is efficient in limited communities such as
a company network. By manipulating the number of con-
nections of each node and appropriately setting the TTL
parameter of the request messages, the flooded requests
model can scale to a reachable horizon of hundreds of

Figure 11: Central Index Algorithm.

index

1

5

4

2

3
search
download

Figure 12: Flooded Requests Algorithm.

1

5

4

2
3

search
download

6

11

thousands of nodes. Furthermore, some companies have
been developing “super-peer” client software, that con-
centrates lots of the requests. This leads to much lower
network bandwidth requirement, at the expense of high
CPU consumption. Caching of recent search requests is
also used to improve scalability.

Document routing model. The document routing mod-
el, used by FreeNet, is the most recent approach. Each
peer from the network is assigned a random ID and each
peer also knows a given number of peers (see Figure 13).
When a document is published (shared) on such a sys-
tem, an ID is assigned to the document based on a hash
of the document’s contents and its name. Each peer will
then route the document towards the peer with the ID
that is most similar to the document ID. This process is
repeated until the nearest peer ID is the current peer’s ID.
Each routing operation also ensures that a local copy of
the document is kept. When a peer requests the document
from the P2P system, the request will go to the peer with
the ID most similar to the document ID. This process is
repeated until a copy of the document is found. Then the
document is transferred back to the request originator,
while each peer participating the routing will keep a local
copy.

Although the document routing model is very efficient
for large, global communities, it has the problem that the
document IDs must be known before posting a request
for a given document. Hence it is more difficult to imple-
ment a search than in the flooded requests model. Also,
network partitioning can lead to an islanding problem,
where the community splits into independent sub-com-
munities, which don’t have links to each other.

Four main algorithms have implemented the document
routing model: Chord, CAN, Tapestry, and Pastry. The
goals of each algorithm are similar: to reduce the number
of P2P hops to locate a document of interest and to re-

duce the amount of routing state that must be kept at each
peer. Each of the four algorithms either guarantee loga-
rithmic bounds with respect to the size of the peer com-
munity, or argue that logarithmic bounds can be
achieved with high probability. The differences in each
approach are minimal, however each is more suitable for
slightly different environments. In Chord, each peer
keeps track of other peers (where N is the total
number of peers in the community). The highly opti-
mized version of the algorithm only needs to notify

other peers about the join/leave events. In CAN,
each peer keeps track of only a small number of other
peers (possibly less than). Only this set of peers is
affected during insertion and deletion, making CAN
more suitable for dynamic communities. However, the
tradeoff in this case lies in the fact that the smaller the
routing table of a CAN peer, the longer the length of
searches. Tapestry and Pastry are very similar.

Comparison of algorithms. The Chord algorithm mod-
els the identifier space as a uni-dimensional, circular
identifier space. Peers are assigned IDs based on a hash
on the IP address of the peer. When a peer joins the net-
work, it contacts a gateway peer and routes toward its
successor. The routing table at each peer n contains en-
tries for other peers where the i-th peer succeeds n

Figure 13: Document Routing Algorithm.

1

5

4

2

3Id 001200

6

Id 001500

Id 000010

Id 000200

Id 000024
File

Id=h(data)=0008

Nlog

Nlog

Nlog

P2P System

Algorithm Comparison Criteria

Model Parameters Hops to
locate data Routing state Peer joins

and leaves Reliability

Napster
centralized metadata index
location inquiry from central server
download directly from peers

none constant constant constant
central server returns multiple download
locations, client can retry

Gnutella
Broadcast request to as many peers
as possible, download directly

none no guarantee
constant

(approx 3-7)
constant receive multiple replies from peers with

available data, requester can retry

Chord uni-dimensional, circular ID space N - number of peers in network replicate data on multiple consecutive

peers, app retries on failure

CAN multidimensional ID space N - number of peers in network

d - number of dimensions

multiple peers responsible for each data

item, app retries on failure

Tapestry

Plaxton-style global mesh
N – number of peers in network
b – base of the chosen identifier

replicate data across multiple peers,
keep track of multiple paths to each peer

Pastry

Table 3. Comparison of Different P2P Location Algorithms.

Nlog Nlog Nlog()2

d N
1 d⁄⋅ 2 d⋅ 2 d⋅

Nblog

Nblog Nlog

b Nblog⋅ b+ Nlog

Nlog

12

by at least . To route to another peer, the routing ta-
ble at each hop is consulted and the message is forwarded
toward the desired peer. When the successor of the new
peer is found, the new peer takes responsibility for the set
of documents that have identifiers less than or equal to its
identifier and establishes its routing table. It then updates
the routing state of all other peers in the network that are
affected by the insertion. To increase the robustness of
the algorithm, each document can be stored at some
number of successive peers. Therefore, if a single peer
fails, the network can be repaired and the document can
be found at another peer.

CAN models the identifier space as multidimensional.
Each peer keeps track of its neighbors in each dimension.
When a new peer joins the network, it randomly chooses
a point in the identifier space and contacts the peer cur-
rently responsible for that point. The contacted peer
splits the entire space for which it is responsible into two
pieces and transfers responsibility of half to the new
peer. The new peer also contacts all of the neighbors to
update their routing entries. To increase the robustness of
this algorithm, the entire identifier space can be replicat-
ed to create two or more “realities”. In each reality, each
peer is responsible for a different set of information.
Therefore, if a document cannot be found in one reality,
a peer can use the routing information for a second real-
ity to find the desired information.

Tapestry and Pastry are very similar and are based on the
idea of a Plaxton mesh. Identifiers are assigned based on
a hash on the IP address of each peer. When a peer joins
the network, it contacts a gateway peer and routes toward
the peer in the network with the ID that most closely
matches its own ID. Routing state for the new peer is
built by copying the routing state of the peers along the
path toward the new peer's location. For a given peer n,
its routing table will contain i levels where the i-th level
contains references to b nodes (where b is the base of the
identifier) that have identifiers that match n in the last i
positions. Routing is based on a longest suffix protocol
that selects the next hop to be the peer that has a suffix
that matches the desired location in the greatest number
of positions. Robustness in this protocol relies on the fact
that at each hop, multiple nodes, and hence multiple
paths, may be traversed.

4 CHARACTERISTICS

This section addresses issues in P2P technology, which
have a major impact on the effectiveness and deployment
of P2P systems and applications. We also compare them
in the summary, Section 4.12.

4.1 Decentralization

P2P models question the wisdom of storing and process-
ing data only on centralized servers and accessing the
content via request-response protocols. In traditional cli-
ent-server models, the information is concentrated in
centrally located servers and distributed through net-
works to client computers that act primarily as user inter-
face devices. Such centralized systems are ideal for some
applications and tasks. For example, access rights and se-
curity are more easily managed in centralized systems.
However, the topology of the centralized systems may
yield inefficiencies, bottlenecks, and wasted resources.
Furthermore, although hardware performance and cost
have improved, centralized repositories are expensive to
set up and hard to maintain. They require human intelli-
gence to build, and to keep the information they contain
relevant and current.

One of the more powerful ideas of decentralization is the
emphasis on the users' ownership and control of data and
resources. In a fully decentralized system, every peer is
an equal participant. This makes the implementation of
the P2P models difficult in practice because there is no
centralized server with a global view of all the peers in
the network or the files they provide. This is the reason
why many P2P file systems are built as hybrid approach-
es as in the case of Napster, where there is a centralized
directory of the files but the nodes download files direct-
ly from their peers.

In fully decentralized file systems, such as Freenet and
Gnutella, just finding the network becomes difficult. In
Gnutella, for example, new nodes must know the address
of another Gnutella node or use a host list with known IP
addresses of other peers. The node joins the network of
peers by establishing a connection with at least one peer
currently in the network. Then, it can begin discovering
other peers and cache their IP addresses locally.

The first big distributed computing project was the Great
Internet Mersenne Prime Search (GIMPS,
www.mersenne.org). GIMPS initially worked by email
communication because email has built-in decentraliza-
tion in it. When a server distributes work to computers
that are unavailable, email servers will queue up email
and deliver when the recipient is up. The next big distrib-
uted computing project was called distributed.net; it did
encryption breaking and they initially used only a central
server, which caused availability problems and did not
work for several weeks in a row. They came up with a
two-level proxy system, where they distribute a version
of the server that can act as a proxy. In their case, task
distribution was simple, because the description of work

2
i 1–

13

is small: two integers describing the range of keys to be
searched.

One way to categorize the autonomy of a P2P system is
through the “pure P2P” versus “hybrid P2P” distinction.
A more precise decomposition may be as presented in
Figure 14. This categorization has a direct effect on the
self-organization and scalability of a system, as the pur-
est systems are loosely coupled to any infrastructure.

4.2 Scalability

An immediate benefit of decentralization is improved
scalability. Scalability is limited by factors such as the
amount of centralized operations (e.g, synchronization
and coordination) that needs to be performed, the amount
of state that needs to be maintained, the inherent parallel-
ism an application exhibits, and the programming model
that is used to represent the computation.

Napster attacked the scalability problem by having the
peers directly download music files from the peers that
possess the requested document. As a result, Napster was
able to scale up to over 6 million users at the peak of its
service. In contrast, SETI@home [2001] focuses on a
task that is embarrassingly parallel. It harnesses the com-
puter power that is available over the Internet to analyze
data collected from its telescopes with the goal of search-
ing for extraterrestrial life forms. SETI@home has close
to 3.5 million users so far. Systems like Avaki address
scalability by providing a distributed object model.

Scalability also depends on the ratio of communication
to computation between the nodes in a P2P system. Ap-
plications, such as code breaking or prime number search
have the ratio close to zero, making it extremely scalable.
For example, send two integers and then do the compu-
tation for two hours [Anderson 2002]. In other cases,
such as SETI@home, the scalability bottleneck exists in
transferring data, for example, 1MB results in 10 hours

of computing, requiring bandwidth of 1MB times the
number of machines that participate. Yet other applica-
tions, such as computer graphics for rendering movies,
can use hundreds of thousands of computers to create a
movie within hours instead of within a year. However,
this application requires a lot of data movement, making
it much harder to scale.

Early P2P systems such Gnutella [2001] and Freenet
[Clark 2001] are ad-hoc in nature. A peer has to “blindly”
send its requests to many other peers, causing the rest of
the peers to search for the requested document. This can
cause the time to retrieve a document to be unbounded.
In addition, searching may fail even when an object ex-
ists, making the behavior of the system nondeterministic.

Recent P2P systems, represented by CAN, Chord,
Oceanstore, and PAST, dictate a consistent mapping be-
tween an object key and hosting node. Therefore, an ob-
ject can always be retrieved as long as the hosting nodes
can be reached. Nodes in these systems compose an
overlay network. Each node only maintains information
about a small number of other nodes in the system. This
limits the amount of state that needs to be maintained,
and hence increases scalability. The logical topology of
the overlay provides some guarantees on the lookup cost.
Oceanstore was designed to scale to billions of users,
millions of servers and over 1014 files [Kubiatowicz et al.
2000].

4.3 Anonymity

One goal of P2P is to allow people to use systems with-
out concern for legal or other ramifications. Another goal
is to guarantee that censorship of digital content is not
possible. The authors of the Free Haven [Dingledine et
al. 2001] have identified the following aspects of ano-
nymity:

• Author: A document’s author or creator cannot be
identified

• Publisher: The person who published the document to
the system cannot be identified

• Reader: People who read or otherwise consume data
cannot be identified

• Server: Servers containing a document cannot be iden-
tified based on the document

• Document: Servers do not know what documents they
are storing

• Query: A server cannot tell what document it is using
to respond to a user’s query

Regardless of the above entity, there are three different
kinds of anonymity between each communicating pair:

Figure 14: Examples of Levels of Decentralization in Vari-
ous P2P Systems.

decentralization
degree of

pure

hybrid

all nodes the same

dedicated servers

dedicated server

super-peers/masters

(through master)

Freenet

Kazaa

Napster

SETI@home

Gnutella

Direct Connect

Avaki

file
sharing

distrib.
comp.

collabor./
communic.

platforms

JXTA
.NET

14

sender anonymity, which hides the sender’s identity; re-
ceiver anonymity, which hides a receiver’s identity; and
mutual anonymity, which hides the identities of the send-
er and receiver are hidden from each other and other
peers [Pfitzmann and Waidner 1987].

Besides the kinds of anonymity, it is also very important
to understand the degree of anonymity a certain tech-
nique can achieve. Reiter and Rubin [1998] presented a
spectrum of anonymity degrees that cover absolute pri-
vacy, beyond suspicion, probable innocence, and prov-
ably exposed. For example, beyond suspicion means that
even though an attacker can see evidence of a sent mes-
sage, the sender appears no more likely to be the origina-
tor of that message than any other potential sender in the
system.

There are six popular techniques, each suitable for en-
forcing different kinds of anonymity and with different
kinds of constraints. We summarize them below.

Multicasting. Multicasting (or broadcasting) can be
used to enforce receiver anonymity [Pfitzmann and
Waidner 1987]. A multicast group is formed for parties
who wish to keep anonymous. An entity that is interested
in obtaining a document subscribes to the multicast
group. The party that possesses the document sends the
document to the group. The identity of the requestor is
effectively hidden from both the sender and other mem-
bers of the group, and the requestor’s anonymity is be-
yond suspicion. This technique can take advantage of the
underlying network that supports multicast (e.g., Ether-
net or token ring).

Spoofing the sender’s address. For connectionless pro-
tocols such as UDP, the anonymity of the sender of a
message can be enforced by spoofing the sender’s IP ad-
dress. This however, requires changing the protocol. In
addition, this is not always feasible, because most ISPs
now filer packets originating from invalid IP addresses.

Identity Spoofing: Besides changing the originator’s
address, anonymity can also be ensured by changing the
identity of a communicating party. For example, in
Freenet [Clark 2001], a peer passing a file to a requestor,
either out of its own cache or from an upstream peer, can
claim to be the owner of the content. The responder is
possibly innocent from an attackers’s point view, be-
cause there is a nontrivial probability that the real re-
sponder is someone else.

Covert paths. Instead of communicating directly, two
parties communicate through some middle nodes. Most
existing techniques ensure only sender anonymity. A

party that wishes to hide its identity prepares a covert
path with the other party as the end of the path. Examples
include Mix [Chaum 1981], Onion [Syverson 1997], An-
onymizing Proxy [Gabber 1997], Crowds [Reiter and
Rubin 1998] and Herdes [Shields and Levine 2000]. The
covert paths can use store/forward or persistent connec-
tions. By varying the length of the covert paths and
changing the selected paths with different frequency, dif-
ferent degrees of anonymity can be achieved.

Intractable aliases. LPWA [Gabber 1999] is a proxy
server that generates consistent untraceable aliases for
clients from the servers. The client can open an account
and be recognized upon returning to the opened account,
while hiding the true identity of the client from the serv-
er. Techniques of this kind ensure sender anonymity and
rely on a trusted proxy server. The degree of anonymity
that can be achieved falls in between absolute privacy
and beyond suspicion.

Non-voluntary placement. An interesting new ap-
proach is anonymity via non-voluntary placement of a
document on a hosting node. Here, a publisher forces a
document onto a hosting node using, for example, con-
sistent hashing. Because the placement is non-voluntary,
the host cannot be held accountable for owning the doc-
ument.

We now summarize the forms of anonymity some of the
popular P2P systems support and the techniques they
employ (see Table 4).

Gnutella [2001] and Freenet [Clark 2001] provide a cer-
tain degree of anonymity in the way peers request/send a
document. In Gnutella, a request is broadcast and re-
broadcast until it reaches a peer with the content. In
Freenet, a request is sent and forwarded to a peer that is
most likely to have the content. The reply is sent back
along the same path.

Project
Types and Techniques of Anonymity

Publisher Reader Server Document

Gnutella multicasting,
covert paths

not applicable not applicable not applicable

Freenet
covert path,

identity spoofing
covert paths

non-voluntary
placement

encryption

APFS covert paths covert paths not applicable not applicable

Free
Haven

covert paths
(remailer)

covert paths broadcast
encryption/split
files into shares

Publius covert paths
(remailer)

not applicable
non-voluntary

placement
encryption/

split key

PAST not applicable not applicable
non-voluntary

placement
encryption

Table 4. Types of Anonymity and Techniques to Enforce
Them.

15

APFS [Scarlata et al. 2001] addresses the mutual ano-
nymity problem assuming that trusted centralized sup-
port does not exist. Peers may inform a (untrusted)
coordinator about their willingness to be index servers.
Both the initiator and the responder need to prepare their
own covert paths.

Free Haven [Dingledine 2001] and Publius [Waldman et
al. 2000] are designed to defend against censorship. They
strengthen the document’s anonymity by further splitting
the files as they are stored at each server. In this way, no
single server even contains all of the data needed to per-
form an attack on the encrypted file contents. The ano-
nymity among a pair of communicating parties
(publisher/server, reader/server) is enforced via covert
paths. Both Free Haven and Publius build the covert
paths using an anonymous re-mailer system. Publius
could be extended to support reader anonymity by using
its re-mailer for publishing, but it does not currently do
so.

PAST [Rowstron and Druschel 2001], CAN [Ratnasamy
2001] and Chord [Stoica et al 2001] represent a new class
of P2P system that provides a reliable infrastructure. One
common property among these systems is that object
placement can be entirely non-voluntary. As a result,
when an object is placed on a node, that node cannot be
held accountable for owning that object. The embedded
routing mechanisms in these systems can also easily be
adapted to covert path for mutual anonymity.

4.4 Self-Organization

In cybernetics, self-organization is defined as “a process
where the organization (constraint, redundancy) of a sys-
tem spontaneously increases, i.e., without this increase
being controlled by the environment or an encompassing
or otherwise external system” [Heylighen 1997].

In P2P systems, self-organization is needed because of
scalability, fault resilience, intermittent connection of re-
sources, and the cost of ownership. P2P systems can
scale unpredictably in terms of the number of systems,
number of users, and the load. It is very hard to predict
any one of them, requiring frequent re-configuration of
centralized system. The significant level of scale results
in an increased probability of failures, which requires
self-maintenance and self-repair of the systems. Similar
reasoning applies to intermittent disconnection; it is hard
for any predefined configuration to remain intact over a
long period of time. Adaptation is required to handle the
changes caused by peers connecting and disconnecting
from the P2P systems. Finally, because it would be cost-
ly to have dedicated equipment and/or people for manag-

ing such a fluctuating environment, the management is
distributed among the peers.

There are a number of academic systems and products
that address self-organization. In OceanStore, self-orga-
nization is applied to location and routing infrastructure
[Kubiatowicz et al 2000, Rhea et al. 2001, Zhao et al.
2001]. Because of intermittent peer availability, as well
as variances in network latency and bandwidth, the infra-
structure is continuously adapting its routing and loca-
tion support.

In Pastry, self-organization is handled through protocols
for node arrivals and departures based on a fault-tolerant
overlay network [Druschel and Rowstron 2001, Row-
stron and Druschel 2001]. Client requests are guaranteed
to be routed in less than steps on average. Also,
file replicas are distributed and storage is randomized for
load balancing.

The FastTrack product attributes quicker search and
download to self-organizing distributed networks. In
these networks, more powerful computers automatically
become SuperNodes and act as search hubs. Any client
can become a SuperNode if it meets processing and net-
working criteria (bandwidth and latency). The distribut-
ed networks replace any centralized service [FastTrack
2001].

SearchLing uses self-organization to adapt its network
according to the type of search, resulting in reduced net-
work traffic and less unreachable information
[SearchLing 2000].

4.5 Cost of Ownership

One of the premises of P2P computing is shared owner-
ship. Shared ownership reduces the cost of owning the
systems and the content, and the cost of maintaining
them. This is applicable to all classes of P2P systems. It
is probably most obvious in distributed computing. For
example, SETI@home is faster than the fastest super-
computer in the world, yet at only a fraction of its cost –
1% [Anderson 2002].

The whole concept of Napster music sharing was based
on each member contributing to the pool of music files.
Similar assumptions for peers are used in other file sys-
tems, such as OceanStore.

In P2P collaboration and communication systems, and in
platforms, elimination of centralized computers for stor-
ing information also provides reduced ownership and
maintenance costs. A similar approach is taken in wire-
less communication in the United States. A so-called
“Parasitic grid” wireless movement, enables sharing of

N16log

16

the existing home-installed 802.11b bandwidth among
the users [Schwartz 2001]. These networks compete with
the companies installing wireless infrastructure at the
fraction of the cost.

4.6 Ad-Hoc Connectivity

The ad-hoc nature of connectivity has a strong effect on
all classes of P2P systems. In distributed computing, the
parallelized applications cannot be executed on all sys-
tems all of the time; some of the systems will be available
all of the time, some will be available part of the time,
and some will be not be available at all. P2P systems and
applications in distributed computing need to be aware of
this ad-hoc nature and be able to handle systems joining
and withdrawing from the pool of available P2P systems.
While in traditional distributed systems this was an ex-
ceptional event, in P2P systems it is considered usual.

In content sharing P2P systems and applications, users
expect to be able to access content intermittently, subject
to the connectivity of the content providers. In systems
with higher guarantees, such as service-level agree-
ments, the ad-hoc nature is reduced by redundant service
providers, but the parts of the providers may still be un-
available.

In collaborative P2P systems and applications, the ad-
hoc nature of connectivity is even more evident. Collab-
orative users are increasingly expected to use mobile de-
vices, making them more connected to Internet and
available for collaboration. To handle this situation, col-
laborative systems support transparent delay of commu-
nication to disconnected systems. This can be
accomplished by having proxies delegated on networks
to receive messages, or by having other sorts of relays on
the sending system or somewhere in the network that
will temporarily hold communication for an unavailable
system.

Furthermore, not everything will be connected to the In-
ternet. Even under these circumstance, ad-hoc groups of
people should be able to form ad-hoc networks in order
to collaborate. The supporting ad-hoc networking infra-
structures, such as 802.11b, Bluetooth, and infrared,
have only a limited radius of accessibility. Therefore,
both P2P systems and applications need to be designed to
tolerate sudden disconnection and ad-hoc additions to
groups of peers.

4.7 Performance

Performance is a significant concern in P2P systems.
P2P systems aim to improve performance by aggregating
distributed storage capacity (e.g., Napster, Gnutella) and
computing cycles (e.g., SETI@home) of devices spread

across a network. Because of the decentralized nature of
these models, performance is influenced by three types
of resources: processing, storage, and networking. In
particular, networking delays can be significant in wide-
area networks. Bandwidth is a major factor when a large
number of messages are propagated in the network and
large amounts of files are being transferred among many
peers. This limits the scalability of the system. Perfor-
mance in this context does not put emphasis in the milli-
second level, but rather tries to answer questions of how
long it takes to retrieve a file or how much bandwidth a
query will consume.

In centrally coordinated systems (e.g., Napster, Se-
ti@home) coordination between peers is controlled and
mediated by a central server, although the peers also may
later contact each other directly. This makes these sys-
tems vulnerable to the problems facing centralized serv-
ers. To overcome the limitations of a centralized
coordinator, different hybrid P2P architectures [Yang
and Garcia-Molina 2001] have been proposed to distrib-
ute the functionality of the coordinator in multiple index-
ing servers that cooperate with each other to satisfy user
requests. DNS is another example of a hierarchical P2P
system that improves performance by defining a tree of
coordinators, with each coordinator responsible for a
peer group. Communication between peers in different
groups is achieved through a higher level coordinator.

In decentralized coordinated systems such as Gnutella
and Freenet, there is no central coordinator; communica-
tion is handled individually by each peer. Typically, they
use message forwarding mechanisms that search for in-
formation and data. The problem with such systems is
that they end up sending a large number of messages
over many hops from one peer to another. Each hop con-
tributes to an increase in the bandwidth on the communi-
cation links and to the time required to get results for the
queries. The bandwidth for a search query is proportional
to the number of messages sent, which in turn is propor-
tional to the number of peers that must process the re-
quest before finding the data.

There are three key approaches to optimize performance:
replication, caching, and intelligent routing.

Replication. Replication puts copies of objects/files
closer to the requesting peers, thus minimizing the con-
nection distance between the peers requesting and pro-
viding the objects. Changes to data objects have to be
propagated to all the object replicas. Oceanstore uses an
update propagation scheme based on conflict resolution
that supports a wide range of consistency semantics. The
geographic distribution of the peers helps to reduce con-
gestion on both the peers and the network. In combina-

17

tion with intelligent routing, replication helps to
minimize the distance delay by sending requests to close-
ly located peers. Replication also helps to cope with the
disappearance of peers. Because peers tend to be user
machines rather than dedicated servers, there is no guar-
antee that the peers won't be disconnected from the net-
work arbitrary.

Caching. Caching reduces the path length required to
fetch a file/object and therefore the number of messages
exchanged between the peers. Reducing such transmis-
sions is important because the communication latency
between the peers is a serious performance bottleneck
facing P2P systems. In Freenet for example, when a file
is found and propagated to the requesting node, the file is
cached locally in all the nodes in the return path. More
efficient caching strategies can be used to cache large
amounts of data infrequently. The goal of caching is to
minimize peer access latencies, to maximize query
throughput and to balance the workload in the system.
The object replicas can be used for load balancing and la-
tency reduction.

Intelligent routing and network organization. To fully
realize the potential of P2P networks, it is important to
understand and explore the social interactions between
the peers. The most pioneering work in studying the so-
cial connections among people is the “small-world phe-
nomenon” initiated by Milgram [1967]. The goal of his
experiment was to find short chains of acquaintances
linking pairs of people in the United States who did not
know one another. Using booklets of postcards he dis-
covered that Americans in the 1960s were, on average,
about six acquaintances away from each other. Adamic
et al. have explored the power-law distribution of the
P2P networks, and have introduced local search strate-
gies that use high-degree nodes and have costs that scale
sub-linearly with the size of the network [Adamic et al.
2001]. Ramanathan et al. [2001] determine “good” peers
based on interests, and dynamically manipulate the con-
nections between peers to guarantee that peers with a
high degree of similar interests are connected closely.
Establishing a good set of peers reduces the number of
messages broadcast in the network and the number of
peers that process a request before a result is found. A
number of academic systems, such as Oceanstore and
Pastry, improve performance by proactively moving the
data in the network (see also Section 2.6). The advantage
of these approaches is that peers decide whom to contact
and when to add/drop a connection based on local infor-
mation only.

4.8 Security

P2P systems share most of their security needs with com-
mon distributed systems: trust chains between peers and
shared objects, session key exchange schemes, encryp-
tion, digital digests, and signatures. Extensive research
has been done in these areas, and we will not discuss it
further in the present document. New security require-
ments appeared with P2P systems.

• Multi-key encryption. File sharing systems, such as
Publius [Waldman et al. 2001], intend to protect a
shared object, as well as the anonymity of its author,
publishing peer and hosting peer. The security scheme
chosen by Publius developers is based on a (Public
key, Multiple private keys) asymmetric encryption
mechanism derived from R. Shamir’s “shared secrets”
encryption method [Shamir 1979]. Byzantine attacks
by malicious authenticated users have typically been
an issue for such schemes. Recent improvements (see
[Castro and Liskov 2001] for an example) have re-
duced the costs inherent to Byzantine agreements and
opened the way to solid systems used by large num-
bers of users.

• Sandboxing. Some distributed computing P2P sys-
tems require downloading code on peer machines. It is
crucial to protect the peer machines from potentially
malicious code and protect the code from a malicious
peer machine. Protecting a peer machine typically in-
volves enforcing (1) safety properties such that the ex-
ternal code will not crash the host box, or will only
access the host data in a type-safe way, and (2) enforc-
ing security properties to prevent sensitive data from
being leaked to malicious parties. Techniques to en-
force the first include sandboxing (i.e., techniques that
isolate external code to its own protection domains),
safe languages that prevent type-unsafe code being
written (e.g., java), virtual machines (e.g., Internet
C++ POSIX virtual machine, real mode Linux deriva-
tives, which run a virtual machine on top of the actual
OS, VMware), proof-carrying code and certifying
compilers [Necula 1997, 1998] and program verifica-
tion techniques applied to verifying the safety proper-
ties of machine code [Xu et al. 2000, 2001].
Techniques to check the latter include information
flow theory [Denning 1976], and model checking
[Ball 2001].

• Digital Rights Management. P2P file sharing makes
file copying easy. It is necessary to be able to protect
the authors from having their intellectual property sto-
len. One way to handle this problem is to add a signa-
ture in the file that makes it recognizable (the signature
remains attached to the file contents) although the file
contents do not seem affected. This technique, refer-

18

enced as watermarking or steganography [Katzenbeis-
ser 1999], has been experimented with by RIAA to
protect audio files such as MP3s, hiding the Copyright
information in the file in inaudible ways.

• Reputation and Accountability. In P2P systems, it is
often important to keep tack the reputation of peers to
prevent ill-behaved peers from harming the whole sys-
tem. Reputation requires ways to measure how “good”
or “useful” a peer is. For instance, if a given user
shares lots of interesting files, its reputation should be
high. Freeloader is a common term for a user who
downloads files from P2P systems without offering
files to others. A freeloader usually has a low reputa-
tion. To prevent this kind of non-cooperative behavior,
some accountability mechanisms need to be devised.
Current systems typically rely on cross-rating among a
community of authenticated users. However, authenti-
cation does not provide any guarantee of a peer’s be-
havior; it is therefore difficult to produce a solid
system.

• Firewalls. P2P applications inherently require direct
connections between peers. However, in corporate en-
vironments internal networks get isolated from the ex-
ternal network (the Internet), leaving reduced access
rights to applications. For instance, most firewalls
block inbound TCP connections [p2pwg 2001]. This
means that a machine within a Firewall will not be ac-
cessible from a machine external to the network.
Worse, home users frequently use IP Masquerading or
Network Address Translation (NAT) technology to
share an internet connection between several ma-
chines, which leads to the same inaccessibility prob-
lem. However, as outbound access through port 80
(HTTP) is often allowed by firewalls, some mecha-
nisms have been devised that enable connections be-
tween hidden (machines behind a firewall or NAT,
inaccessible from the Internet) and Internet machines.
This is quite limiting however, as it requires connec-
tion to be initiated from the hidden machine. When
both peers who want to communicate reside behind
different firewalls, the problem becomes harder. It re-
quires a central reflector (or relay) server on the Inter-
net, which provides a connection between the hidden
peers.

4.9 Transparency and Usability

In distributed systems, transparency was traditionally as-
sociated with the ability to transparently connect distrib-
uted systems into a seamlessly local system. The primary
form of transparency was location transparency, but oth-
er forms included transparency of access, concurrency,
replication, failure, mobility, scaling, etc. [Coulouris et
al. 1990]. Over time, some of the transparencies were

further qualified, such as transparency for failure, by re-
quiring distributed applications to be aware of failures
[Waldo et al 1997], and addressing transparency on the
Internet and Web (see next paragraph).

From its beginning, the Internet paid particular attention
to transparency at the protocol level (TCP/IP), so called
end-to-end address transparency [Carpenter 2000]. The
end-to-end argument [Saltzer et al. 1984] claims that cer-
tain functions in a communication between two entities
can be performed only with the knowledge and state
maintained at these entities at the application level
(hence, end-to-end: all the way from application through
the communication stack, up to the other application).
This implies that application communication state is not
maintained in the network, but rather at the communica-
tion end points.

This also implies that any point in the network knows the
name and address of the other communication point, an
assumption that is not true any more. IPv4’s lack of IP
numbers, as well as the introduction of intranets and mo-
bile users, resulted in IP numbers that are valid only dur-
ing a single session. Examples include SLIP, PPP, VPNs,
use of firewalls, DHCP, private addresses, network ad-
dress translators (NATs), split DNS, load sharing optimi-
zations, etc [Carpenter 2000]. This had significant
implications for P2P and was also one of the reasons for
the introduction of P2P. Because it was no longer possi-
ble to rely on DNS to provide an accurate name, P2P sys-
tems came up with different naming and discovery
schemes (see Section 3.1 as well as end of Section 5.3).

Web naming did not necessarily offer full naming trans-
parency. URLs are widely used instead of URNs, which
were supposed to enable naming transparency [Berners-
Lee et al. 1998]. Beside naming/addressing transparen-
cy in P2P there is also a requirement for administration
transparency. Users are typically non-experts and they
do not or cannot administer their software and devices.

The P2P software should not require any significant set
up or configuration of either networks or devices in order
to be able to run. Also, self-updating software is a desir-
able feature. In addition, P2P systems should be network
and device transparent (independent). They should work
on the Internet, intranets, and private networks, using
high-speed or dial-up links. They should also be device
transparent, which means they should work on a variety
of devices, such as handheld personal digital assistants
(PDAs), desktops, cell phones, and tablets.

Another form of transparency is related to security and
mobility. Automatic and transparent authentication of
users and delegation to user proxies can significantly

19

simplify users’ actions. Supporting mobile users and dis-
connection in particular, can enable users to work inde-
pendently of whether and how they are connected to the
Internet or intranets.

P2P applications can be used in the following manners:

• as a user of services, typically through Web interfaces
(e.g., content sharing, information gathering)

• wrapped around non-P2P applications, typically on a
P2P platform (e.g., Groove, .NET)

• as locally installed P2P software (e.g., distributed
computing screensavers and Napster)

4.10 Fault Resilience

One of the primary design goals of a P2P system is to
avoid a central point of failure. Although most P2P sys-
tems (pure P2P) already do this, they nevertheless are
faced with failures commonly associated with systems
spanning multiple hosts and networks: disconnections/
unreachability, partitions, and node failures. These fail-
ures may be more pronounced in some networks (e.g.,
wireless) than others (e.g., wired enterprise networks). It
would be desirable to continue active collaboration
among the still connected peers in the presence of such
failures. An example would be an application, such as
genome@home [2001] executing a partitioned computa-
tion among connected peers. Would it be possible to con-
tinue the computation if one of the peers were to
disappear because of a network link failure? If the dis-
connected peer were to reappear, could the completed re-
sults (generated during the standalone phase) be
integrated into the ongoing computation? Questions sim-
ilar to these would have to be addressed by P2P systems
aiming to provide more than just “best effort” Internet
service.

In the past, client-server disconnection has been studied
for distributed file systems that consider mobile clients
(e.g., Coda [Satyanarayanan 1990]), and a common solu-
tion is to have application-specific resolvers to handle
any inconsistency on reconnection. Some current P2P
systems (e.g., Groove [Groove Networks 2001]) handle
this by providing special nodes, called relays, that store
any updates or communication temporarily until the des-
tination (in this case another peer) reappears on the net-
work. Others (e.g., Magi [Endeavors Technologies
2001]) queue messages at the source, until the presence
of the destination peer is detected.

Disconnection can be result of non-availability of re-
sources. This may occur either because the resource is
unreachable due to a network failure or because the peer
hosting the resource has crashed/gone offline. While the

former may be resolved by routing around the failure and
is already supported by the Internet, the latter requires
more careful consideration. Replication of crucial re-
sources helps alleviate the problem. P2P networks such
as Napster and Gnutella represent systems having both a
passive and an uncontrolled replication mechanism
based solely on the file's popularity. Depending on the
application running over these networks, it may be nec-
essary to provide certain persistence guarantees. This re-
quires a more active and reliable replication policy.

Anonymous publishing systems such as Freenet [Clark
et al. 2000] and Publius [Waldman et al. 2000] ensure
availability by controlled replication. Oceanstore [Kubi-
atowicz et al. 2000] maintains a two-layered hierarchy of
replicas and through monitoring of administrative do-
mains avoids sending replicas to locations with highly
correlated probability of failures. However, because a re-
source in the P2P system could be more than a just a file
– such as a proxy to the Internet, shared storage space, or
shared computing power – the concepts of replicated file
systems have to be extended to additional types of re-
sources. Grid computing solutions (e.g. Legion [Grim-
shaw et al. 1997]) provide resilience against node
failures by restarting computations on different nodes.

A challenging aspect of P2P systems is that the system
maintenance responsibility is completely distributed and
needs to be addressed by each peer to ensure availability.
This is quite different from client-server systems, where
availability is a server-side responsibility.

4.11 Interoperability

Although many P2P systems already exist there is still no
support to enable these P2P systems to interoperate.
Some of the requirements for interoperability include:

• How do systems determine that they can ineroperate

• How do systems communicate, e.g., what protocol
should be used, such as sockets, messages, or HTTP

• How do systems exchange requests and data, and exe-
cute tasks at the higher level, e.g., do they exchange
files or search for data

• How do systems determine if they are compatible at
the higher protocol levels, e.g., can one system rely on
another to properly search for a piece of information

• How do systems advertise and maintain the same level
of security, QoS, and reliability

In the past, there were different ways to approach in-
teroperability, such as standards (e.g., IEEE standards
for Ethernet, token ring, and wireless); common specifi-
cations, (e.g., Object Management Group [OMG 2001]);
common source code, (e.g., OSF DCE [Rosenberrg

20

1992]); open-source (e.g., Linux); and de facto stan-
dards (e.g., Windows or Java).

In the P2P space, some efforts have been made towards
improved interoperability, even though interoperability
is still not supported. The P2P Working Group [p2pwg
2001] is an attempt to gather the community of P2P de-
velopers together and establish common ground by writ-
ing reports and white papers that would enable common
understanding among P2P developers. The P2P Working
Group gathers developers from both ad-hoc communica-
tion systems and grid systems. The Grid Forum [2002] is
a similar effort in the grid computing space. Both efforts
represent an approach similar to OMG, in defining spec-
ifications and possibly reference implementations.

JXTA [2001] approaches interoperability as an open-
source effort, by attempting to impose a de facto stan-
dard. A number of developers are invited to contribute to
the common source tree with different pieces of func-
tionality. Only a minimal underlying architecture is sup-
ported as a base, enabling other systems to contribute
parts that may be compatible with their own implemen-
tations. A number of existing P2P systems have already
been ported to the JXTA base. JXTA is described in
more detail in Section 6.7.

4.12 Summary

Decentralization is a key feature of P2P systems. It af-
fects how developers design systems and applications,
by influencing algorithms, data structures, security, scal-
ability, and availability assumptions. It affects how users
can be connected to a system and the people with whom
they can interact. For example, in games, users perceive
that other players are remote, and that they can also be
disconnected. This implies that they should devise strat-
egies in a decentralized fashion. Distributed P2P applica-
tions are written assuming decentralization, and
collaborative applications have to handle group manage-
ment without central naming, authorization, and data re-
positories.

The ad-hoc nature of P2P systems also affects the way
applications and systems are conceived. The fact that any
system or user can disappear at time drives the design of
these systems as well as user perceptions and expecta-
tions. In addition to the classical security issues of tradi-
tional distributed systems, P2P is distinguished by the
importance of anonymity in certain applications and
markets. Scalability, performance, fault resilience, and
interoperability have similar importance for P2P as they
have in traditional distributed systems.

Distributed computing applications are primarily con-
cerned with scalability (which is derived from decentral-
ization) and performance. Fault resilience is tied in with
the ad-hoc nature of connectivity – distributed applica-
tion designers and users need to account for the possibil-
ity of a system going down at any time and being able to
resume from a previous checkpoint. P2P systems that use
critical or confidential data are concerned with security.
Content sharing applications and systems are primarily
concerned with the availability of data. Enterprise sys-
tems are concerned with security and performance, and
public and consumer systems are concerned with trans-
parency (ease of use) and anonymity. Collaborative and
communication applications are concerned with connec-
tivity (ad-hoc nature), security, and anonymity, and with
interoperability between systems.

5 CATEGORIES OF P2P SYSTEMS

This section describes in more detail the four categories
presented in Figure 6: distributed computing, file shar-
ing, collaborative systems, and P2P platforms. In addi-
tion, we also present historical P2P systems that predated
the recent notion of P2P systems. While this section pre-
sents the P2P systems categories in general, Section 6
presents each of the categories in more detail with two
case studies.

5.1 Historical Systems

In most cases, early distributed applications were P2P.
When most users were from a technical or academic
background, and were using either time-sharing systems
or engineering workstations, P2P applications seemed
the most natural approach. It was the mid-80's to early-
90's when client-server architectures became more prev-
alent because they provided the fastest and most cost-ef-
fective means of supporting large numbers of non-
technical users. It also allowed the use of less expensive
and less functional computers such as desktop PCs.

While most early distributed applications can be consid-
ered P2P, e-mail systems built on the Simple Mail Trans-
fer Protocol (SMTP) and Usenet News were probably the
most widely used. In each case, local servers that re-
ceived a message built connections with peer servers to
deliver messages into a user's mail file or into a spool file
containing messages for the newsgroup. The File Trans-
fer Protocol (FTP) was the precursor to today’s file shar-
ing P2P systems. While FTP is a client-server
application, it was very common for individuals to run
FTP servers on their workstations to provide files to their
peers. Eventually, an indexing system, Archie, was de-
veloped to provide a central search mechanism for files
on FTP servers. This structure with central search and

21

distributed files is exactly replicated in the Napster P2P
system.

Prior to the establishment of a continuously connected
network such as the Internet, decentralized dial-up net-
works were widely used. The most notable examples in-
clude UUNet and Fidonet. These networks were
composed of a collection of machines that made periodic
dial-up connections to one another. On a typical connec-
tion, messages (typically e-mail or news articles) were
transferred bi-directionally. Often, a message would be
routed through multiple dial-up hops to reach its destina-
tion. This multi-hop message routing approach can be
seen in current P2P systems such as Gnutella.

In our “modern” era dominated by PCs on workplace
LANs or home dial-up connections, the first wider use of
P2P seems to have been in instant messaging systems
such as AOL Instant Messenger. These are typically hy-
brid P2P solutions with discovery and brokering handled
by a central server followed by direct communication be-
tween the peer messaging systems on the PCs. The cur-
rent phase of interest and activity in P2P was driven by
the introduction of Napster [2001] in 1999. It came at a
time when computers and their network connections
were nearing the level found previously in technical and
academic environments, and re-created earlier approach-
es with an interface more suitable to a non-technical au-
dience.

5.2 Distributed Computing

The idea of using spare computing resources has been
addressed for some time by traditional distributed com-
puting systems. The Beowulf project from NASA [Beck-
er et al. 1995] was a major milestone that showed that
high performance can be obtained by using a number of
standard machines. Other efforts, such as MOSIX [Barak
and Litman 1985, Barak and Wheeler 1989] and Condor
[Litzkow et al 1988, Litzkow and Solomon 1992], also
addressed distributed computing in a community of ma-
chines, focusing on the delegation or migration of com-
puting tasks from machine to machine.

Grid computing is another concept that was first ex-
plored in the 1995 I-WAY experiment [Foster 2000], in
which high-speed networks were used to connect high-
end resources at 17 sites across North America. Out of
this activity grew a number of Grid research projects that
developed the core technologies for “production” Grids
in various communities and scientific disciplines. Grid
technology efforts are now focused around the Global
Grid forum (http://www.globalgridforum.org) and the
Globus project (http://www.globus.org). A computing
grid can be seen and used as a single, transparent com-

puter. A user logs in, starts jobs, moves files, and re-
ceives results in a standard way.

Derivatives of Grid Computing based on standard Inter-
net-connected PCs began to appear in the late 90’s. They
achieve processing scalability by aggregating the re-
sources of large number of individual computers. Typi-
cally, distributed computing requires applications that
are run in a proprietary way by a central controller. Such
applications are usually targeting massive multi-parame-
ter systems, with long running jobs (months or years) us-
ing P2P foundations. One of the first widely visible
distributed computing events occurred in January 1999,
where distributed.net, with the help of several tens of
thousands of Internet computers, broke the RSA chal-
lenge [Cavallar et al. 2000] in less than 24 hours using a
distributed computing approach. This made people real-
ize how much power can be available from idle Internet
PCs.

More recent projects have been raising interest from
many users within the Internet community. For example,
SETI@home [2001] now has a consolidated power of
about 25 TFlops/s (trillions of floating point operation
per second), collected from more than three million reg-
istered user machines.

Peer-to-Peer? A commonly raised question is if distrib-
uted computing systems such as SETI@home are P2P?
The counter-argument is that a central server is required
for controlling the resources, the PCs do not operate as
servers, and no communication occurs between peers.
The pro-argument is that a significant part of the system
is executed on the PCs, with high autonomy. We consid-
er such distributed computing systems to be P2P.

How it works. The computational problem to be solved
is split into small independent parts. The processing of
each of the parts (using a fork-and-join mechanism) is
done on an individual PC and the results are collected on
a central server. This central server is responsible for dis-
tributing job items to PCs on the Internet. Each of the
registered PCs is equipped with client software. The cli-
ent software takes advantage of inactivity periods (often
characterized by screensaver activation times) in the PC
to perform some computation requested by the server.
After the computation is finished, the result is sent back
to the server, and a new job is allocated to the client.

Current usage. One of the major limitations of distrib-
uted computing is that it requires jobs that can be split
into independent small parts that do not require (signifi-
cant) cross-peer communication. Internet latencies do
not allow demanding communication patterns such as

22

those found in typical cluster computing. Hence, it is not
possible to execute supercomputing-like processing such
as linear algebra problems (matrix computation). Current
applications consist of Single Process Multiple Data (SP-
MD) problems and multiprogramming problems where a
given job has to be run on many different input data sets.
This mostly includes simulation and model validation
tasks. Because specific applications have to be devel-
oped using very specific constraints, paradigms, and en-
vironments, their development cost is prohibitive to most
users, and the scope remains limited to highly visible re-
search domains, such as the human genome project, SE-
TI, cancer research, and weather model validation.

Application area examples – Financial and Biotech-
nology. Some financial and biotechnology applications
are suitable for distributed computing. Financial institu-
tions, such as banks and credit companies, are executing
complex simulations for market calculations. Applica-
tions include portfolio pricing, risk hedge calculation,
market and credit evaluation, counter-party netting, mar-
gin calculations, cash flow, and demographic analysis
[Intel 2001]. In the past, financial applications typically
ran during the night. As they become more real-time in
nature, these requirements will grow even further. So far
only big institutions have been able to afford the comput-
ing power to automate these simulations, typically using
mainframe computers or very powerful workstations. By
relying on P2P commodity platforms, smaller banks can
also benefit from these applications. Furthermore, as
technology favors farms of desktop computers, they be-
come not only more cost effective, but also a more pow-
erful platform. As an example, Intel and DataSynapse

claim speed-ups from 15 hours to 30 minutes in the case
of interest rate swap modeling when moving to a P2P so-
lution [DataSynapse 2001]. The biggest challenge in us-
ing P2P for financial markets is the intrinsic requirement
for security. Because most of these applications are exe-
cuting behind the firewall, security requirements are
somewhat relaxed. In particular, parts of the applications
can even be executed outside of the firewall.

In the biotechnology sector, the need for advanced com-
puting techniques is being driven by the availability of
colossal amounts of data. For instance, genomic research
has close to three billion sequences in the human genome
database. Applying statistical inference techniques to
data of this magnitude requires unprecedented computa-
tional power. Traditionally, scientists have used high-
performance clustering (HPC) and supercomputing solu-
tions, and have been forced to employ approximating
techniques in order to complete studies in an acceptable
amount of time. By harnessing idle computing cycles
(95%-98% unused) from general purpose machines on
the network, and grouping multi-site resources, grid
computing makes more computing power available to re-
searchers. Grid solutions partition the problem space
among the aggregated resources to speed up completion
times. Companies such as Platform Computing (LSF)
[Platform Computing 2001, Zhou et al. 1994], Entropia
[2001], Avaki [2001] and Grid Computing Bioinformat-
ics [2001] offer complete HPC and grid solutions to bio-
logical research organizations and pharmaceutical
research and development. Genomics and proteomics
projects such as Genome@home [2001] and Fold-
ing@home [2001] managed by groups at Stanford make
use of the idle cycles of registered clients to compute
parts of the complex genome sequencing and protein
folding problems [Natarajan 2001].

In search for a business model. Distributed computing
requires an expensive infrastructure to host the Web ser-
vice, and this does not even account for development and
maintenance costs. Attempts have been made by several
companies (such as Porivo) to pay the user for use of his
machine by the system. If your machine computes a lot
of jobs, you can get some money for having shared your
machine. Other models are based on auctions, where the
cheapest available CPU is allocated for a given job. An-
other model used by Entropia addresses vertical markets,
such as Genomics, which is based on huge database look
ups. However, none of the existing business models have
yet proven successful. The only model that currently
seems to work is the dedicated community model, such
as astronomy researchers sharing their machines in a
“friendly” way.

Figure 15: Distributed computing over the Web.

23

5.3 File Sharing

Content storage and exchange is one of the areas where
P2P technology has been most successful. Multimedia
content, for instance, inherently requires large files. Nap-
ster and Gnutella have been used by Internet users to cir-
cumvent bandwidth limitations that make large file
transfers unacceptable. Distributed storage systems
based on P2P technologies are taking advantage of the
existing infrastructure to offer the following features.

• File exchange areas. Systems such as Freenet provide
the user with a potentially unlimited storage area by
taking advantage of redundancy. A given file is stored
on some nodes in the P2P community, but it is made
available to any of the peers. A peer requesting a given
file just has to know a reference to a file, and is able to
retrieve the file from the community by submitting the
file reference. Systems such as Freenet, Gnutella, and
Kazaa fall in this category.

• Highly available safe storage. The duplication and re-
dundancy policies in some projects offer virtual stor-
age places where critical files get replicated multiple
times, which helps ensuring their availability. Ocean-
Store [Kubiatowicz et al. 2000] and Chord [Dabek et
al. 2000] are examples of such systems.

• Anonymity. Some P2P systems such as Publius [Wald-
man et al. 2000] mathematically ensure that published
documents preserve anonymity for their authors and
publishers, while allowing people to access the docu-
ments.

• Manageability. P2P systems enable easy and fast re-
trieval of the data by distributing the data to caches lo-
cated at the edges of the network. In some systems, the
location of the data is not known by the retriever, per-
haps not even after the data is retrieved. Freenet, for
example, stores the data in many locations in the path
between the provider and the retriever, so the whole
notion of hosting a file becomes meaningless. Files
move freely among the peers and are allowed to disap-
pear even if they are being downloaded. This has some
important implications. For example, the question is
who is accountable for the files (see Section 4.5). Also,
how can we ensure that the entire piece of data is being
downloaded and cope with the un-reliability of the
peers (see Section 4.10).

Technical issues. The major technical issues in file shar-
ing systems are mostly the network bandwidth consump-
tion, security, and search capabilities. Three main
models exist today, as discussed in Section 3.2: Central-
ized directory model (Napster), the flooded request mod-
el (Gnutella), and the document routing model
(FreeNet). All P2P file sharing systems can be catego-

rized into one of these three families, although variations
do exist, such as extensions of the models with leader
election mechanisms (automatic or manual elections)
such as in KaZaA, which allow for better scalability of
the systems and less stress on the network. In addition,
current P2P systems (e.g., Napster, Gnutella, Freenet)
have mainly focused on the exchange and sharing of
“small” objects such as files and music clips. However,
we expect that in future P2P systems the content will be
of any form, including audio, video, software, and docu-
ments. To do that, we will need intelligent decisions such
as from where the content be retrieved and over which
network path should the content travel. XDegrees [XDe-
grees 2001], for example, ensures that information is ef-
ficiently routed to users and that multiple document
replicas are synchronized across many peers. They pro-
vide an eXtensible Resource Name System (XRNS)
based on the notion of the URL that creates a location-in-
dependent name space. They place frequently accessed
information at optimal locations in the network and then
select the best route to retrieve that information based on
source availability, network topology, and response
time.

Application area examples. Napster is first P2P file
sharing application to receive widespread use. Napster
was originally developed to defeat the copying problem
and to enable the sharing of music files over the Internet.
Napster uses the centralized directory model (see Section
2.6) to maintain a list of music files, where the files are
added and removed as individual users connect and dis-
connect from the system. Users submit search requests
based on keywords such as “title,” “artist,” etc. Although
Napster's search mechanism is centralized, the file shar-
ing mechanism is decentralized; the actual transfer of
files is done directly between the peers. Napster’s cen-
tralized directory model inevitably yields scalability lim-
itations (see Section 3.2). For example, the available
bandwidth can be tremendously reduced by users down-
loading songs from one’s machine. Yet, centralization
simplifies the problem of obtaining a namespace and en-
ables the realization of security mechanisms (see Section
3.8).

Napster has been quite popular. It has had more than for-
ty million client downloads and has led to numerous
variants of file-sharing applications (such as Gnutella
and Pointera). OpenNap (http://opennap.source-
forge.net/) is an open-source Napster server that extends
the Napster protocol to allow sharing of any media type
and add the ability to link Napster servers together. To
solve the problem with copyright violations, Napster re-
launched a new Napster membership service. Although it
still offered the core functions (searching, finding, shar-

24

ing, and discovering digital music through the Napster
community) it also offered to artists the opportunity to
register as rights holders and get paid for sharing their
music on Napster. Napster set the rules for how their mu-
sic files are used.

Morpheus is a full-featured P2P file-sharing system in-
troduced by MusicCity (www.comusiccity.com) that
tries to overcome some of the limitations of Napster. It
includes a powerful search engine that can search for all
types of media (including music, videos, documents, and
reference files). The results are grouped together so the
same file is displayed only once. Its SmartStream mech-
anism automatically resumes broken content streams by
finding another source for the same content and monitor-
ing the network until the whole content stream is down-
loaded. Morpheus increases the download speed of large
files through the simultaneous transfer of content from
multiple sources (FastStream mechanism). Its encryp-
tion mechanisms protect privacy and transmissions, and
prevent unauthorized intrusions. Also, it allows content
providers to deploy third-party digital rights manage-
ment technology to protect the copyrights of their digital
content that is distributed through the network.

Kazaa is another example of a P2P file sharing system
that uses SuperNodes as local search hubs. These are
powerful nodes on fast connections that are generated
automatically. Peers connect to their local SuperNode to
upload information about the files they share, and to per-
form searches in the network. Kazaa uses an intelligent
download system to improve download speed and reli-
ability. The system automatically finds and downloads
files from the fastest connections, failed transfers are au-
tomatically resumed, and files are even downloaded
from several sources simultaneously to speed up the
download. When files are imported, the system automat-
ically extracts meta-data from the contents of the files
(such as ID3 tags for mp3 files). This makes for much
faster and more accurate searches.

5.4 Collaboration

Collaborative P2P applications aim to allow application-
level collaboration between users. The inherently ad-hoc
nature of P2P technology makes it a good fit for user-lev-
el collaborative applications. These applications range
from instant messaging and chat, to online games, to
shared applications that can be used in business, educa-
tional, and home environments. Unfortunately, a number
of technical challenges remain to be solved before pure
P2P collaborative implementations become viable.

Overview. Collaborative applications are generally
event-based. Peers form a group and begin a given task.

The group may include only two peers collaborating di-
rectly, or may be a larger group. When a change occurs
at one peer (e.g., that peer initiates sending a new chat
message), an event is generated and sent to the rest of the
group. At the application layer, each peer's interface is
updated accordingly.

Technical Challenges. There are a number of technical
challenges that make implementation of this type of sys-
tem difficult. Like other classes of P2P systems, location
of other peers is a challenge for collaborative systems.
Many systems, such as Magi, rely on centralized directo-
ries that list all peers who are online. To form a new
group, peers consult the directory and select the peers
they wish to involve. Other systems, like Microsoft's
NetMeeting, can require that peers identify one another
by IP address. This is much too restrictive, especially in
environments where groups are large.

Fault tolerance is another challenge for collaborative
systems. In shared applications, messages often must be
delivered reliably to ensure that all peers have the same
view of the information. In some cases, message order-
ing may be important. While many well-known group
communication techniques address these challenges in a
non-P2P environment, most P2P applications do not re-
quire such strict guarantees. The primary solution em-
ployed in P2P applications is to queue messages that
have been sent and not delivered (i.e., because a given
peer is down or offline). The messages can then be deliv-
ered to the offline peer when it comes back online.

Realtime constraints are perhaps the most challenging
aspect of collaborative implementations. Users are the
ultimate end points in a collaborative environment. As
such, any delay can be immediately perceived by the us-
er. Unfortunately, the bottleneck in this case is not the
P2P technology, but the underlying network. While
many collaborative applications may work well in a lo-
cal-area systems, wide-area latencies limit P2P applica-
tions just as they limit client-server applications.
Consider a gaming environment. The game DOOM is a
so-called First Person Shooter (FPS) game in which mul-
tiple players can collaborate or compete in a virtual envi-
ronment. DOOM uses a P2P structure in which each
player's machine sends updates of the state of the envi-
ronment (such as the player's movement) to each of the
other machines. Only when all updates have been re-
ceived does the game update the view. This was margin-
ally viable in local-area, small-scale games, but did not
scale to wide-area games. Long latencies and uneven
computing power at the various players machines made
this lock-step architecture unusable. All FPS games since
DOOM have used a more standard client-server architec-
ture for communication.

25

5.5 Platforms

Operating systems are becoming decreasingly relevant
as environments for applications. Middleware solutions,
such as Java Virtual Machines, or Web browsers and
servers are the dominant environment that is of interest
to users as well as to developers of applications. In that
regard, it is likely that future systems will increasingly
depend on some other sort of platform that will be a com-
mon denominator for users and services connected to the
Web or in an ad-hoc network. Examples of such environ-
ments include AOL and Yahoo, and .NET is striving to-
ward a similar goal.

As described in Section 3.1, platforms, even more so
than other P2P systems, have support for primary P2P
components: naming, discovery, communication, securi-
ty, and resource aggregation. They have an OS depen-
dency even though it is minimal. Most P2P systems are
either running on an open-source OS (Linux) or they are
based on Windows.

There are a number of candidates competing for future
P2P platform. .NET is the most ambitious one, going be-
yond P2P to encompass all service support on the client
and server side. JXTA is another attempt, taking a bot-
tom up and strong interoperability approach. Most other
systems also have some level of platform support, such
as Groove covering the enterprise domain and Magi,
covering the handheld devices domain. Section 6.7 and
Section 6.8 contain detailed descriptions of JXTA and
.NET respectively.

6 CASE STUDIES

In this section, we compare eight case studies of P2P sys-
tems. We selected systems in four different categories,
representing the spectrum of different P2P system cate-
gories, as well as public domain and proprietary systems
(see Table 5).

6.1 Avaki

Avaki provides a single virtual computer view of a het-
erogeneous network of computing resources. It is a clas-
sic example of meta-computing applied to networks
ranging from corporate compute and data grids to global
application grids of Internet scale.

History. Avaki began as Legion [Grimshaw et al. 1994,
Grimshaw et al. 1997], a research project initiated at the
University of Virginia in 1993. Passing through various
stages of development, and following the first showcase
of the Legion technology in 1997 at the Supercomputing
conference, the research project emerged as a commer-

cial venture called Applied MetaComputing [2000] in
1998. In mid 2001, it was re-launched as Avaki Corpora-
tion, which currently focuses on providing enterprise-
level distributed computing solutions.

Goals. The goal is to create one or more grids - the pur-
pose of which is to facilitate collaboration via the cre-
ation of virtual organizations and the sharing of
resources. Resources are as diverse as computational cy-
cles, data, storage, applications, and specialized devices.
Other goals include scalability, robust security, perfor-
mance management, and failure detection and recovery
features to radically simplify grid administration. There
is also a focus on integration with existing systems and
applications. Avaki is an integrated system, not a toolkit.

Design. Avaki is object-based. Every entity in the system
is an individually addressable object with a set of inter-
faces for interaction. This approach enables uniformity
in system design through inheritance and containment
through encapsulation. A lot of lessons learned from
Mentat [Grimshaw 1993], an object-oriented parallel
processing system, were applied to Avaki. High perfor-
mance, exploitation of heterogeneity, scalability, and
masking of complexity were key design criteria in the
development of Avaki. The middleware is structured as
a layered virtual machine as shown in Figure 16. The
stack has three main components.

• Core Services provide the basic functionality required
to map the system to a network of computing resourc-
es. The meta-data and the directory services enable lo-
cating files or computing resources.

• System Management Services allow the Avaki system
to monitor and control the efficiency of the meta-sys-
tem. The policy management service allows adminis-
trators to manage access control for local resources.

P2P system Developer Technology

Avaki Avaki
distributed computing

SETI@home public domain

Groove Groove Networks
collaboration

Magi Endeavors Technologies

FreeNet public domain
content distribution

Gnutella public domain

JXTA public domain
platform

.NET Microsoft

Table 5. Case Studies for Eight P2P systems.

26

• Application Services are built over the basic services.
They enable the construction of applications, such as
collaborative and high-performance computing.

Decentralization. Avaki naming and binding are de-
signed to support decentralization. Avaki objects interact
with each other in a P2P fashion. They communicate
with objects essentially on their own., rather than going
through intermediaries. The set of different objects that
interact over time may change very rapidly, communica-
tion pattern is highly dispersed [Grimshaw 2002].

Cost of ownership. A lot of effort has been made to
avoid rewriting applications and to use legacy applica-
tions, as well as to reduce the startup cost of using a Grid.
There is an initial cost to bring up Grid, which consists
of the administrative time to set it up (typically 20 min-
utes) and the additional cost to bring up applications.
There is a marginal complexity of adding a new node.
Restarting Grid is automatic. Adding a new organization
into a grid requires the manual addition of a local identity
into a global identity structure.

Scalability. Avaki is built as a layered virtual machine
with scalable, distributed control. It allows for multiple
administration domains, allowing system administrators
complete control over local resources and their access
policies. To make the file system scalable and to not im-
pose a single file system across all machines, Avaki takes
a federated file system approach and builds a unified file
system over existing ones.

Fault resilience. The scale of the Avaki network enables
high redundancy of hardware components. Legion trades
off fault tolerance support for higher performance. The
scope of the support is limited to stopping failures of
hardware components rather than software and Byzan-
tine faults or providing transactional stopping recovery.
However, there is a large degree of failure recovery and
failure resilience in both the data and computation grid.
In the event of internal failures during program execu-
tion, the user is notified and can decide on appropriate
steps. When a host goes down, Avaki dynamically recon-

figures the grid and automatically migrates failed jobs to
different locations.

Transparency. Avaki supports location, access, migra-
tion, failure, heterogeneity, and transparency. All objects
have a global name space and either end-point of a com-
munication link can move around, fail, restart, and re-
cover. Failures and migration take place at the system
level; applications are not aware of it [Grimshaw 2002].

Implementation and performance. Avaki gains signif-
icantly by the concurrent execution of applications. Ap-
plications submitted to the system are executed
concurrently on a pool of available computing resources.
Avaki came from the high-performance computing com-
munity in LANs and tried to keep its properties in
WANs, by caching aggressively at the edges of the net-
work. Avaki performance is fundamentally limited by
the network’s characteristics. Running Avaki over a
56Kb link is not recommended; T1 connection is the en-
try point communication link [Grimshaw 2002].

Security. Avaki has built-in security, which eliminates
the need for any other software-based security controls.
Its security is decentralized allowing individual adminis-
tration domains to control access to local resources. Au-
thentication by users occurs once during sign-in, and
Avaki manages all further authentication required to run
tasks over resources spread across multiple administra-
tion domains. Avaki emphasizes multi-organizational
support for industrial rather than consumer applications.
Security is policy-neutral, giving Avaki the ability to
form virtual organizations in the grid, and limiting appli-
cations only to a particular set of resources. Because or-
ganizations change frequently, Avaki was designed to
put a set of people to work together in a highly secure
way and to manage their privileges efficiently and quick-
ly. Companies want to interact with one another and ac-
cess each other’s files without giving remote accounts.
They want access that is controlled and auditable [Grim-
shaw 2002].

Interoperability. Avaki supports servers for the NFS 2
and NFS 3 protocols. The server maps the Avaki global
name space onto the local file system, enabling NFS cli-
ents to use data without knowing that there is a grid be-
hind it. This offers interoperability with a lot of operating
systems and applications. Another form of interoperabil-
ity is expressed through planned support for the Global
Grid Forum’s (GGF) Open Grid Service Architecture
(OGSA), which is similar to the Legion and Avaki model
[Grimshaw 2002].

Lessons learned. Handling heterogeneity and automatic
error detection and recovery are key to the success of

Figure 16: Avaki Architecture.

Job Scheduling, Distribution Distributed File System

Monitoring, Load Balancing Policy management

Metering, Accounting Failover + Recovery

Metadata, Discovery Event Notification

Distributed Directory Service

Security

Communication Protocol Adapters

System

Application

Core}
}
} Services

Management

Services

Services

27

systems of this scale. Masking failure in a performance-
effective way is a challenge. All this contributes to re-
ducing the activation effort, either the initial effort or af-
ter a failure, which is important for grid users. Data grids
are raising more interest among the enterprise users than
compute grids. They need to integrate data access across
a global organization, with smart caching and all data
mapped to the local file system. The same applies for re-
lational data bases. A lot of large-scale companies have
sites across the world, and there is more need for inter-
organizational data grids than for multi-organization
grids, across company boundaries. There are two reasons
why the Andrew File System (AFS) has not caught on in
data Grids. First, Kerberos authentication is required
across the whole data grid, which is cumbersome on an
organization by organization basis, and it imposes the
same trust model. Second, the whole grid would have to
support the AFS model, departing from deployed operat-
ing environments, such as NFS, Samba, hierarchical
storage management, or Avaki. In other words, a feder-
ating model is more needed than a unifying model for the
file system or authentication, reducing the cost of bring-
ing in the data grid [Grimshaw 2002].

Business model. Avaki is marketing its product to enter-
prises as a complete data and compute grid. However, it
faces competition from established HPC solution ven-
dors such as Platform Computing. Avaki currently has
customers in the domain of drug discovery.

Applications. In addition to enterprise solutions, Avaki
supports high-end computing power for problems in
high-performance computing. Applications that involve
parameter-space studies can benefit from Avaki’s high-
performance parallel execution characteristics. Exam-
ples include biochemical simulations; BLAST, a protein
and DNA sequence comparator; and CHARMM, a par-
allel MPI 3D program [Natarajan 2001].

6.2 SETI@home

SETI (Search for Extraterrestrial Intelligence) is a col-
lection of research projects aimed at discovering alien
civilizations. One of these projects, SETI@home analyz-
es radio emissions received from space and collected by
the giant Arecibo telescope, using the processing power
of millions of unused Internet PCs [Anderson 2002].

History. The SETI@home project was formed in 1995,
it began development in 1998, public launch in April
1999. The project has been widely accepted and created
a raw processing power of several dozens of TFlops from
more than three million Internet-connected computers.

Goals. The goal is to search for extraterrestrial radio
emissions. SETI@home is a scientific research project
aimed at building a huge virtual computer based on the
aggregation of the compute power offered from internet-
connected computers during their idle periods. Two im-
portant goals of SETI@home are to demonstrate the via-
bility of public-participation distributed scientific
computing, and to increase public knowledge and aware-
ness of SETI and radio astronomy [Anderson 2002].

Design. The project uses two major components: the
data server and the client. Clients exist as a screen saver
program (although stand-alone operation is available) for
several different platforms, such as Windows, Macin-
tosh, Linux, Solaris, and HP-UX (see Figure 17). Some
application-specific programming was needed for Mac
and Windows, but all other platforms share the same
code which uses POSIX and X11.

Decentralization: SETI@home distributes files (350KB
large) to its users, requiring a high-speed interconnect at
the server end. Currently 30Mb/s is sent 24h/day. For
reasons of simplicity, the original design was centralized.
Except for the computation itself, there was just one
server that was distributing data, and it turned out to be a
problem in terms of reliability and scalability. There
were long periods when there were problems with con-
necting to the main server because the University of Cal-
ifornia network connection was totally saturated.
SETI@home clients were not able to connect except in
the middle of the night. SETI@home users reverse engi-
neered the protocol between the SETI@home client and
server and invented proxy servers. One of them, SETI-
queue, acts as a buffer by obtaining the tasks from the
main server. Clients can be configured to interact with
the proxy server instead of the main server. Proxy servers
were able to connect during the middle of the night and
distribute during the day.

Figure 17: SETI@home Architecture. Adapted from [Sulli-
van et al. 1997].

radio telescope

SETI@home

data server

data conversion
and storage

.35MB every
day to each client

Internet

home

PC/Mac/
UNIX

PC/Mac/
UNIX

PC/Mac/
UNIX

.............

business school

28

Scalability. The SETI@home project relies on its server
to distribute jobs to each participating peer and to collect
results after processing is done, using one of the UC Ber-
keley 70 Mb/s connections. This turned out to be one of
the bottlenecks for scalability. One solution could be to
obtain another 100 Mb/s connection, but this is expen-
sive. Another approach is to distribute the bandwidth in
the same way they are distributing computation. SE-
TI@home could mail the data on magnetic tape or disks
to organizations willing to donate bandwidth. Then the
data could be distributed to the end users through the In-
ternet connections donated by the organization. Current-
ly, the SETI@home software architecture does not allow
this approach. The existing protocol assumes that the
data and control all go through the same server. SE-
TI@home is generalizing software so that the data topol-
ogy is arbitrary and the network bandwidth will be
spread across different connections [Anderson 2002].
There are also a lot of traditional scalability issues in
terms of the basic capacity of the servers. Million of
computers are running the program at any given time and
each of them can try to connect to the server at any time.
There is a heavy load that has increased exponentially
over time with the Moore's law, as well as linearly with
the increased number of users. As a result it was neces-
sary to constantly upgrade the server machines and the
database. Approximately half of the project’s man power
has gone into the system administration of increasing the
server capacity [Anderson 2002].

Anonymity. One of the important things to SETI@home
users is that they receive credit for what they do, which
is the opposite of anonymity. Their Web site has a lot of
information about users who have done the most work in
a given country or about teams who are competing
against each other. It makes SETI@home users unhappy
if their computer finishes a work unit but it does not show
up in their data base [Anderson 2002].

Cost of Ownership. SETI@home has reduced the cost
of ownership by a factor of 100. The commercial cost of
the computing power of SETI@home would be about
200 million dollars for purchasing 30 TFlops of comput-
ing power and not accounting for administration and
management. So far, the project has spent less than a mil-
lion dollars [Anderson 2002]. The savings are achieved
by exploiting a cost of ownership that already has been
paid: buying a computer, setting it up, administering it,
buying a network connection, etc.

Self-organization is not a factor in SETI@home be-
cause the computation has a very simple structure
[Anderson 2002].

Ad-hoc connectivity is also not a big problem for SE-
TI@home. The data/compute ratio is low: users only
need to be connected a couple of minutes a day to trans-
fer work units. Connectivity would be more of a problem
for computations that require more frequent communica-
tion. The problem of computers becoming available and
unavailable is taken care of through redundant computa-
tion. The main issue is computers that are disconnected
for several days and run out of work, which is not ad-
dressed by the original design of SETI@home. This is
improved by proxy servers that allow downloading/up-
loading of several work units at once.

Performance. SETI@home often had more computing
power than it can use. It became more popular than they
ever thought it would. Instead of 50,000 users they orig-
inally thought they would have, they had one million.
Therefore they didn't have enough data to distribute and
they would replicate computation eight or ten times in-
stead of three times. Because of this, the project was re-
vised to have more computation per unit data. This
benefits their research to have a more thorough search,
and it restores the balance between data and computing
power [Anderson 2002]. A tradeoff was made between
performance and maintainability in not addressing a va-
riety of different types of processors, even within the In-
tel architecture. Some processors have different
instruction sets or special instructions, e.g., for signal
processing. AMD also manufactures Intel-compatible
chips that have their own, completely separate instruc-
tions. A lot of users were eager to have a version of SE-
TI@home that used different architectural extensions to
process data faster. SETI@home didn't want to support
different versions of software that would have assembly
language for specific processors, making it difficult to
maintain or change. It was more important for SE-
TI@home to have a common source code, even if that
would mean that they would not go as fast as they could.

Security. There are two aspects of security in SE-
TI@home: protecting the system from users and protect-
ing users from the system. SETI@home users have
reverse engineered programs and beaten all of the secu-
rity mechanisms in SETI@home [Anderson 2002]. In
any system that gives users (virtual) payment or credit
that shows up on the Web site, there is a problem of ver-
ifying that the user actually did the work that is recorded.
The only remedy SETI@home developers have come up
with is the brute force solution of performing redundant
computations and comparing three results. In the other
direction, one of the big fears when SETI@home started
was that it could be used to distribute a virus. This has not
happened. The SETI@home client program does not lis-
ten for a connection, unlike a file serving program, which

29

needs to accept the incoming connection. The SE-
TI@home client only serves outgoing connections. The
SETI@home communication protocol cannot be used to
distribute executable code and that eliminates a big class
of security concerns. The remaining security concerns
had to do with the security of the servers, so that nobody
can hack into the servers from which people download
the client program. A lot of effort was invested in secur-
ing servers, such as writing scripts that constantly check
file checksums.

Transparency and usability. One of the original inter-
ests of designers of SETI@home was in making an OS
layer that can be used by other applications besides SE-
TI@home. This has not been achieved in initial imple-
mentations; SETI@home is a monolithic program that
includes the application and infrastructure. A new archi-
tecture is being developed that separates the two. This
will enable different projects to co-exist, using the same
software and sharing the same pool of participating us-
ers. For example, other projects might involve genetics
or physical simulations. Instead of users choosing from
one or the other project, they will be able to support both
and divide resources based on their preference.

Fault resilience. The failure of computers is addressed
by redundant computing. The SETI@home server sends
the work units until it gets three results. If some computer
becomes unavailable or takes a long time, the computa-
tion gets sent to another user. Because one unit may re-
quire as much as days to complete, it is necessary to
ensure seamless recovery when the user becomes active
(which stops the SETI@home client), as well as when
the machine is shut down. The client resilience relies on
a checkpointing mechanism, where the resumable
dataset is saved on the hard disk every ten minutes.

Interoperability has not been addressed until recently.
The new design that will enable multiple applications to
run using the same infrastructure.

Privacy is less of a factor for SETI@home than it is for
other kinds of computation, such as biotechnology,
where data might be proprietary, e.g., genome sequenc-
ing. For existing commercial hardware, there does not
seem to be a way to guarantee that data will not exist un-
encrypted. While data can be encrypted for storage appli-
cation, it cannot be encrypted during computation. In
SETI@home, there was a concern that over-zealous us-
ers would use the radio-telescope data for their own anal-
ysis, and announce a false discovery. Therefore, data is
transmitted and stored in a weakly encrypted form. This
would be easy to break, but it hasn't happened so far
[Anderson 2002].

Lessons learned. The major value of the SETI@home
project – apart from the scientific results – was to prove
that the technology can be applied to real situations. We
can envision how it could be used to better utilize the
processing power of unused computers and to identify
the peak periods of used computers. SETI@home devel-
opers were hoping for approximately 100,000 partici-
pants, but they surpassed this number within a week. So
far, there have been more than 3,000,000 contributors.
Security was not introduced until after it was noticed that
some users wanted to do inappropriate things. Most of
the problems were not caused by malicious users, but as
a consequence of competitiveness. For example, people
raised the frequency of their CPUs, making them more
exposed to failures [Wortheimer 2002].

Business model. SETI@home did not need to have a
business model because it was a university project. How-
ever, they still needed to get funding because SETI is not
supported by the government. In 1992, the government
decided not to fund it. This was an economical problem
for the SETI@home project, because it was required to
raise money from users and companies. This is one of the
reasons SETI@home is attempting to build a new infra-
structure that will be of interest to the government. It is
also being re-developed as an open source program.

6.3 Groove

Groove is a collaborative P2P system, however it can
also be considered a platform. Groove is mainly targeted
to Internet and intranet users, although it can also be used
on mobile devices, such as PDAs, mobile phones, and
tablets. It is intended to enable communication, content
sharing, and tools for joint activities [Leigh and Benyola
2001, Groove Networks 2000]. For example, all Groove
applications automatically inherit security without the
application developer needing to invoke security-related
calls, thus making the development of secure applica-
tions trivial [Tuvell 2002].

History. Groove was founded in 1997 by Ray Ozzie, the
developer of Lotus Notes. The first version of the prod-
uct was released in the beginning of 2001.

Goals. Groove’s main goal is to allow users to commu-
nicate directly with other users without relying on a serv-
er [Suthar and Ozzie 2000]. Other important goals
include security, asychronicity (intermittent connectivi-
ty), admin-free, and flexibility. Groove users are authen-
ticated, data is secured both on disk and on the wire, and
data confidentiality and integrity are enabled by secure
key technology. User data residing on the server is
opaque and private data is not shared with third parties.
Groove supports the Internet, intranets, and private net-

30

works, and allows users to transparently handle discon-
nection. Groove supports a number of reusable
components and a flexible platform for building collabo-
rative applications.

Applications. Groove is intended for communication,
collaboration, and content sharing.

• communication: voice over Internet, instant messag-
ing, chat, threaded discussions

• content sharing: shared files, images, and contacts

• collaboration: group calendaring, group drawing and
editing, and co-browsing

Groove presents itself to users or to agents representing
users in the form of shared spaces (see Figure 18).
Shared spaces offer users benefits, such as spontaneity –
users act without an administrator, security – shared
spaces act as virtual private networks, context – spaces
provide and maintain the persistent context for users,
synchronization – all spaces of the same user are syn-
chronized across all users devices, and granularity –
modified (delta) parts of documents are exchanged rather
than whole documents. Only the deltas of the changed
documents are being sent because of bandwidth issues.
The definition of a delta is application-specific, and not
always obvious. In the initial implementation of chat, a
delta per keystroke was sent, and in later implementa-
tions a delta per chat-message is used. In the initial im-
plementation of MS Word integration (co-editing), the
whole document was used for the delta but just “binary
diffs” in later implementations [Tuvell 2002]. Delta/syn-
chronization is used only within shared spaces and not in
non-shared-space modes of Groove communication,
such as instant messaging and voice chat.

Design. Groove is P2P by design. The Groove synchro-
nization layer is inserted between the application logic
and command execution layers (see Figure 19) [Groove
Networks 2001a]. This enables the command requests or

data to be stored locally or forwarded to the network, as
appropriate. Commands are transformed into XML ob-
jects, recorded, and sequenced, which enables them to be
played back and relayed in case of disconnection. Secu-
rity layers are executed before storing objects to disk or
sending them out to the network, preventing unautho-
rized access. Groove supports peer-based authentication
and end-to-end encryption. Groove supports system and
centralized services [Groove Networks 2001]. System
services include:

• security, such as automatic handling of public/private
key management, encryption, and authentication

• storage based on the XML object store, enabling dis-
connection from the network

• synchronization of the multiple local and remote repli-
cas of shared spaces to which users belong

• peer connection to support transparent administration,
such as IP addresses, bandwidth selection, and firewall
translators

Within a managed administrative domain, centralized
services, perform management of resources:

• licence and policy management which enables view-
ing all the devices using certain software as well as
managing the use of this software

• component management, to enable managing Groove
and the third party software/components on the fly
without requiring user interaction for upgrades

• relays and transparent cross-firewall interaction to
optimize the communication bandwidth and offline
work, while still enabling direct P2P communication

XML Object Store

Figure 18: Groove Layers. Adapted from Groove Product
Backgrounder White Paper, http://www.groove.net/pdf/back-
grounder-product.pdf.

XML Object Routing

Security

Tool Tool Tool Tool Tool

Shared Application Space

Storage Network

User Agent

Transceiver

Shared Application Space

User Interface

Application Logic

Cmds as XML Objs:

Cmd Execution

Data Storage

Data Modification

record, sequence,
playback

Store and Forward
Fanout, relay service

XML Object
Routing

to/from other
nodes

Figure 19: Groove Application Structure. Adapted from
www.groove.net/developers/presentations/architecture.exe.

security points

31

• usage reporting to track how shared spaces are used,
enabling administrators to optimize resource distribu-
tion while respecting user privacy

• enterprise management server (EMS) supports user
management by importing an LDAP database and
binding Groove identities via certificate authorities.

Security. Groove fully supports end-to-end crypto, re-
ducing the security problem to authentication. In early
versions, it only supported peer-to-peer authentication,
using out-of-band fingerprint-checking. In later versions,
PKI is introduced as an optional authentication mecha-
nism. The Groove PKI solution is implemented as a CA
co-resident on the Groove enterprise management serv-
er. Interoperability between Groove-PKI and third-party
PKIs (such as Entrust, etc.) is being developed. Groove
has a native support for access control, via an authoriza-
tion framework. This framework is integrated into stan-
dard tools shipped with Groove, and it is exposed to
application developers.

Anonymity. Groove was not designed to protect ano-
nymity. On contrary, Groove designers believe that
meaningful communication/collaboration cannot happen
unless users know who they are communicating with.
Nevertheless, Groove communicators do not have to au-
thenticate one another. An invitation to a Groove-space
can be “open”, i.e., anybody can accept the invitation
without knowing who the inviter is, and the inviter can
confirm the acceptance without knowing who the accep-
tor is). However, Groove does not obscure the underly-
ing network communications, so an attacker with a
network sniffer could track down the endpoints. They
have also explored the idea of an “anonymous identity”
per shared-space (implemented by a public private/pub-
lic key pair per shared-space), but so far it has not found
practical use [Tuvell 2002].

Ad Hoc Connection. Because all peers are not online at
any instant, Groove supports a Relay Server as a service
at groove.net as well as a separate product, which the
transceivers automatically use. The relay’s main purpose
is to enable intermittent connection to the network. The
groove.net hosts a directory-like service for users who
opt to register their contact info with Groove, but it is
also possible for two users to invite/accept/join a
Groove-space using email. Thus, any users who have
email-connectivity (i.e., everybody, presuming they
know one another's email address) automatically has
Groove-connectivity [Tuvell 2002].

Performance. Groove computes the speed of a user's
connection to the Internet, and if it is slow a single bulky
delta/message is sent to the Relay, where it will get
fanned-out, instead of sending multiple copies of the data

directly from the source peer to the various targets. In ad-
dition, sending deltas and binary diffs of the shared infor-
mation significantly improves performance of
collaborative applications.

Fault Resilience. Groove supports fault resilience
through interaction of transceivers as a part of their syn-
chronization protocol. Transceivers retain copies of all
deltas until they receive acknowledgement from all tar-
gets. Thus targets can realize when a delta has been lost,
and recover the necessary data.

Lessons learned. As Groove was maturing, the best fea-
tures of centralization and client/server were incorporat-
ed as necessary to meet the customer needs. Starting
from a P2P architecture enabled that, because if they had
started from a centralized or client/server base it would
be much harder to incorporate P2P features [Tuvell
2002].

Business model. Groove Networks licenses its infra-
structure platform to corporations and third-party inte-
grators [Rice and Mahon 2001]. They are also
investigating and outsourced services approach, by host-
ing a relay server farm and charging by quotas. Their
competitors are primarily other collaborative P2P sys-
tems, such as Magi. Some of the enablers for adoption of
Groove include elimination of the network administra-
tion costs, minimization of dependences on server infra-
structure, and availability.

6.4 Magi

Magi is a P2P infrastructure platform for building secure,
cross-platform, collaborative applications. It employes
Web-based standards such as HTTP, WebDAV, and
XML to enable communication among applications
within an enterprise network or over the Internet. Magi
Enterprise, their end product, builds over the infrastruc-
ture to link office and project teams so they can share
files, do instant messaging, and chat [Endeavors Technol-
ogies 2001].

History. Magi evolved from a research project headed
by Greg Bolcer at the University of California, Irvine.
His team was funded by grants from DARPA, and at the
time, it was believed to be the largest, non-Sun Java
project in the country. Endeavors Technology was
founded in 1998, and was later acquired by Tadpole
Technology. The first version of Magi, which is their
P2P infrastructure, was released in late 2000. This was
followed by their enterprise edition in 2001. In the begin-
ning Endeavors focused on mobile devices in consumer
space, but lately it has focused on enterprises.

32

Goals. The goal of Magi is to enable information sharing
and messaging on any device using popular Web-based
standards. The architectural framework runs on various
platforms including PDAs and Pocket PCs. It aims to
make development of XML and Java-based distributed
applications easier by providing event notification to any
device running an instance of Magi.

Design. The key components of the Magi framework in-
clude a micro-Apache HTTP server which provides a
link to every instance of Magi, a set of core services, and
a generic extensible interface. The modular architecture
of an Apache server allows easy reconfiguration and the
addition of interfaces only if they are required. The core
services include:

• Communication Service: messaging interface between
Magi services and the HTTP server

• Event Service: local modules register with the event
service to receive specific event notifications; also en-
ables communication among local modules

• Buddy Manager: maintains a list of active buddies and
their most recent communication endpoints

• Access Controller: allows restricted access to resourc-
es on a Magi peer

Pluggable service modules such as MagiChat, Magi-
DAV, and instant messaging, could be built over the core
infrastructure as shown in Figure 20. Each instance of
Magi acts as both a client as well as a server and hence
can participate in P2P communication with other Magi
servers. Magi supports the following Web protocols:
HTTP1.1; WebDAV, for remote authoring; and SWAP/
Wf-XML, for remote process monitoring and control.
The modules supporting these protocols can be loaded
when required to achieve interoperability with applica-
tions compliant with these protocols. These features re-
inforce Magi's primary design goal to achieve
interoperability with existing Web access standards.

Decentralization. Magi attempts to achieve a balance
between centralized management and decentralized con-
tent in enterprise environments. State and functionality is
centralized for ease of management, while there is a lot
of data that is decentralized by the nature of computer de-
ployment. In the enterprise world the IT is overburdened,
but it still needs to be in control. Magi gives IT ability to
revoke certificates and solve the permissions, but it
transfers the responsibility for the management of bud-
dies, group, and passwords to the end user. Magi sup-
ports different trust, relationships, IT policies, QoS,
social, and organization policies that surround intellectu-
al properties and the content. A lot of cross-organization
data sharing, collaboration and communication, distrib-
uted computing does not work unless all sites can agree
on the same peer or architectural platform. This is often
not possible unless participants are interoperable at all
levels. Magi provides a universal security and access to
decentralized nodes, but the peers are meant to be un-
equal.

Scalability. Magi’s scalability is somewhere between
centralized Web serving and email [Bolcer 2002]. If an
email is used for collaboration, it will require changes by
a number of people, resulting in more copies of the email
message. Magi bandwidth usage is better than email pro-
tocols and a little worse than Web protocols, because it
requires the round trip, but the scaling part is the same.
There are various Magi components, such as MDNS
(registration server that keeps track of dynamic IPs),
search server, connection broker (helps different people
behind two firewalls to connect), and a certificate server
(PKI server). Some of these components can be hosted
on one computer, however, to scale it up to an enterprise,
components need to be split on multiple servers. It is well
known how many users each of the components can sus-
tain. For example, one connection server is required per
approximately every 5,000 users. In an enterprise with
50,000 people, there is approximately 40% (20,000)
cross-firewall traffic, requiring approximately 4 connec-
tion servers. With the mid-range PC, with filters turned
off, Magi can support 400 connections per second and
several thousand users from that machine. Scalability is
impacted by doing search filtering so either commercial
search engines are plugged in or Magi light filters are
used which can filter up to 200-300 file sites.

Anonymity and Privacy. Magi does not deal with anon-
ymous users at all. All users are strongly authenticated.
Not even anonymous browser requests are permitted on
Magi. The audit trail is performed, such as which docu-
ments have been passed and who they came from. In
Magi enterprise there is neither anonymous reading nor
writing. That requirement comes from the enterprise cus-

Figure 20: Magi Architecture.

Plug-able

Core Magi Services:

Event Service

Micro Apache

Dynamic DNS +

Internet/Intranet

HTTP + DAV
requests and events

extension
modules

Certificate Authority

Communication +

HTTP Server

Services

Magi Instance
+ HTTP endpoint

Peer 2Peer 1

33

tomers. There are certificate pairs for every user and de-
vice. For example, a user’s work machine and laptop
have different certificate pairs, but they are both part of
the same user name space. All authors are tied to their
certificates. Users can not access network without a cer-
tificate. Unlocking certificates is achieved using pass-
words and using passport [Bolcer 2002]. Currently
enterprises can only be searched on portals and applica-
tion servers. Magi enables searching content of individ-
ual peers on desktops, laptops, and PDAs within intranet.
If all the content is indexed on these machines, no private
data or meta-data need to be available on the central
search server. With the support of connection brokers
Magi can index all devices even when they move inside
or outside firewalls and behind two or more firewalls.
Using buddies and group permissions, Magi filters the
search results and indexes all the private and semi-pri-
vate information that is on individual machines. Howev-
er, it will not return information to users who do not have
permission. For people on the buddy list search will re-
turn results on the shared folder of buddies, for people in
the same group, the search will return results from the
group folder.

Self-Organization. Every member of an organization
can have buddies and send invitations for them and ac-
cept. This way, the formal organization supported by IT
staff is extended to an informal one, governed by individ-
uals. Buddies and group members automatically get per-
missions to shared file areas for direct access, as well as
for searches, which generate results for those file that in-
dividual has permission to and no results for those files
that she has no permission to.

Cost of Ownership. The primary cost of ownership ben-
efits in Magi stem from the lower cost of management
and deployment, which are similar to traditional Web
services deployment but with less central management
cost and less deployment cost. Users are comfortable de-
ploying Magi manually and IT staff is comfortable to
control certificates and not necessarily entire software.

Ad-hoc Connectivity. Magi addresses ad-hoc VPNs
without having to set up firewall openings or name and
password permissions on each edge of a site [Bolcer
2002]. Users can form an ad-hoc connection on each
edge of the site, by forming an ad-hoc VPN using two
different connections. Magi also manages presence,
whether users are offline or online. Instant messaging
supports store and forward of short messages or files in a
P2P fashion. Group invitations are handled centrally, be-
cause it is possible that both the source and destination of
the invitation are offline, slowing down distribution of
group permissions. This is one instance of centralization,
introduced by design. The centralized server can also be

a shared buddy that is online all time. Another reason for
doing it centrally is because the IT staff wants the ability
to cancel group invitations when needed.

Performance. Magi addresses two performance issues:
individual desktop performance and enterprise-wide per-
formance. A minimum configuration desktop of
400MHz PC running an up-to-date Windows OS, runs
without performance constraints when 30-50 documents
are edited by a remote group at the same time. However,
Magi is optimized for less than that, because there are
typically 5 people working on a document. Because it is
based on Apache, it is possible to tune for specific re-
quirements. Magi distinguishes the bandwidth between
the cheap one (internal or intranet) and an expensive one
(external or extranet), which has to go through gateways
or proxy. The goal is to use cheap bandwidth as much as
possible and expensive bandwidth as little as possible.
Magi interposes network applications and does network
routing, e.g. for AOL instant messenger or for Outlook,
there is a local proxy sitting on the desktop. Instead of
having an AIM message going to the AOL AIM server
through a firewall, Magi can interpose this traffic and
send it directly. The same applies to mail messages.

Security. Magi supports everything that secure Web
server does. Magi supports simple PKI implementation,
as well as integration with certificates from VeriSign and
RSA. Typically, a key pair exists for every user/device
instance. All connections and all traffic go through SSL
(encrypted); all authentication takes place in a P2P fash-
ion. The second security level is at the buddy and group
level. The third is access level: if user has permissions to
perform the HTTP or WebDAV method on the individu-
al resource. There is a set of methods on individual peers
which are end-user configurable. Magi does not support
shared keys for group definitions. It crosses firewalls by
exporting network installations. IT has the ability to re-
voke keys both at the user and firewall level.

Transparency and Usability. In the resources folder
(shared folder), Magi provides location transparent in-
formation about resources. However, users can also
specify particular machine to store information on. Magi
uses the URL naming mechanism for resources, which
proved useful when machines change IP address or loca-
tions. URLs used for indexing search results do not break
when users move around. It is almost like a URN except
that it is not a naming token, but a fully qualified URL.

Fault Resilience. Magi has a hybrid model with tradi-
tional techniques, such as failover, round-robin and
proxies. If some central components go down there is a
graceful degradation for users. For example, there is a
failover for certificate authority (CA). Even if all CAs go

34

away, a user can authenticate other users, but it is not
possible to create new users. If MDNS goes down and
user with a dynamic IP, she can use a person with a static
IP to find a person with dynamic IP. As long as user
knows someone on static IP he can exchange credentials.
The only problem is if two peers use dynamic IPs, and
MDNS is down, they will not be able to find each other.
If connection machines go down, there is no visible ef-
fect except if too many go down in which case there is
some performance degradation. Magi also queues mes-
sages that cannot be delivered to buddies who are cur-
rently offline and enables delivery when the destination
buddy eventually comes online. Buddy crashes are not
detected, as there is no mechanism to check the liveliness
of each buddy. However, the core Magi interface can be
extended as desired to support any kind of fault resil-
ience mechanism among the buddies.

Interoperability. Magi emphasizes the use of existing
standards. This makes Magi a highly interoperable plat-
form, and its Web-based design makes its deployment on
a range of devices easy. Magi supports WebDAV and
any WebDAV enabled desktop tool can read/write con-
tent across the firewall. In addition a lot of tools are made
WebDAV compliant by giving an illusion to write to a
local file which is really a proxy for the real file across
the firewall and network. This is protocol-based interop-
erability.

Lessons learned. The most important lesson learned is
that enterprises are typically willing to let go of central-
ized control. Magi supports the hybrid model with the
right amount of central control and end user empower-
ment. This enables the same amount of IT control, but it
reduces the mundane, tedious things for end-users.
Search and network publishing are two biggest applica-
tion areas for Magi.

Implementation. The entire infrastructure is in Java and
the Web interface is through servlets. This makes Magi
as fast as the underlying virtual machine. Because each
Magi instance is able to both receive and send messages
over HTTP, a minimal Web server must be running. This
may not be the best solution for a Pocket PC or a hand-
held with limited memory resources. Magi uses Tomcat,
which supports modular loading of essential compo-
nents, coupled with independent service-oriented design
of the infrastructure to target constrained and embedded
devices. Magi's services are accessible through a Web-
based interface and is the access mechanism in their im-
plementations for the Compaq iPaq and the HP Jornada
pocket PCs.

Applications. Magi was designed primarily with the pa-
per-based workflow scenario in mind and is targeted at

any type of collaborative environment. It supports file
sharing and collaborative tools such as chat and messag-
ing. As a platform, it can be used to embed collaborative
processes into enterprise-wide applications and B2B
products. An SDK has also been released to ease the in-
tegration of Magi into applications.

6.5 FreeNet

Freenet is a P2P file-sharing system based on an initial
design by Ian Clarke [Clark 1999, Clark et al. 2001,
FreeNet 2001]. The primary mission of Freenet is to
make use of the system anonymous. That is, upon enter-
ing the system, a user should be able to make requests for
files without anyone being able to determine who is mak-
ing these requests. Likewise, if a user stores a file in the
system, it should be impossible to determine who placed
the file into the system. Finally, the operator of a FreeNet
node should have no knowledge of what data is stored on
the local disk. These forms of anonymity make it possi-
ble to provide storage and use the system with less con-
cern of being tracked down or potentially held liable.

History. The Freenet system was conceptualized by Ian
Clarke in 1999 while at the University of Edinburgh. In
his introduction to Freenet, he cites the following quota-
tion by Mike Godwin: “I worry about my child and the
Internet all the time even though she's too young to have
logged on yet. Here's what I worry about. I worry that 10
or 15 years from now, she will come to me and say “Dad-
dy, where were you when they took freedom of the press
away from the Internet”. Public development of the
Open Source Freenet reference implementation began in
early 2000.

Goals. The principle goal of Freenet is to provide an
anonymous method for storing and retrieving informa-
tion. Freenet permits no compromise on these goals.
However, within these bounds, Freenet also strives to be
as reliable, easy to use, and responsive as possible.

Design. One of the key design points of the Freenet sys-
tem is to remain completely decentralized. Therefore,
Freenet represents the purest form of P2P system.
Freenet's basic unit of storage is a file. Every node in the
Freenet network maintains a set of files locally up to the
maximum disk space allocated by the node operator.
When all disk space is consumed, files are replaced in ac-
cordance with a least recently used (LRU) replacement
strategy.

Each file in the Freenet system is identified by a key.
These are typically generated using the SHA-1 [1997]
hash function. A variety of mechanisms are used to gen-
erate the desired hashes, but typically a user starts by pro-

35

viding a short text description of the file. This description
is then hashed to generate a key pair. The public key be-
comes the file identifier. The private key is used to sign
the file to provide some form of file integrity check. Oth-
er schemes for generating keys can be used as well per-
mitting users to create hierarchical file structures or to
generate disjoint name spaces. The file's key is then
made available to users of the system by out-of-band
mechanisms such as a Web site. Because the key can be
computed from the description of the file, it is common
to publish only the description and not the actual key.

The only operations in the Freenet system are inserting
and searching for files. In either case, it is essential to
find the proper location for the file. In general, Freenet
nodes form a network in which they pass and forward
messages to find the location of an existing file or the
proper location to store a new file. The keys are used to
assist in the routing of these messages. Freenet attempts
to cluster files with similar keys on a single node. By
clustering, Freenet is able to optimize searches by creat-
ing routing tables. When a file is successfully located by
a search, the file's key is inserted into a local routing ta-
ble. When another search message is received, it is first
forwarded to the peer node with the most similar key in
the routing table. When a search is received by a node
that contains the desired file, it returns the entire file as a
successful result. This is done recursively until the file is
returned to the initial requester. As a side effect, the file
becomes replicated at each node in the search path. In
this way, popular files become highly replicated.

Inserts operate much the same as searches. First, a search
operation is performed on the file's key. If a file with that
key is found, it is returned to the inserter as a form of key
collision indication. When no existing file is found, the
file is propagated forward along the search path. This ac-
complishes both the replication of the file that occurs
during a search as well as preserving the integrity of the
routing tables by placing the new file in a cluster of files
with similar keys.

New nodes announce their presence in the network by
performing a search operation. This search basically ac-
complishes the function of announcing the new node to
other existing nodes. Prior to sending the message, the
node must first discover at least one other node in the net-
work to which it can connect. Freenet explicitly does not
help in this problem because doing so typically leads to
centralized solutions. User's are required to bootstrap
themselves into the network using out-of-band means for
finding at least one peer.

Scalability. The scalability of Freenet has been studied
by its authors using extensive simulation studies [Clarke

et. al. 2001]. Their studies support the hypothetical no-
tion that route lengths grow logarithmically with the
number of users. In their experiments, they start with a
network of 1000 nodes in a ring topology. As the exper-
iment runs, random keys are inserted and removed from
the network, and the path length to find a file reduces
from approximately 500 to less than ten. This is consis-
tent with the logarithmic curve expected.

Implementation and performance. Freenet is available
in an Open Source reference implementation. The proto-
col is also well defined allowing others to create their
own implementations. One side-effect of the focus on
anonymity in Freenet is the difficulty in observing its be-
havior. Obscured identities and probabilistic choices
make measurements difficult. For these reasons, no real
world performance studies seem to be available. Only
the simulation results described above can be used to
evaluate the system.

Lessons learned. The key lesson of Freenet is both the
importance and difficulty of maintaining anonymity. An-
onymity opens the door to freer discourse on the network
because users need not be concerned with the ramifica-
tions of their actions. Anonymity also runs contrary to
many intellectual property notions such as copyright.
The Freenet team argues that preserving freedom and
eliminating censorship are more important than intellec-
tual property concerns.

Business model. Freenet operates as a non-profit Open
Source project. There are as yet no commercial ventures
building on top of Freenet. The Freenet project does so-
licit donations to help fund continued development, but
does not appear to be dependent on these donations.

Applications. Freenet's only real application is as an in-
formation storage and retrieval system. The heavy use of
cryptography as well as anonymization of requests may
lead to other related uses. For example, it may be possi-
ble to use Freenet as a form of distributed backup system
with some guarantees that data can only be retrieved by
the owner of the data. However, Freenet only provides
probabilistic guarantees about the persistence of data, so
this likely would not make for a high-confidence back-up
solution.

6.6 Gnutella

Gnutella is a file sharing protocol. Applications that im-
plement the Gnutella protocol allow users to search for
and download files from other users connected to the In-
ternet.

History. Gnutella file sharing technology [Gnutella
2001] was introduced in March of 2000 by two employ-

36

ees of AOL’s Nullsoft division. Touted as an open-
source program with functionality similar to that of Nap-
ster [2001], the Gnutella servant program was taken of-
fline the following day because of a possible threat to
Warner Music and EMI. AOL was rumored to be in the
midst of merger talks with the record companies at that
time. However, the open-source program remained on-
line long enough for eager hackers to discover the Gnu-
tella protocol and produce a series of clones to
communicate using the Gnutella communication proto-
col. Soon after, versions of the original Gnutella servant
were communicating with Gnutella clones to search and
trade files over the Gnutella Network. FastTrack [2001]
is probably the most popular early Gnutella-based tech-
nology. Many popular peer-to-peer clients today, such as
Kazaa, Grokster [2001] and the older version of Mor-
pheus operate using the FastTrack technology.

Goals. The goal of Gnutella is to provide a purely distrib-
uted file sharing solution. Users can run software that im-
plements the Gnutella protocol to share files and search
for new files. The decentralized nature of Gnutella pro-
vides a level of anonymity for users, but also introduces
a degree of uncertainty.

Design. Gnutella is not a system or a piece of software.
Gnutella is the communication protocol used to search
for and share files among users. A user must first know
the IP address of another Gnutella node in the network.
This can be discovered by going to a well-known Web
site where a number of Gnutella users are posted. When
a user wishes to find a file, the user issues a query for the
file to the Gnutella users about which it knows. Those us-
ers may or may not respond with results, and will for-
ward the query request to any other Gnutella nodes they
know about. A query contains a Time-To-Live (TTL)
field and will be forwarded until the TTL has been
reached.

Scalability. While the Gnutella model has managed to
succeed thus far, in theory it does not scale well. The
number of queries and the number of potential responses
increases exponentially with each hop. For example, if
each node is connected to only two others and the TTL
of a query is 7 (the default for most Gnutella queries), the
number of queries sent will be 128 and the number of re-
sponses may be substantially more depending on the
popularity of the item.

To avoid broadcasting queries in the network, Limewire
has introduced the use of super-peers called ultrapeers.
In their scheme, hosts create query route tables by hash-
ing file keywords and regularly exchanging them with
their neighbors [Rohrs 2002]. In particular, leaf nodes
send query route table update messages to ultrapeers by

communicating a compressed bitvector of the hash val-
ues of every matching keyword for all files and meta-
data that they have. Ultrapeers never propagate these ta-
bles. In this scheme each ultrapeer can easily handle 100
leaf nodes and greatly reduce the bandwidth require-
ments. Currently they are extending it towards 500 and
1000 leaf nodes [Bildson 2002].

Fault resilience. The Gnutella protocol itself does not
provide a fault tolerance mechanism. The hope is that
enough nodes will be connected to the network at a given
time such that a query will propagate far enough to find
a result. However, the distributed nature of the protocol
does not guarantee this behavior. In fact, studies have
shown [Adar and Huberman 2000, Saroiu et al. 2002]
that only a small fraction of Gnutella users actually re-
main online long enough to respond to queries from oth-
er users. More robust software has begun to alleviate this
problem. Limewire, for example, has retry logic built-in
for files [Bildson 2002]. However no guaranteed solution
exists. The only real solution at this point is to rely on us-
ers to retry when their queries or downloads fail.

Implementation and performance. Since the first Gnu-
tella servant was posted by Nullsoft, a number of compa-
nies have implemented clone software and made efforts
to overcome many of the limitations not addressed by the
protocol. Among the most popular are Limewire [2001],
BearShare [2001], Morpheus [2001] and ToadNode
[2001]. Kotzen claims that while in late 2000 only 10%
of download attempts were successful, by March of 2001
the number grew to over 25% [Kotzen, 2001]. This was
mainly attributable to browser blocking. Web sites that
crawled the Gnutella network used to allow direct access
to Gnutella uploaders since uploads are purely HTTP re-
quests. These web users overloaded the Gnutella net-
work and when they were blocked (by detecting their
User-Agent), the network improved. Furthermore, the
number of Gnutella users has increased. According to
Redshift Research [2001], over 300,000 users were
logged on to the Gnutella network over a typical week-
end in March of 2002, a substantial increase from an av-
erage of only 19,000 simultaneous users in December
2001. While this represents an increase over previous
findings [Clip 2 Marketing 2000], it does not provide any
proof of the scalability or performance of the Gnutella
network for the targeted thousands or millions of nodes.

Business model. Gnutella is not a company or a piece of
software, but rather an open protocol. As such, there is no
Gnutella business model. Many of the companies devel-
oping Gnutella-compatible software are open-source or
offer free download. Additionally, some companies are
building software for the enterprise that offer content-
specific content sharing. Ultimately this will rise busi-

37

ness models similar to television with built-in advertis-
ing support, cable with subscription models and pay-per-
view models. Gnutella however is pioneering many de-
centralized techniques in peer-to-peer searching and
storage. This raises questions of how much control can
be exerted in a fully decentralized system.

Lessons learned. Perhaps the most important lesson is
that the true measure of success for a system is user ac-
ceptance. Gnutella is widely adopted and together with
SETI@Home, they are the most deployed peer-to-peer
systems. As a result, the Gnutella model has raised a
number of questions in the research and development
community. Well-known solutions to traditional com-
puter systems problems cannot be applied in a straight-
forward manner to Gnutella’s decentralized network.
Researchers are busily trying to apply distributed com-
puting and database problems to ad-hoc, unorganized,
decentralized networks of nodes. The benefit of a Gnu-
tella-style network is the use of an unbounded set of di-
verse resources. However, solutions often trade
reliability for the potential of discovering an otherwise
unavailable resource. Furthermore, having a pre-estab-
lished design is good in that there is interoperability but
the downside is that there is less upgrade flexibility. This
is particularly true in a multi-vendor environment.

Applications. The primary application for this technolo-
gy has been the sharing of music files. A second potential
application is chat [Kan 2002]. While this continues to be
the main motivating application for companies develop-
ing Gnutella-compatible software, Gnutella is more a
paradigm than a given application. A number of compa-
nies are developing visions of using the Gnutella proto-
col for enterprise software including project-
management-style applications as well as academic soft-
ware for classroom-based communication.

6.7 JXTA

The vision of the JXTA project is to provide an open, in-
novative collaboration platform that supports a wide
range of distributed computing applications and enables
them to run on any device connected on a network [Gong
2001]. JXTA provides core functionality in multiple lay-
ers, including basic mechanisms and concepts, higher
level services that expand the capabilities of the core, and
a wide range of applications that demonstrate the broad
applicability of the platform.

History. The JXTA project was unveiled by Sun on
April 25, 2001 [JXTA 2001]. Despite its recent introduc-
tion, JXTA has been quite popular. Statistics show that
on the week of 5/4/02, JXTA had over 400,000 down-
loads, close to 10,000 members, and 71 projects.

Goals. The goal of JXTA is to provide a “general-pur-
pose” network programming and computing infrastruc-
ture. Its goals are:

• Interoperability: enable inter-connected peers to easily
identify each other, participate in community-based
activities, and offer services to each other seamlessly
across different P2P systems and communities

• Platform independence: from programming languages
(such as C or Java), system platforms (such as Mi-
crosoft Windows and UNIX operating systems), and
networking platforms (such as TCP/IP or Bluetooth)

• Ubiquity: implemented on every device with a digital
heartbeat, including appliances, desktop computers,
and storage systems

Design. It is important to note that the JXTA project is
approaching the P2P space from the lower level as they
are proposing an entirely new infrastructure with no di-
rect relation to other, existing P2P systems (e.g., Gnutel-
la and Napster). For example, they have built their own
distributed search service, called JXTA search. There are
three core abstractions in JXTA: peers, groups, and
pipes. Peers are the first level objects in JXTA and they
can be organized in groups. Peer groups are the core of
JXTA's infrastructure. A peer group is essentially a par-
titioning of the world of peers for communication, secu-
rity, performance, “logical locality” and other reasons. A
single participant can be in multiple groups at one time.
JXTA provides core protocols for peer discovery, peer
group memberships, and peer monitoring. JXTA uses
asynchronous uni-directional communication channels,
called pipes, for sending and receiving messages. Pipes
represent a virtual port of the descriptor used for commu-
nication [Yeager 2002]. The description of peers, pipes,
peer groups, and rendezvous are published in XML for-
matted documents. For performance reasons the ex-
change of the XML documents is based on JXTA binary
messages which are payload-neutral.

Services. The JXTA project has defined core and option-
al services that run on the JXTA platform. Examples of
core services include authentication, discovery, and
management. To address the need for security, they have
implemented a cryptography toolkit that enables mes-
sage privacy, ensures authentication and integrity, and
permits transactions between peers that cannot be repu-
diated (see paragraph on Security below). Another core
service is the Content Manager Service (CMS) that al-
lows JXTA applications to share, retrieve, and transfer
content within a peer group. However, in the current ver-
sion of the CMS, there is no support for automatic prop-
agation of content requests; each peer sends content
requests directly to the other peers. Examples of optional

38

services are naming, routing, indexing, and searching.
For example, the JXTA distributed indexing service im-
plements a general-purpose, fully distributed index ser-
vice by using a distributed inverted index to map
keywords to a list of postings.

Applications. The JXTA Shell was the first application
developed that gives a command-line interface to the
core JXTA services, such as peer and group discovery
and messaging. Since then, the JXTA project has devel-
oped more applications that allow interactive access to
the JXTA platform. For example, the InstantP2P applica-
tion enhances the JXTA project with chat capabilities. It
includes functionality that enables users to chat one-on-
one, chat with a group, and share files. Another applica-
tion is JuxtaProse, which is a discussion application that
allows creating, viewing, and replying to HTML docu-
ments over JXTA’s content management system. Other
applications that the JXTA community is currently de-
signing include event notification and P2P email. Some
other applications developed by third parties include
real-time code editing and collaborative graphics design.

Decentralization. The original JXTA core was entirely
decentralized. There was no intention to use DNS,
LDAP, or any of other centralized name server, although
JXTA applications can use it. However, in order to do
long-term discovery there was a need for rendezvous
bulletin boards for publish/subscribe advertisements of
peers. These rendezvous points are the only centralized
aspect of JXTA. Rendezvous are much different than
DNS because registration is ad-hoc. A peer can arrive
and register. If it goes away, it disappears, there is no de-
pendency on other peers. Rendezvous is also used for
firewall/NAT traversal. Peers both inside and outside of
firewall-ed peer communities can discover one another
using the rendezvous mechanism. A rendezvous is cur-
rently a combination of a bulletin board, publish-sub-

scribe service, a router, a relay to do store and forward
message exchange, and a message propagation service
for group chat on multicast pipes. Any peer can be con-
figured as a rendezvous [Yeager 2002].

Scalability. The JXTA project has a layered architec-
ture, which consists of three building blocks: JXTA core
(for peer group management), JXTA services (such as
searching and indexing), and JXTA applications (e.g.,
JXTA Shell). This layered architecture enables JXTA to
easily incorporate new protocols and services to support
a growing number of users. JXTA attaches a unique ID
(generated by the users) with each peer in the group but
does not solve the global naming problem because it
does not guarantee uniqueness across the entire commu-
nity of millions of peers. Even if a peer has a unique ID
within its group there is no guarantee that its name is
unique across multiple groups. However, the probability
of collision is very small. The Universal Unique Identifi-
er is 64 bytes of which 32 are generated by a SHA-1
based pseudo random number generator. In addition,
JXTA does not prohibit the use of a name registry. An-
other potential scalability problem is of an implementa-
tion character. The Java threading model is not as
versatile as the Solaris POSIX threading model. This will
be addressed with a C implementation of JXTA. There
are no scalability limitation with respect to local clients.
For example, average TLS can transfer 1.5-2Mb/s in Ja-
va, with the handshake latency of 1-2 seconds. It is be-
lieved that there is no current bottleneck even if there are
no current targets [Yeager 2002]. There is an in-house
expertise with supporting up to 100,000 transactions ev-
ery couple of seconds for email support. Advertisements
in JXTA are similar to small emails; scalability is limited
by the number of threads that can be run on Solaris.

Anonymity. JXTA decouples semantics of naming from
mechanism. Anonymity can be built on top of JXTA as a
service and JXTA protocols do not prevent users from
doing so [Gong 2002]. This is a general JXTA design
principal: not to prevent users from providing anything
on top of JXTA. Every peer has a 64 bit identifier and a
name, but the name need not have anything to do with the
user. It is something that is readable, but others still may
not have any idea who the user is [Yeager 2002].

Self-Organization. JXTA is self-organized; JXTA users
are volunteering to deploy relays and rendezvous. The
cost of ownership depends on who is buying these ma-
chines. Rendezvous systems can come and go, but the
whole JXTA system is self-adaptive to these changes.
Upon bootstrap, the configuration specifies if the system
is a rendezvous or not, the peer name, the list of other
rendezvous systems, security, user name and password.

Security

Peer
Groups

Peer
Pipes

Peer
Monitoring

Infrastructure

JXTA Indexing Content

JXTA
Applications

Shell
InstantP2P

Figure 21: JXTA Architecture.

JXTA Core

Services Searching Manager

39

Fault resilience. In JXTA, fault resilience is built into
the discovery mechanism. Instances of three JXTA core
abstractions are advertised at rendezvous points: peers,
groups, and pipes. If they go away because of disconnec-
tion, reboot, or failures, the priorities deal with it. This
enable much simpler assumptions; it is up to application
developers to assert if they need more. However, for
presence detection they can use lower level protocols to
discover whether pipes are active. Traditional fault toler-
ance mechanisms and approaches (for example virtual
synchrony) would not be applicable in such a peer-to-
peer environment [Yeager 2002].

Security. JXTA supports distributed PKI and an imple-
mentation of transport layer security (TLS) with both cli-
ent and server authentication [Sun Microsystems 2002].
Most existing TLS are based on sockets. Because in
JXTA there are no sockets, but rather a virtual network,
the end communication points are identified with 64-bit
peer IDs. Virtual transport is a lower level communica-
tion mechanism for pipes (not UNIX pipes), which can
be open as secure pipe, supporting RSA 1024, 3DES,
SHA1 standards for encryption. The pipes are multi-
plexed through a same TLS communication, so there is
amortization of handshakes [Yeager 2002].

Transparency: Application programmers need only
know about pipes and obtain the list of pipes. Pipes are
like phone numbers (users need not be aware whether it
is wireless or physical, link) or are like virtual communi-
cation ports [Gong 2002].

Interoperability. Interoperability is one of the goals for
the C port of JXTA.1 A proof of protocol interoperability
is one of the goals for the completed C port of JXTA.
One can run applications written in any language with
common underlying JXTA protocols. Siemens has port-
ed JXTA to Java 1.1.8 for its personal Java PDA, and a
JXTA J2ME/MIDP implementation is also finished. It
has been demonstrated that all of these implementations
are protocol interoperable, and all data maintains its in-
tegrity from edge device to edge device. This means that
secure data that is encrypted at the source peer is decrypt-
ed at the ultimate destination peer.

Implementation and performance. The first version of
the JXTA core has currently been released, running on
four different platforms: Solaris, Linux, Microsoft Win-
dows, and a Siemens PDA. A prototype of the JXTA
Shell that gives a command-line interface to the core ser-
vices is also available. In addition to that, there have been

many independent efforts that build services and applica-
tions on top of JXTA.

Lessons learned. Users do not need all the centralized
support in order to get the service. For example, email
and instant messaging can be supported by a peer-to-peer
infrastructure. Today there exist superhighways, but no
small streets are there pipelining into highways. P2P is
like small streets. Local content aggregation is motivat-
ing force, a lot can be done locally [Yeager 2002].

Business model. JXTA has been released as open-source
code and has already attracted many developers to build
applications (e.g., event notification, file sharing, P2P
email) on top of it. Sun is also working with other P2P
companies that are committed to work with the JXTA
open-source model and contribute their P2P technology
to it.

6.8 .NET My Services

.NET My Services and .NET in a more global form do
not represent a P2P system in its traditional form, as do
the other P2P systems described in this paper. However,
.NET My Services encompass a lot of P2P architecture
and as such they are presented here. .NET also introduc-
es a new language called C#, development tools, a
framework, a foundation for Web services, and the un-
derlying operating systems. This paper addresses only
the .NET My Services part of it (the shaded part of
Figure 22).

History. Microsoft officially announced .NET for the
first time in June 2000. Shortly thereafter, certain com-
ponents were available, such as operating systems, parts
of the .NET framework and enterprise servers, and pass-
port. During 2001 and 2002, subsequent versions of op-
erating systems, frameworks, and some key services
have been introduced.

Goals. The goals of .NET My Services and .NET in the
broader context are to enable users to access Web servic-
es on the Internet from available devices, including desk-

1. Other goals include a) the proof of concept, b) some devices support
only C, and c) to prove that JXTA is not Java or Jini [Yeager 2002].

Figure 22: .NET Architecture.

.NET My Services and Applications

.NET .NET
Enterprise ServersFramework

Foundation for
Web Services

Windows OS

Visual Studio
.NET

libs, tools, APIs,

C#, (clr) common

Exchange and
SQL Servers

(ex-BackOffice or
DNA 2000)

authentication,
storage, mail,

instant msg-ing
(ex-Hailstorm)

adapted to .NET, e.g., hooks for Foundation Services

adapted to
in support of

IDE

.NET service
development

language run-time

VB.NET, VC++

e.g., address, profile, appSetting, inbox, documents, calendar,
favouriteWebSites, wallet, devices, services, lists, categories.

40

tops, laptops, and handhelds, using existing standards,
such as XML [Bray et al. 2000], UDDI [Ariba et al.
2000], SOAP [Box et al. 2000], and WSDL [Christensen
et al. 2001]. The goal of .NET is to shift focus from ap-
plications, platforms and, devices to user-focused data.
Therefore, security and privacy are one of the major
goals of .NET.

Design. The design of .NET is focused around de-com-
ponentization and decentralization of distributed servic-
es. For example, a user will locate the desired service
through the UDDI registry, then she will access service
through the Web Services provider location, and she will
be authenticated through a separate passport service (see
Figure 23). The .NET Services programming model is
built around Web standards and standard protocols, such
as SOAP, UDDI, and WSDL. The .NET System pro-
gramming model is built around a new common lan-
guage run-time, which is intended to complement the
Java run-time. Passport (see Security and Privacy below)
is an authentication method for .NET Services. Other
Web services can communicate with .NET My Services
without disclosing a user’s identity and personal infor-
mation.

Decentralization in .NET My Services is not as much
about logic, as it is about the data being managed [Lu-
covsky 2002]. For example in Calendar application, the
calendar data for an individual is the point of centraliza-
tion. Data is set up to be easily cacheable and it supports
multi-master replication. There is a notion of definitive
store, which can move from one back-end cluster to an-
other or from one data center to another. It is also possi-
ble that the edge PC is the definitive store in case of the
real distributed deployment. However, there is a concept
of one reference copy of the data and that's where the
Web services are going to be directed to. That is what is
centralized about the .NET model. It is not different than
UNIX home directory which could be on any file server
node but it is not replicated on any computing device or
disk that user currently uses.

Scalability is of ultimate importance for operating large
Web services of the magnitude of msn.com or ms.com.
Hotmail is one of the biggest services on the planet. The
traditional conservative multi-tier design is applied
where the network capacity is tuned by cluster, and the
architecture is highly partitioned. Each cluster has a
known bandwidth needs at both stages of the cluster, in-
bound at the front-end and between the front-end and the
data-tier. Approximately fifty front ends exist per one
back-end. There is steering into the protocol to directly
find a front end cluster from the service request, and once
there, to find the back end that is connected to it. It was a
conscious design decision to make the partitioning of the
system visible to the programmer. When user requests a
URL to send request to, the client application does the di-
rectory lookup to find specific cluster including the front
and back-end machines serving the particular user. This
is hotspot on MS Hotmail, for example. Cluster informa-
tion is stored in cookies so that it is not required to do the
lookup again. By partitioning the data along the type
boundaries (e.g. calendar data v. contacts in MS Out-
look), there is no need to partition lookups in the data-
base core or in the data access layers. Flat data
architectures could also have been done, but that would
limit scalability [Lucovsky 2002]. It is possible to run
.NET My Services on a laptop or on a rack that has 50
front and two back end multi terabyte data base ma-
chines.

Cost of ownership. On the client side it is low and on the
server it is a function of the complexity and size of the
user base. If a service is run for 100 people then it is no
different than a small server application. If a service is
running for a hundred million people, then cost of own-
ership is similar to that of traditional enterprise services.

Anonymity. There are no anonymous messages coming
into the system. Any message has to carry the authenti-
cated id of the requester of the service. There could be an
anonymous id, but the message has to carry an authenti-
cated id. One can visit a Web site and turn off the cookies
and not have anything identify you as coming from cer-
tain company. In .NET My Services this is not the case.

Security. The original security architecture was based on
Passport, an online authentication service. Passport is
used for accessing Web pages and services. Once au-
thenticated, the user can roam across passport-participat-
ing Web sites. Web sites in turn are required to
implement the single sign-on. Passport was released in
July 1999 [Microsoft 2001] and it had over 160 million
accounts by July 2001. Users of passport are required to
create an account that contains: passport unique identifi-
er (puid), user profile (email, phone, name, address),
credential (password and a four-digit key), and wallet

Figure 23: User Interaction with .NET Components.

UDDI
Registry

Web
Service

Authenti-

register
service

find
service use

service

user authentication cation
System

41

(optional, credit card numbers). Of the passport informa-
tion, only the puid is shared with participating Web sites;
wallet is used for purchases only. Passport protects the
privacy of users by playing the intermediary in user au-
thentication. Passport is not an exclusive authentication
service in .NET My Services. In case of federated dis-
tributed deployment of .NET My Services in an enter-
prise, the active directory or the authentication system in
that enterprise becomes the authenticator for users in that
domain. These services become peer to passport and tra-
ditional trust hierarchies are used. The deployment of
.NET My Services authentication system is similar to a
Key Distribution Center (KDC) of Kerberos [Kaufman
et al 1995]. There is a KDC of a base of users that are au-
thenticated and a set of services that are in the realm cov-
ered by that KDC. This is like an island of .NET My
Services that can run in the msn.com domain and an
equivalent island can run in corporate MS, corporate
Boeing and corporate HP. These islands can trust one an-
other trough traditional trust mechanisms and use Ker-
beros cross-realm service tickets [Lucovsky 2002].

Privacy. In .NET My Services, privacy is of high impor-
tance because of the potential access to personal data. No
data is shared unless there is explicit permission. Encryp-
tion of request/response on the wire prevents from
snooping and data is also encrypted in the data base in
case someone steals the disk drives.

Ad-hoc connectivity is difficult in general in any Web
service architecture. .NET My Services have been de-
signed to be highly cacheable and easy to resync with de-
finitive store once connectivity is restored. A user can
take her address book offline simply by making an inter-
action with the system when connectivity exists and
keeping the answer in an XML file. The API is modeled
like an XML DOM (Document Object Model). It is a re-
stricted DOM, with no navigation with X-path and with
the XML's proper name space, it is highly tailored to the
person who will take it offline. When user makes chang-
es to it, it is pushed into the .NET My Services which
take care of the conflict resolution.

Performance. .NET Services were designed to execute
at very-high scale (millions of users). Therefore, some
tradeoffs were made in performance in the multi-tier ar-
chitecture. The performance issues are addressed, by
adding capability on the data tier on the front end. Be-
cause Microsoft also owns application side and service,
it is possible to better understand the performance re-
quirements of the address book, hotmail, all messenger,
all calendar, all msn to serve the aggregate needs of 150
million users. On a lower scale, it is possible to estimate
the resources offered by a minimum base line cluster.

Fault resilience. Similar to scalability, further decompo-
nentization of .NET enables fewer single points of fail-
ure and more opportunities for failover among
components. The services in the context of a public data
center environment like an msn environment, have tradi-
tional fault resilience support, such as backbone provid-
ers, multiple network paths into the physical data center,
router hierarchy, multiple paths inside the data network,
redundant switching, redundant stateless load balancers
in the front-end. What ever applies to traditional Web
services applies to .NET My Services. The designers of
.NET My Services are not trying to hide the protocol be-
hind the object layer. The fact that the protocol has visi-
ble redirects means that the clients participates in the
fault recover. The protocol itself is stateless: there are no
handles or sessions and everything is either a request or
a request/response [Lucovsky 2002].

Transparency and usability. As already discussed in
the scalability section, .NET My Services design has
pushed information into the client side, similarly to tra-
ditional Web serving redirects. When there is a redirect
on the Web, it is transparent to the user. However, the
browser, or in the case of the layered stack a WinInet,
might get redirected. Similarly, DNS supports client and
server side resolution, however for scalability reasons
the client resolution is used. .NET My Services follow
the same basic pattern. It is transparent at one level of
API, but it is visible at the core protocol. This design
saves cycles on the back-end. It is less transparent at the
protocol level, but user non-transparency is hidden at the
software layer above the protocol.

Business model. .NET expands Microsoft’s strategy
from a license-based one to include a subscription-based
[Lucovsky 2002]. For example, an Exchange server can
be offered to large corporations through licenses, or
email service can be hosted as businesses. Both ap-
proaches are valid for any software, service, or for any
server that runs them. .NET is also one of the first times
that Microsoft embraced the Internet model in its entirety
including open-source standards, such as XML, SOAP,
WSDL, and UDDI, as well as MS submission of the C#
and Common Language Infrastructure to standards body
European Computer Manufacturers Association (EC-
MA).

Interoperability. Because they are based on Web ser-
vice protocols, .NET My Services are very interoperable.

Applications. The major advantage of .NET My Servic-
es compared to other solutions is the wealth of applica-
tions. Microsoft will port all of the Microsoft Office
applications to .NET, including the development tools.

42

Lessons learned. .NET and .NET Services are fairly
new to be able to derive any substantial lessons learned
without a deployed product. Nevertheless, some lessons
can already be derived. First, getting clarity on the de-
ployment is very important. MS was not explicit on the
business model from the very beginning: was it targeted
to a private individual, corporate running on its own, or
as a set of services. Next, the passport model raised con-
cerns about security problems, but it has also attracted a
huge number of users so far. Centralized authentication
through passport was eventually decentralized and feder-
ated, but this is not enough, it is required to go to the next
level and have a true edge-based authentication. Third, it
is the applications that attract users; .NET seems to fol-
low the same model as with MS DOS, where it is really
the applications, such as Excel and Word that are of in-
terest to users, not the infrastructure itself. Finally, going
further down the P2P rout is something that any scalable
service has to be able to run at a data center, in an enter-
prise, hosted for a small businesses, or at a home. A full
stack of capabilities is required to run on a full range [Lu-
covsky 2002].

6.9 Summary

This Section summarizes the case studies. Table 6 sum-
marizes the general characteristics of all of the case stud-
ies. The entries are self explanatory. P2P systems are
deployed on a variety of systems and support different
languages and standard protocols. They are largely tar-
geted for the Internet and some are targeted for mobile
settings.

Table 7 summarizes the case studies from the perspec-
tive of the characteristics described in Section 4. There
are various decentralization models, including pure
(FreeNet, Gnutella, JXTA), hybrid (Groove, Magi), mas-
ter-slave (SETI@home), and mixed (.NET). Few sys-

tems support a high degree of anonymity (FreeNet). A
number of them support some sort of self-organization
and most of them improve cost of ownership. Ad-hoc na-
ture is predominantly supported through the ability of the
peers to join and leave. Performance is improved prima-
rily in the distributed computing type of P2P systems
(Avaki, SETI@home). Standard security mechanisms
are supported, such as encryption, authentication, and
authorization, and some of them protect against denial of
service attacks (Freenet).

Transparency is primarily supported for the benefit of
disconnection and to hide communication/computation
heterogeneity (Groove, Avaki). Fault resilience is sup-
ported through checkpoint-restart mechanisms (Avaki,
SETI@home), queued messages (Groove, Magi), and in
general by the redundancy of components and the elimi-
nation of a single point of failure. Most systems interop-
erate by relying on standard communication stacks (IP)
and on Web standards (SOAP, XML, UDDI, WSDL, and
WebDAV). There are a only a couple of exceptions of in-
teroperability with other P2P systems, such as Avaki
with Sun’s Grid, and Magi with JXTA.

Table 8 summarizes the business aspect of the case stud-
ies. The surveyed case studies belong both to proprietary
(Groove, .NET) and open source systems (FreeNet, Gnu-
tella, JXTA), or they are offered as either (Avaki, Magi).
They support applications in their respective domains,
such as distributed computing, communication/collabo-
ration, and file sharing. P2P systems classified as plat-
forms (.NET My Services, JXT, and to a certain extent
Groove and Magi) support a wider base of applications.

The case studies we selected have a closed base of cus-
tomers with the exception of .NET My Services, which
relies on its earlier customer base. Also, they are compet-
itors within each class of P2P systems. These systems

P2P System

System Feature

System
Category Alternative Solution Platform

Languages and
Tools Distinctive Features Target Networks

Avaki
distributed
computing

single installation HPC and
supercomputers

Linux, Solaris,
MS Windows

OO, paral. lang. obj wrap., legacy
app x-comp. (Fortran, Ada, C)

dist. admin ctrl, heterogeneity,
secure access, high paral. exec

Internet, intranet

SETI@home distributed objects
all common

OS supported
closed source large scale Internet

Groove
collabora-

tion

Web-based
collaboration

MS Windows
JavaScript, VB, Perl, SOAP, C++,

XML
Synchronization, security,

self-updating, multi-identities
Internet, intranet

Magi publishing & authoring
dist file sys, chat, messaging

Windows, Linux,
Solaris, HPUX, Mac Java, XML, HTTP, WebDAV HTTP based, platform indep.

Internet,
Extraprise, ad-hoc

FreeNet content
distribution

anonymity: none. others cen-
tralized & single point of trust

any with Java Java implementation and APIs Preservation of anonymity Internet

Gnutella central servers Windows, Linux Java, C protocol Internet

JXTA
platform

client-server
Solaris, Linux, MS

Windows
Java, C, Perl open-source effort Internet

.NET /
My Services Web-based

Windows (backend)
any front-end

C#, VC++, JScript, VBScript, VB widespread MS apps base
Internet and

mobile

Table 6. Summary of Case Studies.

43

have different funding model: startups (Magi, Freenet,
government funded (SETI@home), public domain ef-
forts (Gnutella, JXTA), or privately owned companies
(.NET My Services).

Finally, they have different business models, ranging
from becoming an all-encompassing pervasive platform
of choice (.NET My Services), or becoming a collabora-
tive platform of choice (Groove, Magi), to selling more
computers and using ads on screen savers (SETI@home)
and becoming a P2P algorithm of choice.

7 LESSONS LEARNED

Peer-to-peer is a relatively new technology that is not yet
proven in the research community and in industry.
Therefore, it may be too early to make a firm statement
on some of the lessons learned. Nevertheless, we can
make some preliminary observations. Some of them are
intuitive, while others are not obvious. We divide the ob-
servations into P2P strengths and weaknesses, P2P non-

technical challenges, and implications on users, develop-
ers, and IT.

7.1 Strengths and Weaknesses

A comparison of P2P with its alternatives, centralized
and client-server systems, is summarized in Table 9. P2P
systems are designed with the goals of decentralization,
ad-hoc connectivity, reduced cost of ownership, and an-
onymity. P2P has more decentralized control and data
compared to alternatives; it supports systems whose
parts can come and go and can communicate in an ad-hoc
manner; the cost of ownership is distributed among the
peers; and the peers can be anonymous. Compared to
P2P, centralized systems are inherently centralized and
client-server systems have centralized points of control
and data at the servers.

It is harder to compare P2P with alternatives in terms of
scalability, performance, security, self-organization, and
fault-tolerance. It is our speculation that because of high-

P2P System

System Feature

Decentralizat
ion Scalability Anonymity Self-

Organization
Cost of

Ownership Ad-hoc Performa
nce Security Transparency Fault

Resilience Interoperability

Avaki distributed,
no central mgr

scale to 1000s
2.5-3k tested

not
permitted

restructures
around failure

low
join/leave com-
pute resources

speedups
encryp, authentica-
tion, adm. domains

location; HW/
SW heterog.

chckpt/restart
reliable msg

interoperates with
Sun Grid

SETI@home master-slave millions medium low very low
join/leave com-
pute resources

huge
speedups

proprietary high
timed
chckpt

IP?

Groove hybrid P2P
~25 shared spaces
Web scale globally

no support
but possible

high low
join/leave of col-

laborators
medium

shared-spaces
authn/authr, encryp

high
queued

messages
IP-based

Magi hybrid P2P Web scalability
not

permitted
buddies &

groups
low

join/leave of
group/buddies N/A

simple PKI & 3rd
party plugins

location &
naming

hybrid server
failover

JXTA, WebDAV,
HTTP, Java, XML

FreeNet pure P2P
theoret. scales ~

log(size_network)
high high low

join/leave of
peers

medium
f anonymity & pre-

venting DoS
high

No 1 point of
failure, replic.

low

Gnutella pure P2P thousands low high low
join/leave of

peers
low not addressed medium

resume
download

IP?

JXTA pure P2P
also addresses

embedded systems
N/A N/A low

join/leave of
peers

N/A
crypto algor.

distr. trust model
low low low

.NET /
My Services

mixed world-scale
not

permitted
medium low

join/leave of
peers

high
Kerberos-based

authen, encryp, sign
high replication

SOAP, XML,
UDDI, WSDL

Table 7. Comparison of Characteristics of Case Studies.

P2PSystem

System Feature

Revenue Model Supported
Applications Known Customers Competitors Funding Business Model

Avaki
product and
open-source

computation grid, shared
secure data access

none. evaluated at several life
sciences labs

Platform Computing
Globus

startup
solution for hi-tech companies

(distributed computing)

SETI@home Academic Closed Academic
cancer@home

fight_aids@home
government

sell more computers
ads on screen savers

Groove product & platform
purchasing, inventory,

auctions, etc.
Dell, Department of Defense,

GlaxoSmithKline and Veridian
Magi startup x-enterprise decentr. collab.

get bus. processes out of email

Magi product Search, shared files,
messaging, chat

Altavista
Groove, eRooms,

XDegrees
funding through reve-

nues from other company
enterprise sales (end-user prod-

uct & embedded with apps)

FreeNet open-source file sharing public N/A startup enterprise sales

Gnutella open-source file sharing public N/A public domain algorithm of choice for P2P

JXTA open-source
proprietary extensions

file sharing, messaging,
event notific., email

Many P2P systems ported to
JXTA

.NET/My Services
public domain, supported

by Sun Microsystems
de-facto common P2P platform

.NET /

.NET My Services
proprietary & open-

source standards
MIcrosoft Office and

more
large base of MS

customers
AOL, Sun J2EE/JXTA,

Ximian MONO
MS internally de-facto pervasive platform

Table 8. Business Comparison of Case Studies.

44

er decentralization P2P can better satisfy these require-
ments as well. P2P has the potential to be more scalable
than centralized and client-server solutions. However,
P2P systems are highly dependent on the underlying to-
pology and the types of applications. For example, main-
frame computers are still competitive for transaction-
based computing because they are optimized for this type
of applications. On the other hand, P2P system are very
suitable for large number of computers on the Internet,
for mobile wireless users, or for device sensor networks.
A similar reasoning applies to performance and fault-re-
silience. Individually, centralized systems have highly
optimized performance and fault-tolerance, followed by
client-server systems, and only then by P2P systems. The
opposite is true for aggregate systems where P2P has
higher aggregate performance and fault resilience by
avoiding the need to interact with servers and having
fewer points of failure.

It is unclear whether any of the systems has a clear ad-
vantage in self-organization and transparency. There has
been long-standing work in improving these characteris-
tics in both centralized systems and client-server sys-
tems. Self-organization is especially critical in Internet
Data Centers, and mainframe computers also implement

various forms of adaptation. Transparency has been the
focus of client-server systems, in particular location
transparency. While also a goal of P2P, transparency has
not been sufficiently developed in P2P systems. Many
actions require user intervention, such as connecting to a
specific network of P2P systems, providing knowledge
about the files and users, and understanding the failure
model.

Finally, we believe that in two regards P2P lags behind
its alternatives. Inherently, P2P systems expose more se-
curity threats than centralized and client-server models.
Because of the nature of peer-to-peer interaction, suffi-
cient guarantees or additional trust has to be established
among the peers. Interoperability is matter of investment
and as development proceeds more interoperability may
evolve. At the time of writing, client-server systems sup-
port the most interoperability.

7.2 Non-Technical Challenges

In addition to all of the technical motivations and diffi-
culties with developing P2P systems, there are also non-
technical challenges to the success of P2P. In spite of ex-
cellent technology, if these challenges are not overcome,
P2P will likely remain an approach used only in small
niches or by specific communities.

The chief challenge of P2P systems is acceptance and
use. Because peers rely on one another to provide ser-
vice, it is essential that numerous peers be available for
the service to be useful. By comparison, centralized or
client-server environments are potentially useful as long
as the service provider keeps the service running. This is
not the case in P2P systems. If the peers abandon the sys-
tem, there are no services available to anyone.

P2P systems live and die on their network effects, which
draw in more and more users. The value of network ef-
fects was informally specified by Metcalfe’s Law, which
states that “the utility of a network grows with the square
of the number of users.” While we cannot truly quantify
utility to prove the law, it resonates clearly with the idea
that more users make a system more useful.

Studies have also shown that all users are not alike, and
that some users can actually damage a system. Adar and
Huberman [2000] showed that in the Gnutella system,
many users download files, but few actual provide files.
Further, those with poor resources, such as bandwidth,
can actually slow the network down by becoming bottle-
necks for the system as a whole. This situation has been
likened to the tragedy of the commons where poorly be-
having users of a free, shared resource make the resource
unusable by all.

System/App
Requirements

Type of System

Centralized Client-Server Peer-to-Peer

decentralization low (none) high very high

ad-hoc connectivity no medium high

cost of ownership very high high low

anonymity low (none) medium very high

scalability low high high

performance
individual high

medium
individual low

aggregate low aggregate high

fault resilience
individual high

medium
individual low

aggregate low aggregate high

self-organization medium medium medium

transparency low medium medium

security very high high low

interoperability standardized standardized in progress

Table 9. Comparison of Solutions. Darker shading represents
inherent capabilities or potential. Actual implementation and
user requirements determine level of achieved capability. For
example, anonymity is typically not a user requirement in
enterprises, even if potential for supporting it is high. Similarly,
security requirements and implementation can be very high in
enterprises even if they are low compared to centralized
solutions.

45

Solutions to this problem revolve around building an
economy around the use of the shared resource. One ex-
ample of this is MojoNation [2001]. In MojoNation, us-
ers accumulate a form of currency called “mojo” by
providing service to others. In the MojoNation scheme,
this currency would be redeemable for other services or
potentially from real-world vendors in the form of gift
certificates or related benefits. However, implementing a
MojoNation type scheme requires accounting to be per-
formed, and this can limit anonymity and other potential
benefits of P2P systems.

Related to acceptance and use is the danger of fragmen-
tation of the user base. Typically, individuals are only
going to participate in one or a very few different P2P
systems because they simply don't have the resources to
support multiple systems at the same time. Because of
this, as each new system is introduced it fragments the
user base and can potentially damage the value of all P2P
systems. Consider the success of Napster, which was ar-
guably not the most technically sound P2P system devel-
oped, but was the first to gather a large user base.
Therefore, until it was forcibly shutdown, it thrived be-
cause the network effects continued to draw more and
more users.

Since Napster’s demise, a number of music sharing sys-
tems, such as KaZaa, have been developed and are both
free and technically sound. However, neither has yet be-
come the one truly dominant system, so neither has be-
come as truly useful as Napster was in its prime.

Instant messaging faces a similar difficulty. While there
are numerous IM systems, each with a significant user
base, the overall utility of IM is limited because of frag-
mentation. Typically, to communicate with everyone a
user wishes to reach, the user must maintain accounts
and run clients from many IM systems at the same time.
Interoperability, as discussed in Section 4.11, seems to
be the only solution to this problem.

While P2P systems rely on scale for success, scale is also
a significant challenge. In centralized systems, problems
related to scale are relatively well understood and solu-
tions are pretty well known. In the worst case, bigger,
faster computing platforms are an option for improving
scale. Decentralized P2P systems more often require al-
gorithmic solutions to problems of scale. There is no cen-
tral place to simply throw more computing resources.
These distributed algorithms tend to be some of the most
difficult to develop because they require decisions to be
made at each local peer, usually with little global knowl-
edge.

A final challenge involves the release of control. In cen-
tralized systems, the operator of the system has some
control of the system. For example, an operator can mon-
itor each transaction and potentially determine who initi-
ated the transaction and how long it took. In a
decentralized system, no such monitoring is possible.
This scares many providers of traditional services so they
resist P2P schemes. Certainly, the release of control can
be seen as part of the reason for the Recording Industry
Association of America’s (RIAA) lawsuit against Nap-
ster. Napster provides an alternative method for music
distribution. While copyright, payment, and fair-use is-
sues are certainly at the center of the case, embracing a
P2P approach to distribution, such as Napster, also im-
plies a release of control of the distribution channel. This
may explain why the RIAA and Napster have not been
able to reach an agreement.

7.3 Implications for Users, Developers, and IT

P2P is not a solution for every future system and applica-
tion. As we have seen in the previous two subsections, it
has both strengths and weaknesses. In this section, we
evaluate the implications that P2P has for users, develop-
ers, and IT departments. In Table 10, we compare P2P
with its alternatives. P2P has the following implications
for the users of P2P systems and applications: pervasive-
ness, complexity of use, state of the art, and trust and rep-
utation.

Target Criteria
Type of System

Centralized Client-Server P2P

User

Pervasiveness low medium high

State-of-the-art low high medium

Complexity high low medium

Trust &
Reputation

high medium low

Developer

Complexity high straightforward
typical - no

atypical - yes

Sustainability low high medium

Tools medium
(proprietary)

high
(standardized)

low
(few tools)

Compatibility medium high low

IT

Accountability high medium low

Being in control high (fully) medium low

Manageability medium high low

Standards medium
(proprietary)

high
low

(inexistent)

Table 10. Comparison of Solutions. Darker shading represents
inherent capabilities and potential.

46

Pervasiveness is becoming more and more important.
While it may not be possible to access traditional servic-
es at any point on Earth at any time, P2P offers opportu-
nities in this regard by relying on peers to provide
services when there is no other infrastructure or means of
access available. For example, cellular connectivity may
not be available to the server, but a peer can offer the ser-
vice locally.

Traditional centralized solutions have complex support
compared to client-server solutions. P2P solutions are
not as simple or as well-understood as the client-server
model, yet wide deployment and use of Napster, Gnutel-
la-based solutions, and other startups offers potential in
this regard.

Currently, the client-server model represents the state of
the art, but there is a lot of ongoing development in P2P
research – second generation P2P systems (CAN, Pastry,
Chord, Tapestry, etc.); open-source – JXTA; proprietary
systems – .NET; and standards – P2PWG.

From the user perspective, P2P is probably weakest in
the sense trust and reputation. Owners want to have trust
in the service they are using, so they will use only repu-
table sites unless price is the main objective or the ser-
vice is free. Centralized systems and the client-server
model have traditionally built up trust and reputation,
and this is a concern for users of P2P.

Developers are also concerned with complexity, as well
as with the sustainability of solutions, with the availabil-
ity of the tools, and the compatibility of the systems. In
this comparison, the client-server dominate over the oth-
er solutions.

Client-server systems are well-understood and docu-
mented for developers. P2P systems offer promise in
simple cases, such as document exchange, but for more
complex requirements, such as collaborative applica-
tions, they require more complex algorithms and under-
standing. It is a similar case of sustainability. In the long
term, centralized solutions may not be as sustainable as
peer-to-peer solutions, but the client-server model will
continue to be supported. Finally, the weakest aspect of
P2P is the lack of tools and compatibility across various
P2P systems.

P2P has the following implications for IT: accountabili-
ty, being in control, manageability, and standards. The
first three are very closely tied. Accountability is empha-
sized in centralized systems where access is monitored
through logins, accounts, and the logging of activities.
Accountability is more difficult to achieve in client-serv-
er systems, because of interactions with multiple clients.
It is weakest in P2P systems, because of equal rights and

functionality among the peers. Similar reasoning applies
for being in control. In centralized and client-server sys-
tems, control is exercised at one or more well-defined
points, whereas it is harder to achieve in P2P systems,
where control is entirely distributed.

A similar situation exists for manageability. There are a
lot of tools for the management of client-server systems,
somewhat fewer for centralized systems, and fewest for
P2P. Similar applies for standards. Most standards have
been developed for client-server systems and very few
for P2P systems.

While Table 9, compares the potential of P2P versus its
alternatives in terms of the characteristics, Table 10 sum-
marizes the existing implications of P2P on users, devel-
opers, and IT. In summary, there is a lot of potential for
P2P, but it has not yet been realized.

8 SUMMARY AND FUTURE WORK

In this paper, we surveyed the field of P2P systems. We
defined the field through terminology, architectures,
goals, components, and challenges. We also introduced
taxonomies for P2P systems, applications, and markets.
Based on this information, we summarized P2P system
characteristics. Then, we surveyed different P2P system
categories, as well as P2P markets. Out of systems pre-
sented in Section 5, we selected eight case studies and
described them in more detail. We also compared them
based on the characteristics we introduced in Section 4.
Based on this information, we derived some lessons
about P2P applications and systems.

In the rest of this section, we revisit what P2P is, we ex-
plain why we think that P2P is an important technology,
and finally we present the outlook for the P2P future.

8.1 Final Thoughts on What P2P Is

One of the most contentious aspects in writing this paper
was to define what P2P is and what it is not. Even after
completing this effort, we do not feel compelled to offer
a concise definition and a recipe of what P2P is and what
it is not. A simple answer is that P2P is many things to
many people and it is not possible to come up with a sim-
plified answer. P2P is a mind set, a model, an implemen-
tation choice, and property of a system or an
environment.

• A mind set. As a mind set, P2P is a system and/or ap-
plication that either (1) takes advantage of resources at
the edge of the system or (2) supports direct interaction
among its users. Such a system and/or application re-
mains P2P regardless of its model or implementation.
Examples include SETI@home, which is considered

47

to have a client-server model, but displays the first
mind set property, and Slashdot [2002], which enables
the second mind set property, but really has a central-
ized implementation.

• A model. A system and/or application supporting the
model presented in Figure 1 is P2P. In its purest form,
P2P is represented by Gnutella, Freenet, and Groove.
According to this, SETI@home does not have a P2P
model, whereas Napster has a hybrid model.

• An implementation choice. P2P systems and applica-
tions can be implemented in a P2P way, such as JXTA
or Magi. However, a non-P2P application can also be
implemented in a P2P way. For example, application-
layer multicast can have a P2P implementation, and
parts of the ORBs or DNS servers are also implement-
ed in a P2P way.

• A property of a system or an environment. .NET as
well as environments, such as small device sensor net-
works, may require P2P implementation solutions
while not necessarily supporting a P2P application.
P2P solutions may be required for scalability, perfor-
mance, or simply because of the lack of any kind of in-
frastructure, making P2P the only way to
communicate. This is similar to looking at P2P as an
implementation choice, however in this case P2P is the
forced implementation choice.

8.2 Why We Think P2P is Important

As P2P becomes more mature, its future infrastructures
will improve. There will be increased interoperability,
more connections to the (Internet) world, and more ro-
bust software and hardware. Nevertheless, some inherent
problems will remain. P2P will remain an important ap-
proach for the following reasons.

• Scalability will always be a problem at certain levels
(network, system, and application), especially with
global connectivity, much of it wireless. It will be hard
to predict and guarantee all service-level agreements.
P2P can contribute to each area.

• Certain parts of the world will not be covered by (suf-
ficient) connectivity, requiring ad-hoc, decentralized
groups to be formed. P2P is a well-suited alternative
when there is a lack of infrastructure.

• Certain configurations of systems and applications
will inherently be P2P and will lend themselves to P2P
solutions.

8.3 P2P in the Future

The authors of this paper believe that there are at least
three ways in which P2P may have impact in the future:

• P2P algorithms probably have the biggest chance of
making impact. As the world becomes increasingly
decentralized and connected, there will be a growing
need for P2P algorithms to overcome the scalability,
anonymity, and connectivity problems.

• P2P applications are the next most likely to succeed
in the future. Examples, such as Napster are a convinc-
ing proof of such a possibility.

• P2P platforms are the third possible scenario for P2P.
Platforms such as JXTA may be widely adopted, in
which case many other P2P systems can also gain wide
adoption.

8.4 Summary

We believe that P2P is an important technology that has
already found its way into existing products and research
projects. It will remain an important solution to certain
inherent problems in distributed systems. P2P is not a so-
lution to every problem in the future of computing. Al-
ternatives to P2P are traditional technologies, such as
centralized systems and the client-server model. Systems
and applications do not necessarily have to be monolith-
ic, they can participate in different degrees in the central-
ized/client-server/P2P paradigms. P2P will continue to
be a strong alternative for scalability, anonymity, and
fault resilience requirements. P2P algorithms, applica-
tions, and platforms have an opportunity for deployment
in the future. From the market perspective, cost of own-
ership may be the driving factor for P2P. The strong pres-
ence of P2P products indicates that P2P is not only an
interesting research technology but also a promising
product base.

ACKNOWLEDGMENTS

The developers of eight case studies spent the time with
us in detailed analysis of their systems. We are indebted
to David Anderson, Greg Bolcer, Andrew Grimshaw, Li
Gong, Mark Lucovsky, Jack Ozzie, Walt Tuvell, Dan
Wortheimer, and Bill Yeager. We are also very thankful
to Fabio Casati, Denis Chalon, Fred Douglis, Ira Green-
berg, Martin Griss, Tim Kindberg, Alan Karp, Raj Ku-
mar, Mark Lillibridge, Alan Messer, Jeff Morgan,
Chandrakant Patel, Todd Poynor, Steve Richardson,
Stéphanie Riché, Sumit Roy, Jim Rowson, Yasushi Sai-
to, Patrick Scaglia, Ming-Chien Shan, and Zheng Zhang
for reviewing various versions of this paper. Their com-
ments significantly improved the content and presenta-
tion.

REFERENCES

Adamic, L. The Small World Web. 2000. Technical Report,
Xerox Palo Alto Research Center.

Adar, E. and Huberman, B. 2000. Free Riding on Gnutella.

48

First Monday, vol 5, no 10 (October). (see also www.first-
monday.dk/issues/issue5_10/adar.)

Akamai 2001. www.akamai.com.

Albitz, P, and Liu. C. 1995. DNS and BIND. O’Reilly and As-
sociates.

Anderson, D., 2002. Personal Communication.

Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., Werthimer,
D. 2002. SETI@home: An Experiment in Public-Resource
Computing. To appear in CACM, November 2002.

AOL 2001. www.aol.com.

Applied MetaComputing. 2000. Legion - An Integrated Archi-
tecture for Secure Resource Sharing. Applied Meta Com-
puting Peer-to-Peer Architectural Proposal.

Ariba, IBM, and Microsoft. 2000. UDDI Technical White Pa-
per, available at www.uddi.org, September 2000.

Avaki Corporation. 2001. Avaki 2.0 Concepts and Architec-
ture. White paper. www.avaki.com/papers/
AVAKI_concepts_architecture.pdf.

BearShare 2001. www.bearshare.com.

Ball, T. and Rajamani, S. K. (2001) Automatically validating
temporal safety properties of interfaces. In the Proceedings
of the International SPIN Workshop on Model Checking of
Software, pp. 333-344, May 2001.

Barak, A. and Litman, A. 1985. MOS: a Multicomputer Dis-
tributed Operating System. Software - Practice and Expe-
rience, 15(8):725–737. August.

Barak, A. and Wheeler, R. 1989. MOSIX: An Integrated Mul-
tiprocessor UNIX. Proceedings of the Winter 1989 US-
ENIX Conference, pages 101–112. February.

Barkai, D., 2001. Peer-to-Peer Computing, Technologies for
Sharing and Collaborating on the Net. Intel Corporation.

Becker D.J., Sterling T., Savarese D., Dorband J.E., Ranawak
U.A., Packer C.V. 1995. “Beowulf: A Parallel Workstation
for Scientific Computation”, Proceedings of ICPP.

Berners-Lee T. Fielding, R., Masinter, L. 1998. Uniform Re-
source Identifiers (URI): Generic Syntax. IETF Request for
Comments. August 1998

Bernstein, P. A. 1996. Middleware: A Model for Distributed
System Services. CACM, 39(2):86–98.

Bildson G. 2002. Personal Communication.

Bolcer, G. 2002. Personal communication.

Bolcer, G., et al. 2000. Peer-to-Peer Architectures and the Magi
Open Source Infrastructure. Endeavors technologies White
Paper.

Bolcer, G. 2001. Magi: An Architecture for Mobile and Dis-
connected Workflow. White paper (www.endeavors.com)

Bolosky, W., Douceur, J., Ely, D., and Theimer, M. 2000. Fea-
sibility of a Serverless Distributed File System Deployed
on an Existing Set of Desktop PCs. Proceedings of SIG-
METRICS, Santa Clara, CA, USA, June, 2000.

Box, D. Ehnebuske, D., Kakivaya, G., Layman, A. Mendel-
sohn, N., Nielsen, H.F., Thatte, S., Winer. D. 2000. Simple
Object Access Protocol (SOAP) 1.1. W3C Note 08 May
2000.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. (Edi-
tors). 2000. Extensible Markup Language (XML) 1.0 (Sec-
ond Edition) W3C Recommendation 6 October 2000.

Britton, C. 2000. IT Architectures and Middleware: Strategies
for Building Large, Integrated Systems. Addison Wesley.

Carpenter. B. 2000. Internet Transparency. Internet Society Re-
quest for Comments 2775. www.faqs.org/rfcs/rfc2775.ht-
ml.

Castro, M. and Liskov, B. 1999. Practical Byzantine Fault Tol-
erance. Proc. Usenix OSDI, Berkeley, California.

Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgom-
ery, P.L., Murphy, B., te Riele, H., Aardal, K., Gilchrist, J.,
Guillerm, G., Leyland, P. 2000. Factorization of a 512-bit
RSA Modulus. Proceedings of EuroCrypt 2000, Bruges
(Brugge), Belgium.Chaum, D. 1981. Untraceable Electron-
ic Mail Return Addresses and Digital Pseudonyms, Com-
munication of the ACM 24, 2, Feb. 1981, pp. 84-88.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.
2001. Web Services Description Language (WSDL) 1.1,
W3C Note 15 March 2001. www.w3.org/TR/wsdl.

Clarke, I. 1999. A Distributed Decentralized Information Stor-
age and Retrieval System, unpublished report, Division of
Informatics, University of Edinburgh. freenet.source-
forge.net/freenet.pdf.

Clarke, I., Sandberg, O, Wiley, B., Hong, T.W. 2001. Freenet:
A Distributed Anonymous Information Storage and Re-
trieval System. Designing Privacy Enhancing Technolo-
gies: International Workshop on Design Issues in
Anonymity and Unobservability, LNCS 2009, ed. by H.
Federrath. Springer: New York.

Clip 2 Marketing 2000. Gnutella: To the Bandwidth Barrier
and Beyond. www.clip2.com/gnutella.html.

Couloris, G., Dollimore, J., and Kindberg, T., 2001. Distributed
Systems. Concepts and Design. Addison Wesley.

Dabek, F., Brunskill, E. Kaashoek, F., Karger, D., Morris, R.,
Stoica, I., and Balakrishnan, H. 2001. Building Peer-to-
Peer Systems With Chord, a Distributed Lookup Service.
Proc. of the 8th Workshop on Hot Topics in Operating Sys-
tems (HotOS-VIII), Schloss Elmau, Germany, May 2001.

DataSynapse 2001. The Next Generation of High Performance
Computing For Financial Services. White Paper.

Denning. D. E. 1976. A Lattice Model of Secure Information
Flow. Communications of the ACM 19(5):236-243, May
1976.

Dingledine, R., Freedman, M., Rubin, A. 2001. Free Haven. In
Oram, A., 2001 Peer-to-Peer, Harnessing the Power of Dis-
ruptive Technologies, pp 159-187.

Druschel P. and Rowstron, A. 2001. PAST: A Large-Scale,
Persistent Peer-to-Peer Storage Utility, HotOS VIII, Schlo-
ss Elmau, Germany, May 2001.

Endeavors Technology 2001. www.endeavors.com.

Entropia 2002. www.entropia.com.

FastTrack. 2001. Product Description. www.fasttrack.nu/
index_int.html.

Fattah, H.M., Fattah, H.M. 2002. P2P: How Peer-to-Peer Tech-

49

nology Is Revolutionizing the Way We Do Business, Drab-
ber Trade

Foster, I. 2000. Internet Computing and the emerging Grid. Na-
ture, Dec. 7.

Foster, I., Kesselman, C. 1999. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufman Publishers,
Inc. San Francisco, California.

Folding@Home 2001. foldingathome.stanford.edu.

FreeNet. 2001. The FreeNet home page, freenet.source-
forge.net. www.freenetproject.org.

Gabber, E., Gibbons, P., Kristol, D., Matias, Y., and Mayer, A.
1999. Consistent, yet anonymous, Web access with LPWA.
Communications of the ACM. 42, 2. February 1999. pp.
42-47.

Genome@Home. 2001. genomeathome.stanford.edu.

Gnutella. 2001. The Gnutella home page, gnutella.wego.com.

Gong, L. 2001. JXTA: A Network Programming Environment.
IEEE Internet Computing, (5)3:88--95, May/June.

Gong, L., 2002. Personal Communication.

Gribble, S., Halevy, A., Ives, Z., Rodrig, M., and Suciu, D.
2001. What Can Peer-to-Peer Do for Databases and Vice
Versa? Proceedings of the WebDB: Workshop on Databas-
es and the Web, Santa Barbara, CA, USA.

Grid Computing Biotechnology. 2001. www.grid-comput-
ing.net.

Grid Forum. 2002. www.gridforum.org.

Grimshaw, A., Wulf, W.A., and the Legion Team. 1997. The
Legion Vision of a Worldwide Virtual Computer. Commu-
nications of the ACM, 40(1):39-45.

Grimshaw, A., Easy to use Object-oriented Parallel Program-
ming with Mentat. IEEE Computer, pp39-51, May 1993.

Grimshaw, A. S., Wulf, W. A., French, J. C., Weaver, A. C.,
Reynolds Jr., P. F. 1994. Legion: The Next Logical Step
Toward a Nation-wide Virtual Computer. UVa CS Techni-
cal Report CS-94-21, June 8, 1994.

Grokster 2001. www.grokster.com

Groove Networks. 2000. Introduction to Groove. Groove Net-
works White Paper.

Groove Networks. 2000a. Connection Age. Groove Networks
White Paper.

Groove Networks. 2001. Groove Networks Product Back-
grounder. Groove Networks White Paper.
www.groove.net/pdf/groove_product_backgrounder.pdf.

Heylighen, F. 1997. Principa Cybernetica Web.
pespmc1.vub.ac.be/SELFORG.html.

Howard, J.H., Kazar, M.L., Menees, S.G., Nichols, D.A., Saty-
anarayanan, M., Sidebotham, R.N., West, M.J. 1988. Scale
and Performance in a Distributed File System. ACM Trans-
actions on Computer Systems, Feb. 1988, Vol. 6, No. 1, pp.
51-81.

Howes, T., Smith, M. 1997. LDAP. Programming Directory-
Enabled Applications with Lightweight Directory Access
Protocol. MacMillan Technical Publishing, USA.

IEEE 1990. Institute of Electrical and Electronics Engineers.

IEEE Standard Computer Dictionary: A Compilation of
IEEE Standard Computer Glossaries. New York, NY:
1990.

IEEE 2001. www.ieee.org.

Intel 2001. Peer-to-Peer-Enabled Distributed Computing. Intel
White Paper.

JXTA 2001.The JXTA home page www.jxta.org.

Kan, G. 2002 Personal Communication.

Katzenbeisser, S. 1999. Information hiding techniques for ste-
ganography and digital watermarking. Artech House
Books.

Kaufman, C., Perlman, R., Spencer, M. 1995. Network Securi-
ty. Prentice Hall.

KaZaA. www.kazaa.com. 2001.

Kindberg, T. 2002. Personal Communication.

Kotzen, M. 2001. Dramatic Improvements in the Gnutella Net-
work Since Late 2000. www.limewire.com/index.jsp/
net_improvements.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton,
P., Geels, D., Gummadi, R., Rhea, R., Weatherspoon, H.,
Weimer, W., Wells, C., and Zhao, B. 2000. OceanStore:
An Architecture for Global-Scale Persistent Storage. Pro-
ceedings of the Ninth international Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS 2000), November 2000.

Leigh, P. and Benyola, P., 2001. Future Developments in Peer
Networking. Equity Research, White Paper, Raymond
James & Associates, INC.

Limewire 2001. www.limewire.com.

Litzkow, M. and Solomon, M. 1992. Supporting Checkpoint-
ing and Process Migration outside the UNIX Kernel. Pro-
ceedings of the USENIX Winter Conference, pages 283–
290.

Litzkow, M., Livny, M., and Mutka, M. June 1988. Condor - A
Hunter of Idle Workstations. Proceedings of the 8th Inter-
national Conference on Distributed Computing Systems,
pages 104–111.

Lucovsky, M., 2002. Personal Communication.

Microsoft. 2001. Microsoft .NET Passport Technical Over-
view. September 2001.

Milgram, S. 1967. The Small World Problem. Psychology to-
day. 1, 61.

Miller, M. 2001. Discovering P2P. Sybex, to appear.

Mockapetris, P. 1989. DNS Encoding of Network Names and
Other Types. Internet Request For Comment 1101 Net-
work Information Center, SRI International, Menlo Park,
California.

MojoNation. 2001. http://mojonation.net.

Moore, D., Hebeler, J. 2001. Peer-to-Peer: Building Secure,
Scalable, and Manageable Networks. McGraw Hill.

Morgan, J. 2002. Personal Communication.

Morpheus 2001. www.musiccity.com

Napster. 2001. The Napster home page, www.napster.com.

Natarajan. A., et al, Studying Protein Folding on the Grid: Ex-

50

periences Using CHARMM on NPACI under Legion. High
Performance Distributed Computing 10, August 7-9, 2001

Necula, G. 1997. Proof-Carrying Code. Proceedings of the 24th
Annual ACM Symposium on Principles of Programming
Languages, pp 106-119. Paris France, January 1997.

Necula, G., and Lee, P. 1998. The Design and Implementation
of a Certifying Compiler. Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, pp 106-119. Montreal, Canada, pp. 333-
344, June 1998.

Nethisinghe, S., 2001. TV or the PC? Consumer Perspective.
Phillips Presentation.

Nowitz, D. 1978. UUCP Implementation Description. UNIX
Programmer's Manual, Bell Laboratories, October, 1978.

OMG. 1996. Common Object Request Broker Architecture and
Specification. Object Management Group Document Num-
ber 96.03.04.

OpenCola 2001. www.opencola.com.

Oram, A. 2001. Peer-To-Peer, Harnessing the Power of Disrup-
tive Technology. O’Reilly.

Perkins, C., 2001. Ad Hoc Networking. Addison Wesley.

p2pwg. 2001. Peer-to-peer Working Group. www.p2pwg.org.

Peer-to-peer Working Group. 2001. Bidirectional Peer-to-Peer
Communication with Interposing Firewalls and NATs.
p2pwg White Paper, Revision 0.091. May 23, 2001. http://
www.peer-to-peerwg.org/tech/nat/.

Pfitzmann, A., Waidner, M. 1987. Networks without User Ob-
servability. Computer Security 2, 6, pp.158-166.

Platform Computing. 2001. www.platform.com.

Ramanathan, M. K., Kalogeraki, V. Pruyne, J. 2001. Finding
Good Peers in the Peer-to-Peer Networks. International
Parallel and Distributed Computing Symposium, Fort Lau-
derdale, Florida, April 2002.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.
2001. A Scalable Content-Addressable Network. Proceed-
ings of the SIGCOMM, pp 161-172.

Redshift Research. 2002. www.redshiftresearch.com.

Reiter, M. K., Rubin, A. D. 1998. Crowds: Anonymity for Web
Transactions. ACM Transaction on Information and Sys-
tem Security 1, 1, November 1998, pp 66-92.

Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weather-
spoon, H., and Kubiatowicz, J. 2001. Maintenance-Free
Global Data Storage. Internet Computing, vol. vol 5, no 4.
pp 40-49. September 2001

Rice, W.A. and Mahon B. 2000. Peer Networking. Deutsche
Banc Alex. Brown White Paper.

Rosenberg, W., Kenney, D., and Fisher, G. 1992. Understand-
ing DCE. O’Reilly & Associates, Inc.

Roman, G., Huang, Q., Hazemi, A. 2001. Consistent Group
Membership in Ad Hoc Networks. Proceedings of ICSE,
Toronto, Canada.

Rowstron, A. and Druschel, P. 2001. Storage Management and
Caching in PAST, a Large-Scale, Persistent, Peer-to-Peer
Storage Utility. Proceedings of SOSP, pp 188-201.

Saltzer, J.H., Reed, D.P., Clark, D.D. 1984. End-To-End Argu-

ments in System Design, ACM TOCS, Vol 2, Number 4,
November 1984, pp 277-288.

Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, B. Lyon.
1985. Design and Implementation of the Sun Network File-
system. USENIX Conference Proceedings, USENIX Asso-
ciation, Berkeley, CA, Summer 1985.

Saroiu, S., Gummadi, P., and Gribble, S. 2002. A Measurement
Study of Peer-to-Peer File Sharing Systems. MMCN, San
Jose, CA, USA January 2002.

Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E.,
Siegel, E.H., and Steere, D.C. 1990. Coda: A Highly Avail-
able File System for a Distributed Workstation Environ-
ment. IEEE Trans. on Computers, pp 447-459,vol 39 1990.

Scarlata, V., Levine, B. N., Shields, C. 2001. Responder Ano-
nymity and Anonymous Peer-to-Peer File Sharing. IC-
NP’01.

Schwartz, E. 2001. 'Parasitic Grid' Wireless Movement May
Threaten Telecom Profits. August 24, 2001. www.info-
world.com/articles/hn/xml/01/08/24/
010824hnfreewireless.xml?0827mnam.

SHA-1. 1997. American National Standards Institute, Ameri-
can National Standard X9.30.2-1997: Public Key Cryptog-
raphy for the Financial Services Industry - Part 2: The
Secure Hash Algorithm (SHA-1).

Shamir, A. 1979. How to share a secret. Communications of the
ACM, vol. 22, n. 11, pp. 612-613, Nov. 1979.

Shields, C., Levine, B. N. 2000. A protocol for Anonymous
Communication Over the Internet. 7th ACM Conference
on Computer and Communication Security, Nov. 2000.

Shirky, C. 2001. What is P2P... and what Isn’t. An article pub-
lished on O’Reilly Network. www.openp2p.com/lpt/a//p2p/
2000/11/24/shirky1-whatisp2p.html.

SearchLing. 2000. SearchLing Peer-to-Peer Networking.
White Paper. October 2000.

SETI@home 2001. setiathome.ssl.berkeley.edu.

Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrish-
nan, H. 2001. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. Proc. SIGCOMM, pp 149-
160.

Strom, D. 2001. Businesses Embrace Instant Messaging. Janu-
ary 2001 enterprise.cnet.com/enterprise/0-9534-7-
4403317.html.

Sullivan, W. T. III, Wertheimer, D., Bowyer, S., Cobb, J.,
Gedye, D., Anderson, D. 1997. A new major SETI project
based on Project Serendip data and 100,000 personal com-
puters. Astronomical and Biochemical Origins and the
Search for Life in the Universe. Proc. of the Fifth Intl.
Conf. on Bioastronomy, Colloq. No. 161, eds. C.B. Cos-
movici, S. Bowyer, and D. Wortheimer (Publisher: Editrice
Compositori, Bologna, Italy.

Sun Microsystems. 2002. Security and Project JXTA. Sun Mi-
crosystems Technical Report.

Suthar, P. and Ozzie, J. 2000. The Groove Platform Architec-
ture. Groove Networks Presentation. devzone.groove.net/
library/Presentations/GrooveApplicationArchitecture.ppt.

Syverson, P. F., Goldschlag, D. M., Reed M. G. 1997. Anony-

51

mous Connections and Onion Routing, 1997 IEEE Sympo-
sium on Security and Privacy. pp. 44-53.

Tanenbaum, A. S. 1981. Computer Networks, Prentice-Hall In-
ternational.

ToadNode 2001. www.toadnode.com.

Tuvell, W. 2002. Personal Communication.

Veytsel, A. 2001. There is no P-to-P Market... But There is a
Market for P-to-P. Aberdeen Group Presentation at the
P2PWG, May 2001.

XDegrees 2001. www.xdegrees.com.

Waldman, M., Rubin, A. and Cranor, L 2000. Publius: A Ro-
bust, Tamper-Evident, Censorship-Resistant Web Publish-
ing System. Proceedings of the USENIX Security
Symposium. Denver, Colorado, USA. Aug, 2000.

Waldo, J., Wyant, G., Wollrath, A., Kendall, S. 1997. “A Note
on Distributed Computing”, Mobile Object Systems, Lec-
ture Notes in Computer Science, No. 1222, pp. 49-64,
Springer-Verlag, Berlin (D).

Waterhouse, S., Doolin, D.M., Kan G., Faybishenko, Y. 2002.
Distributed Search in P2P Networks. IEEE Internet Com-
puting 6(1):68-72. January-February.

Wollrath, A., et al. 1996. A Distributed Object Model for the
Java System. Proceedings of the USENIX 1996 Conf. on
Object-Oriented Technologies (COOTS), pp. 219-231.

Xu, Z., Miller, B., and Reps, T., 2000. Safety Checking of Ma-
chine Code. Proceedings of the SIGPLAN Conference on
Programming Language Design and Implementation, pp
70-82. Vancouver B.C., Canada. June 2000.

Xu, Z., Reps, T., and Miller, B., 2001. Typestate Checking of
Machine Code. Proceedings of the 10th European Sympo-
sium on Programming, pp 335-351. Genova, Italy, April
2001. Lecture Notes in Computer Science 2028, G. Goos,
J. Hartmanis and J. van Leeuwen (Eds.)

Yahoo! 2001. www.yahoo.com.

Yang, B and Garcia-Molina, H. (2001) Comparing Hybrid
Peer-to-Peer Systems. The VLDB Journal, pp 561-570,
Sept. 2001.

Yeager, B., 2002 Personal communication.

Zhao, B., Kubiatowicz, J., Joseph, A. 2001. Tapestry: An Infra-
structure for Fault-Tolerant Wide-area Location and Rout-
ing. Computer Science Division, University of California,
Berkeley Tech. Report no UCB/CSD-01-1141, April 2001.

Zhou, S., Zheng, X., Wang, J., and Delisle, P. 1994. Utopia: A
Load Sharing Facility for Large, Heterogeneous Distribut-
ed Computer Systems. Software-Practice and Experience,
23(2):1305-1336, December.

