

Characterization and Impact Estimation of CPU
Consumption in Multi-Threaded Distributed Applications

Jun Li
Imaging Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-50 (R.1)
May 28th , 2003*

component-
based
systems,
distributed
and
multithreaded
systems,
Gprof,
CPU
characterization,
impact estimation,
causality
propagation,
CORBA

The existing CPU resource characterization techniques perform
well for the applications running as individual processes, or
distributed applications involving simple interaction between two-
party systems, such as traditional client/server or database systems.
They do not work when function invocation spans processes and
processors in the multithreaded and distributed applications built
upon component technologies such as CORBA, COM, and J2EE.
We introduce a tool to characterize and estimate change impact of
CPU resource consumption in such multithreaded and distributed
applications. The tool relies on a component-based system
monitoring framework to acquire the information about the CPU
resource spent on function invocations, and the system-wide
causality propagation regarding such function invocations. As the
result, the tool is able to perceive the propagation of CPU
consumption across threads, processes and processors. A multi-
hyperbolic-tree visualization scheme is also devised to facilitate
seamless navigation and inspection of the analysis report regarding
CPU consumption characterization and its impact change, along
with other aspects of system behaviors.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

 1

Characterization and Impact Estimation of CPU
Consumption in Multi-Threaded Distributed

Applications

Jun Li

 Imaging Systems Lab

 HPL-Palo Alto

Abstract
The existing CPU resource characterization techniques perform well for the applications running as
individual processes, or distributed applications involving simple interaction between two-party systems,
such as traditional client/server or database systems. They do not work when function invocation spans
processes and processors in the multithreaded and distributed applications built upon component
technologies such as CORBA, COM, and J2EE. We introduce a tool to characterize and estimate change
impact of CPU resource consumption in such multithreaded and distributed applications. The tool relies on
a component-based system monitoring framework to acquire the information about the CPU resource spent
on function invocations, and the system-wide causality propagation regarding such function invocations.
As the result, the tool is able to perceive the propagation of CPU consumption across threads, processes and
processors. A multi-hyperbolic-tree visualization scheme is also devised to facilitate seamless navigation
and inspection of the analysis report regarding CPU consumption characterization and its impact change,
along with other aspects of system behaviors.

1. Introduction
A significant problem in distributed systems is to understand CPU resource consumption. During the

system development lifecycle, the following questions often arise: how much the CPU is spent on each
component or subsystem, where is the performance bottleneck, how to schedule different components and
subsystems onto the limited number of processors, and how to understand the impact of change to the
entire system when modifying a component’s implementation or changing one of the processors in the
system–will the system run faster, slower, or no effect, etc. The existing techniques to characterize CPU
resource consumption are well accepted to deal with applications running as individual processes, or
distributed applications involving simple interaction between two-party systems, such as traditional
client/server or database systems. However, such techniques do not work when function invocation spans
processes and processors in most component-based systems built upon CORBA, COM, RMI and J2EE.

We have developed a technique to not only measure the CPU consumption in each involved runtime
process, but also capture semantic causality propagation across the entire system. As the result, how the
CPU resource is consumed and propagated in a system-wide fashion can be revealed in the post processing
phase. It is based on the runtime monitoring framework that we previously developed [9]. In contrast to the
existing techniques that rely on program execution time measurement on either local procedure calls or
basic blocks or machine instructions, our CPU consumption measurement is performed at the component
level where components interact with each other through function invocation across component boundaries.
Component technology allows the applications being measured to be multi-threaded, partitioned into
different processes, deployed on different networked processors, and managed by different operating
systems. Accordingly, the unveiled CPU consumption by our tool propagates across threads, processes and
processors.

 The distinction to the profilers such as Gprof [3] can be illustrated by the following simple example.
Suppose the application consists of two processes P1 and P2. In P1, function A is invoked 3 times and each
time it consumes 1.0 ms CPU. Function A is invoked by the main function in P1 once, and subsequently by
function B from process P2 twice. If employing a Gprof-like profiler, P1 and P2 have to be profiled

 2

independently. These tools will only report that function A totally consumes 3.0 ms. However, our tool will
not only reveal function A’s consumption 3.0 ms, but also indicate that 2.0 ms out of the total 3.0 ms
should be propagated to function B in P2. Even though when the number of the involved parties (scheduled
in different threads, processes and processors) are small and their interaction is simple, users can manage
the inter-party relationship based on their application knowledge and manually perform the necessary
propagation, for general multithreaded and distributed systems, especially large-scale systems, such
automatic propagation is necessary in order to understand the system-wide CPU consumption behavior.

The further disadvantage of the existing profilers is that they mingle the CPU consumed by the functions
both for user-defined component implementations and for component runtime infrastructure (e.g., ORB in
CROBA) in a single report without distinction. In such a unified report, for a CORBA-based application,
the functions to implement the runtime infrastructure, including the stubs and the skeletons and the ORB,
can potentially be ranked over many user-defined functions in terms of CPU consumption due to their
frequent invocations, whereas such infrastructure-related functions are usually beyond the control of
application developers, and therefore out of their interest focus.

Our developed characterization technique can be further extended to perform impact analysis on system-
wide CPU resource consumption. Users modify the measured CPU consumption to reflect their intended
change to either an interface function’s source code implementation, or the processor’s processing power.
The tool can then automatically construct a new system-wide CPU resource consumption report and
identify the difference before and after the change. Such analysis is beneficial to gain the insight about how
the new system will behave before the change is actually performed.

The hyperbolic tree visualization technique [6] is capable of managing and displaying large amount of
dataset effectively. To deal with large distributed systems that produce large amount of analysis data, both
the CPU consumption characterization result and its impact change estimation result are described in a tree-
like format and thus viewable by the hyperbolic-tree visualization system. Moreover, to form a
comprehensive and coherent view of the entire system behavior, a multi-tree view scheme is devised. The
view is comprised of four different hyperbolic trees representing the following system behavior
information: the high-level system interface definitions, the system causal relationships, the CPU
consumption, and the CPU impact estimation. By navigating within individual trees up and down and
between different trees back and forth, users can obtain the insight of the entire system behavior without
being overwhelmed by the enormous amount of raw monitoring data and post processing data.

We have finished building the prototyping characterization tool for the applications based on a version
of CORBA runtime infrastructure developed in HP Labs [12] and deployed on HPUX 11.0 platforms. In
principle, we believe that there is no hurdle to apply our monitoring and analysis techniques for the
applications built upon component technology infrastructure other than CORBA, including COM, RMI,
J2EE, etc.

The report is organized as follows. Section 2 describes the monitoring framework that we have
developed, with focus on how CPU consumption is measured and how the system-wide semantic causality
propagation is traced. Section 3 presents the construction of a system-wide CPU characterization. Section
4 extends the characterization tool described in Section 3 for impact change estimation. To help users
navigate and inspect the captured behavior information, Section 5 proposes a visualization scheme to
present different behavior information through multiple coordinated hyperbolic trees. Section 6 briefly
reviews the work on resource consumption characterization and system impact estimation, emphasizing the
aspects most closely related to this paper. We end this report in Section 7, where some conclusions are
drawn and possible future research directions are offered.

2. System-Wide CPU Consumption Monitoring
Our CPU consumption characterization relies on the dynamic runtime behavior information captured

through a monitoring framework, which has bee described thoroughly in [9]. In Section 2.1, we outline the
runtime monitoring framework with focus on how to trace system-wide causality propagation and how to
measure the CPU consumption at the component interaction level. Section 2.2 addresses some minor
extension from [9] to suit the need to characterize the CPU resource consumption. In Section 2.3, we show
how to compute the CPU consumed both by the function invocations at the component level, and by the
threads on behalf of the user-application, from the captured runtime CPU consumption information. In
Section 2.4, the dynamic system call graph is introduced, which is constructed based upon the system-wide
causality tracing information.

 3

2.1 The Component-Based System Run-Time Monitoring Framework
This monitoring framework is developed with the objective of helping application developers

understand multithreaded and distributed systems’ multi-dimensional behavior at the component level. The
involved system behaviors are about application semantics, timing latency and shared resources.

The monitoring framework relies on a compiler-assisted automatic deployment of instrumentation
probes into the stubs and the skeletons. Each function with its function interface defined in the IDL
specification has its stub and skeleton generated in pair. Generally, to monitor a function invocation, four
different probes are required. They are located at the start of the stub after the client invokes the function, at
the beginning of the skeleton when the function invocation request reaches the skeleton, at the end of the
skeleton when the function execution is concluded, and at the end of the stub when the function response is
sent back to the stub and is ready to return to the original function caller. Application semantics, such as
input/output parameters, possible thrown exceptions, are captured directly at the stubs and the skeletons.
Timing latency, and the usage of shared resources such as CPU and memory, are captured by these probes
as well with necessary programming supports, either directly from the standard operating system, or from
some special instrumentation libraries.

For CPU consumption monitoring, particular to the HPUX 11.0 platform, we use the system function
pstat_getlwp to retrieve per-thread CPU consumption information in a straightforward manner. HPUX 11.0
employs 1x1 thread scheduling model, i.e., a kernel-thread is one-to-one mapped to a user-level thread.

All the application semantic behavior, timing behavior and resource consumption behavior are captured
locally in individual runtime processes. In order to correlate such local views of system, the monitoring
framework also captures system-wide semantic causality propagation. There are two primary types of
causal relationships: the function caller/callee relationship and the thread parent/child relationship. The
function caller/callee relationship is established when a function caller invokes the function callee located
in the other component. The thread parent/child relationship is formed when a thread T spawns a child
thread C as the additional independent sequence of execution on behalf of T. The threads that the
monitoring framework is aware of are the ones called user-application threads, which are spawned on
behalf of the user-application during the execution of user-defined function implementation. The other
threads, which are spawned and managed directly by component technology runtime infrastructure, and are
not aware of by the monitoring framework, are categorized as runtime infrastructure threads. Two
additional types of causal relationships are: function-spawn-thread, which occurs when a thread is spawned
on behalf of the user-application during the execution of a user-defined function implementation; and
thread-invoke-function, which occurs when a spawned thread on behalf of the user-application further
performs function calls.

The semantic causality tracing is fulfilled by tunneling through the entire system from function callers to
their corresponding function callees, and from parent user-application threads to their corresponding child
user-application threads. Such tunnels are invisible to user-applications. The monitoring information
relevant to causality tracing is locally recorded by each individual running process. The post-mortem
analysis reconstructs system-wide semantic causality propagation, with the result shown in a dynamic
system call graph, as will be elaborated in Section 2.4.

2.2 Extension of Monitoring Data Type
Our algorithms to perform CPU consumption characterization and impact estimation require object

instance information, in addition to the interface information. The reason to distinguish different
component objects, even though they might all be instantiated from the same implementation class, is that
data members (i.e., internal states) of different objects can be potentially different, and therefore lead to
significantly different object runtime behaviors. Unlike objects in traditional sequential programs, objects
in component-based systems, especially those commercial off-the-shelves components, are carefully
considered and encapsulate a fair amount of functionality. Typically the total number of component objects
is moderate and component objects have a long life span with respect to the system run time.

Object Universally Unique Identifier, or Object UUID, is introduced to distinguish component objects
system-wide. Object UUID’s are only required in skeleton monitoring since function implementation can
only be invoked from the skeletons. In ORBlite [12], Object UUID’s can be directly retrieved in the
skeletons. For other component technology runtime, it might require additional runtime infrastructure
instrumentation.

 4

2.3 Function and Thread CPU Consumption
This section covers the computation of the CPU consumption both for function invocations at the

component level and for the user-application threads, based on the collected monitoring data described in
Section 2.1. We consider only the CPU consumption devoted to user-defined implementation. The CPU
spent on component technology runtime infrastructure is precluded.

2.3.1 Function CPU Consumption
Like local procedure calls, function invocation at the component level might be nested. The exclusive

CPU consumption of a function refers to the CPU resource that is directly consumed by a function during
the execution of the function implementation body, without taking into account of the portion that is spent
inside its child functions. Correspondingly, the inclusive CPU consumption of a function refers to the CPU
resource spent on both the function itself and the invoked child functions. The exclusive CPU consumption
is also called the self CPU consumption. Within the inclusive CPU consumption, the portion contributed
from the child functions is called the descendent CPU consumption.

With our monitoring framework, assume function F’s implementation is comprised of a set of direct
child function invocations (with size of N), its exclusive CPU consumption CF is

∑ −−−=
=

N

i 1
starti,1,endi,2,endF,3,startF,4,F)PP()P(PC

Equation 1

where P denotes the CPU consumption monitoring data obtained at a particular probe location. The first
subscript of P refers to the involved function. The second subscript refers to one of the four following
probes with the corresponding index number: 1 for stub-start, 2 for stub-end, 3 for skeleton-start, and 4 for
skeleton-end. Each probe has the beginning and termination phases. The third subscript indicates either one
of the two phases.

In Equation 1, only the direct child function invocations are involved. All related probes are always
located in the same thread, independent of whether the child functions are invoked remotely or collocated
to the parent function.

The exclusive CPU consumption takes into account only the user-defined function implementation,
because the CPU spent on either the stubs or the skeletons is nullified by subtraction. The interference to
the original application from the monitoring activities, which are carried out in the stubs and the skeletons,
is therefore eliminated. Defined in [9], a function call chain is a sequence of function invocations that are
stimulated from an initial function invocation and share the same global causal identifier. Also in [9], two
types of monitoring interferences are introduced: intra-function-call-chain interference, and inter-function-
chain interference. The intra-function-call-chain-interference comes from the CPU consumption on each
involved instrumentation probe. The inter-function-call-chain interference is due to the interleaving
execution of different instrumented functions belonging to different function-call chains on the same
processor. Equation 1 removes the intra-function-call-chain interference. The inter-function-call-chain
interference does not exist for CPU measurement, because a thread cannot be shared by two function
executions simultaneously, i.e., the CPU consumption associated with different function invocations is
compartmentalized in different threads. Therefore, the CPU consumption monitoring is compensated in our
analysis.

2.3.2 Thread CPU Consumption
As mentioned in Section 2.1, the threads in our monitoring framework are categorized into user-

application threads and runtime infrastructure threads. It is the user-application threads’ CPU consumption
that we are concerned with.

Similar to Equation 1, assume an application thread T has a thread entry function of G, from which a set
of direct child functions with size of N is invoked, we have the exclusive CPU consumption of a thread T is
computed by:

∑−−=
=

N

i 1
starti,1,endi,2,endT,startT,T)P-(P)QQ(C

 5

Equation 2

In Equation 2, item Q denotes the CPU consumption monitoring data captured by the instrumentation
probes located in the instrumentation library. Such probes are activated at the thread initialization phase
and the thread termination phase. Item P denotes the same monitoring data already described in Section
2.2.1. In particular, only the stub associated probes are involved. The computed thread CPU consumption is
exclusive since the result only accounts for the portion spent on the thread entry function G, but not the
child functions that G invokes. Note that G is a local function call whereas the child functions of G are the
ones at the component level.

2.3.3 Remarks
The CPU consumption obtained from Equations 1 and 2 only represent the CPU resource that is devoted

to user-defined implementation. We term this portion User-Application CPU Consumption. The
consumption from the stubs and the skeletons, and necessary runtime management inside the component
technology runtime infrastructure, and runtime monitoring activities, are excluded. It is the user-application
CPU consumption that will be characterized in Section 3. Even though the user-application CPU
consumption does not address the comprehensive CPU consumption in the system, it is significant to meet
many practical purposes to understand the system CPU consumption behavior, because in component-
based systems, component technology runtime infrastructures are usually fixed, what users can manipulate
in order to alter the system behavior are component interface implementations. Furthermore, component
technology runtime infrastructures can be separately characterized independent of user-applications.

2.4 Dynamic System Call Graph (DSCG)
As described in [9], the principal graph nodes in a dynamic system call graph are: function invocation

nodes and thread instance nodes. The four types of causal relationships described in Section 2.1 are
manifested via the links between these nodes. A dynamic system call graph is actually a tree. Each
function invocation node or thread instance node can have different node attributes to represent the
associated runtime behaviors, such as the CPU consumption from Equations 1 and 2, timing latency, and
memory usage.

It is beyond the traditional planar graph display techniques to display effectively the DSCG of a large
distributed system, e.g., the HP LaserJet printing system, in which potentially millions of function calls can
easily pass by for just one single system run. The hyperbolic tree visualization technique [6] has
demonstrated the promising visual effects from the experiments that we conducted in [9]. The runtime
information can be either encoded as node attributes recognizable to the hyperbolic tree viewer, or
incrementally queried to the back-end analyzer from the front-end user interface.

The DSCG presents a comprehensive view of how dynamic component interaction actually occurs at
runtime. It is what our CPU consumption characterization tool is based upon to summarize and propagate
causal relationships. Section 3 will provide the in-depth explanation.

3. System-Wide CPU Consumption Characterization
This section describes the characterization of a system-wide CPU consumption. It can be considered as

an extension of Gprof [3] to the distributed and multithreaded application domain. The CPU consumption
characterization is based on the CPU consumption consumed on each function invocation and user-
application thread described in Section 2.3, and the DSCG described in Section 2.4. The CPU consumption
characterization is a graph called CPU Consumption Summarization Graph (CCSG).

The CPU consumption on single-processed applications can be simply represented as a scalar value.
Such representation is no more feasible for distributed and multithreaded systems, where a function call can
potentially span multiple processors and likely processors are distinctive from each other in terms of
intrinsic processing capability and the operating system which manages and schedules applications onto
these processors. We introduce Vector CPU Consumption in accordance with such application domain
migration. The CPU consumption in a system that has N processors is denoted as <C1, C2, ……CN>. In this
report, we refer a processor to a computing host with a uniquely identifier in the network where the
application is running. In practice, different processors can be treated equivalently, e.g., a computing
cluster in which all processors are identical and the operating systems to manage these processors are also

 6

identical. To simplify the representation of vector CPU consumption, we further introduce Processor
Group. A processor group is a set of processors treated as identical in the system. With such grouping, the
vector CPU consumption can now be represented as <C1, C2, …CK> where K is the number of processor
groups in the system. The CPU consumption spent within each processor group is superimposable.

 In Section 3.1, we present the detailed algorithm on how to construct the CCSG. In Section 3.2, we
identify the differences between our CCSG and the characterization report from the Gprof-like profilers,
apart from the core difference that the Gprof-like profilers are only applicable to the single-processed
applications, whereas our characterization tool is able to handle the applications spanning across multiple
processes and multiple processors.

3.1 Construction of The CPU Consumption Summarization Graph
The construction of CCSG is based on the DSCG, and the CPU consumption information associated

with the function invocation nodes and thread instance nodes in the DSCG.
We have two principal node types to characterize function invocation nodes and thread instance nodes

respectively:
• A function node is denoted by a tuple of <object id, interface name, function name>. A function

node NF is the aggregation of all the function invocation instances {INVF } that share the object
id, interface name, and function name in the corresponding DSCG;

• A thread node represents a set of thread instances. A thread node does not have an explicit
identifier to be associated with. A thread node always has a function node as its parent node, and
a function node can only have at most one thread node. Therefore, threads nodes are uniquely
addressed in the CCSG since their parent function nodes are uniquely addressed. A thread node
NT, whose parent node is NF, is the aggregation of all the user-application threads dynamically
spawned during any function invocation that belongs to {INVF}. If any of the threads spawned
during a function invocation ever further spawns user-application threads, the above aggregation
is continued to move on to the child user-application threads by following the thread parent/child
relationship.

The characterization process involves two phases: the propagation of CPU consumption for function
invocations nodes and thread instance nodes in the DSCG, and the aggregation of CPU consumption on
these DSCG nodes into the CCSG’s function nodes and thread nodes.

The propagation follows both the function caller/callee relationship and the thread parent/child
relationship. For a function invocation F, its exclusive CPU consumption CF is also the self CPU
consumption SCF. The descendent CPU consumption DCF for a function invocation F is defined recursively
as:

∑ ++∑ +=
−∈−∈)()(

)()(
Fthreadchildt

tt
Ffunctionchildf

ffF DCSCDCSCDC

Equation 3

Equation 3 shows that the descent CPU consumption includes both the self and descent CPU consumption
of its immediate child functions and child threads. The recursion will be terminated when a function
invocation neither has any child function invocations nor spawns child threads.

Similarly, the self CPU consumption SCT for a thread instance T is same as its exclusive CPU
consumption CT. The descendent CPU consumption DCT for a thread instance T whose thread entry
function is G is defined as:

∑ +∑ ++=
−∈−∈)()(

)()(
Tthreadchildt

tt
Gfunctionchildf

ffT DCSCDCSCDC

Equation 4

Note that for a general distributed and multithreaded applications, the summations in Equation 3 and 4
are all operated in vectors.

The aggregation is rather simple. The self (descendent) CPU consumption of the function node NF is the
summation over the self (descendent) CPU consumption associated with each function invocation node
belonging to {INVF} in the dynamic call graph. Similarly, the self CPU consumption of a thread node is the
summation over the self CPU consumption of all the thread instances which are aggregated.

Arcs between function and threads nodes in the CCSG are labeled with numbers, which represent the

 7

number of function invocations if the destination nodes are function nodes, and represent the number of
threads spawned if the destination node is a thread node. The numbers are updated in each node
aggregation.

In a decentralized distributed system, multiple independent call chains might occur, which potentially
leads to more than one top function nodes in the CCSG. A Global Virtual Main node is introduced to be
the root node in the CCSG and the previous top nodes now become its children. Note that the resulted
topmost node has its descendent CPU consumption to represent the complete CPU consumption directly
devoted to the execution of user-defined implementation in the entire system.

Consider a simple example shown in Figure 1. The main function invokes function foo (in processor A).
In foo’s implementation, it first invokes a function times (in processor B) to query how many times the
subsequent invocation of a function say_it (in processor D) has to be iterated. Then it invokes a second
function what_to_say (in processor C) to query the string information that the subsequent invocation of the
function say_it is going to use. It then invokes a function say_it for the number of times specified in the
function foo. The function what_to_say spawns two threads in the middle of its execution. Suppose that the
three invocations of the function say_it respectively consume 2.6, 2.5 and 2.7 ms, the function what_to_say
consumes 3.0 ms and each of its two threads spends 2.0 ms, and the function times consumes 2.7 ms, and
the function foo consumes 3.2 ms. The vector CPU shows the one spent in processors A, B, C, D in
sequence. Figure 1 also shows the resulted DSCG and CCSG.

The detailed algorithm to construct the CCSG is shown in Appendix A. Since the graph manipulation
involves only the traversal of the DSCG and the simple node-associated information processing. The

complexity to construct the CCSG is)(TF NNO + where NF and NT are the total number of function

invocation nodes and the total number of thread instance nodes in the DSCG respectively.
Note that unlike the DSCG, which is a tree, due to function recursion, the CCSG is a directed graph that

can potentially contain cross-links and even cycles. The introduction of thread nodes further increases such
possibility.

3.2 Construction Differences to The Gprof-Like Profilers
The CCSG construction process described in Section 3.1 reveals the following major differences

between our characterization paradigm and what Gprof adopts. Such differences are also believed to hold
for the Gprof-like profilers, such as Quantifier [15].

• Assumption about Even Contribution of Child Function Consumption to The Parents
Because Gprof only captures the function caller/callee relationship with call depth of 1, and the
CPU consumption to each function is accumulative via a single scalar value, when a child
function tries to propagate the CPU consumption to each of its parent functions, it has to assume
that each of its function invocations consumes evenly the CPU resource, such that its total CPU
consumption can be evenly propagated out to each of its parents, based on the number of
invocations coming from each of its parents. Such assumption often is inaccurate in practice, as
pointed out by [14]. However, in the CCSG construction, as shown in Equations 3 and 4, there
is no need to have such assumption to deal with propagation from a child function to its parents.

• Handling Cyclic Sub-Graphs When recursion occurs, the call graph in Gprof forms a cycle,
which makes the CPU consumption propagation impossible. The solution by Gprof is to collapse
all the nodes forming the cycle into a composite node, and have the composite node to
compound the following attributes from the involved nodes: the self or descendent CPU
consumption, and the function caller/callee relationship visible externally to this composite node.
However, in our monitoring framework, a recursion is just another function invocation to
advance the call depth. Even though the CCSG can be potentially cyclic, since we do not
conduct the propagation on the actual CCSG, no graph transformation performed in Gprof is
necessary to the CCSG.

 8

• Aggregating Function Nodes in Different Level of Granularity. The aggregation of function
node described in Section 3.1 is based on component objects, because objects can have
different internal states that may lead to dramatically different object behaviors. However, for
large systems with enormous amount of object instances, the following scheme can be adopted
to construct the dynamic CCSG. The CCSG becomes dynamic in the sense that the major
portion of the CCSG is based only on interface names and function names, with object
identifiers excluded; but those objects within a particular subsystem currently under the user’s
interest focus can be expanded and become object instance based. When the component objects

 void ClassA::foo() {
 …..
 //obj1, obj2, obj3 are three remote objects identified already.
 i nt counter = obj1 - >times();
 String content = object2 - >what_to_say();
 for (int i=0; i<counter; i++) {
 obj3 - >say_it(content);
 }
….
}

String ClassA::what_to_say() {
 …
 Thread *thread_1 = new Thread (Thread_Start_Function)f1);
 Thread *thread_2 = new Thread(Thread_Start_Function)f2);
}

void main(){
 ….
 //assume objA is with type of ClassA and have been identified as a remote object.
 objA - >foo();

}

Global Virtual Main

foo

times

what_to_say

thread 1 thread 2

say_it

say_it

say_it

foo

say_it

[0,0,4.0,0] (s)

[0,0,3.0,0](s)
[0,0,4.0,0](d)

[0,0,0,7.8](s)
[0,2.7,0,0](s)

[3.2,0,0,0](s)
[0,2.7,7.0,7.8](d)

[3.2,2.7,7.0,7.8](d)

1

1
1

3

 System Dynamic Call Graph

times

Global Virtual
Main

what_to_say

thread

CPU Consumption Summarization
Graph

Figure 1: An Example Program with Its DSCG and CCSG

 9

are out of the user’s interest, nodes are automatically collapsed and become insensitive to object
instances. Such flexible and dynamic node expansion and coalescence in our tool is feasible
because the construction of the DSCG from the CCSG is merely a graph transformation process
with different summarization criteria to follow.

3.3 Visualization of the CPU Consumption Summarization Graph (CCSG)
The CCSG can be encoded into a XML format and then displayed in a XML viewer like [19]. A XML

representation describes a tree structure. However, the CCSG is typically a directed graph probably
containing cross-links and cycles. In order to produce the primary tree structure into the XML
representation, we conduct the breadth-first-search traversal starting from the topmost global virtual main
node in the CCSG, the result is the breadth-first tree [2] covering all the tree nodes in the CCSG. The links
traversed are called primary tree links. Other links not visited are then called secondary tree links. The
secondary links are separately encoded into the XML format via a second graph traversal.

For a large distributed system, such as the HP LaserJet printing system, which consists of up to one
hundred interfaces, and several thousands of interface functions, to visualize the CPU consumption
summarization graph effectively in a normal planner graph display system has been proved to be difficult.

Hyperbolic tree visualization technique has been explored for non-tree graph structures [13, 4]. Similar
to construct the XML file to represent the CCSG, a tree structure with only the primary (direct parent-child,
no-cross) links are presented in the hyperbolic tree, and all other cross-links are only presented to users
upon request. Both the primary links and secondary links can be constructed via graph traversals just
described above.

3.4 Characterization on An Application Example System
The CPU characterization experiment has been conducted on the example application system described

in the appendix of [9] in a HP Workstation 9000/750 running with HPUX 11.0.

To validate the accuracy of the system function pstat_getlwp from which the CPU consumption
information is acquired, the on-chip cycle counter is used. The counter only measures elapsed time, instead
of the actual CPU consumption. Therefore, accuracy estimation only can be performed on single-threaded
and single-processed applications without being swapped out in the middle of execution. From the initial
experiment result, we found that the overhead introduced by pstat_getlwp�LV�EHWZHHQ���� V�WR���� V��ZKLFK�

Function/Thread 4-Process
Configuration (usec)

2-Process
Configuration (usec)

Difference on
Configurations

EngineController::print 779 599 30.1%

DeviceChannel::is_supplier_set 167 123 36.7%

IO::retrieve_from_queue 8394 8044 4.4%

GDI::draw_circle 36320 25257 43.8%

RIP::notify_downstream 70998 70530 0.7%

RIP::Insert_Obj_To_DL 1970 1909 3.2%

IO::push_to_queue 16196 16379 -1.1%

UserApplication::notified 832 767 8.5%

Render::deposit_to_queue 1418 1348 5.2%

Render::render_object 185768 181925 2.1%

Render::retrieve_from_queue 2085 1923 8.4%

Thread spawned by
EngineController::print

3349 2689 24.5%

Figure 2: CPU Consumption Characterization for The Example System’s Functions and Threads

 10

fluctuates from run to run. For applications without IO (e.g., printf) and system calls, the CPU consumption
measurements from pstat_getlwp and the cycle counter vary within the 5% range. IO and system calls
manifest unstable measurement results from run to run.

The functions chosen in [9] for latency measurement are shown in Figure 2 again for their self CPU
consumption characterization report. We used two system configurations for comparision. The four-process
one is described in [9]. The two-process one is to aggregate all the components in one server process, and
to start the printing from the client process. Therefore, for two-process one, all function invocations at the
component level are executed in one bulk thread. As stated in Section 2.2, our CPU consumption
measurement is at the user-application level, ideally, the CPU characterization result should be independent
of system configurations. As we are confident about the measurement for the single-threaded and single-
processed applications, the difference shown in Figure 2, defined as the relative difference between the
measurement for the four-process configuration and the measurement for the two-process configuration,
infers the measurement accuracy for multi-threaded applications. The implementation of the example
system is conducted in such a way that its execution is as deterministic as possible, so that the comparison
between different runs is meaningful.

The difference shown in Figure 2 indicates the good matching between different system configurations.
GDI::draw_circle has the difference exceeds 40%, which can be attributed to the intensive system calls
invoked, since its function implementation encapsulates remote procedure calls to the registry server.

The summarization graph from the example system is shown in Figure 3.

4. System-Wide CPU Consumption Impact Estimation
It is beneficial to estimate the change of the system-wide CPU consumption behavior before the actual

change is carried out. For a large distributed and multithreaded system, it requires a great effort to perform
source code implementation change, to recompile and re-link the system, and then to re-deploy the system,
before another round of CPU consumption measurement can be carried out. In terms of change of target
processors, the advantage of conducting the impact estimation is much more significant in the situation
where the target processors are not currently available.

 The exclusive CPU consumption can be decreased or increased by certain user-specified percentage for
function invocations that meet a user-specified constraint. Such a constraint can be specified for a particular

Figure 3: The CCSG of The Example System Presented in The XML Viewer

 11

set of interface functions. Processor groups might also be involved to confine the change to certain
computing platforms only. For instance, the function implementation change may only happen on Windows
and VxWorks platforms, but not Unix platform. An example of such constraints is shown as below:

Users have to rely on other platform and application knowledge in order to come up with a percentage
change specification.

With the DSCG and the computed CPU consumption, to evaluate the impact of change is rather
straightforward. It covers the following steps to perform the impact estimation:

(1) Compute the new exclusive CPU consumption for the relevant function invocations.
(2) Reevaluate the self and descent CPU consumption for the affected function invocation nodes and

thread instance nodes in the DSCG, corresponding to the propagation phase of the CCSG
construction;

(3) Reevaluate the self and descent CPU consumption for the affected function nodes and thread
nodes in the CCSG, corresponding to the aggregation phase of the CCSG construction;

(4) The CPU Consumption Delta Graph (CCDG) is formed by making a copy of the graph nodes
that have been reevaluated, along with the duplication of the involved graph edges. Each new
graph nodes records the differences before and after the change for the attributes: the self CPU
consumption and the descendent CPU consumption.

(5) By superimposing the CCDG to the original CCSG, the resulted CCSG represents the result of
change to the system-wide CPU consumption.

Similar to the CCSG, the CCDG can also be displayed as a hyperbolic tree.

5. Coordinated Hyperbolic Trees for System Behavior Visualization
So far we have described three different types of graphs to represent different system behaviors. The

DSCG shows how semantic causality is propagated system-wide. The CCSG presents how the CPU
resource is consumed in the system. And the CCDG portrays the impact propagation in the system due to
the CPU resource modification in some components or subsystems. In this section, we introduce a multi-
hyperbolic tree navigation scheme to allow users to navigate seamlessly within a hyperbolic tree and
between different hyperbolic trees to understand system behaviors in a comprehensive and coherent
manner.

Besides the three graphs just mentioned, we introduce the fourth hyperbolic tree for the interface
definitions associated with the application. The interface definitions are structured in a hierarchical
manner. It consists of a set of modules. A module consists of a set of interfaces, data types, and exceptions.
Each interface is further comprised of a set of function interfaces. Such hierarchical representation can be
described in an Interface Definition Tree (IDT). By browsing the IDT, users can understand what services
the components provide, and the correct way to request the services. Each function interface node in the
IDT can be appropriately annotated with statistical behavior information relevant to the implementation of
this function interface, e.g., timing latency, CPU consumption, and memory consumption. Sophisticated
user-interface facilities may be necessary if such behavior information can not be represented in some
concise formats like a scalar number or a string with modest length. For example, the CPU consumption
can be displayed in a form to illustrate the average and the standard deviation of the CPU consumption,
distinguished by component object instances located in different processors.

Each of the four hyperbolic trees identified provides different behavior aspects. The effective and easy
navigation within each individual tree is powered by hyperbolic tree viewers. A scheme is devised herein to
facilitate the seamless navigation between these hyperbolic trees. Figure 4 shows the scenarios for users to
switch their current interest from one tree to the others.

Navigation between hyperbolic trees requires the involvement of the backend analyzer [9]. Every tree
node in the front-end display is assigned with a unique identifier by the backend analyzer. At the current
interested tree node P, the user can use mouse right click or pull-down menu to select his or her desired
destination tree. Such request will be forwarded to the backend analyzer. The backend analyzer then
decides what are the candidate tree nodes {Ni} in the destination tree corresponding to the requested node.
Note that {Ni} might be empty. The candidate trees nodes can be displayed in a simple form if the size is

reduction on processor group { PROCESSOR_GROUP_1, PROCESSOR_GROUP_1} by 10% to

function { Module_1::Interface_1::function_1, Module_1::Interface_1::function_2 };

 12

small, or can be represented by yet another dynamically created hyperbolic tree. For example, all function
invocation nodes in a DSCG corresponding to the same function interface can be structured according to
their execution locations, and locations in turn are structured in the following hierarchy: processor,
process, and thread. Such forms or hyperbolic trees to bridge between different hyperbolic trees are called
navigation linking forms or navigation linking trees. Nodes in either linking forms or linking trees inherit
the unique identifiers of the original trees. When the user further selects one of the nodes in the linking
forms or linking trees, the front-end display then brings the destination tree node into the current interest
focus. Therefore, with the backend analyzer, along with the linking forms or linking trees dynamically
created in the front-end display, users can navigate back and forth between different hyperbolic trees to
inspect different behavior aspects of a distributed and multithreaded application.

IDT CCSG

DSCG
CCDG

A

B

E

D
G C A

A

F F

Figure 4: Scenarios for Users to Switch The Interest Focus from One Hyperbolic Tree to The
Others

A: To inspect the corresponding function interface definition and its function implementation’s timing
latency, CPU/memory usage

B: To see how function implementation behaves actually in terms of CPU consumption and its
propagation

C: To see how the function invocations are carried out and how each invocation is propagated

D: To see what is the result of CPU consumption given the defined semantic causality propagation

E: To see what is the actual semantic causality propagation

F: To see whether the corresponding function implementation is impacted or not

G: To see whether the CPU consumption associated with the function implementation is affected by the
change

 13

6. Related Work
The Unix utility software Prof presents the number of invocations a function has been called and the

associated average execution time. Such execution summarization facility is also provided by tools like
Sun’s Thread Event Analyzer [18] and Paradyn [11]. Threaded-Paradyn [20] allows function CPU
consumption measurement performed at the thread level by per-thread virtual timers, such that different
threads’ contribution can be identified. The main disadvantage of these tools is that propagation of CPU
consumption along the function call chain is not considered.

Gprof [3] and Quantify [15] are the well-known tools to profile the CPU consumption on single-
processed and single-threaded applications. Function CPU consumption reported in such tools consists of
two parts: the self portion contributed from the execution of the function itself, and the descendent portion
contributed from the execution of the child functions being invoked during the function execution.
Therefore, such profilers capture the CPU consumption propagation from function callees to their
corresponding function callers. The main disadvantage of this approach is that the tools do not trace CPU
consumption along the distributed function call chains (i.e., function chains that span threads or processes).

No prior solutions exist for distributed applications to report the system-wide CPU consumption and the
associated propagation along multiple threads, multiple processes and multiple processor, let alone to
estimate impact of change on system-wide CPU consumption due to a change to such distributed
environments. According to our best knowledge, impact estimation in software systems either relies on
source code implementation at the statement level, e.g., program slicing based on static code analysis [17,
5] and dynamic program slicing [1] with actual application input testing cases taken into account; or based
on certain semantic reasoning framework on user-specification, which is not tightly coupled with the actual
system implementation, e.g., timing sensitivity analysis based on Rate Monotonic Scheduling [16], and the
software architectural level impact estimation based on the system architectural specification and its
underlying language semantics [8].

In terms of hyperbolic tree display for visualization system behavior, the 3-D hyperbolic sphere
described in [13] is employed to visualize source code structure of applications at the procedure call level
[10], and HyperProf [7] applies 2-D hyperbolic tree (similar to [6]) to display the static Java source code
artifact overlaid with the dynamic call behavior captured at runtime in one single tree. The hierarchical
source code artifact in HyperProf includes Java packages, the classes inside the packages, and the functions
defined in each class. The HyperProf’s dynamic behavior capturing is reminiscent of the Gprof-like
profilers, i.e., it does not capture function caller/callee chains. In HyperProf, when a function node in the
hyperbolic tree is selected, additional tree links will be displayed to show which functions have been called
by this selected function, and which functions have ever called this selected function.

7. Conclusions and Future Work
A tool to characterize the CPU resource consumption and to estimate the impact change of the CPU

resource consumption change in distributed and multithreaded applications is presented in this report. The
tool relies on the runtime monitoring framework for component-based systems that we have developed to
capture CPU consumption related monitoring data. Moreover, a coordinated multi-hyperbolic-tree
visualization system is devised to help inspect different aspects of system behaviors, which include the
CPU consumption and its impact estimation.

 In terms of tool implementation, the characterization tool currently works for the CORBA-based
systems running on HPUX 11.0. The CPU characterization result is currently presented by a XML viewer.

We are planning to complete the tool implementation so that the CPU characterization and impact
estimation is fully functional to CORBA-based systems running on HPUX 11.0, Windows NT and
VxWorks, as well as to implement the proposed multi-hyperbolic-tree based user interface. The Gprof-like
profilers are effective for single-processed applications at the local procedure call level. It will be useful to
incorporate such local procedure level profiling capability into our component-level characterization tool to
achieve characterization hierarchy. Such hierarchical view enables users to envision resource consumption
upward propagation to the component-level from detailed source code implementation. To explore our tool,
distributed system scheduling to maximize the CPU utilization while meeting timing constraints, and
distributed system testing to ensure quality assurance for CPU utilization associated non-functional system
behavior, are two of the many research directions that are worthwhile to pursue.

 14

8. Acknowledgements
Thanks to Keith Moore from Imaging Systems Lab for his suggestions for building the multithreaded
Gprof, Ming Hao from Software Technology Lab for providing the hyperbolic tree viewer, and Scott
Marovich from Information Access Lab for the discussion of using on-chip high-resolution performance
counters to estimate CPU measurement accuracy.

9. References
[1] H. Agrawal and J. R. Horgan, “Dynamic program slicing,”, Proc. SIGPLAN’90 Conference on

Programming Language Design and Implementation, White Plains, New York, June 1990. ACM
Press. SIGPLAN Notices, 25, (6), 246-56, 1990.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to algorithms, published by the MIT press
and McCraw-Hill, 1990.

[3] S. Graham, P. Kessler and M. McKusick, "Gprof: a call graph execution profiler," Proceedings of the
SIGPLAN '82 Symposium on Compiler Construction, SIGPLAN Notices, Vol. 17, No. 6, pp. 120-126,
June 1982.

[4] M. C. Hao, M. Hsu, U. Dayal, and A. Krug, "Web-based visualization of large hierarchical graphs
using invisible links in a hyperbolic space," HPL Technical Report HPL-2000-2.

[5] S. Horwitz, T. Reps, and D. Binkley, "Interprocedural slicing using dependence graphs," ACM Trans.
Programming Languages and Systems, vol. 12, no. 1, 1990, pp. 26-60.

[6] Hyperbolic Tree Toolkit, http://www.inxight.com.

[7] HyperProf, http://www.physics.orst.edu/~bulatov/HyperProf/

[8] Jun Li, "Dependency tracking for real-time distributed systems," Ph. D. Dissertation, Department of
Electrical and Computer Engineering, Carnegie Mellon University, 2000.

[9] Jun Li, “Run-time monitoring of component-based systems,” HPL Report HPL-2002-25, Jan. 2002.

[10] S.-W Liao, A. Diwan, R. P. Bosch, Jr. and A. Ghuloum, M. S. Lam, "SUIF Explorer: An Interactive
and Interprocedural Parallelizer,", Proceedings of the 7th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPOPP'99), May, 1999.

[11] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavanic, K. Kunchithapadam and
T. Newhall, "The paradyn parallel performance measurement tool," IEEE Computer 28(11), pp. 37-46,
Nov. 1995.

[12] K. Moore, and E. Kirshenbaum, “Building evolvable systems: the ORBlite project,” Hewlett-Packard
Journal, pp. 62-72, Vol. 48, No.1, Feb. 1997.

[13] T. Munzner, and P. Burchard “Visualizing the structure of the World Wide Web in 3D hyperbolic
space,” Proceedings of VRML ’95, (San Diego, California, December 14-15, 1995), special issue of
Computer Graphics, ACM SIGGRAPH, New York, 1995, pp. 33-38.

[14] C. Ponder, R. J. Fateman, “Inaccuracies in program profilers,” Software –Practice and Experience,
vol. 18, no. 5, pp. 459-67, 1988.

[15] Quantify, http://www.rational.com/products.

[16] S. Vestal, "Fixed-Priority sensitivity analysis for linear compute time models," IEEE Trans. on
Software Engineering, vol. 20, no. 4, 1994, pp. 308-317.

[17] M. Weiser, "Program slicing," IEEE Trans. on Software Engineering, vol. SE-10, no. 4, 1984, pp. 352-
357.

[18] P-T Wu and P. Narayan, "Multithreaded performance analysis with Sun Workshop Thread Event
Analyzer," Sun Microsystems Technical White Paper. (April, 1998), Revision 03.

[19] XML viewer, http://www.alphaworks.ibm.com/tech/xmlviewer.

[20] Z. Xu, B. P. Miller and O. Naim, "Dynamic Instrumentation of Threaded Applications," 7th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, Atlanta, Georgia, May
1999.

 15

Appendix A–Algorithm to Construct The CPU Consumption Summarization Graph
(CCSG)

The algorithm to perform the CCSG construction based on the constructed dynamic system call graph

DSCG is sketched in Figure 5.

Figure 5: Procedure to construct the CPU consumption summarization graph

Procedure TOPOLOGICAL_SORT sorts the constructed dynamic system call graph into a vector in
which the leaf nodes of the graph are with the lowest index, and the topmost node is with the highest index.

Procedure CALCULATE_SELF_CONSUMPTION and CALCULATE_DESCENDENT_CONSUMPTION
evaluates respectively the self and descendent CPU consumption associated with each function invocation
node and thread instance node. Since nodes are sorted, the CPU consumption associated with the child
nodes is guaranteed to be available for the current node’s computation based on Equations 1–4.

Procedure REPRESENTATION_IN_CCSG queries the correspondent function node or thread node in the
CCSG (under construction) for the specified function invocation node or thread node. All tree nodes in the
CCSG are stored in a hash table for quick searching. The correspondent node found gets returned.
Otherwise, the correspondent node is created and then returned. The searching associated with a function
invocation node is rather straightforward through hashing. The searching associated with a thread instance
node needs to propagate up following the thread-spawn-thread relationship, until it hits the ceiling thread
instance node NT that has a function invocation node NF as the parent. If NF does not have the
corresponding function node RF, then create RF and its child thread node RT, and then return RT. If RF
exists, RT will be created if RT does not exist, and then RT gets returned.

Procedure UPDATE_CCSG updates the self and descendent CPU consumption information of the
function invocation node (thread instance node) to the corresponding function (thread) node, and then
updates the caller/callee (function-thread) relationship information into the link between the two function
nodes (between the function node and the thread node).

Finally, procedure GROUP_TOP_FUNCTION_INVOCATION_NODE is to create the top global virtual
main node in the CCSG and make all the function nodes in the CCSG that have no parent function nodes to
be this top node’s child nodes.

procedure CONSTRUCT_CCSG (DSCG):

 begin

 V ← TOPOLOGICAL_SORT(DSCG);

 for each node v in V
 begin
 CALCULATE_SELF_CONSUMPTION(v);
 CALCULATE_DESCENDENT_CONSUMPTION(v);
 s←REPRESENTATION_IN_CCSG(v);
 UPDATE_CCSG(s, v);
 End

 GROUP_TOP_FUNCTION_INVOCATION_NODE(DSCG);

 end

