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Abstract

For small, portable devices, speech input has the advantages of low-cost and small hardware, can be used on the
move or whilst the eyes & hands are busy, and is natural and quick. Rather than rely on imperfect speech recognition
we propose that information entered as speech is kept as speech and suitable tools are provided to allow quick and
easy access to the speechrasdata records. This paper summarisesthe work carried out at HP Labs and its partners

at Cambridge University on the technol ogies needed for these tools - for organising, browsing, searching and
compressing the stored speech. These technologies go a long way towards giving stored speech the characteristics of
text without the associated input problems.
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1. Introduction

For small, portable devices, speech input has the advantages of low-cost and small hardware, can be used
on themove or whilst the eyes & hands are busy, and is naturd and quick. The limited memory and CPU
resources of asmal low power device can be overcome by piping the speech or speech parameters[1] to
anetwork resource that performs speech recognition and sends the results back to the device. If anetwork
connection is temporarily unavailable, the speech can be stored and converted to text once the connection
becomes availeble

However, it isnot quite as easy as that. Unconstrained large vocabulary recognition requires considerable
time and effort by a human to check and correct the results. It is bad enough to do this a the time of entry,
much worseto haveto do it later if no network connection is available. Only restricted-domain input such
as caendar entries can be recognized well enough not to need much correction - products like Dragon’s
NaturallySpesking® Mobile rely on this to process voice entries offline when the device isdocked. In
generd, with current speech recognition technology, speechisin fact avery avkward way of entering
textud information. But the aternatives of tiny soft-keyboards or character-based handwriting fit badly
with the concept of highly portable, useonthe-move devices, leaving this aspect of I/O essentialy
unsolved.

One solution isthat speech is used for enteringinformation, but thet the information is retained in speech
form instead of (or aswell as) atempting to convert it to text, so the speech is the data. This hasthe
advantage that if the information needs to be accessed eyeshandsfree it isdready in the right format - it
dso dlowslevelsof expression that are difficult to convey in text. There are big drawbacks though. One
isthat agreater amount of storageis needed for speech compared to text. But the mgjor problem isthat
browsing and accessing stored speech is potentialy tedious and time-consuming, as anyone using today's
telephone-based voice messaging systemswell knows. Thisis actually more to do with the legacy of tape
and other continuous media than anything intringc in the data type. With appropriate organisation and
quick and effective search tools, information stored as speech can be accessed quickly and easily.

In contrast to earlier gpeech-as-data work concentrating on audio-only interfaces[2][3] our primary focus
has been on devices with small displays such as the WinCEbased PAm-PCs. This provides alimited
amount of visudisation and browsing, aswell asagreater degree of organisation. In this paper we
overview thework at HP Labs and its partners & Cambridge University over thelast few years, showing
how speech can be organised, retrieved and compressed efficiently within the limited resources of alow-
power device. Theaimisto utilize network -based speech recognition when it is available, but not to rely
on it for our basic functiondity.

2. Organising Speech Data
2.1 Speech-Enabling of Applications

Crucid to the use of speech-as-dataisthe ability tofill any field in any application with speech aswell as
text. Toillugtrate how this might work, we have designed a speech enabled Contacts application, see
Figure 1. The names are entered by hand using the soft-keyboard, or entered as speech at the time of
capture and corrected/entered later by hand. Everything ese can potentialy be entered and retained as
speech. There are four criteriafor choosing speech rather than text:

1. Dol need thisinformation for visualy browsing the records? If so, it iswell worth the effort of
entering text.



2. Isthisinformation better expressed in speech or text? Persond fedlings, perhaps even spoken by
the person whose entry it is, are more easily conveyed using speech.

3. Isthisinformation that would take along timeto enter by hand e.g. an address or note? Speech
savestime now a the expense of possibly more time later.

4. |sthisinformation that | may not need, but would like to keep just in case? Fax numbers,
addresses and titles arefid dsin this category. In this caseit is easy to read them in and then they
arethereif ever needed.
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Figure (1): Speech-enabled Contacts Application

2.2 Eyes-busy entry of information

To benefit from the portability of the device, it must be possibleto fill in these fieldsin an eyes-freeway.
WE ve done this by recording avoice memo structured with keyword labels[4]. The keywords canbe
pre-defined or user defined, but in either case they mark the start of a section of speech that should be cut
out and inserted into a particular field. For example, whilst driving you may see something on the side of
atruck and record:

" Contactsentry ... Work Number is 408 927 6353 ... Nameis Hamilton & Co Removals ...
Comment is the truck says something about extra heavy items a specialty, could get that piano
shifted at last”

The recording isthen processed in three stages:

1. Thevery first keyword isfound, and used to file the recording into the right application.

2. Subsequent keywords are found and used to segment the recording, each segment being sent to
the appropriate field in the desired application.

3. Where possible, the speech datais recognised and entered as text.

Since the entry name is not recognised, the entry will not be a phabetically placed, but just sit &t the top of
the Contactslist until at least the nameis transcribed. To alow the detection of keywordsto be done
reliably and with a smge recogniser, the user is required to pause before (and possibly after) each
keyword phrase. By requiring the pause to be along one, e,g. more than one second, non-keyword
phrases can be rejected quite easly aslong as the pause detection is robust.



3. Browsing Speech Data
3.1 Graphical Interface

Whilst ideally al speech should be recorded in small eesily accessible chunks, thiswill not dways be
possible - not dl information to be recorded will fit neetly into the available fields of an gpplication. Once
more than 10 seconds or S0 of speech isrecorded in one go, navigating becomes an important issue. A
simple but effective solution isto provide a 2-D random-accessinterface [5]. Figure 2 shows such an
interface developed at HP Labs [6], where a 100 second recording is displayed as a series of lines about 8
seconds long.
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Figure (2): Random -Access I nterface for Longer Speech Records

The speech record is divided into chunks based on the pauses in the recording. Whilst idedly the chunks
would match phrasesin the speech, it is equaly important that they are a suitable length for skipping and
marking. The dgorithm creating the chunks[7] has the concept of atarget length (about 5 seconds),

which it tries to achieve within the constraints of not bresking up a continuous phrase. The ability to mark
aplacein the speech is very important, and used properly ensures that most of the speech need only be
listened to once. A number of different markers could be made available for different cat egories - we

have used iconsfor phone numbers and dates/timesto good effect.

3.2 Textual Summaries

So far we have not considered the possible role of large vocabulary speech recognition if it were
available, ether on the client device or on anetwork server. This alows complete speech recordsto be
transcribed automatically, but with asubstantid percentage of errors especidly for unconstrained speech.
One gpproach isto leave these for the user to cope with, aswith the AT& T SCAN interface for speech
records[8]. Our approach isto partially transcribe the speech. The @m isto give enough of atextud
summary to enable the user to quickly get to the part of the speech datathey need. The user can then
listen to get the full information and if they want to, complete or correct the transcription process.

Two components are used to provide the summary - an acoustic confidence score for each word, and an
inverse frequency score. Other features such as prosody [9] can dso be used. The acoustic confidence
score can be derived anumber of ways, though in the case of the ANN/HMM hybrid recogniser [10] we
used, the confidence scoreswere obtained directly from the phone probabilities[11]. Theinverse
frequency scoreis the number of timesaword appearsin arecording divided by the number of timesit
occurred in the language mode and normalised by the length of the recording. The two scores are
combined:

wrinverse frequency +a *acoudtic confidence (0]
where the relative weighting factors w and a depend on theimportance of accuracy versus coverage.



Thesummary is created by first automatically transcribing the recording using alarge vocabulary
recogniser, and then scoring each word according to Equation 1. Then, an N -word window (typically 10-
30 wordslong) isdid over the transcript, and a score for each N-gram caculated. A single parameter,
number of words per minute, determines both the choice of N and how many N-grams are displayed.
Table 1 shows some partid transcriptions of a one-minute section of the May 22, 1996 broadcast of CNN
EPN. Full details of the system are given in [12] dong with evauation results.

Size Summary of one minute of speech

2 keywords FERRY, OVERCROWDED

per minute

1 10-gram per FERRY SINKING IN WHICH HUNDREDS OF PASSENGERSDIED [SIL] THE

minute FERRY

1 30-gram per INTO YESTERDAY'S FERRY SINKING IN WHICH HUNDREDS OF

minute PASSENGERSDIED [SIL] THE FERRY WENT DOWN ON LAKE VICTORIA
WITHIN SIGHT OF SHORE [SIL] THE GOVERNMENT SAY S FIVE HUNDRED
FORTY NINE PEOPLE ON

20 (potentialy | :[SIL][SIL] AFTER A FOUR-DAY HEARING IN FEDERAL COURT A JUDGE

overlapping) HAS STRIPPED ... YESTERDAY'S FERRY SINKING IN WHICH HUNDREDS OF

10-gramsper PASSENGERSDIED [SIL] THE FERRY WENT DOWN ON LAKE VICTORIA

minute WITHIN SIGHT ... THIRD CLASS PASSENGERS([SIL] CRUISE TICKETSONLY
GAVE THEM A PLACE TO SIT OR STAND ON DECK [SIL] THOSE ...
PASSENGERS[SIL] BUT HUNDREDS MORE IGNORED WARNINGS AND
JAMMED ABOARD THE VESSEL [SIL] TO MAKE THE TRIP[SIL] FUMBLE

Table (1): ExamplePartial Transcriptions

4. Searching Speech Data
4.1 Keyword Searching

Because browsing speech is not as fast astext, agood search facility is even more important than for text.
A search facility that uses spoken queries aso provides a generic eyes-freeway of accessing any of the
data on the device. Searches can specify afidd eg. search the"File As' field in Contacts for a specific
name, or can be afree search through dl the stored speech in the system. Matching one isolated utterance
againg another (asin thefirst case) is quitefast and accurate using conventiond isolated word

recognition techniques, but spotting for a phrase embedded in audio is both dow and difficult Snce the
endpoints are not known. Whilst there is alarge body of research on wordspotting, our task is different to
aconventiona wordspotting gpplication. Normaly, asingle utterance is searched for anumber of words
for which good moddls exist, and the task is primarily to determine which word was spoken. In our case
we are searching a potentialy large number of utterances for one word that we have just one spoken
example of, and thetask isto decideif it isthere or not. The two technical issuesraised by these
differences are how to use the spoken keyword in the wordspotter, and how to make the search go fast
enough.

TheVideo Mail Retrievad (VMRL) database [13] isa database of 35 speakers recorded specifically for
testing this kind of wordspotting system. Aswell as anumber of readkgpeech training sentences, each
spesker recorded 20 spontaneous speech messages and then 35 isolated keywords frequently occurring in
the messages. Performance is measured in terms of the percentage of hits scoring higher than the Nth
falsedarm (or percentage misses scoring lower). Exactly which value of N is most meaningful is quite
difficult to decide asit depends on how fast the hits can be assessed by the user, how much audio thereis,
and how many false darmsthey would be prepared to listen to before finding the right one. To get around
this difficulty of choosing an operating point, a metric known as the Figure of Merit (FoM) [14] can be
used, which in essence gives the percentage hits averaged over 1to 10 false darms per hour. To givean
idea of the performance of state-of -the-art speech recognition on thistask, Table 2 shows the FoM for the
different keywordsin the VMR database, using the Abbot recognition system [10] as the wordspotter. For
these results, the keywords have been entered as text and the phonetic transcription looked upin a




dictionary. Whereas the longer more complex words can be found quite reliably, the short words are
easily missed.

FoM Range Words (lowest FoM first)

Below 30% WORD

30-40% MAIL, DATE, VIDEO, SCORE, OUTPUT

40-50% FIND, BADGE, ACTIVE

50-60% TIME

60-70% KEYWORD, STAFF, SENSOR, SPOTTING, SEARCH

70-80% RANK, MESSAGE, INDIGO, DOCUMENT, PLAN, DISPLAY

80-90% PROJECT, ASSESS, MEETING, PANDORA,

90-100% WORKSTATION, MANAGE, MICROPHONE, INTERFACE,
NETWORK, CAMERA

Table (2) Figure of Merit Scoresfor Keywordsin VMR database

The next two sections address the two key issues for wordspotting in the context of audio search: how to
model the spoken keyword, and the speed of the search.

4.2 Modeling the Keyword

The problem hereisthat the search query will have the word spoken in isolation and probably
emphasized, but the utterance with it in will have it embedded in continuous speech. Wet herefore cannot
use the query speech directly, but instead need to pass it through a phoneme recogniser to convertitto a
string of phonemes. The keyword for the search isthen modeled by concatenating the appropriate
phoneme models.

In[15], Knill and Young investigate a number of enhancementsto this basic gpproach, two of which give
asmal improvement. The first enhancement is to use the N-best phoneme strings from the phoneme
recogniser in the search. Since thistendsto increasethe fse darms as well asthe true hits, it only
improves performance in the cases where the true phoneme string wasn't the most probable. Around 3%
overall reduction in the number of missed wordsis achieved with N=7. Thisrather small improvement is
a the expense of adower search, asthere are now N versions of the keyword to look for. The second
enhancement isto use two examples of the keyword rather than one. If the two phoneme strings generated
are different, both can be used, though it is as good just to use the one which givesthe best Viterbi score
when force-matched againg the other spoken example. This achieves around 10% reduction in the
number of missed words. Disgppointingly, even the best spoken keyword system increased the number of
missed words by afactor of a least 30% compared to using a dictionary-derived phoneme string for the
search word. Nevertheless, aquick search and good user interface can make up for some lack of
performance, and the user can easily improve the search by using longer words or even phrases.

4.3 Speed of Search

Wewould idedly like the search to go fast enough to gppear instantaneous. But unlike atextud search,
where dl the results can be displayed and assimilated by the user very quickly, with audio each hit hasto
be lisgtened to. Even if 5 seconds of speech is enough context to check a potentia hit, it will take the user
25 seconds to check the top 5 hits. Thistime can be incorporated into the search by playing the most
probable hit found so far whilst the search istaking place. As an example let us assume that thereisa
total of 30 minutes of speech to be searched and that in 5 seconds 7.5 minutes of speech can be searched.
The hits delivered to the user could be:

1. after 5seconds - best hitin thefirst 7.5 minutes

2. after 10 seconds- best hit in the first 15 minutes not aready played
3. after 15 seconds- best hit in the first 22.5 minutes not aready played
4. after 20 seconds- best hit in whole 30 minutes not aready played



5. after 25 saconds— next best hit in whole 30 minutes not dready played

Asthefirst three hits are from partia searches, this Srategy is not perfect, but it requires 90 times real-
time rather than the 360 times red -time needed to do the whole 30 minutesin the first 5 seconds.

To achieve such afast search on the modest computing platform we expect to find in a portable device,
the speech hasto be pre processed when, or soon after, it isrecorded. Fortunately, the structure of a
wordspotting system lends itself to this.

A standard wordspotting system performs two recognition passes - one with keywords and fillers
together, the other with just thefillers. The second pass allows the keyword scores to be normalised
againgt gpesker and acoudtic variations. Thefillers can smply be phoneme models, and in our caz are the
same models used to transcribe the spoken keyword. Thereisalarge amount of duplication of effort in
the two passes, and the key to doing afast search isto do the filler-only pass (half of the computation)

and as much as possible of the keyword-and-filler pass ahead of time. This must not be at the expense of a
large amount of storage asin the lattice-based gpproach of [16]. In [17], Knill and Y oung investigate
various techniques for this, the two most effective being:

Approximated keyword recognition pass. After the filler-only pass, the resulting phoneme
boundaries and Viterbi scores at each boundary are stored. The keyword-andHiller pass
performed at search timeis then restricted to start and finish on a stored phoneme boundary
rather than at arbitrary start and end frames. This smplification leadsto afurther 80% reduction
in search time without affecting performance in any significant way.

Pattern Matching of Phoneme Srings. A string-match can be performed between the keyword
andthefiller-only pass output extremely quickly, and whilst thisis not an accurate enough
process for doing the search, it can be used to diminate alot of the search space. Since both
phoneme strings are output from a recogniser, the match must alow for recognition errors. This
is done by having pendties for subgtitution, deletion and insertion, and using a Dynamic
Programming (DP) dgorithm to perform the match. Preprocessing in thisway eiminates 85% of
the search space with only asmdl drop in performance.

These two techniques give a 33 fold speed up, so the basic wordspotter only needsto work alittle faster
than redl time to alow areasonable search.

In the case of ahybrid ANN/HMM recognition system such as Abbot [10], there is a further opportunity
to speed up the search by pre-computing and storing the posterior phone probabilities for each frame. This
leaves very little computation to be done at search time. On a PC with 500MHz dual -processor and
512MB RAM we found we could search for 10 keywords (eg. the 10-best transcriptions of a spoken
keyword) at 300 timesredl time. Thiswas without making use of either of the two speed-up techniques
mentioned above. Since there are 45 probabilities per 16ms frame (for UK English), some compression is
needed to reduce the storage requirements, which even with each probability represented by just one byte
would be IMbyte for every 6 minutes of speech. We wereinterested to seeif thiscould bereduced to a
level which required little extra storage compared to even the lowest rate speech coders, and so targeted

just 10 hits per 45 probabilities, i.e. 625 hits/'sec. We achieved this using vector quantisation and a
log(1+100x) transform applied to the probabilities before computing the distance measure, resulting in an
error rate within 10% of the unquantised basdline system [18].

5. Compression of Speech Data
5.1 Requirements

For speechras-datato be viable on asmall device, the speech must not take up alot of memory. There are
numerous gpeech coding schemes, many being published standards, optimised for telephony. These offer
ahigh perceptud qudity (i.e. gpeech must sound naturd and like the talker), but can afford to be alittle
unintelligible as the hearer can aways request arepest. For this reason aresticted 3.4kHz bandwidth has
been used for telephony from the early days of frequency-divison multiplexing until now.

For speechras-data the perceptua qudity need not be high, but the speech must be asintelligibile as
possible. Phone numbers and aphanumeric details must be understood without error otherwise the entire
concept fails. At the same time a high degree of compression is needed. The military solution to asimilar
requirement (high intelligibility, low bit rate) isthe LPC10 vocoder [19]. Thisis a speech coder that relies
completely on encoding the parameters of amode of speech production. Advancesin parametric coding



[20] have substantidly improved the quality (perceptud and intelligibility) of the LPC vocoder, and it is
now closeto the qudity needed for speech-as-datawhilst keeping avery low hit rate.

5.2 A Wideband Low-Bit-Rate Speech Coder

In[21], aspeech coder is described based on LPC vocoding that improvesintdligibility by extending the
bandwidth of the encoded speech to 8kHz. Theinput signal is split into two bands, and the 0-4kHz band
is encoded with a 10" order LPC model, and the 4-8kHz band is encoded with a 2™ order LPC model.
The parameters are put through predictors and the residud is encoded using variable-rate Rice cading.
Variable-rate coding is aluxury that stored speech can benefit from, which transmitted speech cannot. For
extrainteligibility, the frame length is reduced from 22.5msto 16ms. This reduction in frame length does
not increase the bit rate proportionately asthe smaller frame sizeis more predictable. At 2.4kbit/sec, the
high-band parameterstake up about 500 bit/sec. Theinteresting result from the Dynamic Rhyme Test
(DRT [22]) reported in[21] is that when comparing the wideband and narrowband versionswith both
optimised for 2.4kbit/sec operation, the wideband coder performs 2.4 points on the DRT scale better than
the narrowband coder. This demonsirates that even at this very low hit rate, bandwidth is more useful than
finer quantisation.

5.3 Recognition of Compressed Speech

Various studies have shown that recognition performance degrades when recognising from speech
compressed below 16kbit/sec [23,24]. For very low hit rate coders the problem is even worse. The
ANN/HMM recogniser keyword-searching system described in section 4.3 can bypass this problem by
preprocessing the speech a record time and therefore before compression, and can store the resulting data
in lessthan 1kbit/sec. But for ageneral HMM-based recogniser, record-time processing can only go asfar
as encoding the acoustic features, which il require at least 4kbit/sec storage [25,26,27]. These could be
stored alongside the speech, more than doubling the storage requirements, but in fact the two
representations (coded speech and acoustic features) are only dightly different forms of the same
information. It should be possible to derive the acoustic festures from the coded speech, without spending
the time decoding and re-analysing the speech with the associated lossin quality of a 'tandem’ encoding.

The process of deriving spectrum-based features from the L PC parameters stored in a speech coder and
the recognition performance of such asystem are described in[18]. In fact the performanceis as good as
one with features derived directly from the original speech. However, the two parameter sets are clearly
different since the error rate doubles when training is performed with one parameter set and testing with
the other. Frame size gppears to be an issue though - matching the coder frame size to the recogniser's
16msframe givesvirtually hdf the error of matching the recogniser's frame size to the coder's 22.5ms
frame (using LPC-derived features for training and testing in both cases). Thisresult may well be
influenced by the fact the recogniser is designed to operate at 16ms. But it does mean that you are
unlikely to get optimal performance just by using the LPC parameters from astandard coder, asframe
sizesare normdly in the 20 to 30ms range.

The performance is dependent on the amount of quantisation. Using the quantisation scheme described in
[21] &t 2.4 kbit/sec increases the error rate from 5.5% to 7.6%. The error rate is reduced to 7.1% if the
training is performed on unquantised parameters, even though the recognition has to bedone on quantised
parameters, since the quantisation affects the variance but not the means of the parameters. Thisincrease
in error can be iminated with finer quantisation at the expense of using ahigher bit rate than 2.4

kbit/sec.

5.4 Reconstruction of Speech from Acoustic Features

Thelogica aternative to deriving acoustic features from coded speech isto reconstruct speech from the
acoudtic features derived for speech recognition. Thisisthe gpproach taken in [28]. By adding avoicing
and pitch detector to the acoudtic feature extraction, speech smilar in qudity to LPC vocoding can be
recongtructed. This gpproach has the advantage that a standard speech recogniser can be used (no
retraining needed), but the disadvantage that the speech qudity isnot quite as good and the bit -rate is
higher.



6. Conclusion

In this paper we have described technol ogies that enable speech to be used effectively asadatatypein
small, portable devices by providing means for organisation, browsing, searching and compression of the

speech.

If the speech can be broken down into short segments only afew seconds long, and associated with the
fields of an application, it will be easy to find the information and quick to listen to it. This organisation
can be done ether manudly, by alowing the user to enter speech into any field asan dternative to text,

or automatically with smple speech recognition responding to keyword labelsthat the user insertsinto
the recordings. Whilst the manua gpproach is preferable, the use of keyword labels dlows information to
be entered onrthe-move, with eyes and hands busy.

For browsing longer recordings that cannot be broken up into short segments, a 2D random+-access
interface should be used in preference to tgpe-recorder style controls. This alows easy skimming and
replay, and the ability to mark important sections with avisua icon for future reference.

When alarge vocabulary recogniser is available as when connected to alarger machine, its output can be
used without the need for checking and correction by applying summarisation techniques based on
confidence score and inverse word frequency. The text becomes a quick way of locating relevant spoken
information and need never be corrected unlessthe information is needed in textua form.

The other way of locating information is through akeyword search, where the user speaks aword or
phrase, which locates the speech they are looking for. This search is more effective the longer the

keyword. Ironically, searches with spoken keywords peform lesswell than searches with the same
keyword entered astext, as the spoken keyword cannot be used in the search directly, but hasto be
transcribed into phonemes first. Speeking the word twice helps. A big issueis search speed - somethingin
theorder of 100 timesred timeis required, within the limited capabilities of asmall device. This can be
achieved by acombination of preprocesing at record time and smplifications to the search space. If an
ANN/HMM hybrid recogniser is used, the posterior phone probakilities can be precomputed and stored in
under 1kbit/sec, dlowing avery fast search indeed.

Toavoid using up memory with alot of stored speech, agood compression schemeis needed. It needsto
have highinteligibility to dlow names, numbers and addresses to be retrieved from the speech - it dso
needs to work well with speech recognisers. This can be achieved with wideband (8kHz) encoding, which
requires only 500 bit/sec extraand even at rates aslow as 2.4 kbit/sec gives greater intdligibility than
narrowband encoding. Good recognition performance can be achieved by deriving the acoustic festures
directly from the LPC parameters of the speech coder, but for best performance the LPC frame rate needs
to be reduced to 16ms.

Thesetechniques together go along way towards giving stored speech the characterigtics of text. This
enables speech to be used for information input without the need for checking and correcting speechrto-
text output, and with very modest computational resources. As aresult, the device can be used on-the-
move with eyes and hands busy, and can be small, low power and low cost without compromising
functionality.
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