

Site-Specific Passwords

Alan H. Karp
Intelligent Enterprise Technologies Laboratory
HP Laboratories Palo Alto
HPL-2002-39 (R.1)
May 6th , 2003*

E-mail: alan.karp@hp.com

passwords,
security

Most users have accounts on a large number of web sites. Today,
they have a choice of one password for all sites or a different
password for each site. Neither choice is attractive. This note
describes a procedure that produces a different password for each
site from a single password provided by the account holder.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

 1

Site-Specific Passwords

Alan H. Karp
Hewlett-Packard Laboratories

alan.karp@hp.com

Abstract

Most users have accounts on a large number of web sites. Today, they have a choice of
one password for all sites or a different password for each site. Neither choice is
attractive. This note describes a procedure that produces a different password for each
site from a single password provided by the account holder.

Introduction

Many web sites require a user login, forcing users into an unfortunate dilemma [6]. They
can either try to remember a different password for each site, or they can use the same
password for all sites. If they elect the former, they most likely end up writing down
passwords on paper. Even worse is writing these passwords in a file in their computers.
Alternatively, users can ask the browser to remember the password. These last two
approaches have the disadvantage of making login virtually impossible when using a
different machine. They also make the password vulnerable to hackers.

If users elect to have a single password for all sites, they put themselves at risk. An
unscrupulous web site owner could read passwords from users and attempt to use them at
well-known banking sites. Passwords can also be stored unencrypted in some web sites
where they are attractive targets for hackers.

Microsoft [3] is addressing this problem with Passport, a system that stores the required
information at a central, secure site. Anyone with a Passport account who has access to
the Internet can log in to a Passport compliant site. However, people have raised
questions of security and trust implicit in this approach. Additionally, the Passport server
is a single point of failure.

This note presents a stand-alone solution that requires the user to remember a single
password and an easily remembered name for each web site requiring a login. The
system combines these two elements to produce a site-specific password.

 2

Generating the Password

We generate a site-specific password from a user password and an easy to remember
name for the web site. These two strings are concatenated and hashed using the MD5 [2]
algorithm. MD5 produces a binary output of 16 bytes, which we convert to ASCII by
Base64 [1] encoding the MD5 result and truncating to 12 characters. Truncating protects
the user password without overly compromising the security of the site password as
explained below. A similar tool [4] has been distributed as freeware, but it has a number
of flaws. Most serious is the use of a function that has not undergone scrutiny by the
cryptographic community. Further, this function is not portable; different platforms
generate different site passwords from the same inputs.

For our purposes, the MD5 algorithm has a number of advantages.

1. The algorithm cannot be inverted to discover the user password even if the site
name is known.

2. The algorithm is a standard, meaning any implementation must produce the same
output for a given input.

3. It is highly unlikely that two different inputs will produce the same output.

The figure shows a screen shot of a typical use. In this example, the unguessable
password is qwerty.

The code contained in the Appendix is a Python [5] implementation of the program that
produces this result. It can be used as a stand-alone application to generate passwords
that can be typed manually into the password field of the web site. A better approach
would be to build a browser plug-in that would pop up whenever a password field
appeared in a web page. The output that today is displayed in the Site Password window
could be written directly into the input area of the web page. In addition, the data on site
names and password rules described in the next section can be attached to the window.
Another idea is to store a one-way hash of the user password so the tool can detect when
the user password was typed incorrectly.

Even better than improving this version of the code is putting it on a portable device.
Porting to a PDA is straightforward, but more useful might be putting the tool on a cell

 3

phone. It might even be worth producing a specialized device small enough to carry on a
key chain. The tool should also have an option to produce numeric values that can be
used as PIN’s for ATMs.

Practical Issues

It is still important to choose a good user password. The algorithm is well known, and
the site names are easily guessable. If the user password can be guessed, then an attacker
can generate the site password. However, the user needs only one such password,
making the use of a good password less onerous.

There is, of course, the issue of remembering the site name. Using the domain name in
the URL is one good scheme. Another would be to write down the site names used or put
them in a file. They could even be stored in Passport. There is no security risk because
knowing the site name provides no advantage in guessing either the user password or the
site password.

Different web sites have different rules for passwords. For example, Schwab.com allows
only alphanumeric characters in the password, but PayPal.com requires at least one non-
alphanumeric character. Some sites allow six-character passwords, but others require at
least eight.

When changing passwords on a web site, you want to be careful that you typed your user
password correctly. The easiest way to check is to generate a site password, retype your
user password, and generate the site password again. If it changes, you mistyped your
user password.

The tool described here returns the leading 12 characters of the result, more than needed
for any web site I have encountered. If a web site accepts only alphanumeric characters,
and the generated site password has some non-alphanumeric characters, they can be
skipped when being typed into the password field; enough characters should be left to
serve as a good site password. If the web site requires special characters in the password,
and the generated site password does not have any, the user will have to add one or more.
In both cases additional information must be remembered, but there is little danger in
recording it with the site names. The table gives some examples.

Site Name Location Comments
Schwab www.schwab.com Up to but not including /
PayPal www.paypal.com Append = to end
WAMU www.wamu.com Washington Mutual

A table like this is particularly important for sites that require periodic password changes.
The rules can be quite strict. For example, some sites do not allow you to use any of your
previous five passwords. Others require that the new and old passwords differ by a
certain minimum number of characters. With this tool, you need only append an integer

 4

to the site name each time you need to change your password. For example, a user
password of “qwerty” and a site name of “Amazon” result in a site password of
“SHX9AGgvKIls”. Changing the site name to “Amazon1” results in a site password of
“qZ1ZIQURZ5Ko”. These two passwords should pass any tests the web sites make.

One issue is the display of the site password; it is not obscured. Password fields display
only asterisks because someone might be looking over your shoulder. We can’t do that
with the generated site password because it must be copied to the web site’s password
field. There is some benefit to this choice. Seeing the site password can help detect
errors typing the user password or site name. You might not remember that your site
password for Amazon is “SHX9AGgvKIls”, but the substring “SHX” sticks in your
mind. Fortunately, the site passwords look random, making them hard to remember.
Nevertheless, you should be aware of who is watching.

Note that there’s no reason why you must have only one user password. You could
certainly have one for your sites that can cost you money and another for those that can’t.
Should you inadvertently use the wrong one, say your money password, you’re not
exposing any useful information. The web site will reject the computed site password,
and you’ll just try your other user password. Actually, more often than not, you’ll notice
that the site password looks wrong, and you’ll correct your mistake quickly.

Safety Considerations

Attacks against MD5 are normally attempts to find two inputs that produce the specified
output. That is not the problem here. We are worried about someone determining the
user password using the site password and knowledge of the site name. As far as we
know, the only such attack is exhaustive search. However, the inputs are short, so such
an attack may be feasible.

There are two things to be protected, the user password and the site password. The
generated site password consists of what appears to be random, ASCII characters. Thus,
the only attack is exhaustive search. Since each attempt involves a round trip to the web
server, it is hard to try more than one password per second. Hence, even relatively short
passwords will be safe from guessing. An 8-character site password provides more than
enough protection.

We also need to worry about attacks that figure out the user password knowing the site
password. We assume here that the site name is known. While not precisely true, we
expect people to choose relatively obvious strings as site names. These names won’t be
very long, perhaps 8 bytes if a shorthand is used or 16-20 if the location in the URL is
used. In either case, it is important that user passwords be sufficiently long and
unguessable. If the user password is a word found in the dictionary, it can be guessed in
a few hours on a modern PC. Even if the password is not in the dictionary, it must still be
long enough. If the user password consists of 4 or 5 bytes, an exhaustive search can find
it in a day or so.

 5

Since MD5 is a one-way hash function, we assume the only way to get the user password
from the site name and site password is a brute force attack. It only takes a few hours on
a modern PC to find a collision, a value for a user password that produces the same site
password for the assumed site name. However, that isn’t good enough. The attacker
must find the exact string used to generate the site password. It would take centuries to
guess a well-chosen, 8-byte user password.

The tool described here is even safer to use because we don’t use the entire MD5 result as
the site password. If we use only 8 bytes of the result as the site password, a large
number of strings will produce these bytes. Each of these strings must be used to
generate a site password for the site to be attacked, and that site password must be sent to
the web server to see if it is correct. Hence, the attack takes an impractical length of
time. However, if it does succeed, all the user’s site passwords can be generated. That’s
why picking a good user password is important.

What about those who insist on using weak user passwords? We could write them off,
and tell them they’re taking a chance, or we could help them. One bit of help is to
remind them to change their user passwords periodically. Of course, when they do, all
their generated site passwords will change. That’s such a nuisance that they won’t
bother. What they could do instead is create a strong password, perhaps using this tool,
and encrypt it with their weak passwords. Now, when they want to change their weak
passwords, they just decrypt the strong one with the old weak password and encrypt it
with the new weak one. If their weak passwords aren’t too weak, and if they are changed
often enough, the encrypted strong password can be stored in a public place.

There is a flaw in the operation of the tool that needs to be fixed before it is widely
distributed; the user password and site name are concatenated. That means that a user
password of “qwert” and a site name of “yahoo” produce the same site password as a user
password of “qwerty” and a site name of “ahoo”. This accidental collision should never
be a problem in practice, but there’s no need for it. All we need to do is add a padding
character, even a blank, between the user password and the site name before hashing.
This change hasn’t been made in the current tool because the users don’t want to change
all their site passwords.

Rejected Ideas

It is often important to know what was rejected and why. This information makes it less
likely that mistakes will be repeated. More importantly, it may trigger new ideas that
weren’t considered.

The basic idea used here comes from the way Unix handles login passwords. When a
new password is created, the OS kernel adds a few characters, referred to as salt, to the
password, hashes the result and stores it in the publicly readable password file. (Some

 6

systems use a level of indirection to make breaking passwords more difficult.) However,
we can’t use this approach directly for web logins.

We rejected the idea of doing the hashing on the web site because that would require
transmitting the user password, exactly what we are trying to avoid. We also rejected
doing the hash in the browser with a fixed salt, because doing so would result in the same
site password for every site.

One idea was to have the web site transmit its salt to the browser. However, this choice
would involve changing the protocol. In the long run, this approach might be viable, but
taking such a stance is not likely to help get early acceptance. In addition, there’s nothing
to prevent a malicious site sending Schwab.com’s salt and capturing the site password.

We thought about automatically using the location field in the URL as the site name.
This approach has two problems. First of all, if the URL changed at all, the user would
not be able to log on. Secondly, the only way to change a site password would be to
change the user password. Doing so would require the user to change site passwords on
every site. One idea that appears viable is to use the URL as the site name but give the
user an optional field to include in the hash. We didn’t feel this approach was worth the
effort.

One idea was to put the result of the hash directly into the password field of the web
page. However, different web sites have different rules for what constitutes a legal
password. As noted, Schwab.com does not allow special characters, while Paypal.com
requires them. Editing the password field is difficult because it only displays asterisks.

We could make the tool widely available by having it run on a server. While not as
dangerous as sending user passwords to a wide variety of web servers, we prefer to keep
the user password on the machine where it is entered.

The tool currently runs as a stand-alone application. We could write an applet, but it
might be too easy to create a Trojan horse that could capture user passwords. We thought
of a browser plug in, but they are started by the web page. We must assume that the web
site is unaware of our tool. A browser helper might be the best approach, but you might
need two browser instances since the first is blocked waiting for the site password.

Availability
The tool is available from http://www.hpl.hp.com/research/downloads/. There is a patent
pending, so be sure you understand the terms of use described at the bottom of that page.

Acknowledgements
I’d like to thank Jaap Suermondt, George Forman, Alan Haggard, and Evan Kirshenbaum
for suggesting improvements to the basic tool. Ren Wu produced a version in C for

 7

Windows, Kevin Smathers for Linux, Bill Serra for the HP Jornada, and John Schettino a
Java applet and versions for Palm Pilot and Nokia EPOC cell phones.

References

1. Base64, http://www.ietf.org/rfc/rfc1341.txt
2. MD5, http://www.ietf.org/rfc/rfc1321.txt
3. Microsoft Passport, http://www.passport.com
4. Yan, Q., SuperPassword, http://www.thinkingsoft.com
5. Python, http://www.python.org
6. Reagan, K., “Report: Passwords Not Good Enough for E-Shoppers”, E-commerce

Times, February 7, 2002, http://www.ecommercetimes.com/perl/story/16212.html

Appendix

This section contains the Python source code that implements the algorithm described in
the body of this note. The author has only a passing familiarity with Tk, the tool used to
generate the user interface. The result needs to be made prettier, the enter key should be
useable in addition to the button, and the cursor should be placed in the password field
when the window appears. We could also add the table of site names described earlier to
the tool.

Hewlett-Packard, © Hewlett-Packard, 2002

A little program to hash a user password with a site-specific string
The result is a random looking string that can be used as a password
on that site. This tool lets you use the same password string for
all sites, but assures that the password sent to the site is
different from that of any other site.

Alan Karp, alan.karp@hp.com, 7 February 2002

version = "Version 0.2"
from Tkinter import *

Generate Help window

def gethelp():
 top = Toplevel()
 h = Frame(top)
 h.pack()
 m = Message(h,relief=SUNKEN, text = """
 Site-specific Password Generator
 (Patent Pending, Hewlett-Packard)

 Combines a name for a web site and your password to produce
 a password unique to the site. This tool lets you use a single
 password for all your web logins without worrying that the owner
 of one site will use your password on another one, perhaps

 8

 draining your bank account.

 There are two input fields.

 Your password
 A string that you can remember. It should still be
 hard to guess because this tool uses a well-known
 algorithm, and you use well-known site names. Case
 sensitive.

 Site name
 Your name for the site. For example, Schwab, or
 Amazon. Case insensitive.

 Click on "Generate Password" to get a site-specific password.
 The result is 12 ASCII characters. Some sites do not accept
 characters other than number or letters. In this case, just
 don’t use other characters when you enter your site-specific
 password in their login windows.
 """)
 m.pack()
 m.config(width=500)

 c = Button(h,text=’Close’,command=top.destroy)
 c.pack()

Generate Error window

def error():
 top = Toplevel()
 h = Frame(top)
 h.pack()
 m = Message(h,relief=SUNKEN, text = "You forgot to enter a
password.", width=150)
 m.pack()
 c = Button(h,text=’Close’,command=top.destroy)
 c.pack()

Routine that does the actual work

import md5, base64
def genpw():

Use MD5 hash to produce an unguessable string from the inputs

 m = md5.new()
 location = site.get()
 m.update(location.lower())
 password = pw.get()
 if len(password) == 0:
 error()
 m.update(password)

Convert to ascii characters

 password = (base64.encodestring(m.digest()))[0:12]
 pwout.delete(0,END)

 9

 pwout.insert(0,password)

Main routine

Header

root = Tk()
Label(root, text=("Site-specific Password "+version)).pack()

Password entry field

f2 = Frame(root)
f2.pack()
Label(f2, text="Your password", relief=RIDGE, width=20, font =
’Courier’).pack(side=LEFT)
pw = Entry(f2, show="*", relief=SUNKEN, font = ’Courier’)
pw.pack(side=RIGHT, expand=YES, fill=X)

Site entry field

f1 = Frame(root)
f1.pack()
Label(f1, text="Site name", relief=RIDGE, width=20, font =
’Courier’).pack(side=LEFT)
site = Entry(f1, relief=SUNKEN, font = ’Courier’)
site.pack(side=LEFT, expand=YES, fill=X)

Output field

f3 = Frame(root)
f3.pack()
Label(f3, text="Site password", relief=RIDGE, width=20, font =
’Courier’).pack(side=LEFT)
pwout = Entry(f3, font = ’Courier’, relief=RIDGE)
pwout.pack(side=LEFT)

Generate Buttons

f4 = Frame(root)
f4.pack()
Button(f4, text=’Generate Password’, command=genpw).pack(side=LEFT)
Button(f4, text=’Help’, command=gethelp).pack(side=RIGHT)
Button(f4, text=’Close’, command=root.destroy).pack(side=LEFT)

Run it

root.mainloop()

