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Current peer-to-peer storage utilities offer a convenient flat 
storage space, delegating the organization and presentation of 
data to upper layers. In reality, both applications and users 
typically organize data in a structured form. One such popular 
structure is hierarchical namespace as employed in a file 
system. A naive approach such as hashing the pathname of file 
system not only ignores locality in important operations such as 
file/directory lookup, but also results in uncontrollable, massive 
object relocations when rename on path component occurs.  
 
In this paper, we investigate policies and strategies that map 
the hierarchical namespace onto the flat storage space of P2P 
systems. We found that, in general, there exists a tradeoff 
between lookup performance and balanced storage utilization, 
and attempts to balance these two requirements calls for 
intelligent placement decision. We show that simple heuristics 
are effective in achieving significant performance benefit with 
negligible overhead. In addition, combining some of the 
heuristics and carefully setting the parameters can significantly 
reduce the lookup cost while keeping the impact on storage 
utilization minimal. These algorithms are robust and generic, 
capable of handling data layout to capture access locality. 
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Abstract 

Current peer-to-peer storage utilities offer a 
convenient flat storage space, delegating the 
organization and presentation of data to upper 
layers. In reality, both applications and users 
typically organize data in a structured form. One 
such popular structure is hierarchical namespace 
as employed in a file system. A naïve approach 
such as hashing the pathname of file system not 
only ignores locality in important operations 
such as file/directory lookup, but also results in 
uncontrollable, massive object relocations when 
rename on path component occurs. 

In this paper, we investigate policies and 
strategies that map the hierarchical namespace 
onto the flat storage space of P2P systems. We 
found that, in general, there exists a tradeoff 
between lookup performance and balanced 
storage utilization, and attempts to balance these 
two requirements calls for intelligent placement 
decision. We show that simple heuristics are 
effective in achieving significant performance 
benefit with negligible overhead. In addition, 
combining some of the heuristics and carefully 
setting the parameters can significantly reduce 
the lookup cost while keeping the impact on 
storage utilization minimal. These algorithms are 
robust and generic, capable of handling data 
layout to capture access locality. 

1 Introduction 
With the rapid growth of the Internet and ever-rising 
demand of the application, building a highly scalable 
infrastructure is becoming increasingly important. Such an 
infrastructure should be self-managed, decentralized, and 
capable of adapting automatically to the varying system 

conditions. For many, this happens to be the 
characteristics of Peer-to-Peer (P2P) networks [1] [2] [3] 
[4].   

An infrastructure must provide various core services. 
One of such core services is information search and 
retrieval. To this end, there are several options. For 
example, in Gnutella [5], each individual node hosts a 
number of objects over which local index is built. Locating 
an object thus becomes the problem of distributed 
indexing and searching. While this is adequate for content 
sharing, such approaches lack the performance efficiency 
and hard guarantees demanded by certain applications. 
This lack of hard guarantee is addressed by some of the 
recent P2P systems [3, 4, 6]. These systems offer an 
administration-free and fault-tolerant storage utility. 
Nodes in these systems collectively contribute towards a 
storage space, in a self-organizing fashion. Unfortunately, 
these P2P storage architectures do not offer support for 
structuring data, other than assuming a distributed hash 
table.   

One of the most dominant options for structuring data is 
a hierarchical namespace. The importance of a hierarchical 
namespace should not be overlooked. When such a 
facility is available, searching can be done more efficiently: 
locating an object is reduced to a lookup operation to the 
object’s parent directory. Indeed, both applications and 
ordinary users have the intuitive notion of organizing 
information into a tree-like hierarchical namespace. 
Furthermore, a namespace is certainly what many (if not 
all) legacy applications expect. We believe that 
applications such as rich content distribution and 
interaction can benefit from structuring data (e.g., a tree) 
to describe the relationship amongst the participating 
nodes.  

As a result, the imminent gap between structured data 
required by upper level applications and the flat storage 
abstraction offered by P2P networks underneath must be 
bridged. Policies and strategies to map the structured data 
onto the flat storage space of P2P systems is the focus of 
this study.  

 

We choose to investigate hierarchical namespace for 
metadata placement, since this type of distributed data 
structure is the most distant from the flat nature of P2P 
storage space, and is important for many applications.   
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Our approach is pragmatic in that the placement 
decision is application-driven, by accounting for the 
locality exhibited in those most frequent operations. 
However, locality should not be the only consideration. 
The time taken to make intelligent choices, the robustness 
against various shapes of tree and the order in which the 
tree is constructed, and most importantly the ability to 
preserve the uniform storage utilization in large scale, must 
be respected as well. The end results are mechanisms 
achieving a careful balance among all these factors. In 
contrast, current proposals support distributing objects 
randomly anywhere over the flat storage space. While 
simple to implement and yielding good storage utilization 
overall, these approaches neglect the performance aspect. 
Furthermore, as we will argue later, a straightforward 
implementation by hashing pathname to place objects 
randomly will result in uncontrollable and massive object 
relocation when structural changing operations such as 
rename occur.  

Such pragmatic approach requires high frequent 
operations be first identified. In traditional file system 
studies, it has been shown that lookup requests comprise 
a surprisingly high portion of total metadata operations 
[7]. Moving towards large-scale deployment, we envision 
this pattern to continue. As a matter of fact, NSFv4 [8] 
explicitly tries to address this issue by providing multi-
component lookup. Optimizing lookups maybe even more 
important in distributed file systems using P2P overlay, 
since operations such as create is proceeded by a lookup 
to the parent directory, after that the actual creation can 
bypass normal routing infrastructure and operate on the 
parent object directly.  

To summarize, the overarching design requirements are: 

• Performance: high frequency operations such as 
lookup must be delivered with great efficiency. In 
addition, the time to decide where to place an object, 
given all other constraints, should also be 
reasonable.  

• Resource balance: The purpose of efficient resource 
(e.g. storage) utilization in large scale peer-to-peer 
network is important, since bad resource utilization 
may create “hot spots” and system imbalance that 
can degrade performance.   

• Robustness: tree shape and construction order 
should have a negligible impact to both performance 
and resource balance. 

This paper reports our early investigation into this 
issue. We found that, in general, there exists a tradeoff 
between lookup performance and uniform resource 
utilization, and attempts to balance these two requirements 
require intelligent placement decision that may incur some 
additional overhead. We show that simple heuristics are 
effective in meeting these goals. The three algorithms we 

proposed, radius-delta, hill-climbing and zoom-in, can 
easily cut down more than half of the lookup costs from 
the naïve random placement approach. Some of the 
algorithms even have better resource utilization than the 
pure random policy. They are also robust to tree shapes 
and construction order. Our current investigation focuses 
on CAN as the chosen overlay platform and file system as 
way to structure data. While these algorithms are primarily 
designed for metadata placement, we believe they are 
generic enough to handle layout for data objects, where 
sequential access and pre-fetching exhibits similar locality 
behavior.  

The rest of the paper is organized as follows. Section 2 
gives the background of the study, which includes a short 
overview of P2P and CAN, and details of various options 
for constructing a hierarchical namespace and conducting 
a lookup procedure. We then discuss the three 
approaches for lookup optimizations in Section 3. Detailed 
evaluation and analysis are offered in Section 4. Section 5 
discusses a few orthogonal optimizations. Related works 
are covered in Section 6 and we conclude in Section 7. 

2 Background 

2.1 Overview of P2P systems and CAN 

The peer-to-peer systems we are interested in are those 
that will guarantee the retrieval of an existing object, as 
opposed to systems such as Freenet [9]. Important flavors 
of such systems include CAN [4], Pastry [2], Tapestry [1] 
and Chord [3]. All of these systems can be regarded as a 
distributed hash: lookup an object is equivalent to 
searching with the key associated with the object. 
Similarly, the concept of hashing bucket is mapped to a 
node in the system. Consequently, object query becomes 
routing in the overlay network composed by the 
participating nodes (buckets in the hash). The 
performance of a query is the product of number of 
routing hops taken in the overlay network (we call them 
logical hops) and the latency per logical hop. Each logical 
hop may compose multiple IP-level physical hops. Let N 
be total number of nodes in the system, then for any 
random pair of nodes, the number of logical hops is a 
function of N, denoted as F(N). 

The system we choose to evaluate is CAN. CAN 
organizes the logical space as a d-dimensional Cartesian 
space (a d-torus). The Cartesian space is partitioned into 
zones, with one or more nodes serve as owner(s) of the 
zone. Routing from a source node to a destination node 
boils down to routing from one zone to another in the 
Cartesian space. The routing cost, F (N), between a 
random pair is d/4×N1/d logical hops. We assume that 
nodes populate the CAN logical space randomly; this is 
the default policy in CAN. 



2.2 Namespace organization on top of P2P 

There are various alternatives to build the namespace on 
P2P. The most straightforward option would be to hash 
the entire pathname of an object into a random key, and 
use it for placement and retrieval directly. For instance, in 
the case of CAN, /a/b would hash to point p/a/b, and /a/b/c 
hashes to point p/a/b/c, and so on so forth. Locating these 
objects then amounts to routing to the corresponding 
points in the logical space. This does not require any 
change to the underlying infrastructure. However, this 
works best for immutable namespace in practice. Consider 
that the path component b is changed to b’. This renaming 
operation not only renders that the directory /a/b’ be 
hashed to a different point and thus has to be relocated 
physically, but all pathnames following the directory b 
(now b’) are affected as well and therefore their 
corresponding objects have to be moved. Although it has 
been shown that rename is not a frequent operation in 
itself, such massive, uncontrollable relocation will cause 
severe instability in the system. Figure 1 helps to explain 
this phenomenon. 
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Figure 1: Using hashing on pathname alone can cause 
massive, uncontrollable relocation when rename occurs 

(objects with * attached are affected) 

The problem here is that the placement decision creates 
binding with the structure of the namespace. Other 
hashing alternatives, such as hash on the content of 
directory objects, have similar (albeit reduced) problem. 

Therefore, in order to have a namespace hierarchy that 
can cope with structural change, each directory must 
contain name of the children object as well as their 
location info (point in the Cartesian space in the case of 
CAN). This is very much like the directory structure in 
conventional file system, in which inode number is the 
routing key for the layers beneath. When location 
information is embedded, the placement of the objects 
becomes controllable, allowing us to explore locality in 
various namespace operations. (This is demonstrated in 
Figure 2, where the binding between a parent directory 
and all its sub-directories can be explored in recursive 
namespace lookup to reduce overall lookup cost.) 

2.3 Lookup operation in the namespace 

While the primary function of lookup is to locate the 
object, an implicit requirement for a general purpose 
namespace is to validate the path along the way. Other 
functionality such as right enforcement at directory level 
requires similar level-by-level resolution.  

Lookup can be implemented in two different ways. The 
first, iterative, lets the client resolve one component at a 
time. This method is commonly used in local file system 
[10] in order to resolve over mount points. The other, 
recursive, hands over the complete path to the first 
directory, which resolves the first component and then 
passes the remaining path to the next directory, and so on 
so forth. The final result is then sent back directly to the 
client. These two approaches are shown in Figure 2. When 
a distributed system is built on P2P, different directories 
are very likely to reside on different nodes. Therefore, 
irrespective of the implementation, the unique directories 
(and thus unique nodes in the system) to be visited are 
the same. Obviously, the recursive approach reduces the 
total number of network hops and is more adequate in 
large-scale system where latency is high. To lookup an 
object N levels down, iterative requires 2N network trips, 
comparing with N+1 of recursive. For this reason, we 
choose the recursive method in this report.  
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Figure 2: Two lookup procedures shown side by side. 
Node A performs iterative lookup, while node B performs 
recursive lookup. Each directory may reside on different 
nodes in the system. Links between objects are location 
information embedded in the directory entries. As shown, 
iterative incurs more network hops than recursive. 

2.4 Cost of lookup 

Having introduced namespace organization and lookup 
procedure, we can now discuss how lookup cost is  
computed.  

For a given object, let P be the complete path (e.g., 
“/a/b/c”), and D=|P| be the length of the path. The total 

lookup cost can be expressed as D× h , where h  is the 
number of average logical routing hops resolving one 
component. Assuming random node distribution in the 
logical CAN space, for any two nodes with the same 



logical distance, the physical routing latency between the 
two is roughly the same. As a result, we can compare 
various algorithms by their total logical routing hops. The 
two simple cases of lookup cost, each represents one 
extreme of the cost spectrum, are as follows: 

l If we can compute the location of the object a 
priori (as is the case if hashing pathname is used 
to decide the object location), the so-called zero 
lookup bypasses all directories on the path and 
directly seek to the object. Since the query may be 
submitted from anywhere in the system, the total 
cost is equivalent to the routing cost between any 
two random pair of nodes in the system. The zero 
lookup cost is therefore F(N).  

l If, on the other hand, we allow any directories on P 
to reside randomly anywhere in the system, then 
resolving any component incurs the cost of 
routing between two random nodes. Therefore, the 
total cost is D×F(N). This solution, which we call 
baseline, has the best storage utilization.  

F(N) and D×F(N) represent the low and high bounds of 
lookup cost.  Throughout the rest of the paper, we use 
Lb and L0 to denote the cost of baseline and zero lookup, 
respectively. A good solution should strive to achieve 
lookup cost as close to F (N) as possible, while keeping 
the storage utilization close to that of the baseline. In 
addition, the algorithm must be simple and efficient. 
This is especially important for large-scale peer-to-peer 
systems. 

2.5 Discussion 

It should be noted that in traditional distributed file 
system, path resolution results are often cached and thus 
lookup cost is paid only once. This has been particularly 
effective for small-scale system, where namespace 
structure does not change rapidly and/or the update cost 
is small. For a large scale P2P system, however, cached 
directory entries may get invalidated not only because the 
structure change, but also when their location (zone) 
change (i.e. the node hosting the original directory object).   
Furthermore, cache misses can be more expensive. What 
this means is while we still expect caching namespace 
resolution to be helpful, a system must not rely on caching 
alone but rather to start with a sound placement strategy 
to begin with. 

3 The algorithms: Radius-delta, Hill-
climbing and Zoom-in 

As explained earlier, the total lookup cost can be 

expressed as D× h , where D is the path length, and h  is 
the number of average logical routing hops resolving one 
component. The locality of the lookup procedure is 
inherent in resolving consecutive components. Therefore, 

to bring down h , we can place a child object at a node that 
is close-by in routing with respect to the node hosting the 
parent object, subject to storage utilization constraint and 
decision complexity. This is the principle behind the 
Radius-delta and Hill-climbing algorithms. The third 
algorithm, Zoom-in, takes a somewhat different approach. 
The goal here is to quickly “zoom” into a small subset of 
nodes that host deep down sub-trees, making lookup cost 
irrelevant to the path length D. 

3.1 Radius-delta 

The idea here is to simply choose a small constant, r, 
which defines a small space within which a child object 
will be randomly placed, relative to the position of the 
parent. In the case of CAN, r is a small real number in the 
range of [0,1], for example 1/16. 

There is no additional overhead in creation time: it’s just 
a matter of picking a random point in the target space. 

Under this algorithm, the average distance between a 
parent and one of its children is r/2 in CAN. The routing 
cost resolving one “component” is r×F (N). As a result, 
the total lookup cost is D×r×F (N). Thus, lookup cost is r 
fraction of Lb and, theoretically, can always be reduced it 
by decreasing r. 

With a balanced tree, the storage utilization with infinite 
number of nodes resembles a normal distribution centered 
at root. The height of the center depends on r: bigger r 
has a flat center and spreads out the distribution. Also, 
the deeper the tree relative to r, the more spread the 
distribution will be. This seems to imply that radius-delta 
by default have very poor storage balance. However, the 
system is not of infinite size. The effect of limited system 
size is to divide the “infinite” spread into chunks, and the 
total storage utilization can be found by “folding” the 
chunks on top of each other. Figure 3 illustrates these 
concepts. For the “folding” effect to take hold, D×r must 
be larger than 1 to allow the allocation “crawl” out of the 
boundary. Thus, a larger D×r has the net effect of 
smoothing up storage utilization, while at the same time 
increases lookup cost. As a result, there exists a tradeoff 
between lookup time and storage utilization. 

 Small r×D  

folding  

Big r×D 

 
Figure 3: Storage utilization with radius-delta and the 
“folding” effect 



3.2 Hill-climbing 

In a P2P network, nodes typically exchange periodic 
heartbeats with its neighbors for maintenance purposes. 
Storage utilization of surrounding nodes can thus be made 
“free” by piggybacking such information along with the 
heartbeats. Guided with this knowledge, a node inspects 
its own storage utilization comparing with those of its 
immediate neighbors. If the minimum storage utilization of 
its neighbors is within a threshold, comparing with that of 
its own, it hosts the object immediately. Otherwise, it 
hands the job over to the one with the minimal utilization 
(breaking ties randomly) and the process starts there 
again. The default algorithm has a threshold of zero. A 
larger threshold value encourages parent-child 
collocation, at the cost of less even storage utilization 
distribution. 

Lookup cost depends largely on parent-child distance. 
Consider the initial state of the system where there is no 
object, and assume the namespace is built recursively 
breadth-first. A “pile” will first emerge, with the later-
comers laid on the surface. Since the surface increases 
gradually, the pace at which the “pile” expands also slows 
down. When the next level of hierarchies starts to build, 
new “shells” are put up and the “pile” crawls towards 
outbound. In reality, the actual tree creation order is 
arbitrary, and the hill-climbing algorithm always tries to 
place the object close-by, given the constraint of storage 
utilization. A deep and thin tree usually has short parent-
child distance, whereas a fat and shallow tree is the 
opposite. As a result, lookup cost to leaf objects is 
insensitive to the tree shape. 

The hill-climbing algorithm cannot always settle the 
placement of the object in one shot. If the parent directory 
is already in a “dip”, the placement is immediate. If, on the 
other hand, the parent is at the top of a local “hill,” the 
algorithm will roll “downhill” until a “dip” is found. In that 
case, creation takes longer time. A larger threshold tends 
to reduce the creation cost because it tolerates utilization 
deviations more. Another way to limit the creation cost is 
to introduce the time-to-live (TTL) value, which restricts 
the maximum number of hops the placement takes. 

It is possible that multiple hills will emerge and, 
consequently, the total storage utilization becomes 
uneven. This is so because the optimization is always 
local, which is a fundamental property of the hill-climbing 
algorithm. When number of objects is much larger than the 
system size, the multiple-hill effect will be reduced. This is 
because the “pile” will eventually “overflow” the 
boundary and crawl backwards. Figure 4 demonstrates 
these concepts. 

 
 Children of “/” 

 “/a” 

 Children of “/a” 

Overflow 

 
Figure 4: Storage utilization of hill-climbing algorithm 

3.3 Zoom-in 

While the previous two algorithms aim at bringing 

down h , the goal of zoom-in is different. Zoom-in instead 
tries to minimize the impact of D and, in the extreme, 
renders it completely irrelevant.  

With zoom-in, we always define the zone where a parent 
object lives, and sub-divide that zone into k  (k  is called 
the zoom-in degree) sub-zones in which we place the child 
objects in a random or round-robin fashion. This way, 
descending down the tree, the routing range will be 
recursively reduced, until the point where one single node 
now contains all the remaining sub-tree of a directory. 
From this point onwards, lookup becomes local operations 
to that node. Assuming sub-zones are perfect cubes and 
with fully balanced tree, we can prove that this algorithm 
can approach the performance of L0: 

For a d-dimensional CAN, assuming a zoom-in degree k , 
and a zone with average routing hops x, after zoom-in, the 
average routing hops of each of the k  sub-zones will be 
x*(1/k 1/d). If we repeatedly sub-divide the sub-zones with 
the same zoom-in degree, after subdividing the zone y 
times, the average routing hops of the sub-zones will be 
x*(1/k y/d).  An upper-bound of the average lookup time is 

therefore, F(N) * ( )∑∞

=0

1
y

d
y

k
, which is approximately 

[k1/d/(k 1/d-1)]×F(N). With a large k , zoom-in approaches 
the performance of L0. 

There is no additional overhead involved in object 
creation. As long as the namespace tree is balanced, the 
storage utilization will also be perfect. But there is one 
catch: if the fan-out is smaller than k , then it’s guaranteed 
that not all sub-zones will be populated. This is especially 
a problem if small fan-out occurs at higher level. 
Furthermore, zoom-in only works the most effectively if D 
is large (a shallow tree can be easily handled by radius-
delta). Therefore, this algorithm is good for deep, balanced 
tree with fan-out a multiple of the zoom-in degree 
(especially at higher level). In other words, zoom-in is 
somewhat sensitive to tree shapes. We discuss remedies 
to that problem in later sections. 



When a priori knowledge of the tree is available (for 
example a digital library), it is possible to do intelligent 
division of the zones (i.e, vary k  and sub-zone sizes 
accordingly). The pseudo code of the algorithm is shown 
in  Figure 5.  

Step 1: Traverse the tree in post-order and assign a 
weight to each node in the tree. The weight of a node 
indicates the total amount of storage requirement for 
the sub-tree rooted at the node.  

Step2:  call place(root, the entire Cartesian space); 

The procedure ‘place’ and the auxiliary functions W 
and Size are defined below: 

W: treenode à  weight;// returns weight of a node 

 Size: zone à double; // returns the size of a zone 

 

place (r: treenode,  z: zone) { 

   Place r in z; 

   Foreach (c :child of r) { 

        zc = a new sub-zone of z,  

           where Size(zc)/Size(z) equals to W( c )/W( r ); 

        place(c, zc); 

   } 

} 

Figure 5 Pseudo code for distributing the name space 
according to the weight and structure of the tree 

This algorithm consists of two steps: in the first step, 
the entire tree is traversed in post-order, and each node is 
assigned a weight that indicates the amount of storage 
requirements for the sub-tree rooted at each node. In the 
second step, the tree is traversed again and each node is 
placed into a zone whose size is proportional to the weight 
assigned to the node.1 

One might argue that a tree whose structure is known 
beforehand can be handled by hashing the pathname. The 
difference here is that zoom-in can cope with structure 
change without massive relocation, and that it captures 
locality better because getting down the levels, objects 
start to cluster together rather than spread out. 

3.4 Summary 

The properties of the three algorithms can be summarized 
as the followings: 

• By choosing small radius, radius-delta can arbitrarily 
reduce the lookup cost. However, the storage 

                                                 
1 When the shape of the tree changes causing a zone for a sub-

tree to become over crowded, we can always allocate a new 
and less crowded zone for the new objects of the sub-tree that 
otherwise would fall into the over crowded area.   

utilization improves only upon the product of the 
depth of the tree and the radius. As a result, there 
exists a tradeoff between lookup performance and 
storage utilization. 

• Hill-climbing tries to minimize lookup cost given 
storage utilization constraint, and is insensitive to tree 
shapes. But it may take time to make placement 
decision, and require large object-to-system size ratio 
to populate system space. 

• Zoom-in has the best theoretical performance, with 
lookup cost approaching that of zero lookup. 
However, it’s more sensitive to tree shapes. Zoom-in 
with a priori knowledge of the tree structure is 
possible to attain good lookup performance as well as 
storage utilization. 

The design of the above algorithms has taken the three 
requirements, performance, storage utilization and 
robustness, into account. Some of the desired properties 
can be found only through more in-depth analysis of the 
experiment results. As we will show shortly, these 
algorithms can be combined together for even better 
results. 

4 Evaluation 
We evaluate the three algorithms proposed by means of 
simulations. The primary goal of the experiment is to gain 
insight on how well the approaches perform, and secondly 
to identify potential optimization opportunities.  

We choose CAN as the overlay network consisting of 
1024 nodes (roughly about 1/100 of total objects for a 
given a tree), organized in a 2-d Cartesian space.  Nodes 
populate this logic space uniformly. The details of 
experiment setup, workload and metrics of comparison are 
reported first, followed by the results and analysis. 

4.1 Experiment setup 

4.1.1 Namespace used 

The namespace trees include both synthetic as well as 
real, active ones. In the synthetic class, two trees with 
dramatic different characteristics, deep and fat, are used. 
Deep is a binary tree containing objects spanning across 
31 levels. The fanout in this tree grows slower, with fanout 
alternating between 1 and 2 per node as level grows. Fat 
tree has fan-out that doubles at each subsequent level, 
with initial fan-out of 4. Fat tree contains 100K objects 
with depth of 6.  We gathered real active trees from two 
different sources. The first one is a namespace from an 
active server for software distribution in HP-Labs, and this 
tree has about 165K objects in total. The second active 
tree is web namespace that we generated from the proxy 
logs available from NLANR [11], which contains about 1M 
objects. 



We use d, f, h and w as shorthand notations for these 
four trees from now on. Figure 6 shows the number of 
children at each level for these trees. 
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Figure 6: Shapes of the four trees used. (Where d, f, h 
and w refer Deep, Fat, HPL tree and Web Namespace 

respectively) 

4.1.2 Access pattern 

Namespace accesses correspond to two different kinds: 
those that construct the tree, and those that walk through 
the tree (lookup).  

Since the log of tree creation is not available, to 
understand the effect of different tree creation order, we 
synthetically construct tree three different ways: depth 
first (DF), breadth first (BF) and random (R). Since the 
robustness against tree construction order is by itself an 
important issue, we dedicate a separate section to report 
its effect. In other parts of the evaluation, BF is used as 
the default tree construction order.  

Access pattern is synthetic for all but the web 
namespace. In the case of synthetic access pattern, we 
randomly choose a set of paths from the processed tree 
and a set of nodes from the node space, to perform 
lookup. For the web namespace, the access pattern is 
directly taken from the proxy logs. We first hash the 
clients IP address to one of 1K locations and use the 
hashed value as node identifier to perform the lookup with 
the corresponding path that client accessed. 

4.1.3 Metrics 

For a given lookup operation, the cost is computed by 
counting logical hops routing to leaf objects. This gives 

us the direct measure of h  -- number of logical hops 
resolving one segment in lookup. The number of hops 
“seeking” to the root is included. We average over 100 
random samples; each is a pair of the query node and a 
leaf object. To give as fair a comparison as possible, we 
report the lookup cost, L, normalized by the zero lookup 
cost (L0). The normalized baseline lookup costs (Lb) for the 
four trees are 27, 5.6, 8.7 and 5.2 for deep, fat, hpl and web 

respectively. Due to the irregularity of node’s physical 
connectivity and position in the Internet, logical hop 
counts may not be perfectly proportional to the end 
physical latency observed. However, we believe L 
establishes a sound base for performance comparison in 
evaluating different algorithms. 

The storage utilization is the standard deviation 
amongst nodes.  Similar to lookup performance, the 
storage utilization, U, is normalized by that of the baseline. 

Wherever necessary, we also report the creation time C, 
which is the number of hops it takes before an object is 
finally placed. C represents the overhead in performing 
intelligent placement decision. 

4.2 Results 

Figure 7 shows the result of the basic radius-delta 
algorithm. For comparison purposes, we include the data 
of the baseline algorithm (data points labeled by “b”). We 
use altogether 5 different radiuses, from 1/16 to 1 (rd uses 
1/d as radius). There are clear tradeoffs between lookup 
cost versus storage utilization: L increases, whereas U 
decreases with radius. As described earlier, larger radius 
and D has the effect of “overflow” the boundary and even 
up the distribution. Consequently, deep has the best 
storage utilization, followed by hpl. Because fat, hpl and 
web are relatively shallow, lookup performances benefit 
from small radius for these trees. 

For these workloads, radius of 1/8 is the most balanced 
between good lookup performance and reasonable storage 
utilization. On average, its lookup cost is about 4 times of 
L0, 67% reduction over Lb. 
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Figure 7: Radius-delta. rd means using radius delta of 
1/r. The baseline results are the points on the “b” 
column. 

Figure 8 depicts the result of the hill-climbing algorithm. 
We also studied variations with threshold and TTL. The 
threshold is number of objects as a fraction of the average 
objects per node. For example, if there are 100K objects in 
a system of 1K nodes, then average objects per node is 
100. In this example, a threshold of 5% means a node will 
host an object unless one of its neighbors has 5 less 
objects. Because total number of objects is usually 
unknown at creation time, this threshold setting is not 
practical in reality, where an absolute storage utilization 
difference (weighted with bandwidth and other 



parameters) is more adequate. TTL is simply the maximum 
number of hops a placement will take before settling down. 
In Figure 8, hc is hill-climbing with infinite TTL; hc-T is 
hill-climbing with TTL equals to 10; hc+ is hill-climbing 
with threshold of 5% and infinite TTL; hc+T is the same 
as hc+ but with TTL=10. As before, baseline results are 
included. 

The first observation to make is that, across the board, 
all variations achieve good storage utilizations as well as 
low lookup costs. Interestingly enough, the storage 
utilization is even better than baseline. It could also be 
observed that different trees make little effect. This is 
because for a given number of objects, a fat tree has low D 
and the average parent-to-child distance is greater; a deep 
tree is exactly the opposite. Setting non-zero threshold 
produce the same effect. Overall, lookup cost is around 3 
times of L0, achieving 78% reduction over Lb. 

This robust performance comes with a slight cost of 
creation cost, since hill-climbing will look for storage 
under-utilization nearby. The creation costs for hc are 2.2, 
4.2, 6.3 and 3.7 hops, for deep, fat, hpl and web 
respectively. 
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Figure 8: Hill-Climbing algorithm. 

Figure 9 gives the result of the zoom-in algorithm. The 
zoom-in degrees are is 8, 4, 2 and 1 (zd is zoom-in degree 
equals d). Note that zoom-in degree of 1 is the baseline 
algorithm.  

Let us focus first on the lookup cost. As expected, 
zoom-in tends to be robust against different trees. Z4 
seems to be good enough for these workloads, achieving 
lookup cost of 3.4 times of L0, a 64% reduction over Lb. 
However, different trees have a significant impact on 
storage utilization. Deep with zoom-in degree of 8, 
populates a very small fraction of the system and its 
utilization is very poor (U=12K). However, as observed in 
Figure 6, the web tree has a very big fan-outs, as a result, 
storage utilization is excellent. This verifies our 
assumption that while zoom-in can attain the best 
theoretical lookup performance, its storage utilization is 
rather sensitive to different tree shapes. 
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Figure 9: Zoom-in algorithm 

4.3 Variations 

The hill-climbing algorithm can be a standalone tool to 
even up distribution. We apply this to radius-delta and 
zoom-in to see how much difference it makes in terms of 
storage utilization. Here, we use radius-delta and zoom-in 
as algorithms to make primary placement decision, and use 
hill-climbing to further fine-tune the placement according 
the storage utilization in the local context. Doing so may 
inadvertently reduce the lookup performance, since hill-
climbing will move the placement to nearby underutilized 
nodes. Thus, we set the threshold to be 5%. 
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Figure 10: Radius-delta with hill-climbing 

Figure 10 shows the results of radius-delta, when 
applied with hill-climbing. Comparing with its non-hill-
climbing counterparts, the storage utilization is greatly 
improved. Lookup costs increases are moderate. Since 
radius-delta has fairly good storage utilization to start 
with, it does not take hill-climbing too long to smooth the 
distribution: the average creation cost of r16, for example, 
is only 2 hops. 
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Figure 11: Zoom-in with hill-climbing 

Figure 11 shows that hill-climbing is very efficient to 
improve storage utilization for zoom-in as well. This comes 
with the cost of more creation time.  Especially in z8 where 
storage utilization is the most imbalanced, it  takes hill-
climbing lots of time to even up utilization (5 creation 
hops). The impact on lookup is the most pronounced for 
deep: L with z8 increases from 2.7 to 8.2. 



To gain more insight of the effectiveness of hill-
climbing, Figure 12 plots the storage utilization of the 
radius-delta algorithm, before and after hill-climbing is 
applied. In the figure, x-axis corresponds to nodes in the 
system (node space is compacted into 40 chunks) and y-
axis corresponds to the normalized storage utilization. The 
results are for fat tree with the smallest radius we 
experimented, 1/16. Recall that in radius-delta, storage 
utilization depends on D×r. Thus, this is the most 
unfavorable case to start with. As shown, the 
concentration is effectively mitigated after the hill-climbing 
is applied. 

 
(a) Default 

 
(b) After 

Figure 12: Effect of hill-climbing on storage utilization 
(radius-delta with r=1/16, on the fat tree).  

 

4.4 Robustness against tree creation order 

In the above experiments, we have assumed a breath-first 
tree construction order. In reality, tree creation is far from 
predictable, not to say controllable. An important aspect 
of the placement algorithm is therefore how robust they 
are against different tree creation order.  

For tree creation order to make a difference, the 
placement decision must have a dependency on the 
current layout status. As such, neither the basic radius-
delta nor the zoom-in algorithm is sensitive to creation 
order: they depend on the overall structure only. However, 
the hill-climbing algorithm itself and the other two 
algorithms when combined with it are influenced by 
storage utilization at any given moment. To understand 
the impact of the tree creation, we use three forms of order, 
depth-first (DF), breadth-first (BF) and random (R). For 
random tree creation, we enumerate all the paths of each 
tree in random order, we then walk each component of the 
random paths and create an object if the component has 
not yet been created. We only report results of the 
following configurations: 

l Hill-climbing with threshold of 5 and 10 TTL. 

l Radius-delta with r=1/8, combined with hill-
climbing with threshold 5. 

l Zoom-in with degree of 4, combined with hill-
climbing with threshold 5. 

We plot the lookup cost and storage utilization of DF, 
BF, and R as shown in Figure 13 through Figure 15. It can 
be observed that the order of tree creation has very little 
effect on the lookup cost and storage utilization for all the 
trees for the three experiment configurations.  For the 
configuration with the hill-climbing algorithm alone, 
random tree creation slightly worsens the storage 
utilization for both the fat tree and the HPL tree. Both the 
fat and hpl trees are fat and shallow, and of relative small 
sizes. We believe that for small fat-trees, with a random 
strategy, there is a larger probability that multiple hills can 
emerge and consequently cause the total storage 
utilization uneven, whereas for a larger tree, such as the 
Web tree, the small hills are evened out because of the 
huge number of objects. We are still in the process of 
gaining in-depth understanding of the phenomenon. 
Nevertheless, it should be noted that even the worst case 
has better storage utilization than the baseline random 
case. 
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Figure 13: Lookup cost and Storage utilization for hill 
climbing using BF, DF and R tree creations 
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Figure 14: Lookup cost and Storage utilization for 
Radius-delta (8) using BF, DF and R tree creations  
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Figure 15:Lookup cost and Storage utilization for Zoom-
in (4) BF, DF and R tree creations 

4.5 Summary 

In this section, we provide extensive experiment results on 
the three heuristic algorithms. Not surprisingly, in general, 
improving lookup performance comes at a cost of less 
even storage utilization distribution. Algorithms that try to 
balance the two calls for intelligent placement decision, 
which incurs additional overhead. 

Our results indicate that the simple hill-climbing 
algorithm is robust and achieves the most balanced results 
overall, with moderate placement overhead. Hill-climbing is 
also very effective as a complementary tool to smooth out 
distribution for other algorithms. Radius-delta delivers fair 
performance, and its storage utilization can be improved 
quite easily using hill-climbing. The strength of zoom-in is 
for deep, balanced trees with fan-outs greater than zoom-
in degree, and is demonstrated with the web namespace 
tree, which is shallow and has high fan-outs.  

5 Discussion and other orthogonal 
mechanisms  

We have assumed that storage distribution is at the 
granularity of object size. Other alternatives such as CFS 
[12] choose to treat the whole distributed storage space as 
a gigantic disk and therefore allocation is done at the 
block level. The difference in distribution granularity isn’t 
the key issue, as resolving next component along the 
namespace path necessitates the access of component’s 
internal data in any case – be it scattered on a number of 
blocks or contained in one object. Lookup performance 
only depends on the cost of seeking from one component 
to next.  

In fact, we believe the algorithms we developed here is 
directly applicable not only as optimizations to improve 
lookup performance in block-based distributed file system 
on top of P2P, but can be extended to data blocks 
allocation as well. If an object is large, the blocks 
associated with it may spread across multiple nodes. 
Distribution of those blocks should take into account the 
access pattern of the application. If the access pattern 
isn’t predictable, it will be safer to target the locality 
exhibited in sequential access and/or pre-fetching. 
Sequential access to a broad range of blocks is akin to 
“lookup” through a thin tree fan-out equal to 1. As such 
the blocks should be allocated close by, subject to storage 
utilization constraint. This is exactly the same assumption 
under which our algorithms for metadata distribution are 
developed.  

Since lookup performance depends on system’s routing 
capability, a number of obvious optimizations can be 
applied to shift the focus more towards storage utilization. 

For instance, we can use high-dimension CAN or other 
systems with O (log N) routing performance. Each node 
might have routing cache to keep direct routes to those 
frequently visited nodes. Alternatively, we can include a 
“hint” field in directory entry that speculates the node that 
keeps the child object. Apart from other well-known 
approaches such as caching and replication, directory 
aggregation, where an object contains multiple levels of 
underneath sub-directories, will also reduce the lookup 
cost by slashing D. 

These approaches work well but only for namespace 
objects that are rarely modified. In a large-scale peer-to-
peer system, enforcing consistency for directory objects 
that need to be accurate all the time is a sizeable challenge. 
On top of this, approaches such as directory aggregation 
will run into a phenomenon called “false-sharing.” 

Another vulnerable point of the above strategies has to 
do with the dynamic nature of P2P system. The side effect 
introduced when nodes come and go may also invalidate 
cached copies. Consequently, the system can’t rely on 
caching alone, and a sound placement algorithm that relies 
on the default routing infrastructure only is highly 
beneficial. Our results support this conclusion, in that the 
lookup cost with these simple heuristics can be easily 
reduced by 60-70% over the naïve random algorithm. 

6 Related work 
Much works have gone into the issue of storage 
utilization in large-scale systems. Many of them are 
variations of hill climbing; this is the case in Farsite [13], 
CAN[4] and PAST[2]. The hill-climbing algorithm we 
proposed is guided by the same principle. In addition, we 
investigated a number of other algorithms. The unique 
contribution we make is that we treat the issue of storage 
utilization in conjunction with efficient hierarchical 
namespace in the peer-to-peer networks. 

CFS [12] proposes an interesting alternative called 
“virtual server,” which is to divide the resource of a 
physical server into multiple peers that participate in the 
peer-to-peer systems. The net result is that storage 
utilizations of multiple nodes in the overlay networks are 
aggregated. If those virtual servers are scattered 
sufficiently randomly, overall storage utilization in the 
physical world tends to be balanced. The tradeoff is that 
more states have to be kept per physical node. The focus 
there is on storage utilization, and the locality of file 
system operations and its impact on performance was not 
taken into account. 

A number of systems are capable of building a 
distributed file system at object granularity [14, 15]. 
Lightweight protocols to construct namespace across 
geographically distributed sites are proposed in [16]]. In 
[17], qualitative arguments have been made about the gap 



between the hierarchical namespace and the flat P2P 
storage abstraction, pointing out that the “virtualization” 
property of P2P systems is incapable of taking advantage 
of the various locality exhibited by applications. Our view 
is consistent with theirs, and we have contributed not 
only with quantitative analysis but also algorithms to 
balance the tradeoff between performance and resource 
utilization. 

7 Conclusion and Status 
In this paper, we investigate the issue of establishing 
efficient hierarchical namespace in the flat storage space 
offered by peer-to-peer systems. To our knowledge, this is 
the first work that addresses this problem. 

We found that, in general, there exists a tradeoff 
between lookup performance and uniform storage 
utilization distribution, and attempts to balance the two 
requirements in turn incur additional overhead for 
intelligent placement decision. 

We derived a set of simple heuristics-based algorithms 
and verified them through experiments. Our approach is 
application driven, by taking full account of the locality 
exhibited in high-frequency operations. The design goal 
has been to arrive at algorithms and strategies that 
balance carefully between performance, storage utilization 
and robustness. 

Our results indicate that the simple hill-climbing 
algorithm is robust and achieves the most balanced results 
overall, with moderate placement overhead. Hill-climbing is 
also very effective as a complementary tool to smooth out 
distribution for other algorithms. Simulation results show 
that our approaches can reduce the average lookup cost 
by 60-70% from the baseline. 

Our planned future work include both advanced issues 
as well as problems we have not addressed properly:  

• We plan to extend the algorithms and look into 
placement algorithms not only for metadata, but for 
data objects as well. We plan to investigate the 
placement algorithms for other popular distributed data 
structures. 

• Adaptive schemes will serve many of the algorithms 
well if applied properly. For instance, in zoom-in, the 
way sub-zones are divided can be more intelligent; in 
hill-climbing, both TTL and threshold can be adjusted 
on the fly; lastly, in radius-delta, the radius can be 
modified as well. 

• Some of the orthogonal optimizations we described 
could be combined with the current algorithms. 

• Last but not the least, we’d like to see if these 
techniques can be extended to other peer-to-peer 
systems, and how much a difference it will make by 
varying system parameters. 
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