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Abstract
Recent P2P systems, represented by Oceanstore and PAST, offer
an administration-free and fault-tolerant storage utility. Nodes in
these systems collectively contribute towards a storage space, in
a self-organizing fashion. While elegant from a theoretical
perspective, they can be improved in three important areas: (i)
low maintenance cost; (ii) the ability to make discriminative use
of the nodes in the system that has different capacity and resource
constraints; (iii) the ability to adapt to the underlying network
conditions and the applications’ needs. 

In this paper, we explore “expressways” as an auxiliary
mechanism to deliver high routing performance, leaving the
baseline infrastructure concentrating on tasks such as efficient
resource utilization and simple management. The basic ideas of
our proposal are to divide the total space in the overlay network
into topology areas of different spans; we then select candidates
in these areas to collectively construct a balanced, self-organized
expressway system. By archiving the relevant system information
(e.g., physical coordinates of the nodes) as objects stored on the
system itself, we can further tune the expressway dynamically to
fit both physical network conditions and application needs. 

Using CAN as the target system, we show that expressways can
easily boost its routing performance from O(N1/d) to O(ln N),
while keeping CAN's low maintenance cost. Our simulation
studies show that our techniques to tune the expressways toward
network conditions reduce the routing latency to about 50% over
the default “random strategy” while staying within 2-3 times of
the optimal. Furthermore, our simple heuristics to adjust the
expressways toward application behavior can further reduce the
physical latency up to 19%. Our mechanisms are robust and
flexible, irrespective to the physical distribution of the
participating nodes.

1 Introduction
Peer-to-Peer (P2P) represents a class of systems that utilize
distributed resources and perform critical functions in a
decentralized manner. Comparing with traditional cli-
ent/server systems, some benefits of P2P include improved
scalability and reliability, elimination of hot-spots surround-
ing big servers, better resource utilization, and lower cost-
of-ownership.

While P2P holds the promise of a general-purpose par-
adigm shift in computing, the most popular service they
offer is information placement and lookup. Recent systems,
represented by CAN [9], Chord [12], Oceanstore [14] and
PAST [10], offer an administration-free and fault-tolerant
storage utility. Nodes in these systems collectively contrib-
ute towards a shared storage space, in a self-organizing

fashion. In these systems, there is a consistent binding
between objects to nodes. Locating an object is reduced to
the problem of routing to the destination node from the node
where the query is submitted. An object can always be
retrieved as long as the hosting nodes can be reached. In
such systems, the random generation of node IDs and docu-
ment keys allow even distribution of the data objects
amongst the hosting nodes. The logical overlay of these sys-
tems provide some guarantee with respect to the number of
logical hops that need to be traversed to locate an object. 

While elegant from a theoretical perspective, they can
be improved in three important areas: (i) achieving low
maintenance cost; (ii) the ability to make discriminative use
of the nodes in the system that have different capacity; (iii)
the ability to adapt to the underlying network conditions and
the applications’ needs. For example, both Oceanstore and
PAST use a routing scheme derived from Plaxton’s proposal
[14]. Nodes joining and leaving in these systems has high
impact on maintenance cost, because they affect logarithmic
number of other nodes. In addition, Plaxton’s proposal was
originally proposed for a centrally administrative environ-
ment: Web caching. Nodes in such systems cannot indepen-
dently discover their neighbors in a decentralized fashion
[9]. In Pastry and Tapestry, downstream links point to nodes
close-by when the routing table is constructed. However,
the nodes that are examined to put in the routing tables rep-
resent only a small set of candidates. In CAN, when a new
node joins the overlay, it joins a node that is close to it in IP
distance.This can result in uneven node distribution, which
can complicate data placement and create “hotspots”.
Chord, in contrast, does not take the physical topology into
consideration when constructing the overlay. Instead, it uses
heuristics when it’s beneficial to take more logical hops but
each with smaller latency. The choices are, therefore, lim-
ited to entries in the routing tables.

We address these problems using auxiliary data struc-
tures called “expressways”. These are analogous to the real
world expressways, which greatly relax the constraint of
physical distance, allowing people to focus on factors that
matter the most. Expressways have the following attributes:
they are auxiliary mechanisms, not a wholesale replacement
of local routes; they have greater distance span per “hop”,
they are (usually) of high bandwidth, and they are con-
structed to accommodate commuters’ needs. However, real
expressways are centrally coordinated in construction, and
they respond poorly to traffic congestions. If expressways

1. Authors are in alphabetic order. This work was done while Zheng Zhang was at Hewlett-Packard Laboratories
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are to be attempted on the P2P systems, they must be self-
organized and self-maintained, and adaptive to changing
network conditions. Without achieving these goals, we
would have violated the core spirit of P2P. 

The basic idea of our proposals are the follows: (i) We
first divide the total space in the overlay network into topol-
ogy areas of different routing spans, with the topology areas
of the smallest span correspond to the default P2P overlay.
(ii) For a given topology area, there exist flexibility as to
what nodes can represent it. These nodes then collectively
form expressways at different levels in a self-organizing
way. (iii) Next, we archive relevant system information such
as physical coordinates, node capacity, and load information
(or even application-level hints) as objects stored inside the
system itself, in a way that’s easy to update and retrieve. (iv)
Last, we combine (ii) and (iii) to tune the expressway
dynamically according to both network conditions as well
application behavior. 

For networks that delivers routing performance less
than O(log N), our expressway provides a way to boost its
performance to O (log N), while keeping the maintenance
cost close to that of the default system. In addition, the tech-
niques we have proposed to tune toward physical network
conditions and application should be applicable to other P2P
systems as well. In systems such as Pastry [10], different
routing span has already been built in, conditions (i) and (ii)
are already satisfied. However, (iii) and (iv) can be applied
to derive better routing decision in accord to physical condi-
tions and application needs.

In this paper, we make the following contributions:

• We explored the idea of using auxiliary data structures
(expressways) for P2P overlay networks using CAN as
an example. We show that the expressways for CAN

[9], can easily improve performance from O(N1/d) to
O(ln N), with only a moderate storage overhead. The
only states that need to be maintained accurately are
those provided by the basic CAN already.

• We describe a simple algorithm for constructing
expressway. The basic idea is to take snapshots when
the system is growing. These sequences of snapshots
preserve a set of topologies with different spans, and
serve as the default expressway system. 

• Using the default expressway system as a flexible
framework, we developed several techniques to tune
the expressway to fit network conditions and the appli-
cation behavior. This is achieved by taking advantage
of the archival capability of the P2P overlay network
for storing the system’s relevant information onto itself. 

• We evaluate our techniques with simulation studies.
The results show that our technique to tune the express-
way toward physical network conditions can improve
the average physical routing distance over our default

random algorithm by about 50%, while stay within 2-3
range of the optimal. The simulation studies also show
that our simple heuristics to tune the expressway to fit
the application behavior can further reduce physical
latency to up to 19%. 

• In addition, our mechanisms are robust and flexible.
For instance, our experiments reveal that good routing
performance can be reached irrespective to the physical
distribution of the participating nodes, while still pre-
serving even storage distribution.

The remainder of the paper is organized as follows.
Section 2 describes the basic algorithms for constructing
and routing with the expressways and their evaluation.
Section 3 describes advanced issues such as tuning the
expressways to fit the underlying network conditions and
application needs. In Section 4, we discuss how to build
expressways for other P2P systems. We discuss related
work in Section 5 and conclude in Section 6.

2 Constructing Expressway and Rout-
ing with Expressway
This section starts with a short description of CAN [9],
which is designed for peer-to-peer file sharing and large-
scale storage management systems [6, 1], followed by an
overview of expressways for CAN and then the algorithms
for building and routing with the expressways. We choose
CAN primarily because of several nice properties it pos-
sesses. For example, CAN is able to scale to unlimited num-
ber of nodes, it has a very simple routing algorithm, it is
self-configured, and it has low maintenance cost which is
particularly important in a dynamic environment. We also

believe that CAN’s O (dN1/d) routing performance makes it
an ideal candidate to study the effect of expressway system.
Our philosophy is to start with something simple yet exten-
sible, and augment the basic scheme in a need-to basis. At
the end of this section, we analyze the expressway system
and evaluate them with simulation. 

2.1 CAN
CAN stands for content-addressable network. It abstracts
the problem of data placement and retrieval over large scale
storage systems as hashing that maps “keys” onto “values”
[4]. CAN organizes the logical space as a d-dimensional
Cartesian space (a d-torus). The Cartesian space is parti-
tioned into zones, with one or more nodes serve as owner(s)
of the zone. An object key is a point in the space, and the
node owns the zone that contains the point owns the object.
Routing from a source node to a destination node boils
down to routing from one zone to another in the Cartesian
space. Node join corresponds to picking a random point in
the Cartesian space, routing to the zone that contains the
point, and split the zone with its current owner(s). Node
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departure amounts to having the owner(s) of one of the
neighboring zone take over the zone owned by the departing
node. In CAN, two zones are neighbors if they overlap in all
but one dimension along which they abut each other. 

2.2 Overview of Expressway
Like the real-world expressway, the expressways for CAN
augment CAN’s routing capacity with routing tables of
increasing span. To build expressways, the entire Cartesian
space is partitioned into zones of different spans with the
smallest zones correspond to the CAN zones, and any other
zones are called expressway zones. Consequently, each node
owns a CAN zone and is also a resident of the expressway
zones that enclose its CAN zone. 

These expressway zones and the CAN zone are
recorded in each node in a data structure we call the total
routing table, RT = <R0, R1, …, RL>. RL corresponds to x’s

default routing table and is what CAN already builds. Each
Ri (i=0 to L-1) is called an expressway routing table that has
larger span than the default routing table. The smaller the i,
the larger the span, and routing with a smaller i is said to
occur in a higher level of expressway. Each Ri contains the
node’s i-th largest enclosing zone and the set of neighbor
zones (expressway zones) of the similar span (a formal defi-
nition of the routing table will be given in Section 2.3). For
each neighboring expressway zone, the expressway routing
table keeps the addresses of one or more nodes in that zone.

Figure 1 illustrates the expressways with an example.
The CAN zones are at level 3, and each of the CAN zone is
1/64 of the entire Cartesian space. In this example, four
neighboring CAN zones make one level-2 expressway zone
and four level-2 zones make a level-1 zone. For example,
node 1 owns a CAN zone (the zone with dark shade to the
up-left corner), and it is also resident of the level-2 and
level-1 expressway zones that enclose the CAN zone. The

total routing table of node 1 consists of the default routing
table of CAN (represented by the plain arcs) that link only
to node 1’s immediate CAN neighbors and the expressway
routing tables (represented by the thick arcs) links to one
node in each of node 1’s neighboring expressway zones at
level 2 and level 1. Figure 1 also shows how node 1 can
reach node 9 using expressway routing. 

It should be pointed out that, among the total routing
table, only the default routing table needs to be maintained,
which is guaranteed by the basic CAN infrastructure. For
the rest, what really matters are the topologies of the zones
recorded in the total routing tables. The topologies are sta-
ble; whereas the node responsible for these zones can be
changed on the fly. In Section 3, we show how we can make
use of this property to tune the expressway toward network
conditions and application behavior.

2.3 Building Expressway 
The preceding section serves to introduce the concept of
expressway and the intuition behinds it. The challenge is
how to construct the expressways at various levels dynami-
cally as the nodes join and leave. There exist several
choices. The algorithm we will describe below is called
evolving snapshot. As we will see later, this algorithm
establishes the basic topology of the expressways.

The idea behind the evolving-snapshot algorithm is
quite simple. At regular intervals of system growth, snap-
shots are taken. A snapshot is simply a “frozen” copy of a
current routing table. Formally, the routing table of a node x,
x.R, includes the nodes’ current zone, denoted by x.R.Z, and
the set of neighboring zones, x.R.Nd on each of the d dimen-
sions, and the addresses of one or more residents for each
neighboring expressway zone. This frozen routing table is
then pushed onto x’s total routing table, x.RT. 

“Snapshots” seem to imply some global coordination.
However, this is not the case: by the very nature of CAN,
the total Cartesian space is uniformly populated. Thus, each
node takes snapshot independently by observing its zone
size, with which it may infer as to what stage the system has
grown. When x’s current zone, x.RL.Z, shrinks to a target
size, x.RL-1.Z/K, it takes a new snapshot by incrementing L

and cloning RL out of RL-1. We call K the span of express-
way (K can vary from level to level in practice).

Table 1 summarizes the notation used:

Initially, there is only one node in the system. Its total
routing table is RT=<R0, R1>, and R0.Z is the entire Carte-

sian space. When a node y splits with x, it inherits all entries
of x’s total routing table other than x’s current routing table
(x.RL), and makes its default routing table, x.RL according to
the CAN algorithm. As the system evolve, a node takes
snapshots at regular interval, accumulating those “frozen”

Figure 1: Expressways for CAN
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routing tables in the past, each with decreasing span, in its
total routing table.

Figure 2 explains the concept of snapshots and total
routing table, with K=4. Independent of d, the evolution of a
CAN system can be thought as building a binary tree since
each new node will split with a random existing node. Each
newly added link of the tree leads to a new node join in. At
any given point of time, the leaves are the existing nodes in
the system. The oval attached to each link in the figure rep-
resents the original CAN routing tables of the node since the
node’s inception. Ovals framed by a box correspond to rout-
ing tables that have undergone snapshots. The total routing
table of a node can be found by walking down the tree from
the root towards the node, picking up the snapshot routing
tables along the path. The tree rooted by x when it joined the
system is called x’s expressway tree (see Section 2.5 for a
detailed description of the properties of an expressway tree).

Table 2 shows the actions that need to be taken when a
node joins, in addition to what CAN already does. The new

node inherits total routing table from the node being split,
and then both nodes test to see if its current zone has
shrunken to 1/K-th of its last snapshot and, if so, a new
snapshot is taken. As can be seen, the algorithm introduces
minimum changes to CAN’s existing task.

2.4 Routing
The routing protocol is very simple: if the destination point
is within the node’s current zone (RL.Z), we already reach
the destination. Otherwise, it iterates through the total rout-
ing table, starting from the one with the largest span, until it
finds a routing table Ri such that Ri.Z does not cover the des-
tination point. Figure 3 illustrates this. Ri is the first routing
table whose space does not cover the destination, and the
message will be routed according to Ri, to one of Ri’s

expressway neighbors.

Table 3 shows the pseudo-code for the basic algorithm,
where, d is the dimension of the Cartesian space; pt is the
destination point that we want to route to. Ri.Z.Lj and
Ri.Z.Uj denote the lower and upper bounds of Ri.Z along the

j-th dimension.

2.5 Tuning towards load-balance
As we will prove later, expressway built using the above
algorithm has O(ln N) routing performance. Before we do
that, however, we must resolve one critical issue.

RT
Total routing table: RT = <R0, R1, …, RL>

Ri.Z The zone of the node when Ri is taken

Ri.Nd

The set of neighboring zones when Ri is taken; 
each element in the set includes the topology 
(zone coordinates) and the nodes that are cur-
rently representing it

L
Total level of expressways that this node is 
aware of currently

K The span of the expressway

m
LogKN, where N is number of nodes in the sys-
tem

Table 1: Summary of Notations

Figure 2: Snapshots and total routing table. Links represent 
nodes; ovals are CAN routing tables, and those framed with 

a box are snapshots.
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Procedure for a node y joins node x
y.RT = <x.R0,…x.RL-1, y.RL>
Repeat procedure for testing for new snapshot

Procedure for testing for new snapshot

// executed by both x and y
If (RL.Z ≤ RL-1.Z/K) {
     RL+1 = RL
     RT = <R0, R1, …., RL,RL+1 >
     L = L+1
}

Table 2: Procedures for a new node join

Figure 3: Routing using expressway by finding a routing 
table with largest span.
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Expressways in real life have the attribute that, they are
of high bandwidth. Assuming a uniform distribution of traf-
fic, it can be shown that expressway at level i needs to han-
dle K times more traffic on average than expressway at level
i-1. K is the expressway span introduced in Table 1. Thus
the problem we have to deal with is load-balance among the
nodes that participates in expressway routing, since the
default algorithm has less number of nodes handling traffic
in high level expressways.

 Considering x’s expressway tree (see Figure 2), the
evolving snapshot algorithm makes sure that any y that is a
descendent of x has inherited all the routing tables of x all
the way from the root of the whole system till x becomes the
root of its expressway tree. As a result, it can be shown that
y has the same capability as x, either when forwarding a
packet outside x’s expressway tree, or when handling a
packet destined to a node inside this tree.

Therefore, achieving load balance only requires that a
node z that routes to x in expressway routing, to have the
option of replacing x with any node inside the x’s express-
way tree. Let z.Ri be the routing table being used that elects

to route to x, let X represent the respective expressway zone
in which x is a resident. We simply pick a point pt in X and
routes to it, whoever owns that zone now replaces x in z.Ri.
There are variations on how pt is selected, the simplest one
being picking any random point inside X. 

Because the number of nodes to replace x is propor-
tional to the size of x’s expressway tree being used, this
implies that the number of nodes handling expressway rout-
ing at a level corresponding to x’s root position in the tree is
proportional to the number of residents inside x’s express-
way tree. Thus, the algorithm will automatically balance the
load among expressways. The difference between load dis-
tributions of using the non-load balanced algorithm versus
the load-balanced version can be significant. Figure 4 shows
our simulation results reporting the number of messages
each node has to forward with the default routing table and
the routing table constructed using random selection. 

In the following sections, we will refer this load-bal-
ance scheme via random expressway neighbor selection, the
default random algorithm.

2.6 On-demand Maintenance
We now discuss how the expressways are maintained. For
node join, nothing extra needs to be done as the evolving
snapshot algorithm relies on the system growth. A newly
joined node lazily updates its expressway neighbors for the
expressway zones recorded in its total routing table, and
such maintenance is proportional to the total levels of
expressways, which is O (logK N).

Handling node departure is slightly more complicated.
Let x be the node that leaves. The default CAN already han-
dles the event such that one of x’s neighbor will take over
x’s responsible zone. However, x can be the expressway
neighbor of multiple nodes; its expressway functions need
to be maintained by some replacement nodes. We can do
this with two steps in a demand-driven manner.

First, when another node y later attempts to route to
node x that has departed, the request will time-out and y’s
routing algorithm may retract and use an expressway of
smaller reach. Note y’s routing without using any express-
way will always work, reflecting our overarching guideline
that the expressway is only an auxiliary system. Next, y
picks up a point in the space of x recorded in the failed rout-
ing table, and route to it. This will always succeed at node z
whose zone contains that point. z must be a descendent of x
and thus inherits x’s routing capability. z is now the replace-
ment of x to repair y’s snapshot. 

In our algorithm, there might be d neighbors in each
expressway level that uses x as expressway neighbors. Thus,
on average the total number of nodes that will update their
routing table entries is the product of the total number of
expressway levels and the number of neighbors at each
level, which is O (d.logKN). In any case, we repair the
expressways in the background. We can keep the addresses

Route with Expressway

If (pt ∈  RL.Z) Return;
For (i=0; i ≤L; i++)
    If (pt ∉  (Ri.Z ) 
       Route using Ri;

Route with Ri

For (j=0; j<d; j++) 
    If (pt < Ri.Z.Lj ||  pt > Ri.Z.Uj) {
       Route to x∈ Ri.Nj that is closest to pt  
       Break;
    } 

Table 3: Pseudo-code for routing with Expressway
Figure 4: For the load-balanced algorithm the distribution of 
messages each node has to handle is uniform whereas for 
the non-load-balanced algorithm the message distributions 

are skewed. (This is with 2-d CAN of 1024 nodes.)
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of multiple nodes that belong to each neighboring express-
way zone. When one node is detected to have departed,
another node is used instead. We then use the process
described in the previous paragraph to replace the departed
node.

2.7 Analysis 
We now analyze the routing performance of CAN with
expressway in place. For simplicity, we assume a uniform
distribution of the CAN nodes in the Cartesian space. 

Let m be logK N, therefore there are m-1 levels of
expressways. The total routing table has depth of m. As a
result, the storage for routing table increases m-folds. For

K=4 and N=220
 (i.e., a million nodes), m is 10. Since each

routing table is only a few hundred bytes (for d=2 it’s 160

bytes, assuming perfect alignment).2 Storage increase is,
therefore, not a concern.

As shown in Figure 5, routing using expressways
involve at most m levels of CAN-like routing. In the first
step, the routing algorithm will iterate through the routing
table of the source node to get down to the level where the
expressway zone does not cover the destination; it will then
use CAN routing to reach an expressway zone that covers
the destination. This process continues until the destination

is reached. Thus there are (logKN)*(d/3)K1/d hops in the
worst case. The first factor in the equation is the number of
levels the routing will travel, whereas the second being the
average routing hops in any level. To simplify our analysis,
we ignored the fact that the top-level expressway can use

torus for routing and has in average (d/4) K1/d hops, we use

(d/3) K1/d hops in stead. 3

The bigger the K, the less levels of expressways there
are, but the trade-off is that routing at each level is more
expensive. Solving this routing cost for optimal value of K,

it turns out of K=ed gives the best routing performance.

Below, we show how K=ed is derived.

Let f(x) = , then

f(x)’ =(d/3).( ).

Let f(x)’=0, we have .

Simplify the above equation, we get .

Thus the optimal K is ed, and the optimal routing per-
formance is: 

.

 The fact that optimal routing using expressway is
achieved independent of the choice of d is somewhat an
interesting and beneficial result. In CAN, lower dimension
simplifies node join and leave considerably, but sacrifices
fault-tolerance because less “parallel” routes are available.
Therefore, we can choose a low d such as 2 to simplify
maintenance, while preserving reasonable fault-tolerance
capability and still achieving optimal performance. 

In Figure 6, we compare the theoretical performance of

using the expressway ( ), with the results

2. For each neighbor it needs 32 bytes to represent the 
zone and 8 bytes to record the address of the node 
that is responsible for the corresponding neighboring 
expressway zone, assuming 64 bit node address.

3. We assume that both the source and the destination
follow a uniform distribution in the Cartesian space.
Therefore, the average distance is 1/3. For example,
for a 1-dimension CAN, the formula is

, which equals to

1/3. x and y are the positions of the source and desti-
nation respectively.

x y–( ) yd
0

x∫ y x–( ) yd
x

1∫+ 
  xd
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∫

Figure 5: Routing with Expressways

Figure 6: Expressway performance compared with theoretical 
values
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obtained using simulation for d=1, 2, and 4, up to 128 K
nodes. We can see that the simulation results matches well
with the theoretical values. The small deviations are
resulted from two factors. First, we have ignored that fact
that in some cases the torus can be used. Second, the theo-
retical optimal values of K are not always achievable given
that we always does 2-way splitting when a node joins the
system.

Figure 7 shows that expressway with the lowest dimen-
sion (d=1) easily outperforms the basic CAN up to d=5.

Last, in practice, for a reasonable small K, we can fully
connect the K nodes that are in the same expressway zone
and are at the same level of the expressway. This renders the
routing performance O(logK N) and tunable by varying K.

3 Tuning towards best performance
So far, we have discussed how the expressways can be con-
structed, maintained, and deliver O (ln N) or O(log KN)
routing performance. As have been illustrated through our
algorithms to balance the load, the important feature is that
the topology is stable whereas the representatives for each
expressway zone can be changed on-the-fly. This flexibility
is key to tackle advanced issues such as tuning towards both
network conditions and application behavior. 

3.1 Tuning towards Network Conditions
One important problem we must tackle is to utilize the
underlying network topology to best suit the overlay net-
work. This is of particular importance to CAN because the
dilemma it is facing: as nodes join the Cartesian space at
random point, it is guaranteed that documents (whose keys
are also produced randomly), are evenly distributed across
all nodes. Attempts to distribute the nodes according to their
physical locations ran the risk of uneven storage distribu-

tion, since the partitions of the space will reflect the network
topology and are unlikely to be uniform. One possible solu-
tion would be using the physical distribution of nodes to
“skew” the distribution of documents themselves. However,
in a dynamic environment where nodes come and go, cou-
pling document distribution with node distribution creates
unreasonable dependencies. 

We first consider a naive solution. Suppose X is a
neighboring expressway zone recorded in node y, y ran-
domly selects a set of replacement nodes, E(X) in X. y then
measures RTTs to the nodes in E(X). A subset of E(X) now
serve as the representatives of X in y.Ri. At the time of rout-
ing, y chooses from E(X) with probability inversely propor-
tional to the candidate’s RTT to y. The problem here is that
the size of X gets exponentially larger at higher level of
expressway, where coming up a representative E(X) set is
impractical.

3.1.1 Locating Closest Nodes using Coordinate Maps
We now describe a solution that is based on nodes’ positions
in the coordinate space. Eugene et al [4] described an algo-
rithm to map any given node into a Cartesian space by mea-
suring against a set of landmarks. The distance between two
nodes in that space closely reflects their Internet distance.
Karp et al [5] and Li et al [7] also argued that physical dis-
tance, measured by services such as GPS, can approximate
network distance in the wireless setting. Thus, we can sub-
stitute a node’s network coordinates with its coordinate in a
Cartesian space. 

The basic idea is to build maps of network coordinates,
and utilizing the archival capability of the P2P system itself
to store and maintain the maps in the various expressway
zones in CAN. When such maps are available, any node y

Figure 7: Expressway performance compared with CAN with 
different d
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Procedure for testing for new snapshot

// execute by new and old
obtain p
if (new node) {
    for (i=1; i≤L; i++) {
        map p to p’ in Ri.Z
        store <Ri.Z, id, p> in z∈ Ri.Z that owns p’
    }
}
If (RL.Z ≤ RL-1.Z/K) {
     RL+1 = RL
     RT = <R0, R1, …., RL,RL+1 >
     L = L+1
     Map p to p’ in RL.Z
     Store <Ri.Z, id, p> in z ∈  Ri.Z that owns p’
} 

Table 4: Procedures for a new node join
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can find a resident close to it in a given expressway zone Z
by consulting the appropriate map. There are many ways to
build a distributed map. Our map is composed of grids, each
contains residents whose coordinates fall inside the bound-
ary defined by the grid. This is just like a real map. What is
different though, is that we use the expressway zone’s CAN
partition as the grid itself. 

The goal here is to devise a hash function that can map
positions in the network coordinate space to points in a
CAN zone while at the same time preserve the distance rela-
tionship among the positions in the coordinate space. Sup-
pose we want to store the information of a node n, whose
position in the coordinate space is p, onto the CAN zone Z,
and the hash function maps p to p’ in Z, we store the triple
<Z, n’s address, p> as an object in the node that owns p’.
There are three cases:

• If the dimension of the coordinate space equals to the
dimension of the CAN we build and if Z’s range is [l, u]
along dimension i, for a node n with coordinate pi along
the i-th dimension, n is mapped to a point p’ in Z with
coordinate l+pi*(u-l) in the i-th dimension. 

• Storing coordinates that have a lower dimension than
the CAN is straightforward, and we can simply set the
extra dimensions to zero. 

• When network coordinates have a higher dimension
than CAN, what we can do is to fold multiple dimen-
sions in the coordinate space into one dimension of the
CAN zone. For example, to fold d dimensions of the
coordinate space onto [l, u] of one dimension of a CAN

zone, one such function is .

Any given node x participates at all level of express-
ways, for other nodes that are physically close to x to select
x as expressway neighbor, x’s network coordinate needs to
be published in maps corresponding to those expressway
zones. Therefore, there is one map for each expressway
zone in the system. It follows that each node will appear in a
maximum of logK N such maps. Assume that the total num-

ber of nodes N is 220 and K is 4, this number is 10. We
believe that this is not a big issue.

The original node join procedure is slightly modified,
as shown in Table 4. The existing node being split only
needs to publish its location in the new snapshot, if one is to
be taken; whereas a new node must publish its location in
all the expressway zones in which it is a resident. Now,
when a node is looking for candidates in an expressway
zone Z that is close to it, it uses its own coordinate and index
into Z’s map. As shown in Table 5.

It is not guaranteed that there are nodes recorded in the
targeted. To increase the probability that a node can locate
the candidates that are physically closest to it in a given
zone, there are a number of techniques we can use. First of
all, a node’s coordinates can be published not only in the
designated grid, but also in a set of neighboring grids
defined by a radius. This not only improves the availability
of the map, but also allows a summary of nodes living in the
grids close-by to be built. Alternatively, we can store the
network coordinates onto a sub space of the “host zone”.
The net effect is a condensed map, which increases the
chance of a node being able to locate the closest node in the
expressway zone of interest. For example if the subspace is
0.5 of the size of the zone, the map stored on one node
include information about approximately two nodes assum-
ing a uniform distribution of the nodes in the Cartesian
space. We define the ratio of map size to the size of the host-
ing zone, condense rate of coordinate map.

Clearly, the two mechanisms exhibit a trade-off: the
replication and summary improve the possibility as well
availability of the map service, but this is achieved at the
expense of additional communication and storage costs;
whereas the condensed map could possibly create hot spots
for map queries. Last, we note this two techniques can be
combined to further increase the probability of locating
physically close-by nodes.  

Procedure Locating Closest Node of x in Z

Let pt be x’s network coordinate;
Map pt to pt’ in Z;
Route to the node y in Z that owns pt’;
If (y’s summary is not empty)
     Return summary
Else
      Define a TTL to search outside y’s summary range.

Table 5: Procedures for locating the physically closest node in 
a zone
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Figure 8-1 depicts 8 nodes (a to h) and their network
coordinates. These nodes are distributed in a 2-d CAN as
shown in Figure 8-2, where a-d and e-h correspond to two
neighboring expressway zones. Each node’s CAN zone are
those small squares with owner’s ID in shaded box. Without
using coordinate map, each node simply randomly pick one
node from the neighboring zone as its expressway neighbor.
For instance, a can select either e, f, g or h, without consid-
ering physical locality. With coordinate map with condense
rate of 1/4, we can do much better. In this case, a-d publish
their positions in the grid owned by a, where e-h publish in
the grid owned by e. Now when a selects its expressway
neighbor, it uses its own network coordinate and consults
the map of its neighbor which is stored in e, and find that e
is physically closest. Thus a uses e as its expressway repre-
sentative for the zone that comprise e-h. Likewise, c will
select f.

Because of the dynamic nature of the system, a node
should periodically check the target expressway zone’s map
to see whether more favorable nodes are available. The
accuracy of the map can be lazily maintained. In the most
reactive case, departed nodes are deleted from the map only
when they are selected as expressway replacements and
later found un-reachable. Alternatively, each owner of the
map grid can periodically poll the liveliness of the nodes.
The most proactive measure is to update the map when a
node is departed. In the following evaluation, we will use
the condensed map as the default algorithm.

3.1.2 Evaluation of Algorithm
We have considered several options to study the effect of
our algorithms. Using a full topology generators such as gt-
itm or BRITE [8, 13] is possible and could derive meaning-
ful statistics such as latency in ms. However, reasonable
conclusion can only be drawn until a large number of topol-
ogies are tried. At the end, we decide to report latency as the
“distance” between network coordinates, and vary the dis-
tributions of the nodes instead. The two cases we consider
are: 

• Uniform: here the nodes spread evenly geometrically.

• “Ring”: in this case, the nodes uniformly distributed in
a ring-shaped area around the edges of a 2-dimension
Cartesian space. We produce this ring-shaped distribu-
tion to mimic the fact that nodes, in practice, are dis-
tribute over the edge of the Internet.

We choose CAN with d=2 to give a reasonable fault-
tolerance capability. We compare our algorithm, varying the
map condense rate from 0 to 1, against the random algo-
rithm described in Section 2.5, and the “ideal” case where
the network coordinates maps perfectly to the overlay net-
work. As explained earlier, the “ideal” case will certainly
gives the best routing performance, but is impractical

because the resulting uneven storage distribution (and thus
loads from application requests).

Figure 9 and Figure 10 depict the ratios of the average
latencies of CAN with the help of the network coordinates
maps to those of “ideal” CAN. In both cases, we use
expressway routing. In practice, the latency should be the
sum of physical_distance and logical_hops *
per_hop_overhead. To be conservative, we have set
per_hop_overhead to zero. 

The observations that we can make from the two fig-
ures include the following. (i) The larger the number of the
nodes in the system, the further away is the performance
from the “ideal” case. This is simply because the accumula-
tion of the deviations of the individual hops. (ii) The larger
the number of nodes the better improvements over the ran-
dom case. This because the average number of logical hops
is larger when there are more nodes in the system. Conse-
quently, there is a better chance to locate physically closest
nodes. As we will show later, the earlier logical hops typi-
cally have a larger span and hence a larger candidate pool to
select the next hop node. (iii) The smaller the condense rate,
the better the performance. This is expected, because more
candidates can be found. We note that, after condense rate
reaches 0.2, reducing the rate further does not give as dra-
matic an improvement. (iv) Our technique performs fairly
consistently over different node distributions. In fact, when
the nodes follow a non-uniform (ring-shaped) distribution,
which is closer to reality, the improvements over the default
random algorithm are more significant. Comparing with the
default random algorithm, the improvements are close to
50%, and stay within 2-3 range of the “ideal”. 

We found that these results quite encouraging. We
acknowledge that “certain percentage of reduction” is not
very intuitive because we use distance as a measure of
latency, and plan to use one real topology to derive results
with more meaningful latency metrics.

To find out to what extent the map has helped us, we
plot average latency data per-hop in Figure 11, comparing
with the “ideal” case. The figure shows an interesting obser-

Figure 9: Ratio of physical latencies of CAN using coordinate 
maps to those of “ideal” CAN. The coordinates of the nodes 
follow a uniform distribution. (X axis shows the number of 

nodes and Y axis shows ratio to the “ideal” case)
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vation, that is, with expressway way, the physical distance
of each logical hop increases (see the curve that is marked
with round dots), whereas for the “ideal” case, the reverse is
true (i.e., physical distances of each logical hop decreases.
See the curve marked with cross). This is because with
expressway routing, earlier logical hops tend to cover
expressway zones that have larger span (see Figure 5).
When locating the closest nodes in a neighboring express-
way zone, the larger the neighboring zone, the better chance
it can find a node that is close by. Whereas in the “ideal”
case, where the logical topology perfectly matches the phys-
ical topology, the span of the logical hops reflect the physi-
cal distance. 

This observation leads us to believe that there is still
room to improve. An optimal solution should have per hop
distance close to that of using the map at beginning of the
routing, while close to that of “ideal” at later stages. This is
possibly only when node distribution can be intelligently
controlled, so that close-by physical nodes can be located
irrespective to logical distance.

3.2 Route around congested node
Optimizing routes according geographic vicinity, as
described in the previous section, is not sufficient. Indeed,
the Internet is a dynamic environment where the flow of
traffic is unpredictable. An important topic for any P2P net-
works is to deal with congestions so as to deliver service
with the best effort, end to end. An extensive treatment of
the problem is beyond the scope of this paper and remains
as a focus for our future work. In this section, we only out-
line our principles and sketch out several techniques.

Avoiding congestion involves at least two critical com-
ponents. First, the congestion must be detected and
reported; second, alternative routes should be evaluated. For
the first task, we employ two techniques: explicit conges-
tion notification for congestion avoidance and active prob-
ing for congestion discovery. With explicit notification,
each node observes its own forwarding capacity. If it finds
that it is about to be congested, it will notify the upper
stream neighbors explicitly, so that the neighbors can route
to an alternative node that can possibly detour around the
congested node.

In some cases, a node can be too swamped to do
explicit notification. To handle this situation, a node probes
its routing neighbors (including expressway neighbors)
periodically, giving a time window within which a response
must be provided. Failing that is an indication that either the
neighbor has departed, or it is too loaded and congestion has
occurred. In order to make sound replacement decision,
active probing is done periodically to all the expressway
candidates in the target expressway zone. The expressway
candidates can be obtained by extending the previous algo-
rithm to return not just closest node, but a set of them
recorded in the summary, or in the grid from the condensed
map.

In addition to the two techniques just described, we can
also integrate congestion control as part of the process of
locating the most appropriate expressway neighbor in a
given zone. To do so, each node will periodically update its
map with information about its load. As before, failure to
update this information can indicate that: the node becomes
congested, or it has departed the system.

All these provisions may still be insufficient. In the
cases when the system is heavily loaded, the only possibility
to eliminate congestion is to control the sending rate of the
sources; the traditional congestion control techniques (such
as the slide-window protocol in TCP) can be employed.

3.3 Tuning according to application needs
The other side of the coin of delivering optimal performance
has to do with tailoring the routing infrastructure according
to application behaviors.

Figure 10: Ratio of physical latencies of CAN with maps to 
those of “ideal” CAN. The coordinates of the CAN nodes 

follow a ring-shaped distribution. (X axis shows the number 
of nodes and Y axis shows ratio to the “ideal” case)

Figure 11: Comparing with the case that uses coordinate 
map and the “ideal” case. (d=2, and N=4096, and the 

physical coordinates of the nodes are uniformly distributed in 
the entire space)
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Reducing per-hop physical distance does not necessar-
ily reduce the total delay. Consider the routing from x to d
where d is the final destination. The next physically closest
expressway node is y. There could exist y’ that belongs to
the same expressway zone of y and is physically further to x,
but so happens to take fewer logical hops to d. To account
for communicating patterns of the application, we do the
following. First, in the total routing table of node x, for each
neighboring expressway zone, instead of only keeping the
address of the node that is physically closest to x, we keep
the addresses of multiple nodes for each neighboring
expressway zone. Second, when route to a particular desti-
nation, we make an attempt to balance the per-hop physical
distance and total number of logical hops to achieve overall
smallest latency. We developed a simple heuristics, that is,
when choosing a candidate y in node x’s total routing table
to route from x to destination d, we try to minimize the
terms

physical_distance(x,y) 

+ ratio_to_ideal* ideal_distance(y, d) 

The term physical_distance(x,y) gives the physical dis-
tance between x and its expressway neighbor y, the function
ideal_distance(y,d) estimates the distance between (y,d)
assuming that the logical topology perfectly matches the
physical topology, and the term ratio_to_ideal gives the
ratio of the average physical distance using map to that of
the “ideal” case. 

Figure 12 to Figure 13 demonstrates the improvement
with this optimization. They are for the uniform and ring
topology, respectively. In each figure, there are two pairs of
curves, using K and 2K entries. We report the percentage of
improvement over both logical hops and latency comparing
to optimizing towards network conditions alone. In our
experiments we set ratio_to_ideal to 2 and 2.5 respectively

for the two different node distributions. (Recall that
Figure 9 and Figure 10 have shown that the physical dis-
tance using map is approximately 2 - 3 times the case when
logical topology perfectly matches the physical topology.) 

What can be seen is that this simple optimization is
rather effective, reducing physical distance up to 19% per-
cent. In addition, retaining more nodes to represent an
expressway zone can lead to better performance. Like
before, our technique performs fairly consistently regardless
of the nodes distributions, and the improvements for the
ring-shaped distribution is slightly better.

Of course, all there are achieved at the expense of addi-
tional storage cost. For a d-dimensional CAN, assuming
perfect neighbor alignment, the number of bytes for each
expressway level can be computed using the formula
2d*(16d + (8d+1)e), where 16d bytes are used to represent
the lower and upper bounds of an expressway neighbor
along each dimension. For each candidate in a neighboring
expressway zone, 8d bytes are used to record the center of
the node’s CAN zone, and 8 bytes are used to records its
physical distance to the current node. e is the number of
such candidates. For example, when e is 4 and d is 2, the
number of bytes at each level is 400 bytes. It requires
approximately 4K bytes if there are 10 expressway levels,
which should not be a major concern.

To further improve the routing performance, some stor-
age can be set aside at each node to cache routes based on
runtime behavior. Application level routing cache has been
used in Freenet [2], where newly discovered nodes are
inserted into routing table. Simulation results in [2] indi-
cates that routing performance improve over time,
approaching that of O(logN). The resulting network as a
whole exhibits the power-law pattern, where a small number
of nodes evolve to have high connectivity over time. This

Figure 12: Percentage of improvement over IP optimization 
alone. The figure to the left shows the results with K entries for 
each expressway zone and the figure to the right shows results 
with 2K entries for each expressway zone. The nodes follow a 
uniform distribution. (X axis shows the number of nodes and Y 

axis shows percentage of improvement)
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Figure 13: Percentage of improvement over IP optimization 
alone. The figure to the left shows the results with K entries for 
each expressway zone and the figure to the right shows results 
with 2K entries for each expressway zone. The nodes follow a 
uniform distribution. (X axis shows the number of nodes and Y 

axis shows percentage of improvement)
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isn’t necessarily desirable: a power-law network is vulnera-
ble to attacks on these well-connected nodes. Furthermore,
that would mean that the overall loads in the system may
not be balanced. We believe application level routing would
remain as an interesting research topic.

4 Building Expressway for Other P2P 
systems
It should be pointed out that it is not our goal to build
expressways that out performs O(logN) logical hops in gen-
eral. Rather, we believe that the most important attributes of
a P2P system are to reduce maintenance cost, and to provide
venues to tune the system to suit the application needs and
the underlying network conditions. Such that, in practice, it
beats O(log N). 

The central concepts of our proposals are the follow-
ings:

1. Identify topologies with different routing span, and uti-
lize such information as a foundation to construct
expressways. 

2. Having a default routing mechanism such that for a
given target topology area, there exist flexibility as to
who can be chosen as the representative of the area.

3. Archive relevant system information such as physical
coordinates and load information as objects stored
inside the system itself, in a way that’s easy to update
and retrieve.

4. Combine (2) and (3) to tune the expressway dynamically
according to both network conditions as well application
behavior.

The evolving snap algorithm provides a general means

to establish the basic expressway structure.4 For networks

that delivers routing performance less than O(log N), our
expressway provides a way to boost its performance to O
(log N), while keeping the maintenance cost of the default
system. 

In addition, the techniques we have proposed to tune
toward physical network conditions and application should
be applicable to other P2P systems as well. In systems such
as Pastry, different routing span has already been built in,
condition (1) and (2) are already satisfied. Though it is con-
ceivable that another layer of expressway can still be built
on top. However, 3) and 4) can be applied to derive better
routing decision in accord to physical conditions and appli-
cation needs.

5 Related work
Recently, there are much work focusing on building decen-
tralized routing, and data placement and retrieval. We com-
pare them with CAN with expressway in terms of routing
performance, maintenance cost, ability to tune the system
toward underlying network conditions and application
behavior (see Table 6 for a summary).

Both Tapestry [14] and Pastry [10] are based on Plax-
ton’s proposal [14], where node IDs and the routing tables
are divided into levels each with b bits. In level i of a rout-
ing table, it keeps the addresses of the nodes whose IDs
match up to the i-th level with the current node but differ in
the i+1-th level. To reduce the overall routing latency, the
nodes kept in the routing tables are those that are physically
“closest” to the current node while meeting the criterion. 

P2P Systems
Routing

Perf.
Maintenance 

Cost
Physical Network 

Conditions
Application Behavior Storage Utilization

Chord/CFS O(log N)
O(1) immediate,

O((log N)2) lazy
Server selection heuristics Caching Virtual servers

Tapestry/
Oceanstore

O( ) O(1) immediate,
O(log N) lazy

Select nodes that are close 
to current node when 
overlay is constructed

Attenuated Bloom 
filters

Replica management

Pastry/PAST -
Replica diversion/file 

diversion

CAN O(d N 1/d) O(d)
landmark ordering
Overlay = physical 

network
caching/replication

split zone with node that 
has largest volume

CAN w.
Expressway

O (ln N)
O(d) immediate

O(ln N) lazy
Coordinate map

heuristics to balance 
physical distance with 

logical hops
Even node distribution

Table 6: Comparison with other P2P systems, N is the total number of nodes in the system

N
2b( )

log

4. The only requirement is that there are ways to find out 
the logical closeness among nodes – this is the case in 
CAN, Chord, Pastry and Tapestry.
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In both Tapestry and Pastry, the closest node are picked
when a new node joins. For instance, in Pastry, a new node
X first contacts a node A that is physically close to it. It have
A route to X’s ID. Along the way, it picks up the level i rout-
ing table from the i-th node encountered. Because X is close
to A and the routing tables of A and all the nodes along the
path are constructed such that they are close to the respec-
tive node. Therefore, the routing neighbors picked up by X
will be reasonably close to X. In a second phase, X requests
the state from its routing neighbors with an attempt to locate
better candidates. Tapestry also keeps two backup neighbors
for each routing entry. An introspective optimization pro-
cess measures the latencies to primary and backup neigh-
bors. It may use higher-level neighbors for lower level
neighbors if they are closer. 

Besides ensuring random distribution of node IDs and
document keys, in Tapestry, documents are replicated on
multiple root nodes, and each root may have multiple float-
ing replicas. Replica management is used to adjust the num-
ber and locations of floating replicas to service the access
request more efficiently. In PAST, balanced document dis-
tribution is achieved through replica diversion and file
diversion [10].

To fit application behavior, Tapestry employs attenu-
ated Bloom filters. The first Bloom filter records the objects
contained locally, whereas the i-th Bloom filter is the union
of all Bloom filters for all the nodes at distance i through
any path from the current node.

In Chord (and CFS [3]), the routing performance is
O(log N). The maintenance cost is O(1) immediately by just

using the predecessor’s finger table. It takes O (log N)2

messages to repair the routing tables in the background. To
take advantage of physical network, Chord employs some
server selection heuristics which may take more logical
hops to achieve overall smaller physical latency. Chord
employs caching to take advantage of application behavior.
It achieves even storage utilization via the notion of virtual
server [3].

The routing performance of CAN is O(d N1/d), where d
is the dimension of the Cartesian space and the maintenance
cost is in the order of O(d). To take advantage of the physi-
cal network conditions, the overlay is built to reflect the
physical network via landmark ordering. This, however, can
cause uneven node distribution. CAN takes advantage of the
application behavior via caching data copies and on-demand
lazy replication. Even storage utilization is achieved by split
zone with a neighbor with largest volume and replication. 

In our proposal, the routing performance of CAN with
expressway is O(ln N). The default CAN routing table
needs immediate repair with a cost of O(d). As explained in
Section 2.6, lazy maintenance requires O(ln N) messages on
average. We use the default expressway topology as a

framework to tune towards both network conditions and
application needs (Section 3.1 and Section 3.3). These tech-
niques preserve the random distribution of the nodes in the
logical space and the document space, ensuring even stor-
age utilization. It should be noted that our techniques do not
preclude the use of any other orthogonal techniques such as
replication and caching.

We now offer some high-level remarks. First, the finger
tables of Chord can be thought as expressways, and a 1-d
CAN with expressways has the same level of performance
as Chord O(Log N). However, we can use higher dimension
CAN [9] (e.g., d=2) to achieve higher fault tolerance capa-
bility. Second, the notion of multiple realities in CAN
remotely relates to expressway in that the snapshots were
realities of the system in the past. The difference is that the
expressways do not have to be perfect CANs. Third, routing
in PAST and Tapestry resembles the expressways in that, in
routing table, entries at a lower level has a larger span than
those at a higher level. However, PAST and Chord force a
rigid logical structure (e.g., fixed number of routing levels).
This makes the routing distance independent of the actual
system size. In contrast, our scheme ensures that small sys-
tem simply has less number of expressways and routing can
take fewer hops. We note that for PAST, it is conceivable to
allocate relative larger number of bits for each routing level
when the system is of a relative small size. 

Fourth, in the existing P2P networks, our contribution
of using the archival nature of the system to store and
retrieve relevant system information to gain performance
advantage has been unique. Our results are robust, maintain-
ing uniform node distribution irrespective to their physical
distribution. We use CAN as the underlying platform and
inherited some of its desirable features, including unlimited
number of nodes and objects. In our experience, CAN’s
ability to better deal with dynamic nature of nodes departure
and join as well as the its simple routing algorithms are fun-
damental properties. 

Last, self-archiving of system information has been
explored in researches in other area. For instance, GLS [7]
organizes the node space into grids the resemble CAN zones
and their higher-order grid resembles our expressway zones.
However, their goal is to assign appropriate number of loca-
tion servers for each mobile node, rather than efficient rout-
ing, and the grids are pre-defined geographic regions.

6 Status and future work
Our ongoing research focuses on a few areas. We are in the
process of gaining more in-depth understanding of express-
ways properties; we are developing better algorithms to
more efficiently establish expressway routes that tune
towards application needs and the underlying physical net-
works. What we have shown is one way of using the archi-
val capability of the P2P system. It is conceivable to extend
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idea of coordinate maps to also store application-level hints,
such as the storage capacity of the node, or even the type of
applications that has been installed (e.g., to transcode the
content along the way); when choosing a expressway neigh-
bor, we choose the ones that meet the application-level
semantic as well. We are building a prototype of CAN with
expressways and looking into extending the expressway
idea to support application-level multicast for applications
such as streaming. Last, we are in the process of building a
distributed file service over CAN with expressway. 
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