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Abstract

Web user interactions start at a client (a browser on an access device) and flow
through several software components connected via digital networks. While the busi-
ness world is fascinated with the range of possibilities for such E-transactions, the
underlying technology opens up several new challenges for managing the performance,
availability, and reliability of the enabling software components. Several studies have
shown that poor response times for Web user interactions can significantly impact the
business values—slow Web transactions can have strong implications on brand-name,
customer acquisition and loyalty, and purchasing behavior of customers.

In the TAO project, we are developing metrics, models, and infrastructure to effec-
tively manage the performance of Web applications. We use WebMon, a novel instru-
mentation tool to obtain transaction-level data from web interactions, from end-user
and system component perspectives. Our analysis techniques help determine important
segments of users and their web interactions. The analysis is embedded in visualiza-
tion and optimization modules, enabling efficient reporting for system and business
administrators, and automated resource scheduling and planning. In this paper we
present an overview of the TAO project, and highlight some of its novel aspects, e.g.,
use of pixel-bar charts, web request classification, and integrated demand and capacity
planning.

Keywords: Software Performance Monitoring, Web Performance Tuning, Application Re-
sponse Monitoring, Software Performance Modeling.



1 Introduction

Since its inception in the mid-90’s, the World Wide Web (Web) [4] has become a ubiquitous
information dissemination mechanism. In addition, the business community has found in-
novative use of the Web as a means of conducting retail, auction, and other e-transactions.
The back-end information processing capabilities of web servers can also be invoked with
the use of automated agents or computing clients, resulting in e-services or web-seruvices.
Such e-services can be orchestrated with a process model to support business processes over
the Internet. In short, the Web is a fundamental, new, pervasive architecture for conducting
information processing transactions.

A Web transaction starts at a client (browser, automated component, or appliance device)
and flows through several computing and network devices on its way to a back-end application
server, using the Hypertext Transfer Protocol [4]. The response time for a Web transaction is
determined by the queueing and service times in the various components that a transaction
flows through, and additional services that it has to wait for, e.g., DNS [12]. Some of
these components, like, DNS, Internet routers and hubs, are not under the control of the
Web service providers. Other components, e.g., the back-end web server and the application
server, are in the control of the service providers. The goal of the Web Transactions Analysis
and Optimization (TAO) project is to efficiently manage the overall response times of Web
transactions, by adjusting the resources under the control of the Web service provider.

To effectively manage response times for Web transactions, we must address the following
technical challenges:

1. Instrumentation: we require correlated measurements for transaction response times,
residence times, and utilizations of various component resources, to understand per-
formance behavior of the transaction flow.

2. Monaitoring Infrastructure: a scalable monitoring infrastructure is required to collect
data from the instrumentation with low overheads and minimum disruption to the Web
transaction.

3. Analysis: The data collected from the instrumentation must be analyzed and ab-
stracted for presentation to human decision makers (visually or analytically) and au-
tomated classification and optimization modules.

4. Optimization Models: several queueing centers multiplex their services among a vari-
ety of Web applications and transactions. Understanding the complex interplay of the
queueing centers and their transactions on the overall response time requires math-
ematical models. We can subsequently use such models for automated management
modules that can effectively tune the working of the controllable web service resources.



In this paper we describe the overall approach of the TAO project to address these challenges.

TAO uses WebMon, a novel instrumentation and monitoring infrastructure for Web transac-
tions [8], that provides correlated, transaction performance information. WebMon monitors
a Web transaction from both the client and server perspectives. Moreover, it correlates
the client-side data with the server-side data to determine correlated performance measure-
ments for each individual Web transaction. The instrumentation for monitoring individual
components, or correlating the component measurements, does not require major modifica-
tions to the existing Web infrastructure or service. Small code fragments can be inserted
automatically in appropriate components for instrumenting a web service. The monitoring
infrastructure executes in parallel to the Web infrastructure. The monitoring traffic can be
isolated (upto 96%) from the transactional traffic.

We use data mining, visual data mining, and statistical approaches for analyzing the infor-
mation collected from WebMon. Our data mining approaches allow us to develop clusters
or segments of user classes or transaction classes. This enables us to perform analysis and
system optimization at the level of abstract transaction classes, rather than the multitude
of individual Web transactions. For example, we can classify Web transactions into robot or
human traffic; then, we can route transactions to appropriate back-end application servers
based on this classification.

We use mathematical programming techniques to develop optimization algorithms for opti-
mal allocation of software components on hardware elements. The optimization programs
can make use of Web request classification to enable dynamic load balancing, load shedding
and throttling, in addition to capacity planning. Hence, we provide integrated demand and
capacity planning.

The rest of the paper presents an overview of the various components of TAO. We first
describe the overall TAO approach in Section 2. Section 3 describes the analyses enabled by
the TAO instrumentation. Section 4 describes the TAO approach for integrated demand and
capacity planning. Section 5 overviews the TAO visual data mining of Web transactional
data. In section 6 we review related work, and conclude with final remarks in section 7.

2 TAO Architecture

The back-end of modern Web applications have a multi-tiered architecture: the first back-
end component is a load balancer. Behind the load balancer is a web server farm. The
web servers can process a portion of the Web requests themselves, for example for static
web pages or images. For dynamic web pages, a web server routes the request to one of
several application servers. An application server generates a dynamic web page, sometimes
collecting data from a database, other times collecting data from other web services. The
generated web page is then routed through the web server back to the client component.
Figure 1 illustrates the flow of the request through these various components.
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Figure 1: Typical transactional flow of a Web request.

Over the years, the web server architecture has stabilized into a multi-process or multi-
threaded architecture, with usually an event-based concurrency control [18]. For the appli-
cation server architecture, on the other hand, two competing architectures are emerging: (1)
Microsoft’s .NET architecture, and (2) Sun Microsystem’s J2EE (Java 2 Enterprise Edition)
architecture [13]. The two architectures are quite similar for our purposes: they both rely
on distributed objects for back-end web content generation. In the rest of the paper, we will
focus on the J2EE architecture, although the results and approach should be applicable to
the .NET architecture also.

Figure 2 shows the main components of the J2EE architecture [13]. When a Web request
is first routed to the J2EE engine, it comes in either as a JSP (Java Server Page) request,
or a Java Servlet request. A multithreaded JSP/Servlet engine processes the request. The
request is routed to a Java Virtual Machine (JVM) servlet container (www.apache.org).
Each request is concurrently processed by a single thread. The JSP/Servlet engine may
make requests to several Enterprise Java Bean (EJB) objects. Such EJBs may be co-located
with the servlet engine or may be on a remote machine. In turn, the EJBs may invoke the
services of a database engine, via a JDBC interface (java.sun.com/products/jdbc). The
EJB container multiplexes multiple, concurrent requests for an EJB object using a thread
pool.

For understanding the performance issues with typical J2EE architectures, we have developed
an instrumented test-bed with: (1) an Apache Web server with the mod_jk load balancing
module (www.apache.org), (2) three Tomcat (www.apache.org) and JBOSS (www. jboss.
org) servers, and (3) one Postgresql server (www.postgresql.org). The test-bed has been
completely instrumented with WebMon [8] instrumentation, to provide the following data:

1. End-user response time,

2. Web server identification and response time,
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Figure 2: Typical J2EE application server architecture.

3. Application server identification and response time, and

4. JDBC time: time spent accessing the database through the Java Database Connectivity
(JDBC) driver.

In the next few sections we’ll describe how we use this information is useful for a variety of
transactional analysis and optimization.

3 Analysis

We analyze WebMon data for:

1. Classification and segmentation of Web requests, and

2. Performance characterization of the J2EE architecture.

3.1 Web Request Classification

For performance characterization, we are interested in classifying Web requests along
two dimensions: (1) transaction classification, and (2) user segmentation. In transac-
tion classification, we map a given URL into a transaction class. For example, a URL
www .shop.com/estore/7item=1 may represent a “browse” transaction, while a URL www.
shop.com/estore/?product=2 may represent a “purchase” transaction. Multiple URLs can
belong to a given class, while one URL belongs to only one class. In user segmentation, we
are interested in identifying the segment of user population from which a given Web request
originates. For example, in one segmentation we divide the clients as robots or humans.
Another segmentation is based on purchasing behavior, i.e., humans who make frequent



purchases versus those who do not. We are applying machine learning techniques for trans-
action classification [16]. For user segmentation, we are building on the statistical analysis
work of Almeida et al [1]. For example, we studied the Web log of an online store covering
a period of about one week. A random sample of about 80,000 sessions were provided to
us, as well as a sample of about 200 sessions that had 100 transactions or more. The long
sessions have a high probability of being robot-generated, since the sessions in the larger
sample, which presumably is mostly human-generated, rarely exceed twenty transactions
and on average lasts fewer than 10 transactions per session.

By studying the inter-arrival times in the long sessions, we were able to identify particular
ones that looked like they originated from a shopping bot, as well as some which we believed
to have originated from multiple human users connected through a proxy server. In some
cases, these preliminary classifications were confirmed by the agent strings appearing in those
sessions. We believe that using the profiles of inter-arrival times of sessions is one valuable
method to identify robots relatively early. As we will see later, being able to predict the
characteristics of an incoming session is important in the implementation of sophisticated
load balancing policies.

Some authors (http://robotics.stanford.edu/users/ronnyk/goodBadUglyKDDItrack.
pdf) have criticized the use of Web logs as the basis for analysis and segmentation, arguing
that the data collected is typically inadequate and the transactions are not correlated with
resource usage in the application and database servers. The WebMon instrumentation over-
comes many of these deficiencies. With more widespread WebMon use, we will be able to
study the benefit of having client side data, e.g., think times, in the classification of sessions.

3.2 Empirical study of various load balancing strategies

The web request classification derived from the previous sub-section can be utilized for
effective load balancing at the back-end of the web services. For example, we can route
human traffic in a different way than we route robot traffic. Similarly, we can treat traffic with
resource intensive workload in a different way than light usage traffic. For load balancing,
Web requests arrive at a multiple-server queue. Assuming a characterization of each Web
request based on the classification described above, the problem is to assign the request to
one of several back-end servers. The goal is the minimize some criterion like the mean overall
response time of the request.

There are several well-known assignment policies. Our starting point is from reference [11],
which compares the round-robin, random, size-based and least-work-remaining policies; they
find empirically that the size-based policy, in which all requests within a given size range are
assigned to a particular server, does well for a heavy-tailed request size distribution. The
explanation for this is that the size-based policy minimizes the variance of the request sizes
within the queue of each server while keeping the multiple servers equally utilized.



Our application differs from the traditional setup in several important ways. For example,
Web requests are typically grouped into sessions, where each session is composed of a se-
quence of Web requests. The assignment for routing to a J2EE server is done once per session
upon the arrival of the first Web request in that session. Web requests from different sessions
may interleave. To implement the minimizing-variance idea of the size-based policy, we need
to know (or estimate) upon the start of the session what the subsequent Web request sizes
in that session look like, so that sessions comprising mostly small requests may be assigned
to different servers from those comprising mostly large requests.

It may turn out that the advantages of a sophisticated assignment policy may be large enough
that we would want to re-assign a session after we have observed it for a while and have
formed a more accurate estimate of the subsequent request sizes. For example, if shortly
into a session it is determined that the session is a robot that will issue one type of request a
large number of times, it might be worthwhile to re-assign it to a server dedicated for those
requests. Doing this would require a session-handover protocol that is absent in the Web
application servers today.

We used our experimental test-bed to study the relative performance of the four load bal-
ancing policies. We selected three types of sessions with different lengths but approximately
the same utilization. A type I session comprises various request types like “login”, “search”,
“view product” and “add to cart”; a type II session comprises several “search” requests; a
type III session several “view product” requests. Multiple client scripts were run in parallel
for about one hour; each of them generating a stream of random sessions chosen indepen-
dently from the three types.

Figure 3 shows bar charts of the mean client response times, one for each request type,
for a lightly loaded system. Within a single chart, each bar represents one policy and is
the (trimmed) mean of about 200 Web requests. We can see that the four policies are
comparable, with the size-based method having a slight edge most of the time. We are
currently investigating systems with higher utilization levels, greater variety of session types
and incorporating uncertainty in the Web request sizes.

In the next section, we present an overview of how we plan to use the resource requirements
derived from the test-bed measurements for optimal configuration of software components
on hardware servers.

4 Integrated Demand and Capacity Planning

We now explore the problem of integrating user transaction demand with online, realtime
resource capacity planning. This concept is known in the literature as “Capacity on De-
mand [14].” The integration of demand and capacity planning consists of optimizing (in
real time or close to real time) the assignment of buffer (or shared) resources to satisfy the
requirements of several applications. This investigation is motivated by the HP need of de-
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veloping a highly available, and manageable infrastructure for e-business computing utility.
At HP, we call these large data centers Utility Data Centers (UDCs). The main concept
of an UDC is to enable multiple J2EE-like application server customers to be hosted on a
collection of shared resources. The hosting environment can be divided into secure domains,
each supporting one customer. These domains are dynamic: the resources assigned to them
may be increased when workload increases and reduced when workloads decreases. This dy-
namic resource allocation enables flexible Service Level Agreements (SLAs) with customers
in an environment where peak workloads are greater than the normal steady state.

Traditionally, user transaction analysis and control is not integrated with online capacity
planning. The purpose of this research is to integrate instrumentation, transaction analysis
and control with online capacity planning, in situations where there is buffer capacity and
resources are shared among several applications—which is the case for UDCs.

Using Webmon instrumentation technology, we collect user and transactions data, and re-
sources performance metrics for several applications running at a UDC. A Web transaction’s

back-end web servers, application servers, and database servers of each application are in
control of the UDC.

As described in the previous sections, we use classification techniques to group related Web
requests together into groups according to user segmentation, transaction usage, or resource
requirement. Such classification is important for applications running at a UDC that have
heavy traffic, since based on such classification different priorities can be assigned to each user
segment, and user transaction throttling and load balancing can be based on user segment,
priority. This automated capability of user segmentation offers a mechanism to control the
demand of resources of each application running at an UDC. In addition, the transaction
classes characterize workload mix and volume for each application running at a UDC.

Assume that the layers of architectural components of each application running at an UDC is
fixed. For example, a J2EE application typically has three layers: (1) Web, (2) JSP/Servlet
and EJB engines, and (3) Database engine. For each of such layers, we assume a fixed type
of servers and the desirable attributes of the server. Moreover, we assume that in any given
layer, all software components will be mapped to the same server type. Then, for a given
workload mix and volume for an application, we want to determine the number of servers
required at each layer of the application architecture in such a way that the average response
time is within the ranges specified by the SLAs, while the total number of servers assigned
to the application architecture is minimized. We require a mathematical model that predicts
the average response time for a given number of servers at each layer of the architecture, and
an optimization algorithm that determines the minimum number of total servers required
for the application average response time to be within the range of the SLAs. In section 4.1,
we explain the main ideas of a proposed mathematical (queueing) model.

Given the servers requirements for each application architecture that satisfy the SLAs for



the application workload mix and volume, we want to determine the specific servers avail-
able in the physical topology of servers and switches of an UDC in such a way the incoming
and outgoing bandwidth capacity constraints of nodes in the physical topology, and the
servers requirements of each application running at the UDC are satisfied, while commu-
nication delays between servers assigned to each application is minimized. We develop a
large scale mixed mathematical programming model that can be solved using commercially
available solvers in seconds. In section 4.2, we explain the main ideas of this mathematical
programming model.

4.1 The Queuing Problem: Modeling Response Time

In this section, we propose a queueing model to approximate the average response time for
a given number of servers at each layer of the architecture, and an optimization algorithm
that determines the minimum number of total servers required for the application average
response time to be within the range of the specified SLA.

The queuing problem is to find the probability distribution function of the response time
to a request, given (1) the numbers of servers at the three back-end tiers (Nyep, Ngpp, and
Npg), and (2) the mix and intensity of the incoming requests (A, A, ...). That is, we seek a
function f(.), so that Pr(R < r) = f(r|Nwebs Napp, NDB: A1, A2, . . .), where R is the random
variable response time (or system residence time) of a request, r is any arbitrary level such
as 0.1 second or 2 seconds.

If we “tag” a random request and follow it through the processing network, we will find that
the routing and waiting pattern is highly complex at each tier of the system. For example,
a request at the App server might trigger multiple query requests to the DB server; these
queries might be generated depending on the results of a previous query. A request might also
simultaneously demand multiple system resources at a server, and require multiple passes
through the same server (one pass as a new request, second pass as a request returned from
a downstream server).

Our goal is to have a simple but fairly accurate mathematical model of the total waiting
time in the system. Hence, we model the system in aggregation, with simplified routing
of requests through the system. In particular, we model the system as an open queuing
network, with 3 tiers arranged in series, and parallel, identical servers inside each tier. With
this open queuing network assumption, we aggregate the multiple-pass processing of returned
requests into a one-pass simple flow (from a Web server to an App server to a DB server to
exiting the system). Furthermore, we model each server as a processor-sharing queue with
one critical resource (e.g., CPU or disk). The service demand of a request at a server is the
sum of processing times of the multiple passes of this request at the server.

With this simple model, we can write the expected response time as the sum of response



times at each of the three tiers:
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where A, is the arrival rate of new requests into the Web server tier, which is the sum
of all customer request types that require processing at the Web server tier; E[Syep] is the
average service demand at the web server tier, averaged over all request types and including
multiple passes of processing; and N,., is the number of servers at the web server tier.
Similar notation applies for the App and DB server tiers.

The above formula assumes a processor-sharing queue at each server. We also assume that
the servers within each tier are identical and share approximately the same workload; this
implies that the arrival rate at each server is Ayep/Nyep-

It is possible that only a fraction of all customer requests require routing into the App or
DB server; in that case, we generally expect App < Agpp < Apep - All three arrival rate
parameters are determined from the input workload mix and intensity (A1, Ag, .. .).

To obtain an estimation of the service demand at the web server tier E[Sweb], we can use
the relationship wyer = AwebE[Sweb|/Nweb, Where ., is the average utilization rate of the
critical resource (CPU) at the web server tier, to write E[Syep] = twesNweb/Awer- Note that
this is a proposed model that still requires validation with experimental data.

4.2 Optimization

In the Capacity on Demand decision optimization module, these queuing results can be
used as a service-level constraint, such as E[R] < 0.5 second. When a response time (T)
is guaranteed at a critical level («), say “response time not to exceed 2 seconds 95% of
the time,” then we write the optimization constraint as Pr(R < 2) = 0.95. To obtain the
probability Pr(R < 2), we use Markov’s inequality on the non-negative random variable R:

Pr(R<T) = E[R)/T

Hence, the mathematical constraint E[R]/T < « will guarantee Pr(R < T) < a. Our
preliminary numerical results indicate that the bound E[R]/T on the probability Pr(R < T)
is usually loose for the type of queuing time distribution (of R) we are considering, hence
replacing the constraint Pr(R < T') < a by the constraint E[R]/T < « will usually results
in much better service level than that specified by «.
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4.3 A Mixed Integer Programming Problem: Modeling Optimal
Allocation of Resources at an UDC

In this section, we explain how to optimally allocate physical resources from a UDC, given
the resource prediction and optimization needed to satisfy the resource requirements of a
workload volume and mix and SLAs.

We consider the problem that given the physical topology of a UDC, a given application
with a tiered architecture, and resource requirements for the application, how to allocate
servers in the topology into the tier architecture in such a way that the application resource
requirements are satisfied and network latency is minimized. This problem was originally
formulated by Zhu and Singhal [19]).

For example, consider an instance of this problem depicted by Figure 4:
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E2 BRO=4
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Figure 4: Physical topology of the example problem.

e The layout of the physical topology is a hierarchical tree; the root of the tree is a mesh
switch.

e The number of edge switches is 2. We label them as e; and es.
e The number of rack switches is 4. We label them as r{,ry,..., 4.
e The number of servers is 12. We label them sq, s9, ..., $19.

e The number of attributes per server is 3. These attributes may be CPU speed, memory
size, disc capacity, etc. We label the attributes as a;, as, and as.
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e Each server, rack switch, and edge switch has an incoming and outgoing bandwidth
capacity. We label these bandwidth capacities as B,; and Bs,, B,; and B,,, B.; and
Be,.

The parameters for the application tier architecture are presented in Figure 5

e The number of tiers in the architecture is 3. We label them as [;, [, and [3.
e The number of servers required at each tier i are: N3 =1, Ny =2, N; = 2.
e Min/Max server required attribute are labeled as L and U respectively.

e The matrix T represents the amount of traffic going from each server in a tier to each
server on a consecutive tier.

In 12
T(0,1)=0.2 T(23)=05
13
T(32) =015
Database
T(1,00=0.2 T(2,1)=02 al L =500, U =INF
a2L =10, U =INFO
a3L =10, U=INF
Web Servers App Servers
al L =200, U = 500 al L =400, U = 600
a2l=4,U=10 a2L=8U=16
a3lL=4U=12 a8L=4U=16

Figure 5: Tiered Architecture.

Our problem is to identify which servers in the physical topology we should allocate to the
application architecture in such a way that latency communication delay between servers
is minimized, while bandwidth capacity constraints and Min/Max server attribute require-
ments are satisfied.

The main assumptions of our model are as follows:

1. The physical topology is a tree

2. Consider one application at a time

12



3. The application has a tiered architecture

4. Servers at the same tier have same functionality, consequently they have the same
attribute requirements

5. The amount of traffic generated by different servers in the same tier is similar. The
amount of traffic coming into each tier is evenly distributed among all the servers in
the tier

6. No traffic goes between servers in the same tier. Servers communicate only with servers
in adjacent tiers.

Our approach has three steps, each represents a mathematical optimization model.

1. We use a mixed integer programming model to generate an approximate good initial
solution. This initial solution might not satisfy all bandwidth capacity constraints.

2. We use a nonlinear programming model to find a local optima and feasible approximate
solution. In this case, the solution satisfies all constraints.

3. We use another mixed integer programming model to generate an exact solution from
the approximate solution found by the nonlinear programming model.

With this approach, we can solve in seconds problems with thousands of servers using com-
mercially available solvers for mathematical optimization. More details for this solution are
available in [15].

5 Visual Data Mining

Due to the high volume of Web transactions, typically the performance data collected for a
Web service, even for a short time, results in large amounts of performance data. Finding the
valuable information hidden in the performance data, however, is a difficult task. Visual data
mining techniques are indispensable to solving this problem. In most data mining systems,
however, only simple graphics, such as bar charts, pie charts, scatter plots, etc., are used
to support the data mining process. While simple graphics are intuitive and easy-to-use,
they either show highly aggregated data or have a high degree of overlap that may occlude a
significant portion of the data values (as in the case of scatter plots). Important information
often gets lost. With large volumes of web transaction, bar charts and scatter plots quickly
become cluttered and difficult to visualize. Hence, we require new requirements for visual
data mining of performance data:

1. Place web data items with similar behavior and relationships close together,
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2. Unclutter the display with no overlapping,
3. Interact with the user for analyzing different scenarios, and

4. Scale to a large number of web transactions and clients.

We describe new visual data mining techniques that address the above requirements. The
first method is “Pixel Bar Chart” [10]. Pixel bar chart is used to visually mine multi-
attributes transaction data sets, such as response time, and page size. The second method
is a “Physics-Based Mass-Spring Visual Clustering” technique [7, 17]. It displays web
data items, such as clients and URLs, with close relationships together onto a 3D graph. In
the meantime, a set of content sensitive interactive visual techniques—linked multiple views,
layered drill-down, are provided to allow web analysts to interact with their data. We have
integrated both techniques into a VisMine [9] platform to visually analyze millions of Web
transactions.

5.1 Using Pixel Bar Chart To Visual Mining Web Transactions

Pixel Bar charts are a generalization of traditional bar charts and x-y-plot, to allow visual-
ization of large amounts of transaction data. The basic idea is to use the pixels within the
bars to present detailed data record information. Pixel Bar Charts retain the intuitiveness of
traditional bar charts while allowing very large data sets to be visualized in an effective way.
The detailed information on each data item can be displayed by drilling down as needed.

5.1.1 Visual Mining Transaction Distribution

15 416 17 182 20 2

e=ll ]

+ ®» 134 8 B 31 0 -0 -- 3.7 4 -0-0+F 30730 33334

" 1 4 7 a

Figure 6: Bar chart of average hourly response Figure 7: Pixel Bar chart hourly Web transactions
times. (response times).

Figure 7 shows a sample pixel bar chart of 32,846 web service transactions. In Figure 6,
the bar chart shows only the average response time per hour. No other related information
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is shown. In Figure 7, the pixel bar chart shows the web service response time activities
in one day (24 hours). Each pixel represents a transaction record. The x-axis (dividing
attribute) is time slot (hour); the y-axis (ordering attribute) is the web service response
time ordered from bottom to top. The colors (from green to dark burgundy) in the different
bar charts represent different response time values in milliseconds. The red area represents
transactions which response time exceeds 100 seconds. From Figure 7 we can obtain the
following information about the web service:

The busiest times is during the middle of the day during the hours 11, 12, 14... (with
wider width bars),

Amount of transactions exceed the threshold (100 sec, colored red),

Amounts of transactions achieving good response times (colored green), and

Web services have bad response time at all hours, i.e. all have red areas.

By clicking on a specific pixel, the user can get detail information on the transaction repre-
sented by that pixel, such as at the 14th hour. For example, response is 8 ms, client IP is
15.8.154.86 and URL is troi.rose.hp.com.

It is further interesting that bar chart indicates the 14th hour has the worst response time.
Actually, there are large area colored with green and blue in Figure 7, which means that there
are many transactions with good response time. Only a very small number of transactions
colored red with very long response time (exceed 100 sec). This explains the high average
response time for the 14th hour.

5.1.2 Visual Mining Web Transaction Multi-Attribute Correlations

14 6 7 13 14 15 16 18 22 14 6 7 13 14 15 16 18 =22
Figure 8: Pixel bar charts with page sizes. Figure 9: Pixel Bar with page sizes and response
times).

In Figure 8, the pixel bar chart shows the web service page size activities in 24 hours. Each
pixel represents a web transaction record. The x-axis is the time slot (hour); the y-axis is the
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web page size ordered from bottom to top. The colors in the different bar charts represent
different page size values. From Figure 8 we can obtain the following information regarding
page sizes of the monitored Web transactions:

e Several page sizes exceed the threshold of 100,000 bytes, as indicated by red color,
e This Web service has different page sizes during the day (7th hour to 16th hour), and

e The Web service has large page sizes during the nights and early morning (1st-5th
hour, 17th to 24th hour).

Figure 9 illustrates the correlations between the response time (Figure 7) and the page size.
The x-axis is time slot (hour); the y-axis is web response time ordered from bottom to top.
The colors in the different bar charts represent different page size values. Red area presents
the transactions whose page size exceeds 100,000. From Figure 9 we can conclude that there
is no close correlation between response time and page size. We have discovered that to
different page sizes displayed in all ranges of the response time (yellow, green, blue and
burgundy colors across all different levels of response time).

5.2 Using Visual Clustering To Discover Web Access Patterns

To analyze a large highly related web client space, we are experimenting with a new Web
Access Visualization technique. This method arranges the data items (clients) extracted
from the web transaction data onto a spherical surface. Items are represented as vertices. A
transaction is a web log record that contains a client, a URL and network access response
time. The transaction data is described as follows:

Transactions 17,75, ...,7T,, n = no. of transactions
Items Iy, I, ..., I, m = no. of data items (e.g., clients)

For each item I;, a transaction set Sy;, defined as

Sh:Tll,,sz,zzlm,jzlk,kgn

This technique calculates the correlation between pairs of data items, based on some aggre-
gate transaction metric, e.g., median response time (M). The data items will be laid out
according to their similarity for the chosen transaction metric. The relaxation algorithm
calculates the final layout.

M (Sr;) = median response time for transactions in Sp;
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Figure 10: A visual web client clustering layout, according to response times received by client
nodes.

Similarity(I;, I;) = min(1.0 (IM(1;) — M(1))
irdj .U, )

maz (I (T) Ji=1...m

Figure 10 illustrates a 3D graph generated from a web transaction observation data set. It
contains 35,000 transaction records. There are 986 clients that make transactions on the
web. VisMine clusters clients into 20 clusters with a similar response time (from low to
high). The “distance” between each pair of clients represents the data access relationship.
The most tightly related client is the client with the highest correlation with other clients.
These clients usually have similar response times.

6 Related Work

The Web has become a pervasive infrastructure for information-related transactions. As
such, many solutions for performance management of Web transactions are emerging. Early
work on Web transactions performance management addressed two areas: (1) scalability of
the web server [3, 6, 5], and (2) Content Delivery Networks (e.g., Akamai www.akamai.com).
The web server scalability has resulted in architectures that can routinely support tens of
thousands of connections per second. Content delivery networks speed up the delivery of
content by placing content as close to the edge (e.g., the user’s browser) as possible.
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The Web server scalability provided by these solutions does not take into account the Web
request classification as advocated by the TAO project. They typically use the URL as
the only means of classifying and routing requests. We use additional information, such
as response time (at the client and server sides), inter-arrival times, failure times, and so
forth, to classify and route requests. Such classifications become important with J2EE-
like architectures, as the number of URLs are increasing with more and more information
encoded in “fat URLs.”

Efficient, scalable back-end architectures is one aspect of TAO. Another important aspect is
to provide robust, complete, correlated instrumentation for monitoring a J2EE-like environ-
ment. Since the architecture is relatively new, only now we are seeing monitoring architec-
tures evolving in this direction. For example, Precise Solutions of Israel (www.precise.com)
provides a complete J2EE instrumentation similar to WebMon. The visual, statistical, and
data mining analysis provided by TAO is distinct from the kind of analysis performed by
Precise Solutions.

Finally, TAO addresses the problem of efficiently mapping software components onto hard-
ware resources in real-time, i.e., capacity on demand. The Oceano project [2] also addresses
this problem. However, the Oceano project does not use analytical technique such as queue-
ing theory and mathematical optimization as we have done in this research. We believe that
this analytical techniques are critical for the implementation of “Capacity on Demand” at
large data centers such as UDCs.

7 Conclusions

In this paper we have described an overview of the Web Transactions Analysis and Opti-
mization project (TAO). TAO monitors a Web transaction from several performance per-
spectives, and makes the monitored information available to a variety of analysis modules.
Such analysis modules make it easier for human decision makers to understand the perfor-
mance characterization of their web service, e.g., through pixel-bar charts or visual clustering
approaches. In addition, the analysis can be made available to automated modules for effi-
cient load balancing and managing capacity on demand. In particular, we use segmentation
of Web requests from a users, behavioral and resource consumption perspective to efficiently
manage the performance of Web transactions.
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